Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-16T19:55:53.728Z Has data issue: false hasContentIssue false

1 - Historical perspective

from Part I - History and general issues

Published online by Cambridge University Press:  01 July 2010

Donald Pinkel
Affiliation:
Adjunct Professor Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, USA
Ching-Hon Pui
Affiliation:
St. Jude Children's Research Hospital, Memphis
Get access

Summary

Introduction

Since its initial recognition 150 years ago, leukemia has been the focus of remarkable research activity and consequent progress. The drama of its manifestations, its frequency in children, its commercial importance in animal husbandry, its usefulness in understanding hematopoiesis, and its ready adaptability as a model for other human cancers are among the reasons for this attention. But perhaps more important for the current generation of its students was the discovery 30 years ago that the most common variety of leukemia could be cured in approximately one-half of children, the first generalized cancer to be cured and the first autologous cancer to be cured with chemicals. This chapter summarizes the history of the study of leukemia, particularly childhood leukemia, with regard to description, causation, and treatment. It concludes with comments about the lessons taught by this history.

Description of leukemia

Although the first description of a patient with leukemia was published in 1827, it was not until 1845 that Virchow in Germany (Fig. 1.1) and Bennett and Craigie in Scotland, in separate case reports, recognized it as a distinct disease, “white blood.” Two years later, Virchow introduced the term “leukemia” for this entity and proceeded on a series of investigations that were summarized in 1856. He distinguished leukemia from leukocytosis and described two types: splenic, associated with splenomegaly, and lymphatic, associated with large lymph nodes and cells in the blood resembling those in the lymph nodes.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aur, R. J. A., Simone, J. V., Hustu, H. O., et al.Central nervous system therapy and combination chemotherapy of childhood lymphocytic leukemia. Blood, 1971; 37: 272–81.Google ScholarPubMed
Velpeau, A.Sur la resorption du pusaet sur l'alteration du sang dans les maladies clinique de persection nenemant. Premier observation. Rev Med, 1827; 2: 216.Google Scholar
Virchow, R.Weisses blut. Notiz Geb Natur Heilk, 1845; 36: 152–6.Google Scholar
Bennett, J. H.Case of hypertrophy of the spleen and liver in which death took place from suppuration of the blood. Edinburgh Med Surg J, 1845; 64: 413–23.Google Scholar
Craigie, D.Case of disease of the spleen in which death took place in consequence of the presence of purulent matter in the blood. Edinburgh Med Surg J, 1845; 64: 400–13.Google Scholar
Virchow, R. Die leukämie. In , R. Virchow, ed., Gesammelte abhandlungen zur wissenschaft lichen medizin (Frankfurt, Germany: Meidinger, 1856), pp. 190–211.Google Scholar
Friedreich, N.Ein neuer fall von leukämie. Virchow's Arch Pathol Anat, 1857; 12: 37–58.CrossRefGoogle Scholar
Neumann, E.Ueber myelogene leukämie. Berl Klin Wochenschr, 1878; 15: 69–72.Google Scholar
Turk, W.Ein system der lymphomatosen. Wien Klin Wochenschr, 1903; 16: 1073–85.Google Scholar
Ehrlich, P.Farbenanalytische untersuchungen zur histologie und klinick des blutes (Berlin: Hirschwald, 1891).Google Scholar
Reschad, H. & Schilling-Torgau, V.Ueber eine neue leukämie durch echte uebergangsformen und ihre bedeutung fur dies selbständigkeit dieser zellen. Munch Med Wochenschr, 1913; 60: 1981–4.Google Scholar
Ward, G.The infective theory of acute leukemia. Br J Child Dis, 1917; 14: 10–20.Google Scholar
Bennett, J. M., Catovsky, D., Daniel, M.-T., et al.Criteria for the diagnosis of acute leukemia of megakaryocytic lineage (M7). A report of the French–American–British Cooperative Group. Ann Intern Med, 1985; 103: 460–2.CrossRefGoogle Scholar
Nowell, P. C. & Hungerford, D. A.A minute chromosome in human chronic granulocytic leukemia. Science, 1960; 132: 1497.Google Scholar
Rowley, J. D.A new consistent chromosome abnormality in chronic myelogenous leukemia identified by quinacrine fluorescence and Giemsa staining. Nature, 1973; 243: 290–3.CrossRefGoogle ScholarPubMed
Jurlander, J., Caliguri, M. A., Ruutu, T., et al.Persistence of AML1/ETO fusion transcript in patients treated with allogeneic bone marrow transplantation for t(8;21) leukemia. Blood, 1996; 88: 2183–91.Google Scholar
Guthrie, R. Organization of a regional newborn screening laboratory. Neonatal Screening for Inborn Errors of Metabolism (Berlin: Springer, 1980), In , H. Bickel, , R. Guthrie & , G. Hammersen, eds., pp. 259–70.Google Scholar
Ford, A. M., Ridge, S. A., Cabrera, M. E., et al.In utero rearrangements in the trithorax-related oncogene in infant leukaemias. Nature, 1993; 363: 358–60.CrossRefGoogle ScholarPubMed
Gale, K. B., Ford, A. M., Repp, R., et al.Backtracking leukemia to birth: identification of clonotypic gene fusion sequences in neonatal blood spots. Proc Natl Acad Sci U S A, 1997; 94: 13 950–4.CrossRefGoogle ScholarPubMed
Wiemels, J. L., Cazzaniga, G., Daniotti, M., et al.Prenatal origin of acute lymphoblastic leukaemia in children. Lancet, 1999; 354: 1499–1503.CrossRefGoogle ScholarPubMed
Yagi, T., Hibi, S., Tabata, Y., et al.Detection of clonotypic IGH and TCR rearrangements in the neonatal blood spots of infants and children with B-cell precursor acute lymphoblastic leukemia. Blood, 2000; 96: 264–8.Google ScholarPubMed
Taub, J. W., Konrad, M. A., Ge, Y., et al.High frequency of leukemic clones in newborn screening blood samples of children with B-precursor acute lymphoblastic leukemia. Blood, 2002; 99: 2992–6.CrossRefGoogle ScholarPubMed
Wiemels, J. L., Xiao, Z., Buffler, P. A., et al.In utero origin of t(8;21) AML1-ETO translocations in childhood acute myeloid leukemia. Blood, 2002; 99: 3801–5.CrossRefGoogle Scholar
Greaves, M.Childhood leukaemia. BMJ, 2002; 324: 283–7.CrossRefGoogle ScholarPubMed
Borella, L. & Sen, L.T cell surface markers on lymphoblasts from acute lymphocytic leukemia. J Immunol, 1973; 111: 1257–60.Google ScholarPubMed
Sen, L. & Borella, L.Clinical importance of lymphoblasts with T markers in childhood acute leukemia. N Engl J Med, 1975; 92: 828–32.CrossRefGoogle Scholar
Ritz, J., Pesando, J. M., Notis-McConarty, J., et al.A monoclonal antibody to human acute lymphoblastic leukemia antigen. Nature, 1980; 283: 583–5.CrossRefGoogle Scholar
Pui, C. H. & Crist, W. M.Biology and treatment of acute lymphoblastic leukemia. J Pediatr, 1994; 124: 491–503.CrossRefGoogle ScholarPubMed
Romana, S. P., Poirel, H., Leconiat, M., et al.High frequency of t(12;21) in childhood B-lineage acute lymphoblastic leukemia. Blood, 1995; 86: 4263–9.Google Scholar
Pinkel, D.Genotypic classification of childhood acute lymphoid leukemia. Leukemia, 1999; 13(Suppl.): S90–1.CrossRefGoogle ScholarPubMed
Jaffe, E. S., Harris, N. L., Stein, H., & Vardiman, J. W., eds. World Health Organization Classification of Tumors. Pathology and Genetics of Tumours of Hematopoietic and Lymphoid Tissues (Lyon, France: IARC Press, 2001).Google Scholar
Vardiman, J. W., Harris, N. L., & Brunning, R. D.The World Health Organization (WHO) classification of the myeloid neoplasms. Blood, 2002; 100: 2292–302.CrossRefGoogle ScholarPubMed
Walters, T. R., Bushore, M., & Simone, J.Poor prognosis in Negro children with acute lymphocytic leukemia. Cancer, 1972; 29: 210–14.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Viana, M. B., Murao, M., Ramos, G., et al.Malnutrition as a prognostic factor in lymphoblastic leukemia: a multivariate analysis. Arch Dis Child, 1994; 71: 304–10.CrossRefGoogle ScholarPubMed
Lobato-Mendizabal, E., Ruiz-Arguelles, G. J., & Marin-Lopez, A.Leukemia and nutrition: malnutrition is an adverse prognostic factor in the outcome of treatment of patients with standard risk acute lymphoblastic leukemia. Leuk Res, 1989; 13: 899–906.CrossRefGoogle Scholar
Lobato-Mendizabal, E., Ruiz-Arguelles, G. J., & Ganci-Cerrud, G.Effects of socioeconomic status on the therapeutic response of children with acute lymphoblastic leukemia of common risk. Neoplasia, 1991; 8: 161–5.Google Scholar
Hord, M. H., Smith, T. L., Culbert, S. J., et al.Ethnicity and cure rates of Texas children with acute lymphoid leukemia. Cancer, 1996; 77: 563–9.3.0.CO;2-1>CrossRefGoogle ScholarPubMed
Krivit, W. & Good, R. A.Simultaneous occurrence of mongolism and leukemia. AMA J Dis Child, 1957; 94: 289–93.CrossRefGoogle ScholarPubMed
Ravindrinath, Y., Abella, E., Krischer, J. P., et al.Acute myeloid leukemia in Down's syndrome is highly responsive to chemotherapy: experience of Pediatric Oncology Group AML Study 8498. Blood, 1992; 80: 2210–4.Google Scholar
Douer, D., Preston-Martin, S., Chang, E.et al.High frequency of acute promyelocytic leukemia among Latinos with acute myeloid leukemia. Blood, 1996; 87: 308–13.Google ScholarPubMed
Lennard, L., Lilleyman, J. S., Van Loon, J., et al.Genetic variation in response to 6-mercaptopurine for childhood acute lymphoblastic leukemia. Lancet, 1990; 336: 225–9.CrossRefGoogle Scholar
McLeod, H. L., Relling, M. V., Liu, Q., et al.Polymorphic thiopurine methyltransferase in erythrocytes is indicative of activity in leukemic blasts from children with acute lymphoblastic leukemia. Blood, 1995; 85: 1897–1902.Google ScholarPubMed
Wiemels, J. L., Pagnamenta, A., Taylor, G. M., et al.A lack of a functional NAD(P)H:quinone oxidoreductase allele is selectively associated with pediatric leukemias that have MLL fusions. United Kingdom Childhood Cancer Study Investigators. Cancer Res, 1999; 59: 4095–9.Google ScholarPubMed
Wiemels, J. L., Smith, R. N., Taylor, G. M., et al.Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and risk of molecularly defined subtypes of childhood acute leukemia. Proc Natl Acad Sci U S A, 2001; 98: 4004–9.CrossRefGoogle ScholarPubMed
Ellerman, V. & Bang, O.Experimentelle leukämie bei hühnern. Zentrabl Bakteriol, 1908; 46: 595–609.Google Scholar
Gross, L.“Spontaneous” leukemia developing in C3H mice following inoculation, in infancy, with AK-leukemic extracts or AK-embryos. Proc Soc Exp Biol Med, 1951; 76: 27–32.CrossRefGoogle ScholarPubMed
Rickard, C. G., Post, J. E., Noronha, F., et al.A transmissable virus-induced lymphocytic leukemia of the cat. J Natl Cancer Inst, 1969; 42: 987–1014.Google Scholar
Miller, J. M., Miller, L. D., Olson, C. & Gillette, K. G.Virus-like particles in phytohemagglutinin-stimulated lymphocyte cultures with reference to bovine lymphosarcoma. J Natl Cancer Inst, 1969; 43: 1297–1305.Google ScholarPubMed
Kawakami, T. G., Huff, S. D., Buckley, P. M., et al.C-type virus associated with gibbon lymphosarcoma. Nat New Biol, 1972; 235: 170–1.CrossRefGoogle ScholarPubMed
Poiesz, B. J., Ruscette, F. W., Gagdar, A. F., et al.Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A, 1980; 77: 7415–19.CrossRefGoogle ScholarPubMed
Churchill, A. E. & Biggs, P. M.Agent of Marek disease in tissue culture. Nature, 1967; 215: 528–30.CrossRefGoogle Scholar
Epstein, M. A., Achong, B. G., & Barr, Y. M.Virus particles in cultured lymphoblasts from Burkitt's lymphoma. Lancet, 1964; 15: 702–3.CrossRefGoogle Scholar
Pagano, J. S.Epstein–Barr virus: the first human tumor virus and its role in cancer. Proc Assoc Am Physicians, 1999; 111: 573–80.CrossRefGoogle Scholar
Smith, J. W., Freeman, A. & Pinkel, D.Search for a human leukemia virus. Archiv Gesamte Virusforschung, 1967; 22: 294–302.CrossRefGoogle Scholar
Cooke, J. V.The incidence of acute leukemia in children. JAMA, 1942; 119: 547–50.CrossRefGoogle Scholar
Kellett, C. E.Acute myeloid leukemia in one of identical twins. Arch Dis Child, 1937; 12: 239–52.CrossRefGoogle Scholar
Pinkel, D. & Nefzger, D.Some epidemiological features of childhood leukemia in the Buffalo, NY, area. Cancer, 1959; 12: 351–8.3.0.CO;2-7>CrossRefGoogle Scholar
Pinkel, D., Dowd, J. E. & Bross, I. D. J.Some epidemiological features of malignant solid tumors of children in the Buffalo, NY, area. Cancer, 1963; 16: 28–33.3.0.CO;2-U>CrossRefGoogle Scholar
Heath, C. W. & Hasterlik, R. J.Leukemia among children in a suburban community. Am J Med, 1963; 34: 796–812.CrossRefGoogle Scholar
Knox, G.Epidemiology of childhood leukemia in Northumberland and Durham. Br J Prev Soc Med, 1964; 18: 17–24.Google ScholarPubMed
Lock, S. P. & Merrington, M.Leukemia in Lewisham (1957–1963). Br Med J, 1967; 3: 759–60.CrossRefGoogle Scholar
Ederer, F., Myers, M. H., Eisenberg, H., et al.Temporal-spatial distribution of leukemia and lymphoma in Connecticut. J Natl Cancer Inst, 1965; 35: 625–9.Google Scholar
Kinlen, L. J., Dickson, M., & Stiller, C. A.Childhood leukemia and non-Hodgkin's lymphoma near large rural construction sites, with a comparison with Sellafield nuclear site. BMJ, 1995; 310: 763–8.CrossRefGoogle ScholarPubMed
Greaves, M. F. & Alexander, F. E.An infectious etiology for common acute lymphoblastic leukemia in childhood ? Leukemia, 1993; 7: 349–60.Google ScholarPubMed
Greaves, M. F., Colman, S. M., Beard, M. E. J., et al.Geographical distribution of acute lymphoblastic leukemia subtypes: second report of the collaborative group study. Leukemia, 1993; 7: 27–34.Google ScholarPubMed
March, H. C.Leukemia in radiologists. Radiology, 1944; 43: 275–8.CrossRefGoogle Scholar
Folley, J. H., Borges, W., & Yamawaki, T.Incidence of leukemia in survivors of the atomic bomb in Hiroshima and Nagasaki, Japan. Am J Med, 1952; 13: 311–21.CrossRefGoogle ScholarPubMed
Simpson, C. L., Hempelman, L. H., & Fuller, L. M.Neoplasia in children treated with x-rays in infancy for thymic enlargement. Radiology, 1955; 64: 840–5.CrossRefGoogle ScholarPubMed
Stewart, A., Webb, J., Gates, D., et al.Malignant disease in childhood and diagnostic irradiation in utero. Lancet, 1956; 2: 447.CrossRefGoogle Scholar
Ron, E., Modan, B., & Boice, J. D. Jr.Mortality after radiotherapy for ringworm of the scalp. Am J Epidemiol, 1988; 127: 713–25.CrossRefGoogle ScholarPubMed
Kadhim, M. A. & Wright, E. G.Radiation-induced transmissable chromosomal instability in haemopoietic stem cells. Adv Space Res, 1998; 22: 587–96.CrossRefGoogle ScholarPubMed
Delore, P. & Borgomano, C.Leucémie aigue au cours de l'intoxication benzenique: sur l'origine toxique de certaines leucémies aigues et leurs relations avec les anémies graves. J Méd Lyon, 1928; 9: 227–33.Google Scholar
Aksoy, M., Erdem, S., & Dincol, G.Leukemia in shoe workers exposed chronically to benzene. Blood, 1974; 44: 837–41.Google Scholar
Vigliani, E. C. & Saita, G.Benzene and leukemia. N Engl J Med, 1964; 271: 872–6.CrossRefGoogle ScholarPubMed
Hayes, R. B., Yin, S. N., Dosemeci, M., et al.Mortality among benzene-exposed workers in China. Environ Health Perspect, 1996; 104 (Suppl. 6): 1349–52.CrossRefGoogle Scholar
Hoffmann, D., Brunnemann, K. D., & Hoffman, I. Significance of benzene in tobacco carcinogenesis. In , M. A. Mehlman, ed., Benzene: Occupational and Environmental Hazards: Scientific Update (Princeton, NJ: Princeton Scientific Publications, 1989), pp. 99–112.Google Scholar
Smith, M. T.The mechanism of benzene-induced leukemia: a hypothesis and speculations on the causes of leukemia. Environ Health Perspect, 1996; 104(Suppl. 6): 1219–25.CrossRefGoogle ScholarPubMed
Thompson, J. R., Gerald, P. F., Willoughby, L. N., et al.Maternal folate supplementation in pregnancy and protection against acute lymphoblastic leukaemia in childhood: a case-control study. Lancet, 2001; 358: 1935–40.CrossRefGoogle ScholarPubMed
Tucker, M. A., Meadows, A. T., Boice, J. D., et al.Leukemia after therapy with alkylating agents for childhood cancer. J Natl Cancer Inst, 1987; 78: 459–64.CrossRefGoogle ScholarPubMed
Pui, C.-H., Behm, F. G., Raimondi, S. C., et al.Secondary acute myeloid leukemia in children treated for acute lymphoid leukemia. N Engl J Med, 1989; 321: 136–42.CrossRefGoogle ScholarPubMed
Alexander, F. E., Patheal, S. L., Biondi, A., et al.Transplacental chemical exposure and risk of infant leukemia with MLL gene fusion. Cancer Res, 2001; 61: 2542–6.Google ScholarPubMed
Hartenstein, Ber Veterinärw, Sachsen: 1876; 44: 41: As cited by Engelbreth-Holm, J. In Spontaneous and Experimental Leukemia in Animals (Edinburgh, UK: Oliver and Boyd, 1942), p. 130.Google Scholar
Slye, M.The relation of heredity to the occurence of spontaneous leukemia, pseudoleukemia, lymphosarcoma and allied diseases in mice. Preliminary report. Am J Cancer, 1931; 15: 1361–86.Google Scholar
MacDowell, E. C. & Richter, M. N.Mouse leukemia. Ⅸ. The role of heredity in spontaneous cases. Arch Pathol, 1935; 20: 709–24.Google Scholar
Ardashnikov, S. N.The genetics of leukemia in man. J Hyg, 1937; 37: 286–302.CrossRefGoogle ScholarPubMed
Videbaek, A.Heredity in Human Leukemia and its Relation to Cancer: A Genetic and Clinical Study of 209 Probands (London: H K Lewis, 1947).Google Scholar
Steinberg, A. G. A genetic and statistical study of acute leukemia in children. In Proceedings of the Third National Cancer Conference (Philadelphia, PA: J. B. Lippincott, 1957), pp. 353–6.Google Scholar
Siegel, A. E.Lymphocytic leukemia occurring in twins. Atlantic Med Monthly J, 1928; 31: 748–9.Google Scholar
MacMahon, B. & Levy, M. A.Prenatal origin of childhood leukemia. Evidence from twins. N Engl J Med, 1964; 270: 1082–5.CrossRefGoogle ScholarPubMed
Brewster, H. F. & Cannon, H. E.Acute lymphatic leukemia: report of a case in an eleventh month mongolian idiot. New Orleans Med Surg J, 1930; 82: 872–3.Google Scholar
Miller, R. W.Persons with an exceptionally high risk of leukemia. Cancer Res, 1967; 27: 2420–3.Google ScholarPubMed
De Klein, A., Kessel, A. G., Grosveld, G., et al.A cellular oncogene is translocated to the Philadelphia chromosome in chronic myelocytic leukemia. Nature, 1982; 300: 765–7.CrossRefGoogle Scholar
Dalla-Favera, R., Bregni, M., Erikson, J., et al.Human c-myc onc gene is located on the region of chromosome 8 that is translocated in Burkitt lymphoma cells. Proc Natl Acad Sci U S A, 1982; 79: 7824–7.CrossRefGoogle ScholarPubMed
Pinkel, D.Curing children of leukemia. Cancer, 1987; 59: 1683–91.3.0.CO;2-G>CrossRefGoogle ScholarPubMed
Deininger, M. W., Goldman, J. M., & Melo, J. V.The molecular biology of chronic myeloid leukemia. Blood, 2000; 96: 3343–56.Google ScholarPubMed
Blackwood, E. M. & Eisenman, R. N.Max: a helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science, 1991; 251: 1211–17.CrossRefGoogle ScholarPubMed
Lissauer, H.Zwei fälle von leucaemie. Berl Klin Wochenschr, 1865; 2: 403–4.Google Scholar
Senn, N.The therapeutical value of the Roentgen ray in the treatment of pseudoleukemia. N Y Med J, 1903; 77: 665–8.Google Scholar
Lawrence, J. H.Nuclear physics and therapy: preliminary report on a new method for the treatment of leukemia and polycythemia. Radiology, 1940; 35: 51–60.CrossRefGoogle Scholar
Krumbhaar, E. B. & Krumbhaar, H. D.The blood and bone marrow in yellow cross (mustard gas) poisoning. Changes produced in the bone marrow of fatal cases. J Med Res, 1919; 40: 497–506.Google Scholar
Alexander, A. F.Medical report of the Bari harbor mustard casualties. Mil Surg, 1947; 101: 1–17.Google ScholarPubMed
Goodman, L. S., Wintrobe, M. W., Dameshek, W., et al.Nitrogen mustard therapy. Use of methyl-bis (beta-chloroethyl) amine hydrochloride and tris (beta-chloroethyl) amine hydrochloride for Hodgkin's disease, lymphosarcoma, leukemia, and certain allied and miscellaneous disorders. JAMA, 1946; 132: 126–132.CrossRefGoogle ScholarPubMed
Karnofsky, D. A.Summary of results obtained with nitrogen mustard in the treatment of neoplastic disease. Ann NY Acad Sci, 1958; 68: 889–914.CrossRefGoogle ScholarPubMed
Mitchell, H. K., Snell, E. E., & Williams, R. J.The concentration of “folic acid”. J Am Chem Soc, 1941; 63: 2284.CrossRefGoogle Scholar
Angier, R. B., Boothe, J. H., Hutchings, B. L., et al.The structure and synthesis of the liver (L. casei) factor. Science, 1946; 103: 667–9.CrossRefGoogle Scholar
Spies, T. D.Treatment of macrocytic anemia with folic acid. Lancet, 1946; 1: 225–8.CrossRefGoogle ScholarPubMed
Farber, S., Diamond, L. K., Mercer, R. D., et al.Temporary remissions in acute leukemia in children produced by folic acid antagonist, 4-amino-pteroylglutamic acid (aminopterin). N Engl J Med, 1948; 238: 787–93.CrossRefGoogle Scholar
Farber, S., Toch, R., Sears, E. M., et al.Advances in chemotherapy of cancer in man. Adv Cancer Res, 1956; 4: 1–71.CrossRefGoogle ScholarPubMed
Seeger, D. R., Smith, J. M., & Hultquist, M. E.Antagonist for pteroylglutamic acid. J Am Chem Soc, 1947; 69: 2567.CrossRefGoogle ScholarPubMed
Farber, S. The effect of ACTH in acute leukemia in childhood. In , J. R. Mote, ed., First Clinical ACTH Conference (New York: Blakiston, 1950).Google Scholar
Elion, G. B., Hitchings, G. H., & Vanderwerff, H.Antagonists of nucleic acid derivatives. Ⅵ. Purines. J Biol Chem, 1951; 192: 505–18.Google ScholarPubMed
Burchenal, J. H., Murphy, M. L., Ellison, R. R., et al.Clinical evaluation of a new antimetabolite, 6-mercaptopurine, in treatment of leukemia and allied diseases. Blood, 1953; 8: 965–99.Google ScholarPubMed
Fernbach, D. J., Sutow, W. W., Thurman, W. G., et al.Clinical evaluation of cyclophosphamide. A new agent for the treatment of children with acute leukemia. JAMA, 1962; 182: 30–7.CrossRefGoogle ScholarPubMed
Karon, M. R., Freireich, E. J., & Frei, E. III.A preliminary report on vincristine sulfate: a new active agent for the treatment of acute leukemia. Pediatrics, 1962; 30: 791–6.Google Scholar
Gloor, W.Ein fall von geheilter myeloblastenleukämie. Munch Med Wochenschr, 1930; 77: 1096–8.Google Scholar
Burchenal, J. H. & Murphy, M. L.Long-term survivors in acute leukemia. Cancer Res, 1965; 25: 1491–4.Google ScholarPubMed
Zuelzer, W. W.Implications of long-term survival in acute stem cell leukemia of childhood treated with composite cyclic therapy. Blood, 1964; 24: 477–94.Google ScholarPubMed
Krivit, W., Gilchrist, G., & Beatty, E.The need for chemotherapy after prolonged complete remission in acute leukemia of childhood. J Pediatr, 1970; 76: 138–41.CrossRefGoogle ScholarPubMed
Skipper, H. E., Schabel, F. M., Bell, M., et al.On the curability of experimental neoplasms. I. A-methopterin and mouse leukemias. Cancer Res, 1957; 17: 717–26.Google Scholar
Goldin, A., Venditti, J. M., Humphreys, S. R., et al.Influence of the concentration of leukemic inoculum on the effectiveness of treatment. Science, 1956; 123: 840.CrossRefGoogle Scholar
Frei, E. III, Holland, J. F., Schneiderman, M. A., et al.A comparative study of two regimens of combination chemotherapy in acute leukemia. Blood, 1958; 13: 1126–48.Google ScholarPubMed
Frei, E. III, Freireich, E. J., Gehan, E., et al.Studies of sequential and combination antimetabolite therapy in acute leukemia. 6-mercaptopurine and methotrexate. Blood, 1961; 18: 431–54.Google Scholar
Frei, E. III, Karon, M., Levin, R. H., et al.The effectiveness of combinations of antileukemia agents in inducing and maintaining remission in children with acute leukemia. Blood, 1965; 26: 642–56.Google Scholar
Henderson, E. S.Combination chemotherapy of acute lymphocytic leukemia of childhood. Cancer Res, 1967; 27: 2570–2.Google ScholarPubMed
Henderson, E. S. & Samaha, R. J.Evidence that drugs in multiple combinations have materially advanced the treatment of human malignancies. Cancer Res, 1969; 29: 2272–80.Google Scholar
George, P., Hernandez, K., Hustu, O., et al.A study of “total therapy” of acute leukemia in children. J Pediatr, 1968; 72: 399–408.CrossRefGoogle ScholarPubMed
Pinkel, D.Five-year follow-up of “total therapy” of childhood lymphocytic leukemia. JAMA, 1971; 216: 648–52.CrossRefGoogle ScholarPubMed
Simone, J. V.Treatment of children with acute lymphocytic leukemia. Adv Pediatr, 1972; 19: 13–45.Google Scholar
Pinkel, D., Hernandez, K., Borella, L., et al.Drug dosage and remission duration in childhood lymphocytic leukemia. Cancer, 1971; 27: 247–56.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Aur, R. J. A., Simone, J. V., Hustu, H. O., et al.A comparative study of central nervous system irradiation and intensive chemotherapy early in remission of childhood acute lymphocytic leukemia. Cancer, 1972; 29: 381–91.3.0.CO;2-P>CrossRefGoogle ScholarPubMed
Jacquillat, C., Weil, M., Gemon, M.-F., et al.Combination therapy in 130 patients with acute lymphoblastic leukemia (Protocol O6 LA 66-Paris). Cancer Res, 1973; 33: 3278–84.Google Scholar
Sullivan, M. P., Chen, T., Dyment, P. G., et al.Equivalence of intrathecal chemotherapy and radiotherapy as central nervous system prophylaxis in children with acute lymphatic leukemia. A Pediatric Oncology Group study. Blood, 1982; 60: 948–58.Google ScholarPubMed
Rivera, G. K., Pinkel, D., Simone, J. V., et al.Treatment of acute lymphoblastic leukemia: 30 years experience at St. Jude Children's Research Hospital. N Engl J Med, 1993; 329: 1289–95.CrossRefGoogle ScholarPubMed
Miller, R. W. & McKay, F. W.Decline in US childhood cancer mortality, 1950 through 1980. JAMA, 1984; 251: 1567–70.CrossRefGoogle ScholarPubMed
Birch, J. M., Marsden, H. B., Morris Jones, P. H., et al.Improvements in survival from childhood cancer: results of a population based survey over 30 years. BMJ, 1988; 296: 1372–6.CrossRefGoogle ScholarPubMed
Ellison, R. R, Holland, J. F., Weil, M., et al.Arabinosyl cytosine, a useful agent in the treatment of leukemia in adults. Blood, 1968; 32: 507–23.Google ScholarPubMed
Howard, J. P., Albo, V., Newton, W. A.Cytosine arabinoside. Results of a cooperative study in acute childhood leukemia. Cancer, 1968; 21: 341–5.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Holton, C. P., Lonsdale, D., Nora, A. H., et al.Clinical study of daunomycin in children with acute leukemia. Cancer, 1968; 22: 1014–17.3.0.CO;2-F>CrossRefGoogle ScholarPubMed
Hill, J. M., Roberts, J., Loeb, E., et al.L-asparaginase therapy for leukemia and other malignant neoplasms. JAMA, 1967; 202: 882–8.CrossRefGoogle ScholarPubMed
Mathé, G., Schwarzenberg, L., Pouillart, P., et al.Two epipodophyllotoxin derivatives, VM 26 and VP 16213, in the treatment of leukemias, hematosarcomas and lymphomas. Cancer, 1974; 34: 985–92.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Djerassi, I., Farber, S., Abir, E., et al.Continuous infusion of methotrexate in children with acute leukemia. Cancer, 1967; 20: 233–42.3.0.CO;2-8>CrossRefGoogle ScholarPubMed
Lauer, S. J., Pinkel, D., Buchanan, G. R., et al.Cytosine arabinoside/cyclophosphamide pulses during continuation therapy for childhood acute lymphoblastic leukemia. Cancer, 1987; 60: 2366–71.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Patte, C., Thierry, P., Chantal, R., et al.High survival rate in advanced-staged B-cell lymphomas and leukemias without CNS involvement with a short intensive polychemotherapy. J Clin Oncol, 1991; 9: 123–32.CrossRefGoogle Scholar
Gee, T. S., Yu, K.-P., & Clarkson, B. D.Treatment of adult acute leukemia with arabinosylcytosine and thioguanine. Cancer, 1969; 23: 1019–32.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Dahl, G. V., Kalwinsky, D. K., Mirro, J.et al.A comparison of cytokinetically based versus intensive chemotherapy for childhood acute myelogenous leukemia. Hematol Blood Transfusion, 1987; 30: 83–7.Google ScholarPubMed
Perel, Y., Aurvrignon, A., Leblanc, T., et al.Impact of addition of maintenance therapy to intensive induction and consolidation chemotherapy for childhood acute myeloblastic leukemia: results of a prospective randomized trial, LAME 89/91. J Clin Oncol, 2002; 20: 2774–82.CrossRefGoogle ScholarPubMed
Woods, W. G., Neudorf, S., Gold, S., et al.A comparison of allogeneic bone marrow transplantation, autologous bone marrow transplantation, and aggressive chemotherapy in children with acute myeloid leukemia in remission. Blood, 2001; 97: 56–62.CrossRefGoogle ScholarPubMed
Barnes, D. W. H., & Loutit, J. F.Treatment of murine leukemia with x-rays and homologous bone marrow: II. Br J Haematol, 1957; 3: 241–52.CrossRefGoogle ScholarPubMed
Dausset, J.Iso-leuco-anticorps. Acta Haematol, 1958; 20: 156–66.CrossRefGoogle Scholar
Thomas, E. D., Buckner, C. D., Rudolph, R. H., et al.Allogeneic marrow grafting for hematologic malignancy using HL-A-matched donor recipient sibling pairs. Blood, 1971; 38: 267–87.Google ScholarPubMed
Pinkel, D.Bone marrow transplantation in children. J Pediatr, 1993; 122: 331–41.CrossRefGoogle ScholarPubMed
Fefer, A., Cheever, M. A., Thomas, E. D., et al.Disappearance of Ph1-positive cells in four patients with chronic granulocytic leukemia after chemotherapy, irradiation and marrow transplantation from an identical twin. N Engl J Med, 1979; 300: 333–7.CrossRefGoogle ScholarPubMed
Galton, D. A. G.Myleran in chronic myeloid leukemia. Results of treatment. Lancet, 1953; 264: 208–13.CrossRefGoogle ScholarPubMed
Fishbein, W. N., Carbone, P. P., Freireich, E. J., et al.Clinical trials of hydroxyurea in patients with cancer and leukemia. Clin Pharmacol Ther, 1965; 5: 574–80.CrossRefGoogle Scholar
Sanders, J., Buckner, C., Thomas, E. D., et al.Allogeneic marrow transplantation for children with juvenile chronic myelogenous leukemia. Blood, 1988; 71: 1144–6.Google ScholarPubMed
Bunin, N., Casper, J., Chitambar, C., et al.Partially matched bone marrow transplantation in patients with myelodysplastic syndromes. J Clin Oncol, 1988; 6: 1851–5.CrossRefGoogle ScholarPubMed
Appelbaum, F. R., Clift, R. A., Buckner, C. D., et al.Allogeneic marrow transplantation for acute nonlymphoblastic leukemia after first relapse. Blood, 1983; 61: 949–53.Google ScholarPubMed
Dopfer, R., Henze, G., Bender-Gotze, C., et al.Allogeneic bone marrow transplantation for childhood acute lymphoblastic leukemia in second remission after intensive primary and relapse therapy according to the BFM and Co-ALL protocols; results of the German cooperative study. Blood, 1991; 78: 2780–4.Google Scholar
Harrison, G., Richards, S., Lawson, S., et al.Comparison of allogeneic transplant versus chemotherapy for relapsed childhood acute lymphoblastic leukaemia in the MRC UKALL R1 trial. Ann Oncol, 2000; 11: 999–1006.CrossRefGoogle ScholarPubMed
Gaynon, P. S., Harris, R. E., Trigg, M. E., et al.Chemotherapy (CT) vs. BMT for children (pts) with acute lymphoblastic leukemia (ALL) and early marrow relapse (MR): CCG-1941. Blood, 2000; 96: 418a.Google Scholar
Pui, C. H., Gaynon, P. S., Boyett, J. M., et al.Outcome of treatment in childhood acute lymphoblastic leukaemia with rearrangements of the 11q23 chromosomal region. Lancet, 2002; 359: 1909–15.CrossRefGoogle ScholarPubMed
Pinkel, D.Treatment of children with acute myeloid leukemia. Blood, 2001; 97: 3673.CrossRefGoogle ScholarPubMed
Giralt, S., Estey, E., Albitar, M., et al.Engraftment of allogeneic hematopoietic progenitor cells with purine analog-containing chemotherapy: harnessing graft-versus-leukemia without myeloablative therapy. Blood, 1997; 89: 4531–6.Google ScholarPubMed
Talpaz, M., Kantarjian, H. M., & McCredie, K.Hematologic remission and cytogenetic improvement induced by human interferon alpha in chronic myelogenous leukemia. N Engl J Med, 1986; 314: 1065–9.CrossRefGoogle ScholarPubMed
Talpaz, M., Kantarjian, H., Kurzrock, R., et al.Interferon-alpha produces sustained cytogenetic responses in chronic myelogenous leukemia. Ann Intern Med, 1991; 114: 532–8.CrossRefGoogle ScholarPubMed
Dow, L., Raimondi, S., Culbert, S., et al.Response to alpha-interferon in children with Philadelphia chromosome-positive chronic myelocytic leukemia. Cancer, 1991; 68: 1678–84.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
Pinkel, D. & Granoff, A., eds. Genetic Targeting in Leukemia. Accomplishments in Oncology, vol. 2 (no. 2) (Philadelphia, PA: J. B. Lippincott, 1988).Google Scholar
Huang, M. E., Ye, Y. C., Chen, S. R., et al.Use of all-trans retinoic acid in the treatment of acute promyelocytic leukemia. Blood, 1988; 72: 567–72.Google ScholarPubMed
De Thé, H., Lavau, C., Marchio, A., et al.The PML-RAR fusion mRNA generated by the t(15;17) translocation in acute promyelocytic leukemia encodes a functionally altered RARα. Cell, 1991; 66: 675–84.CrossRefGoogle Scholar
Fenaux, P., Wattel, E., Archimbaud, E., et al.Prolonged follow-up confirms that all-trans retinoic acid followed by chemotherapy reduces the risk of relapse in newly diagnosed acute promyelocytic leukemia. Blood, 1994; 84: 666–7.Google ScholarPubMed
Druker, B. J. & Lydon, N. B.Lessons learned from the development of an abl tyrosine kinase inhibitor for chronic myelogenous leukemia. J Clin Invest, 2000; 105: 3–7.CrossRefGoogle ScholarPubMed
Mauro, M. J., O'Dwyer, M., Heinrich, M. C., Druker, B. J.STI 571: a paradigm of new agents for cancer therapeutics. J Clin Oncol, 2001; 20: 325–334.CrossRefGoogle Scholar
Yeoh, E. J., Ross, M. E., Shurtleff, S. A., et al.Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell, 2002; 1: 133–43.CrossRefGoogle ScholarPubMed
Chandy, M.Childhood acute lymphoblastic leukemia in India: an approach to management in a three-tier society. Med Pediatr Oncol, 1995; 25: 197–203.CrossRefGoogle Scholar
Kun, L. E., Camitta, B. M., Mulhern, R. K., et al.Treatment of meningeal relapse in childhood acute lymphoblastic leukemia. I. Results of craniospinal irradiation. J Clin Oncol, 1984; 2: 359–64.CrossRefGoogle ScholarPubMed
Stoffel, T. J., Nesbit, M. E., Levitt, S. H.Extramedullary involvement of the testes in childhood leukemia. Cancer, 1975; 35: 1203–11.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Blundell, J.Successful case of transfusion. Lancet, 1828; 1: 431–2.Google Scholar
Landsteiner, K.Ueber agglutinationserscheinungen normalen menschlichen blutes. Wien Klin Wochenschr, 1901; 14: 1132–4.Google Scholar
Rous, P. & Turner, J. R.The preservation of living red blood cells in vitro I. Method of preservation. J Exp Med, 1916; 23: 219–37.CrossRefGoogle ScholarPubMed
Robertson, O. H.Transfusion with preserved red blood cells. Br Med J, 1918; 1: 691–5.CrossRefGoogle ScholarPubMed
Rous, P. & Robertson, O. H.The normal fate of erythrocytes I. The findings in healthy animals. J Exp Med, 1917; 25: 651–64.CrossRefGoogle ScholarPubMed
Fantus, B.The therapy of the Cook County Hospital: blood preservation. JAMA, 1937; 109: 128–131.Google Scholar
Gardner, F. H., Howell, D. H., & Hirsch, E. O.Platelet transfusion utilizing plastic equipment. J Lab Clin Med, 1954; 43: 196–207.Google ScholarPubMed
McGovern, J. J.Platelet transfusions in pediatrics. New Engl J Med, 1957; 256: 922–7.CrossRefGoogle Scholar
Rundles, R. W., Wyngarden, J. B., Hitchings, G. H., et al.Effects of the xanthine oxidase inhibitor, allopurinol, on thiopurine metabolism, hyperuricemia and gout. Trans Assoc Am Phy, 1963; 76: 126–40.Google Scholar
Pui, C.-H., Mahmond, H. H., Wiley, J. M., et al.Recombinant urate oxidase for the prophylaxis or treatment of hyperuricemia in patients with leukemia or lymphoma. J Clin Oncol, 2001; 19: 697–704.CrossRefGoogle ScholarPubMed
Pinkel, D.Chickenpox and leukemia. J Pediatr, 1961; 58: 729–37.CrossRefGoogle ScholarPubMed
Feldman, S., Hughes, W. T., & Daniel, C. B.Varicella in children with cancer. Seventy-seven cases. Pediatrics, 1975; 56: 388–97.Google ScholarPubMed
Zaia, J. A., Levin, M. J., & Preblud, S. R., et al.Evaluation of varicella-zoster immune globulin: protection of immunosuppressed children after household exposure to varicella. J Infect Dis, 1983; 147: 737–43.CrossRefGoogle ScholarPubMed
Biron, K. K. & Elion, G. B.In vitro susceptibility of varicella-zoster virus to acyclovir. Antimicrob Agents Chemother, 1980; 18: 443–7.CrossRefGoogle ScholarPubMed
Prober, C. G., Kirk, L. E., & Keeney, R. E.Acyclovir therapy of chickenpox in immunosuppressed children: a collaborative study. J Pediatr, 1982; 101: 622–5.CrossRefGoogle ScholarPubMed
Johnson, H. D. & Johnson, W. W.Pneumocystis carinii pneumonia in children with cancer. Diagnosis and treatment. JAMA, 1970; 214: 1067–73.CrossRefGoogle ScholarPubMed
Perera, D. R., Western, K. A., Johnson, H. D., et al.Pneumocystis carinii pneumonia in a hospital for children. Epidemiologic aspects. JAMA, 1970; 214: 1074–8.CrossRefGoogle Scholar
Ivady, G. & Paldy, L.A new method of treating interstitial plasma cell pneumonia in premature infants with pentavalent antimony and aromatic diamidines. Mschr Kinderheilk, 1958; 106: 10–14.Google Scholar
Hughes, W. T., Kuhn, S., Chaudhary, S., et al.Successful chemoprophylaxis for Pneumocystis carinii pneumonitis. N Engl J Med, 1977; 297: 1419–26.CrossRefGoogle ScholarPubMed
Frei, E., Levin, R. H., Bodey, G. P., et al.The nature and control of infections in patients with acute leukemia. Cancer Res, 1965; 25: 1511–15.Google ScholarPubMed
Bodey, G. P., Buckley, M., Sathe, Y. S., et al.Quantitative relationships between circulating leucocytes and infection in patients with acute leukemia. Ann Intern Med, 1966; 64: 328–40.CrossRefGoogle ScholarPubMed
Pizzo, P. A., Ladisch, S., Simon, R. M., et al.Increasing incidence of gram-positive sepsis in cancer patients. Med Pediatr Oncol, 1978; 5: 241–4.CrossRefGoogle ScholarPubMed
Young, R. C., Bennett, J. E., Geelhoed, G. W., et al.Fungemia with compromised host resistance. Ann Intern Med, 1974; 80: 605–12.CrossRefGoogle ScholarPubMed
Procknow, J. J. & Loosli, C. G.Treatment of the deep mycoses. AMA Arch Intern Med, 1958; 101: 765–802.CrossRefGoogle ScholarPubMed
Galgiani, J. N.Fluconazole, a new antifungal agent. Ann Intern Med, 1990; 113: 177–9.CrossRefGoogle ScholarPubMed
Vernick, V. & Karon, M.Who's afraid of death on a leukemia ward ? Am J Dis Child, 1965; 109: 393–7.Google ScholarPubMed
Soni, S. S., Marten, G. W., Pitner, S. E., et al.Effects of central nervous system irradiation on neuropsychologic functioning of children with acute lymphocytic leukemia. N Engl J Med, 1975; 293: 113–18.CrossRefGoogle ScholarPubMed
Pinkel, D.Selecting treatment for children with acute lymphoblastic leukemia. J Clin Oncol, 1996; 14: 4–6.CrossRefGoogle ScholarPubMed
Mathé, G., Amiel, J. L., Schwarzenberg, L., et al.Active immunotherapy for acute lymphoblastic leukemia. Lancet, 1969; 1: 697–9.CrossRefGoogle Scholar
Kay, H.Treatment of acute lymphoblastic leukemia. Comparison of immunotherapy (BCG), intermittent methotrexate, and no therapy after a 5 month intensive cytotoxic regimen (Concord trial). Br Med J, 1971; 4: 189–94.Google Scholar
Heyn, R. M., Joo, P., Karon, M., et al.BCG in the treatment of acute lymphocytic leukemia. Blood, 1975; 46: 431–42.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Historical perspective
    • By Donald Pinkel, Adjunct Professor Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Historical perspective
    • By Donald Pinkel, Adjunct Professor Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Historical perspective
    • By Donald Pinkel, Adjunct Professor Biological Sciences Department, California Polytechnic State University, San Luis Obispo, CA, USA
  • Edited by Ching-Hon Pui
  • Book: Childhood Leukemias
  • Online publication: 01 July 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511471001.002
Available formats
×