Skip to main content Accessibility help
×
Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-17T08:48:49.805Z Has data issue: false hasContentIssue false

18 - Myelodysplastic syndrome

from Section 3 - Evaluation and treatment

Published online by Cambridge University Press:  05 April 2013

Ching-Hon Pui
Affiliation:
St Jude's Children's Research Hospital
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Childhood Leukemias , pp. 429 - 443
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Hasle, H, Baumann, I, Bergsträsser, E, et al. The International Prognostic Scoring System (IPSS) for childhood myelodysplastic syndrome (MDS) and juvenile myelomonocytic leukemia (JMML). Leukemia 2004;18:2008–2014.CrossRefGoogle Scholar
Passmore, SJ, Hann, IM, Stiller, CA, et al. Pediatric myelodysplasia: a study of 68 children and a new prognostic scoring system. Blood 1995;85: 1742–1750.Google Scholar
Hasle, H, Kerndrup, G, Jacobsen, BB. Childhood myelodysplastic syndrome in Denmark: incidence and predisposing conditions. Leukemia 1995;9:1569–1572.Google ScholarPubMed
Bader-Meunier, B, Mielot, F, Tchernia, G, et al. Myelodysplastic syndrome in childhood: report of 49 patients from a French multicenter study. Br J Haematol 1996;92:344–350.CrossRefGoogle Scholar
Luna-Fineman, S, Shannon, KM, Atwater, SK, et al. Myelodysplastic and myeloproliferative disorders of childhood: a study of 167 patients. Blood 1999;93:459–466.Google Scholar
Hasle, H, Wadsworth, LD, Massing, BG, McBride, M, Schultz, KR. A population-based study of childhood myelodysplastic syndrome in British Columbia, Canada. Br J Haematol 1999;106:1027–1032.CrossRefGoogle ScholarPubMed
Lopes, LF, Lorand, Metze I. Childhood myelodysplastic syndromes in a Brazilian population. Pediatr Hematol Oncol 1999;16:347–353.CrossRefGoogle Scholar
Sasaki, H, Manabe, A, Kojima, S, et al. Myelodysplastic syndrome in childhood: a retrospective study of 189 patients in Japan. Leukemia 2001;15:1713–1720.CrossRefGoogle ScholarPubMed
Passmore, SJ, Chessells, JM, Kempski, H, et al. Paediatric MDS and JMML in the UK: a population based study of incidence and survival. Br J Haematol 2003;121:758–767.CrossRefGoogle Scholar
Elghetany, MT.Myelodysplastic syndromes in children: a critical review of issues in the diagnosis and classification of 887 cases from 13 published series. Arch Pathol Lab Med 2007;131:1110–1116.Google ScholarPubMed
Polychronopoulou, S, Panagiotou, JP, Kossiva, L, et al. Clinical and morphological features of paediatric myelodysplastic syndromes: a review of 34 cases. Acta Paediatr 2004;93:1015–1023.CrossRefGoogle ScholarPubMed
Hasle, H, Aricò, M, Basso, G, et al. Myelodysplastic syndrome, juvenile myelomonocytic leukemia, and acute myeloid leukemia associated with complete or partial monosomy 7. Leukemia 1999;13:376–385.CrossRefGoogle ScholarPubMed
Kardos, G, Baumann, I, Passmore, SJ, et al. Refractory anemia in childhood: a retrospective analysis of 67 patients with particular reference to monosomy 7. Blood 2003;102:1997–2003.CrossRefGoogle ScholarPubMed
Hasle, H, Niemeyer, CM, Chessells, JM, et al. A pediatric approach to the WHO classification of myelodysplastic and myeloproliferative diseases. Leukemia 2003;17:277–282.CrossRefGoogle ScholarPubMed
Steliarova-Foucher, E, Stiller, C, Lacour, B, Kaatsch, P. International Classification of Childhood Cancer, third edition. Cancer 2005;103:1457–1467.CrossRefGoogle ScholarPubMed
Hasle, H, Heim, S, Schroeder, H, et al. Transient pancytopenia preceding acute lymphoblastic leukemia (pre-ALL). Leukemia 1995;9:605–608.Google Scholar
Weiss, K, Stass, S, Williams, D, et al. Childhood monosomy 7 syndrome: clinical and in vitro studies. Leukemia 1987;1:97–104.Google ScholarPubMed
Woods, WG, Barnard, DR, Alonzo, TA, et al. Prospective study of 90 children requiring treatment for juvenile myelomonocytic leukemia or myelodysplastic syndrome: a report from the Children's Cancer Group. J Clin Oncol 2002;20:434–440.Google ScholarPubMed
Bennett, JM, Catovsky, D, Daniel, MT, et al. Proposals for the classification of the myelodysplastic syndromes. Br J Haematol 1982;51:189–199.CrossRefGoogle ScholarPubMed
Jaffe, ES, Harris, NL, Stein, H, Vardiman, JW (eds.). World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press, 2001.Google Scholar
Baumann, I, Niemeyer, CM, Bennett, JM, Shannon, K. Childhood myelodysplastic syndrome. In Swerdlow, SH, Campos, E, Harris, NL, et al. (eds.) WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press, 2008:104–107.Google Scholar
Mandel, K, Dror, Y, Poon, A, Freedman, MH. A practical, comprehensive classification for pediatric myelodysplastic syndromes: The CCC system. J Pediatr Hematol Oncol 2002;24:596–605.CrossRefGoogle ScholarPubMed
Swerdlow, SH, Campos, E, Harris, NL, et al. (eds.). WHO Classification of Tumours of Haematopoietic and Lymphoid Tissues. Lyon: IARC Press, 2008.Google Scholar
Pabst, T, Eyholzer, M, Haefliger, S, Schardt, J, Mueller, BU. Somatic CEBPA mutations are a frequent second event in families with germline CEBPA mutations and familial acute myeloid leukemia. J Clin Oncol 2008;26:5088–5093.CrossRefGoogle ScholarPubMed
Shinawi, M, Erez, A, Shardy, DL, et al. Syndromic thrombocytopenia and predisposition to acute myelogenous leukemia caused by constitutional microdeletions on chromosome 21q. Blood 2008;112:1042–1047.CrossRefGoogle ScholarPubMed
Bagby, GC, Alter, BP. Fanconi anemia. Semin Hematol 2006;43:147–156.CrossRefGoogle ScholarPubMed
Lie, SO, Berglund, G, Gustafsson, G, et al. High-dose Ara-C as a single-agent consolidation therapy in childhood acute myelogenous leukemia. Hamatol Bluttransfus 1990;33:215–221.Google ScholarPubMed
Woods, WG, Kobrinsky, N, Buckley, J, et al. Intensively timed induction therapy followed by autologous or allogeneic bone marrow transplantation for children with acute myeloid leukemia or myelodysplastic syndrome: a Childrens Cancer Group pilot study. J Clin Oncol 1993;11:1448–1457.CrossRefGoogle ScholarPubMed
Stary, J, Baumann, I, Creutzig, U, et al. Getting the numbers straight in pediatric MDS: distribution of subtypes after exclusion of down syndrome. Pediatr Blood Cancer 2008;50:435–436.CrossRefGoogle ScholarPubMed
Brandwein, JM, Horsman, DE, Eaves, AC, et al. Childhood myelodysplasia: suggested classification as myelodysplastic syndromes based on laboratory and clinical findings. Am J Pediatr Hematol Oncol 1990;12:63–70.CrossRefGoogle ScholarPubMed
Creutzig, U, Cantù-Rajnoldi, A, Ritter, J, et al. Myelodysplastic syndromes in childhood. Report of 21 patients from Italy and West Germany. Am J Pediatr Hematol Oncol 1987;9:324–330.CrossRefGoogle ScholarPubMed
Tuncer, MA, Pagliuca, A, Hicsönmez, G, et al. Primary myelodysplastic syndrome in children: the clinical experience in 33 cases. Br J Haematol 1992;82:347–353.CrossRefGoogle ScholarPubMed
Hasle, H, Clausen, N, Pedersen, B, Bendix-Hansen, K. Myelodysplastic syndrome in a child with constitutional trisomy 8 mosaicism and normal phenotype. Cancer Genet Cytogenet 1995;79:79–81.CrossRefGoogle Scholar
Maserati, E, Aprili, F, Vinante, F, et al. Trisomy 8 in myelodysplasia and acute leukemia is constitutional in 15–20% of cases. Genes Chromosomes Cancer 2002;33:93–97.CrossRefGoogle ScholarPubMed
Hasle, H, Olsen, JH, Nielsen, J, et al. Occurrence of cancer in women with Turner syndrome. Br J Cancer 1996;73:1156–1159.CrossRefGoogle ScholarPubMed
Rosenberg, PS, Huang, Y, Alter, BP. Individualized risks of first adverse events in patients with Fanconi anemia. Blood 2004;104:350–355.CrossRefGoogle ScholarPubMed
Alter, BP, Caruso, JP, Drachtman, RA, et al. Fanconi anemia: myelodysplasia as a predictor of outcome. Cancer Genet Cytogenet 2000;117:125–131.CrossRefGoogle ScholarPubMed
Cioc, AM, Wagner, JE, MacMillan, ML, Defor, T, Hirsch, B. Diagnosis of myelodysplastic syndrome among a cohort of 119 patients with Fanconi anemia: morphologic and cytogenetic characteristics. Am J Clin Pathol 2010;133:92–100.CrossRefGoogle ScholarPubMed
Tonnies, H, Huber, S, Kuhl, JS, et al. Clonal chromosome aberrations in bone marrow cells of Fanconi anemia patients: gains of the chromosomal segment 3q26q29 as an adverse risk factor. Blood 2003;101: 3872–3874.CrossRefGoogle ScholarPubMed
Donadieu, J, Leblanc, T, Bader, MB, et al. Analysis of risk factors for myelodysplasias, leukemias and death from infection among patients with congenital neutropenia. Experience of the French Severe Chronic Neutropenia Study Group. Haematologica 2005;90:45–53.Google ScholarPubMed
Rosenberg, PS, Alter, BP, Bolyard, AA, et al. The incidence of leukemia and mortality from sepsis in patients with severe congenital neutropenia receiving long-term G-CSF therapy. Blood 2006;107:4628–4635.CrossRefGoogle ScholarPubMed
Germeshausen, M, Ballmaier, M, Welte, K. Incidence of CSF3R mutations in severe congenital neutropenia and relevance for leukemogenesis: results of a long-term survey. Blood 2007;109:93–99.CrossRefGoogle ScholarPubMed
Choi, SW, Boxer, LA, Pulsipher, MA, et al. Stem cell transplantation in patients with severe congenital neutropenia with evidence of leukemic transformation. Bone Marrow Transplant 2005;35:473–477.CrossRefGoogle ScholarPubMed
Zeidler, C, Germeshausen, M, Klein, C, Welte, K. Clinical implications of ELA2-, HAX1-, and G-CSF-receptor (CSF3R) mutations in severe congenital neutropenia. Br J Haematol 2009;144:459–467.CrossRefGoogle ScholarPubMed
Steinemann, D, Praulich, I, Otto, N, et al. Mutation analysis of the HAX1 gene in childhood myelodysplastic syndrome. Br J Haematol 2009;145: 533–534.CrossRefGoogle ScholarPubMed
Smith, OP.Shwachman–Diamond syndrome. Semin Hematol 2002;39:95–102.CrossRefGoogle ScholarPubMed
Minelli, A, Maserati, E, Nicolis, E, et al. The isochromosome i(7)(q10) carrying C258+2T>C mutation of the SBDS gene does not promote development of myeloid malignancies in patients with Shwachman syndrome. Leukemia 2009;23:708–711.CrossRefGoogle Scholar
Maserati, E, Pressato, B, Valli, R, et al. The route to development of myelodysplastic syndrome/acute myeloid leukaemia in Shwachman–Diamond syndrome: the role of ageing, karyotype instability, and acquired chromosome anomalies. Br J Haematol 2009;145:190–197.CrossRefGoogle ScholarPubMed
Rujkijyanont, P, Beyene, J, Wei, K, Khan, F, Dror, Y. Leukaemia-related gene expression in bone marrow cells from patients with the preleukaemic disorder Shwachman–Diamond syndrome. Br J Haematol 2007;137:537–544.CrossRefGoogle ScholarPubMed
Karow, A, Flotho, C, Schneider, M, Fliegauf, M, Niemeyer, CM. Mutations of the Shwachman–Bodian–Diamond syndrome (SBDS) gene in patients presenting with refractory cytopenia: do we have to screen?Haematologica 2010;95:689–690.CrossRefGoogle Scholar
Calado, RT, Young, NS. Telomere diseases. N Engl J Med 2009;361:2353–2365.CrossRefGoogle ScholarPubMed
van Dijken, PJ, Verwijs, W. Diamond–Blackfan anemia and malignancy. A case report and a review of the literature. Cancer 1995;76:517–520.3.0.CO;2-8>CrossRefGoogle Scholar
Lipton, JM, Atsidaftos, E, Zyskind, I, Vlachos, A. Improving clinical care and elucidating the pathophysiology of Diamond Blackfan anemia: an update from the Diamond Blackfan Anemia Registry. Pediatr Blood Cancer 2006;46:558–564.CrossRefGoogle ScholarPubMed
Vlachos, A, Ball, S, Dahl, N, et al. Diagnosing and treating Diamond Blackfan anaemia: results of an international clinical consensus conference. Br J Haematol 2008;142:859–876.CrossRefGoogle ScholarPubMed
Ganly, P, Walker, LC, Morris, CM. Familial mutations of the transcription factor RUNX1 (AML1, CBFA2) predispose to acute myeloid leukemia. Leuk Lymphoma 2004;45:1–10.CrossRefGoogle ScholarPubMed
Maserati, E, Panarello, C, Morerio, C, et al. Clonal chromosome anomalies and propensity to myeloid malignancies in congenital amegakaryocytic thrombocytopenia (OMIM 604498). Haematologica 2008;93:1271–1273.CrossRefGoogle Scholar
Gohring, G, Karow, A, Steinemann, D, et al. Chromosomal aberrations in congenital bone marrow failure disorders: an early indicator for leukemogenesis? Ann Hematol 2007;86:733–739.CrossRefGoogle ScholarPubMed
Ohara, A, Kojima, S, Hamajima, N, et al. Myelodysplastic syndrome and acute myelogenous leukemia as a late clonal complication in children with acquired aplastic anemia. Blood 1997;90:1009–1013.Google ScholarPubMed
Führer, M, Rampf, U, Burdach, S, et al. Immunosuppressive therapy and bone marrow transplantation for aplastic anemia in children: results of the study SAA 94. Blood 1998;92:156a.Google Scholar
Führer, M, Rampf, U, Baumann, I, et al. Immunosuppressive therapy for aplastic anemia in children: a more severe disease predicts better survival. Blood 2005;106:2102–2104.CrossRefGoogle ScholarPubMed
Ohara, A, Kojima, S, Okamura, J, et al. Evolution of myelodysplastic syndrome and acute myelogenous leukaemia in children with hepatitis-associated aplastic anaemia. Br J Haematol 2002;116:151–154.CrossRefGoogle ScholarPubMed
Locasciulli, A, Arcese, W, Locatelli, F, Di Bona, E, Bacigalupo, A. Treatment of aplastic anaemia with granulocyte-colony stimulating factor and risk of malignancy. Lancet 2001;357:43–44.CrossRefGoogle ScholarPubMed
Kojima, S, Hibi, S, Kosaka, Y, et al. Immunosuppressive therapy using antithymocyte globulin, cyclosporine, and danazol with or without human granulocyte colony-stimulating factor in children with acquired aplastic anemia. Blood 2000;96:2049–2054.Google ScholarPubMed
Kojima, S, Ohara, A, Tsuchida, M, et al. Risk factors for evolution of acquired aplastic anemia into myelodysplastic syndrome and acute myeloid leukemia after immunosuppressive therapy in children. Blood 2002;100:786–790.CrossRefGoogle ScholarPubMed
Shannon, KM, Turhan, AG, Chang, SS, et al. Familial bone marrow monosomy 7. Evidence that the predisposing locus is not on the long arm of chromosome 7. J Clin Invest 1989;84:984–989.CrossRefGoogle ScholarPubMed
Gilchrist, DM, Friedman, JM, Rogers, PC, Creighton, SP. Myelodysplasia and leukemia syndrome with monosomy 7: a genetic perspective. Am J Med Genet 1990;35:437–441.CrossRefGoogle ScholarPubMed
Luna-Fineman, S, Shannon, KM, Lange, BJ. Childhood monosomy 7: epidemiology, biology, and mechanistic implications. Blood 1995;85:1985–1999.Google ScholarPubMed
Hasle, H, Olsen, JH. Cancer in relatives of children with myelodysplastic syndrome, acute and chronic myeloid leukaemia. Br J Haematol 1997;97:127–131.CrossRefGoogle ScholarPubMed
Mijovic, A, Antunovic, P, Pagliuca, A, Mufti, GJ. Familial myelodysplastic syndromes: a key to understanding leukaemogenesis? Leuk Res 1997;21(Suppl 1):S6.CrossRefGoogle Scholar
Hasle, H, Olsen, JH, Hansen, J, Friedrich, U, Tommerup, N. Occurrence of cancer in a cohort of 183 persons with constitutional chromosome 7 abnormalities. Cancer Genet Cytogenet 1998;105:39–42.CrossRefGoogle Scholar
Minelli, A, Maserati, E, Giudici, G, et al. Familial partial monosomy 7 and myelodysplasia different parental origin of the monosomy 7 suggests action of a mutator gene. Cancer Genet Cytogenet 2001;124:147–151.CrossRefGoogle ScholarPubMed
Owen, C, Barnett, M, Fitzgibbon, J. Familial myelodysplasia and acute myeloid leukaemia: a review. Br J Haematol 2008;140:123–132.CrossRefGoogle ScholarPubMed
Hasle, H, Clemmensen, IH, Mikkelsen, M. Risks of leukaemia and solid tumours in individuals with Down's syndrome. Lancet 2000;355: 165–169.CrossRefGoogle ScholarPubMed
Hasle, H, Abrahamsson, J, Arola, M, et al. Myeloid leukemia in children 4 years or older with Down syndrome often lacks GATA1 mutation and cytogenetics and risk of relapse are more akin to sporadic AML. Leukemia 2008;22:1428–1430.CrossRefGoogle ScholarPubMed
Tefferi, A, Thibodeau, SN, Solberg, LA. Clonal studies in the myelodysplastic syndrome using X-linked restriction fragment length polymorphisms. Blood 1990;75:1770–1773.Google ScholarPubMed
Busque, L, Gilliland, DG. X-inactivation analysis in the 1990s: promise and potential problems. Leukemia 1998;12:128–135.CrossRefGoogle ScholarPubMed
Aktas, D, Tuncbilek, E. Myelodysplastic syndrome associated with monosomy 7 in childhood: a retrospective study. Cancer Genet Cytogenet 2006;171:72–75.CrossRefGoogle ScholarPubMed
Goel, R, Kumar, R, Bakhshi, S. Transformation of childhood MDS-refractory anemia to acute lymphoblastic leukemia. J Pediatr Hematol Oncol 2007;29:725–727.CrossRefGoogle ScholarPubMed
Delhommeau, F, Dupont, S, Della Valle, V, et al. Mutation in TET2 in myeloid cancers. N Engl J Med 2009;360:2289–2301.CrossRefGoogle ScholarPubMed
Muramatsu, H, Makishima, H, Jankowska, AM, et al. Mutations of E3 ubiquitin ligase Cbl family members but not TET2 mutations are pathogenic in juvenile myelomonocytic leukemia. Blood 2010;115:1069–1975.CrossRefGoogle Scholar
Head, DR. Revised classification of acute myeloid leukemia. Leukemia 1996;10:1826–1831.Google ScholarPubMed
Loeb, LA. A mutator phenotype in cancer. Cancer Res 2001;61:3230–3239.Google Scholar
Maserati, E, Minelli, A, Pressato, B, et al. Shwachman syndrome as mutator phenotype responsible for myeloid dysplasia/neoplasia through karyotype instability and chromosomes 7 and 20 anomalies. Genes Chromosomes Cancer 2006;45:375–382.CrossRefGoogle ScholarPubMed
Sheng, XM, Kawamura, M, Ohnishi, H, et al. Mutations of the RAS genes in childhood acute myeloid leukemia, myelodysplastic syndrome and juvenile chronic myelocytic leukemia. Leuk Res 1997;21:697–701.CrossRefGoogle ScholarPubMed
Tamaki, H, Ogawa, H, Ohyashiki, K, et al. The Wilms' tumor gene WT1 is a good marker for diagnosis of disease progression of myelodysplastic syndromes. Leukemia 1999;13:393–399.CrossRefGoogle ScholarPubMed
Hasegawa, D, Manabe, A, Kubota, T, et al. Methylation status of the p15 and p16 genes in paediatric myelodysplastic syndrome and juvenile myelomonocytic leukaemia. Br J Haematol 2005;128:805–812.CrossRefGoogle ScholarPubMed
Vidal, DO, Paixao, VA, Brait, M, et al. Aberrant methylation in pediatric myelodysplastic syndrome. Leuk Res 2007;31:175–181.CrossRefGoogle ScholarPubMed
Jekic, B, Novakovic, I, Lukovic, L, et al. Lack of TP53 and FMS gene mutations in children with myelodysplastic syndrome. Cancer Genet Cytogenet 2006;166:163–165.CrossRefGoogle ScholarPubMed
Jekic, B, Novakovic, I, Lukovic, L, et al. Low frequency of NRAS and KRAS2 gene mutations in childhood myelodysplastic syndromes. Cancer Genet Cytogenet 2004;154:180–182.CrossRefGoogle ScholarPubMed
Field, JJ, Mason, PJ, An, P, et al. Low frequency of telomerase RNA mutations among children with aplastic anemia or myelodysplastic syndrome. J Pediatr Hematol Oncol 2006;28:450–453.CrossRefGoogle ScholarPubMed
Ortmann, CA, Niemeyer, CM, Wawer, A, et al. TERC mutations in children with refractory cytopenia. Haematologica 2006;91:707–708.Google ScholarPubMed
Roela, RA, Carraro, DM, Brentani, HP, et al. Gene stage-specific expression in the microenvironment of pediatric myelodysplastic syndromes. Leuk Res 2007;31:579–589.CrossRefGoogle ScholarPubMed
Hicsönmez, G, Cetin, M, Yenicesu, I, et al. Evaluation of children with myelodysplastic syndrome: importance of extramedullary disease as a presenting symptom. Leuk Lymphoma 2001;42:665–674.CrossRefGoogle ScholarPubMed
Cantù-Rajnoldi, A, Fenu, S, Kerndrup, G, et al. Evaluation of dysplastic features in myelodysplastic syndromes: experience from the morphology group of the European Working Group of MDS in Childhood (EWOG-MDS). Ann Hematol 2005;84:429–433.CrossRefGoogle Scholar
Barnard, DR, Kalousek, DK, Wiersma, SR, et al. Morphologic, immunologic, and cytogenetic classification of acute myeloid leukemia and myelodysplastic syndrome in childhood: a report from the Childrens Cancer Group. Leukemia 1996;10:5–12.Google ScholarPubMed
Rosati, S, Anastasi, J, Vardiman, J. Recurring diagnostic problems in the pathology of the myelodysplastic syndromes. Semin Hematol 1996;33:111–126.Google ScholarPubMed
la Porta, MG, Malcovati, L, Boveri, E, et al. Clinical relevance of bone marrow fibrosis and CD34-positive cell clusters in primary myelodysplastic syndromes. J Clin Oncol 2009;27:754–762.CrossRefGoogle Scholar
Hasle, H.Myelodysplastic syndromes in childhood. Classification, epidemiology, and treatment. Leuk Lymphoma 1994;13:11–26.CrossRefGoogle Scholar
Groupe, Francais de Cytogénétique Hématologique. Forty-four cases of childhood myelodysplasia with cytogenetics, documented by the Groupe Francais de Cytogénétique Hématologique. Leukemia 1997;11:1478–1485.Google Scholar
Gohring, G, Michalova, K, Beverloo, HB, et al. Complex karyotype newly defined: the strongest prognostic factor in advanced childhood myelodysplastic syndrome. Blood 2011;116:3766–3769.CrossRefGoogle Scholar
Grimwade, D, Walker, H, Oliver, F, et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 1998;92:2322–2333.Google ScholarPubMed
Martinez-Climent, JA, García-Conde, J. Chromosome rearrangements in childhood acute myeloid leukemias and myelodysplastic syndromes. J Pediatr Hematol Oncol 1999;21:91–102.CrossRefGoogle ScholarPubMed
Woods, WG, Neudorf, S, Gold, S, et al. A comparison of allogeneic bone marrow transplantation, autologous bone marrow transplantation, and aggressive chemotherapy in children with acute myeloid leukemia in remission. Blood 2001;97:56–62.CrossRefGoogle ScholarPubMed
Latger-Cannard, V, Buisine, J, Fenneteau, O, et al. Dysgranulopoiesis, low blast count and t(8;21): an unusual presentation of t(8;21) AML according to the WHO classification: a pediatric experience. Leuk Res 2001;25:1023–1024.CrossRefGoogle Scholar
Valent, P, Horny, HP, Bennett, JM, et al. Definitions and standards in the diagnosis and treatment of the myelodysplastic syndromes: consensus statements and report from a working conference. Leuk Res 2007;31:727–736.CrossRefGoogle ScholarPubMed
Veltroni, M, Sainati, L, Zecca, M, et al. Advanced pediatric myelodysplastic syndromes: can immunophenotypic characterization of blast cells be a diagnostic and prognostic tool? Pediatr Blood Cancer 2009;52:357–363.CrossRefGoogle ScholarPubMed
Goyal, R, Varma, N, Marwaha, RK. Myelodysplastic syndrome with erythroid hypoplasia. J Clin Pathol 2005;58:320–321.CrossRefGoogle ScholarPubMed
Führer, M, Rampf, U, Bender-Götze, C. Mean corpuscular volume (MCV) in patients with aplastic anemia. Does this parameter select patients with clonal disease? A retrospective analysis of data of the SAA 944 study. Leukemia 2000;14:961.Google Scholar
Elghetany, MT, Hudnall, SD, Gardner, FH. Peripheral blood picture in primary hypocellular refractory anemia and idiopathic acquired aplastic anemia: an additional tool for differential diagnosis. Haematologica 1997;82:21–24.Google ScholarPubMed
Al-Rahawan, MM, Alter, BP, Bryant, BJ, Elghetany, MT. Bone marrow cell cycle markers in inherited bone marrow failure syndromes. Leuk Res 2008;32:1793–1799.CrossRefGoogle ScholarPubMed
Hasle, H, Kerndrup, G, Jacobsen, BB, et al. Chronic parvovirus infection mimicking myelodysplastic syndrome in a child with subclinical immunodeficiency. Am J Pediatr Hematol Oncol 1994;16:329–333.Google Scholar
Yarali, N, Duru, F, Sipahi, T, Kara, A, Tezic, T. Parvovirus B19 infection reminiscent of myelodysplastic syndrome in three children with chronic hemolytic anemia. Pediatr Hematol Oncol 2000;17:475–482.CrossRefGoogle ScholarPubMed
Kagialis-Girard, S, Durand, B, Mialou, V, et al. Human herpesvirus 6 infection and transient acquired myelodysplasia in children. Pediatr Blood Cancer 2006;47:543–548.CrossRefGoogle ScholarPubMed
Mueller, BU, Tannenbaum, S, Pizzo, PA. Bone marrow aspirates and biopsies in children with human immunodeficiency virus infection. J Pediatr Hematol Oncol 1996;18:266–271.CrossRefGoogle ScholarPubMed
Yarali, N, Fisgin, T, Duru, F, Kara, A. Myelodysplastic features in visceral leishmaniasis. Am J Hematol 2002;71:191–195.CrossRefGoogle ScholarPubMed
Wollman, MR, Penchansky, L, Shekhter Levin, S. Transient 7q- in association with megaloblastic anemia due to dietary folate and vitamin B12 deficiency. J Pediatr Hematol Oncol 1996;18:162–165.CrossRefGoogle ScholarPubMed
Koca, E, Buyukasik, Y, Cetiner, D, et al. Copper deficiency with increased hematogones mimicking refractory anemia with excess blasts. Leuk Res 2008;32:495–499.CrossRefGoogle ScholarPubMed
Angotti, LB, Post, GR, Robinson, NS, et al. Pancytopenia with myelodysplasia due to copper deficiency. Pediatr Blood Cancer 2008;51:693–695.CrossRefGoogle ScholarPubMed
Brichard, B, Vermylen, C, Scheiff, JM, Ninane, J, Cornu, G. Haematological disturbances during long-term valproate therapy. Eur J Pediatr 1994;153:378–380.CrossRefGoogle ScholarPubMed
Gesundheit, B, Kirby, M, Lau, W, Koren, G, Abdelhaleem, M. Thrombocytopenia and megakaryocyte dysplasia: an adverse effect of valproic acid treatment. J Pediatr Hematol Oncol 2002;24:589–590.CrossRefGoogle ScholarPubMed
Yetgin, S, Ozen, S, Saatci, U, et al. Myelodysplastic features in juvenile rheumatoid arthritis. Am J Hematol 1997;54:166–169.3.0.CO;2-D>CrossRefGoogle ScholarPubMed
Hinson, DD, Rogers, ZR, Hoffman, GF, et al. Hematological abnormalities and cholestatic liver disease in two patients with mevalonate kinase deficiency. Am J Med Genet 1998;78: 408–412.3.0.CO;2-H>CrossRefGoogle ScholarPubMed
Hirose, M, Taguchi, Y, Makimoto, A, et al. New variant of congenital dyserythropoietic anemia with trilineage myelodysplasia. Acta Haematol 1995;94:102–104.CrossRefGoogle ScholarPubMed
Bader-Meunier, B, Rieux-Laucat, F, Croisille, L, et al. Dyserythropoiesis associated with a Fas-deficient condition in childhood. Br J Haematol 2000;108:300–304.CrossRefGoogle ScholarPubMed
Kratz, CP, Rogge, T, Kopp, M, Baumann, I, Niemeyer, CM. Myelodysplastic features in an infant with cystic fibrosis presenting with anaemia, oedema and failure to thrive. Eur J Pediatr 2005;164:56–57.CrossRefGoogle Scholar
Finsterer, J.Hematological manifestations of primary mitochondrial disorders. Acta Haematol 2007;118:88–98.CrossRefGoogle ScholarPubMed
Atale, A, Bonneau-Amati, P, Rotig, A, et al. Tubulopathy and pancytopaenia with normal pancreatic function: a variant of Pearson syndrome. Eur J Med Genet 2009;52:23–26.CrossRefGoogle ScholarPubMed
Hasle, H, Kerndrup, G, Yssing, M, et al. Intensive chemotherapy in childhood myelodysplastic syndrome. A comparison with results in acute myeloid leukemia. Leukemia 1996;10:1269–1273.Google ScholarPubMed
Albitar, M, Manshouri, T, Shen, Y, et al. Myelodysplastic syndrome is not merely “preleukemia.” Blood 2002;100:791–798.CrossRefGoogle ScholarPubMed
Webb, DKH, Passmore, SJ, Hann, IM, et al. Results of treatment of children with refractory anaemia with excess blasts (RAEB) and RAEB in transformation (RAEBt) in Great Britain 1990–99. Br J Haematol 2002;117:33–39.CrossRefGoogle ScholarPubMed
Vardiman, JW, Harris, NL, Brunning, RD. The World Health Organization (WHO) classification of the myeloid neoplasms. Blood 2002;100:2292–2302.CrossRefGoogle ScholarPubMed
Hasle, H, Alonzo, TA, Auvrignon, A, et al. Monosomy 7 and deletion 7q in children and adolescents with acute myeloid leukemia: an international retrospective study. Blood 2007;109:4641–4647.CrossRefGoogle Scholar
Head, DR. Proposed changes in the definitions of acute myeloid leukemia and myelodysplastic syndrome: are they helpful?Curr Opin Oncol 2002;14:19–23.CrossRefGoogle ScholarPubMed
Greenberg, P, Cox, C, Le Beau, MM, et al. International scoring system for evaluating prognosis in myelodysplastic syndromes. Blood 1997;89: 2079–2088.Google ScholarPubMed
Mantadakis, E, Shannon, KM, Singer, DA, et al. Transient monosomy 7. A case series in children and review of the literature. Cancer 1999;85:2655–2661.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
De Simone, A, Cantù-Rajnoldi, A, Sainati, L, et al. Spontaneous remission from RAEB in a child. Leukemia 2001;15:856–857.CrossRefGoogle Scholar
Parker, TM, Klaassen, RJ, Johnston, DL. Spontaneous remission of myelodysplastic syndrome with monosomy 7 in a young boy. Cancer Genet Cytogenet 2008;182:122–125.CrossRefGoogle Scholar
Saunthararajah, Y, Nakamura, R, Nam, JM, et al. HLA-DR15 (DR2) is overrepresented in myelodysplastic syndrome and aplastic anemia and predicts a response to immunosuppression in myelodysplastic syndrome. Blood 2002;100:1570–1574.Google ScholarPubMed
Broliden, PA, Dahl, IM, Hast, R, et al. Antithymocyte globulin and cyclosporine A as combination therapy for low-risk non-sideroblastic myelodysplastic syndromes. Haematologica 2006;91:667–670.Google ScholarPubMed
Yoshimi, A, Baumann, I, Führer, M, et al. Immunosuppressive therapy with anti-thymocyte globulin and cyclosporine A in selected children with hypoplastic refractory cytopenia. Haematologica 2007;92:397–400.CrossRefGoogle ScholarPubMed
Hasegawa, D, Manabe, A, Yagasaki, H, et al. Treatment of children with refractory anemia: the Japanese Childhood MDS Study Group trial (MDS99). Pediatr Blood Cancer 2009;53:1011–1015.CrossRefGoogle Scholar
Fenaux, P, Mufti, GJ, Hellstrom-Lindberg, E, et al. Efficacy of azacitidine compared with that of conventional care regimens in the treatment of higher-risk myelodysplastic syndromes: a randomised, open-label, phase III study. Lancet Oncol 2009;10:223–232.CrossRefGoogle ScholarPubMed
Chan, GCF, Wang, WC, Raimondi, SC, et al. Myelodysplastic syndrome in children: differentiation from acute myeloid leukemia with a low blast count. Leukemia 1997;11:206–211.CrossRefGoogle ScholarPubMed
Creutzig, U, Bender-Götze, C, Ritter, J, et al. The role of intensive AML-specific therapy in treatment of children with RAEB and RAEB-T. Leukemia 1998;12:652–659.CrossRefGoogle ScholarPubMed
Strahm, B, Nollke, P, Zecca, M, et al. Hematopoietic stem cell transplantation for advanced myelodysplastic syndrome in children: results of the EWOG-MDS 98 study. Leukemia, 2011;25:455–462.CrossRefGoogle ScholarPubMed
de Witte, T, Suciu, S, Verhoef, G, et al. Intensive chemotherapy followed by allogeneic or autologous stem cell transplantation for patients with myelodysplastic syndromes (MDSs) and acute myeloid leukemia following MDS. Blood 2001;98:2326–2331.CrossRefGoogle ScholarPubMed
Locatelli, F, Pession, A, Bonetti, F, et al. Busulfan, cyclophosphamide and melphalan as conditioning regimen for bone marrow transplantation in children with myelodysplastic syndromes. Leukemia 1994;8:844–849.Google ScholarPubMed
Nichols, K, Parsons, SK, Guinan, E. Long term follow-up of 12 pediatric patients with primary myelodysplastic syndrome treated with HLA-identical sibling donor bone marrow transplantation. Blood 1996;87:4020–4022.Google ScholarPubMed
Rubie, H, Attal, M, Demur, C, et al. Intensified conditioning regimen with busulfan followed by allogeneic BMT in children with myelodysplastic syndromes. Bone Marrow Transplant 1994;13:759–762.Google ScholarPubMed
Leahey, A, Friedman, DL, Bunin, NJ. Bone marrow transplantation in pediatric patients with therapy-related myelodysplasia and leukemia. Bone Marrow Transplant 1999;23:21–25.CrossRefGoogle ScholarPubMed
Zecca, M, Noellke, P, Bergstraesser, E, et al. Myelodysplastic syndromes in adolescents: characteristics and clinical outcome. Haematologica 2009;94(Suppl 1):S1.Google Scholar
Deeg, HJ, Storer, B, Slattery, JT, et al. Conditioning with targeted busulfan and cyclophosphamide for hemopoietic stem cell transplantation from related and unrelated donors in patients with myelodysplastic syndrome. Blood 2002;100:1201–1207.CrossRefGoogle ScholarPubMed
Parikh, SH, Mendizabal, A, Martin, PL, et al. Unrelated donor umbilical cord blood transplantation in pediatric myelodysplastic syndrome: a single-center experience. Biol Blood Marrow Transplant 2009;15: 948–955.CrossRefGoogle ScholarPubMed
Castro-Malaspina, H, Harris, RE, Gajewski, J, et al. Unrelated donor marrow transplantation for myelodysplastic syndromes: outcome analysis in 510 transplants facilitated by the National Marrow Donor Program. Blood 2002;99:1943–1951.CrossRefGoogle ScholarPubMed
Stary, J, Locatelli, F, Niemeyer, CM. Stem cell transplantation for aplastic anemia and myelodysplastic syndrome. Bone Marrow Transplant 2005;35(Suppl 1): S13–S16.CrossRefGoogle ScholarPubMed
Locatelli, F, Noellke, P, Fischer, A, et al. Hematopoietic stem cell transplantation (HSCT) after a myeloablative conditioning regimen in children with refractory cytopenia (RC): results of a retrospective analysis from the EWOG-MDS group. Blood 2007;110:251.Google Scholar
Sierra, J, Perez, WS, Rozman, C, et al. Bone marrow transplantation from HLA-identical siblings as treatment for myelodysplasia. Blood 2002;100:1997–2004.Google ScholarPubMed
Strahm, B, Locatelli, F, Bader, P, et al. Reduced intensity conditioning in unrelated donor transplantation for refractory cytopenia in childhood. Bone Marrow Transplant 2007;40:329–333.CrossRefGoogle ScholarPubMed
Niemeyer, CM, Kratz, CP. Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia: molecular classification and treatment options. Br J Haematol 2008;140:610–624.CrossRefGoogle ScholarPubMed
Nagatoshi, Y, Okamura, J, Ikuno, Y, Akamatsu, M, Tasaka, H. Therapeutic trial of intensified conditioning regimen with high-dose cytosine arabinoside, cyclophosphamide and either total body irradiation or busulfan followed by allogeneic bone marrow transplantation for myelodysplastic syndrome in children. Int J Hematol 1997;65:269–275.CrossRefGoogle ScholarPubMed
Copelan, EA, Penza, SL, Elder, PJ, et al. Analysis of prognostic factors for allogeneic marrow transplantation following busulfan and cyclophosphamide in myelodysplastic syndrome and after leukemic transformation. Bone Marrow Transplant 2000;25:1219–1222.CrossRefGoogle ScholarPubMed
Kalwak, K, Wojcik, D, Gorczynska, E, et al. Allogeneic hematopoietic cell transplantation from alternative donors in children with myelodysplastic syndrome: is that an alternative? Transplant Proc 2004;36:1574–1577.CrossRefGoogle ScholarPubMed
Beck, JF, Klingebiel, T, Kreyenberg, H, et al. Relapse of childhood ALL, AML and MDS after allogeneic stem cell transplantation can be prevented by donor lymphocyte infusion in a critical stage of increasing mixed chimerism. Klin Padiatr 2002;214:201–205.CrossRefGoogle Scholar
Tamura, K, Kanazawa, T, Suzuki, M, et al. Successful rapid discontinuation of immunosuppressive therapy at molecular relapse after allogeneic bone marrow transplantation in a pediatric patient with myelodysplastic syndrome. Am J Hematol 2006;81:139–141.CrossRefGoogle Scholar
Skinner, R, Velangi, M, Bown, N. Donor lymphocyte infusions for post-transplant relapse of refractory anemia with excess blasts and monosomy 7. Pediatr Blood Cancer 2008;50:670–672.CrossRefGoogle ScholarPubMed
Bader, P, Niemeyer, C, Willasch, A, et al. Children with myelodysplastic syndrome (MDS) and increasing mixed chimaerism after allogeneic stem cell transplantation have a poor outcome which can be improved by pre-emptive immunotherapy. Br J Haematol 2005;128:649–658.CrossRefGoogle ScholarPubMed
Bader, P, Niemeyer, C, Weber, G, et al. WT1 gene expression: useful marker for minimal residual disease in childhood myelodysplastic syndromes and juvenile myelo-monocytic leukemia? Eur J Haematol 2004;73:25–28.CrossRefGoogle ScholarPubMed
Yakoub-Agha, I, de La, Salmoniere P, Ribaud, P, et al. Allogeneic bone marrow transplantation for therapy-related myelodysplastic syndrome and acute myeloid leukemia: a long-term study of 70 patients-report of the French Society of Bone Marrow Transplantation. J Clin Oncol 2000;18:963–971.CrossRefGoogle ScholarPubMed
Barnard, DR, Lange, B, Alonzo, TA, et al. Acute myeloid leukemia and myelodysplastic syndrome in children treated for cancer: comparison with primary presentation. Blood 2002;100:427–434.CrossRefGoogle ScholarPubMed
Tsurusawa, M, Manabe, A, Hayashi, Y, et al. Therapy-related myelodysplastic syndrome in childhood: a retrospective study of 36 patients in Japan. Leuk Res 2005;29:625–632.CrossRefGoogle ScholarPubMed
Woodard, P, Barfield, R, Hale, G, et al. Outcome of hematopoietic stem cell transplantation for pediatric patients with therapy-related acute myeloid leukemia or myelodysplastic syndrome. Pediatr Blood Cancer 2006;47:931–935.CrossRefGoogle ScholarPubMed
de Witte, T, Hermans, J, Vossen, J, et al. Haematopoietic stem cell transplantation for patients with myelo-dysplastic syndromes and secondary acute myeloid leukaemias: a report on behalf of the Chronic Leukaemia Working Party of the European Group for Blood and Marrow Transplantation (EBMT). Br J Haematol 2000;110:620–630.CrossRefGoogle Scholar
Chang, C, Storer, BE, Scott, BL, et al. Hematopoietic cell transplantation in patients with myelodysplastic syndrome or acute myeloid leukemia arising from myelodysplastic syndrome: similar outcomes in patients with de novo disease and disease following prior therapy or antecedent hematologic disorders. Blood 2007;110:1379–1387.CrossRefGoogle ScholarPubMed
Cesaro, S, Oneto, R, Messina, C, et al. Haematopoietic stem cell transplantation for Shwachman–Diamond disease: a study from the European Group for blood and marrow transplantation. Br J Haematol 2005;131:231–236.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×