Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-19T18:04:23.144Z Has data issue: false hasContentIssue false

7 - Chondrules in Enstatite Chondrites

from Part I - Observations of Chondrules

Published online by Cambridge University Press:  30 June 2018

Sara S. Russell
Affiliation:
Natural History Museum, London
Harold C. Connolly Jr.
Affiliation:
Rowan University, New Jersey
Alexander N. Krot
Affiliation:
University of Hawaii, Manoa
Get access

Summary

We review silicate chondrules and metal-sulfide nodules in unequilibrated enstatite chondrites (EH3 and EL3). Their unique mineral assemblages, with a wide diversity of opaque phases, nitrides, and nearly FeO-free enstatite, testify to exceptionally reduced conditions. While those have long been ascribed to a condensation sequence at supersolar C/O ratios, with the oldhamite-rich nodules among the earliest condensates, evidence for relatively oxidized local precursors suggests that their peculiarities may have been acquired during the chondrule-forming process itself. Silicate phases may have been then sulfidized in an O-poor and S-rich environment; whereas metal-sulfide nodules in EH3 chondrites could have originated in the silicate chondrules, those in EL3 may be impact products. The astrophysical setting (nebular or planetary) where such conditions were achieved, whether by depletion in water or enrichment in dry organics-silicate mixtures, is uncertain, but was most likely sited inside the snow line, consistent with the Earth-like oxygen isotopic signature of most EC silicates, with little data constraining its epoch yet.

Type
Chapter
Information
Chondrules
Records of Protoplanetary Disk Processes
, pp. 175 - 195
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baedecker, P. A., and Wasson, J. T. (1975). Elemental fractionations among enstatite chondrites. Geochimica et Cosmochimica Acta, 39, 735765.CrossRefGoogle Scholar
Barrat, J. A., Zanda, B., Jambon, A., and Bollinger, C. (2014). The lithophile trace elements in enstatite chondrites. Geochimica et Cosmochimica Acta, 128, 7194.CrossRefGoogle Scholar
Birck, J. (2004). An overview of isotopic anomalies in extraterrestrial materials and their nucleosynthetic heritage. Reviews in Mineralogy and Geochemistry, 55, 2564. Washington, D.C.: Mineralogical Society of America.Google Scholar
Blander, M. (1971). The constrained equilibrium theory: Sulphide phases in meteorites. Geochimica et Cosmochimica Acta, 35, 6176.CrossRefGoogle Scholar
Blander, M., Pelton, A. D., and Jung, I. -H. (2009). A condensation model for the formation of chondrules in enstatite chondrites. Meteoritics and Planetary Science 44, 531543.CrossRefGoogle Scholar
Brearley, A. J., and Jones, R. H. (1998). Chondritic meteorites. In Papike, J. J. (Ed.), Planetary Materials. Reviews in Mineralogy and Geochemistry, 36, 3-1–3-398. Washington, D.C.: Mineralogical Society of America.Google Scholar
Burkhardt, C., Dauphas, N., Tang, H., et al. (2017). In search of the Earth-forming reservoir: Mineralogical, chemical and isotopic characterizations of the ungrouped achondrite NWA 5363/NWA 5400 and selected chondrites. Meteoritics and Planetary Science, 52, 807826.CrossRefGoogle Scholar
Campbell, A. J., Zanda, B., Perron, C., Meibom, A., and Petaev, M. I. (2005). Origin and Thermal History of Fe-Ni Metal in Primitive Chondrites. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 407431. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Ciesla, F. J., and Cuzzi, J. N. (2006). The evolution of the water distribution in a viscous protoplanetary disk. Icarus, 181, 178204.CrossRefGoogle Scholar
Connelly, J., Bizzarro, M., Krot, A., et al. (2012). The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651.CrossRefGoogle ScholarPubMed
Crozaz, G., and Lundberg, L. L. (1995). The origin of oldhamite in unequilibrated enstatite chondrites. Geochimica et Cosmochimica Acta, 59, 38173831.CrossRefGoogle Scholar
Cuzzi, J. N., Hogan, R. C., Paque, J. M., and Dobrovolskis, A. R. (2001). Size-selective Concentration of Chondrules and Other Small Particles in Protoplanetary Nebula Turbulence. The Astrophysical Journal, 546, 496508.CrossRefGoogle Scholar
Dauphas, N., Burkhardt, C., Warren, P. H. , and Teng, F. -Z. (2014). Geochemical arguments for an Earth-like Moon-forming impactor. Philosophical Transactions of the Royal Society A, 372(2024). 20130244.Google ScholarPubMed
DeMeo, F. E., and Carry, B. (2014). Solar System evolution from compositional mapping of the asteroid belt. Nature, 505, 629634.CrossRefGoogle ScholarPubMed
Dickinson, T. L., and McCoy, T. J. (1997). Experimental REE partitioning in oldhamite: Implications for the igneous origin of aubritic oldhamite. Meteoritics and Planetary Science, 32, 395412.CrossRefGoogle Scholar
Ebel, D. S., and Alexander, C. M. O’D. (2005). Condensation from cluster-IDP enriched vapor inside the snow line: Implications for mercury, asteroids, and enstatite chondrites. In Mackwell, S. and Stansbery, E. (Eds.), 36th Lunar and Planetary Science Conference, #1797.Google Scholar
Ebel, D. S., Boyet, M., Hammouda, T., et al. (2015). Complementary rare earth element abundances in enstatite and oldhamite in EH3 chondrites. In 46 th Lunar and Planetary Science Conference, #1832.Google Scholar
Ebel, D. S., and Grossman, L. (2000). Condensation in dust-enriched systems. Geochimica et Cosmochimica Acta, 64, 339366.CrossRefGoogle Scholar
Ebert, S., and Bischoff, A. (2016). Genetic relationship between Na-rich chondrules and Ca,Al-rich inclusions? – Formation of Na-rich chondrules by melting of refractory and volatile precursors in the solar nebula. Geochimica et Cosmochimica Acta, 177, 182204.CrossRefGoogle Scholar
El Goresy, A., Lin, Y., Miyahara, M., et al. (2017). Origin of EL3 chondrites: Evidence for variable C/O ratios during their course of formation–A state of the art scrutiny. Meteoritics and Planetary Science, 52, 781806.CrossRefGoogle Scholar
El Goresy, A., Yabuki, H., Ehlers, K., Woolum, D., and Pernicka, E. (1988). Qingzhen and Yamato-691: A tentative alphabet for the EH chondrites. Antarctic Meteorite Research, 1, 65.Google Scholar
Estrada, P. R., Cuzzi, J. N., and Morgan, D. A. (2016). Global modeling of nebulae with particle growth, drift, and evaporation fronts. I. methodology and typical results. The Astrophysical Journal, 818, 200.CrossRefGoogle Scholar
Fagan, T. J., McKeegan, K. D., Krot, A. N., and Keil, K. (2001). Calcium-aluminum-rich inclusions in enstatite chondrites (II): Oxygen isotopes. Meteoritics and Planetary Science, 36, 223230.CrossRefGoogle Scholar
Fedkin, A., and Grossman, L. (2013). Vapor saturation of sodium: Key to unlocking the origin of chondrules. Geochimica et Cosmochimica Acta, 112, 225250.CrossRefGoogle Scholar
Fincham, C. J. B., and Richardson, F. D. (1954). The behaviour of sulphur in silicate and aluminate melts. Proceedings of the Royal Society of London, Series A, 223, 4062.Google Scholar
Fleet, M. E., and MacRae, N. D. (1987). Sulfidation of Mg-rich olivine and the stability of niningerite in enstatite chondrites. Geochimica et Cosmochimica Acta, 51, 15111521.CrossRefGoogle Scholar
Fogel, R. A. (1998). High-sulfur/low-iron silicate melts: Low-oxygen-fugacity phenomena of importance to aubrite formation. Meteoritics and Planetary Science Supplement, 33, A52.Google Scholar
Fogel, R. A., Weisberg, M. K., and Prinz, M. (1996). The solubility of CaS in aubrite silicate melts. In 27 th Lunar and Planetary Science Conference, p. 371.Google Scholar
Gannoun, A., Boyet, M., El Goresy, A., and Devouard, B. (2011). REE and actinide microdistribution in Sahara 97072 and ALHA77295 EH3 chondrites: A combined cosmochemical and petrologic investigation. Geochimica et Cosmochimica Acta, 75, 32693289.CrossRefGoogle Scholar
Gerber, S., Burkhardt, C., Budde, G., Metzler, K., Kleine, T. (2017). Mixing and transport of dust in the early solar nebula as inferred from titanium isotope variations among chondrules. The Astrophysical Journal Letters, 841, L17.CrossRefGoogle Scholar
Grossman, J. N., Rubin, A. E., Rambaldi, E. R., Rajan, R. S., and Wasson, J. T. (1985). Chondrules in the Qingzhen type-3 enstatite chondrite: Possible precursor components and comparison to ordinary chondrite chondrules. Geochimica et Cosmochimica Acta, 49, 17811795.CrossRefGoogle Scholar
Grossman, J. N., and Wasson, J. T. (1985). The origin and history of the metal and sulfide components of chondrules. Geochimica et Cosmochimica Acta, 49, 925939.CrossRefGoogle Scholar
Grossman, L., Beckett, J. R., Fedkin, A. V., Simon, S. B., and Ciesla, F. J. (2008). Redox conditions in the solar nebula: Observational, experimental and theoretical constraints. In MacPherson, G. J. (Ed.), Oxygen in the Solar System. Reviews in Mineralogy and Geochemistry, 68, 93140. Washington, D.C.: Mineralogical Society of America.CrossRefGoogle Scholar
Guan, Y., Huss, G. R., Leshin, L. A., MacPherson, G. J., and McKeegan, K. D. (2006). Oxygen isotope and 26Al-26Mg systematics of aluminum-rich chondrules from unequilibrated enstatite chondrites. Meteoritics and Planetary Science, 41, 3347.CrossRefGoogle Scholar
Guan, Y., Huss, G. R., MacPherson, G. J., and Wasserburg, G. J. (2000a). Calcium-aluminum-rich inclusions from enstatite chondrites: indigenous or foreign? Science, 289, 13301333.CrossRefGoogle ScholarPubMed
Guan, Y., McKeegan, K. D., and MacPherson, G. J. (2000b). Oxygen isotopes in calcium-aluminum-rich inclusions from enstatite chondrites: New evidence for a single CAI source in the solar nebula. Earth and Planetary Science Letters, 181, 271277.CrossRefGoogle Scholar
Herndon, J. M., and Suess, H. E. (1976). Can enstatite meteorites form from a nebula of solar composition. Geochimica et Cosmochimica Acta, 40, 395399.CrossRefGoogle Scholar
Hewins, R. H., Connolly, H. C. Jr, Lofgren, G. E., and Libourel, G. (2005). Experimental constraints on chondrule formation. In Krot, A. N., Scott, E. R. D., and Reipurth, B. (Eds.), Chondrites and the Protoplanetary Disk, 286316. Astronomical Society of the Pacific Conference Series, 341. San Francisco, CA: Astronomical Society of the Pacific.Google Scholar
Horstmann, M., Humayun, M., and Bischoff, A. (2014). Clues to the origin of metal in Almahata Sitta EL and EH chondrites and implications for primitive E chondrite thermal histories. Geochimica et Cosmochimica Acta, 140, 720744.CrossRefGoogle Scholar
Hsu, W. (1998). Geochemical and petrographic studies of oldhamite, diopside, and roedderite in enstatite meteorites. Meteoritics and Planetary Science, 33, 291301.CrossRefGoogle Scholar
Hsu, W., and Crozaz, G. (1998). Mineral chemistry and the origin of enstatite in unequilibrated enstatite chondrites. Geochimica et Cosmochimica Acta, 62, 19932004.CrossRefGoogle Scholar
Hutson, M., and Ruzicka, A. (2000). A multi-step model for the origin of E3 (enstatite) chondrites. Meteoritics and Planetary Science, 35, 601608.CrossRefGoogle Scholar
Ikeda, Y. (1988). Petrochemical study of the Yamato-691 enstatite chondrite (EH3) I: Major element chemical compositions of chondrules and inclusions. Proceedings of the NIPR Symposium on Antarctic Meteorite Research, 2, 147165.Google Scholar
Ikeda, Y. (1989a). Petrochemical study of the Yamato-691 enstatite chondrite (E3) III: Descriptions and mineral compositions of chondrules. Antarctic Meteorite Research, 2, 75108.Google Scholar
Ikeda, Y. (1989b). Petrochemical study of the Yamato-691 enstatite chondrite (E3) V: Comparison of major element chemistries of chondrules and inclusions in Y-691 with those in ordinary and carbonaceous chondrites. Antarctic Meteorite Research 2, 147165.Google Scholar
Jacquet, E., Alard, O., and Gounelle, M. (2015). The formation conditions of enstatite chondrites: Insights from trace element geochemistry of olivine-bearing chondrules in Sahara 97096 (EH3). Meteoritics and Planetary Science, 50, 16241642.CrossRefGoogle Scholar
Jacquet, E., Gounelle, M., and Fromang, S. (2012). On the aerodynamic redistribution of chondrite components in protoplanetary disks. Icarus, 220, 162173.CrossRefGoogle Scholar
Jacquet, E., Paulhiac-Pison, M., Alard, O., and Kearsley, A. (2013). Trace element geochemistry of CR chondrite metal. Meteoritics and Planetary Science, 48, 19811999.CrossRefGoogle Scholar
Jacquet, E., and Robert, F. (2013). Water transport in protoplanetary disks and the hydrogen isotopic composition of chondrites. Icarus, 223, 722732.CrossRefGoogle Scholar
Jones, R. H. (2012). Petrographic constraints on the diversity of chondrule reservoirs in the protoplanetary disk. Meteoritics and Planetary Science, 47, 11761190.CrossRefGoogle Scholar
Keil, K. (1968). Mineralogical and chemical relationships among enstatite chondrites. Journal of Geophysical Research, 73, 69456976.CrossRefGoogle Scholar
Kimura, M. (1988). Origin of opaque minerals in an unequilibrated enstatite chondrite Yamato-691, Antarctic Meteorite Research, 1, 5164.Google Scholar
Kimura, M., Hiyagon, H., Lin, Y., and Weisberg, M. K. (2003). FeO-rich silicates in the Sahara 97159 (EH3) enstatite chondrite: Mineralogy, oxygen isotopic compositions, and origin. Meteoritics and Planetary Science, 38, 389398.CrossRefGoogle Scholar
Kimura, M., Weisberg, M. K., Lin, Y., et al. (2005). Thermal history of the enstatite chondrites from silica polymorphs. Meteoritics and Planetary Science, 40, 855868.CrossRefGoogle Scholar
Kita, N. T., Nagahara, H., Tachibana, S., et al. (2010). High precision SIMS oxygen three isotope study of chondrules in LL3 chondrites: Role of ambient gas during chondrule formation. Geochimica et Cosmochimica Acta, 74, 66106635.CrossRefGoogle Scholar
Kita, N. T., Yin, Q. -Z., MacPherson, G. J., et al. (2013). 26Al-26Mg isotope systematics of the first solids in the early Solar System. Meteoritics and Planetary Science, 48, 13831400.CrossRefGoogle Scholar
Krijt, S., Ciesla, F. J., and Bergin, E. A. (2016). Tracing water vapor and ice during dust growth. The Astrophysical Journal, 833, 285298.CrossRefGoogle Scholar
Larimer, J. W. (1968). An experimental investigation of oldhamite, CaS; and the petrologic significance of oldhamite in meteorites. Geochimica et Cosmochimica Acta, 32, 965982.CrossRefGoogle Scholar
Larimer, J. W., and Bartholomay, M. (1979). The role of carbon and oxygen in cosmic gases – Some applications to the chemistry and mineralogy of enstatite chondrites. Geochimica et Cosmochimica Acta, 43, 14551466.CrossRefGoogle Scholar
Larimer, J. W., and Ganapathy, R. (1987). The trace element chemistry of CaS in enstatite chondrites and some implications regarding its origin. Earth and Planetary Science Letters, 84, 123134.CrossRefGoogle Scholar
Larimer, J. W., and Wasson, J. T. (1988). Refractory lithophile elements. In Kerridge, J. F. and Matthews, M. S. (Eds.), Meteorites and the Early Solar System, 394415. Tucson, AZ: University of Arizona Press.Google Scholar
Lehner, S. W., Buseck, P. R., and McDonough, W. F. (2010). Origin of kamacite, schreibersite, and perryite in metal-sulfide nodules of the enstatite chondrite Sahara 97072 (EH3). Meteoritics and Planetary Science, 45, 289303.CrossRefGoogle Scholar
Lehner, S. W., McDonough, W. F., and NéMeth, P. (2014). EH3 matrix mineralogy with major and trace element composition compared to chondrules. Meteoritics and Planetary Science, 49, 22192240.CrossRefGoogle Scholar
Lehner, S. W., Petaev, M. I., Zolotov, M. Y., and Buseck, P. R. (2013). Formation of niningerite by silicate sulfidation in EH3 enstatite chondrites. Geochimica et Cosmochimica Acta, 101, 3456.CrossRefGoogle Scholar
Libourel, G., Krot, A. N., and Tissandier, L. (2006). Role of gas-melt interaction during chondrule formation. Earth and Planetary Science Letters, 251, 232240.CrossRefGoogle Scholar
Lin, Y., and El Goresy, A. (2002). A comparative study of opaque phases in Qingzhen (EH3) and MacAlpine Hills 88136 (EL3): Representatives of EH and EL parent bodies. Meteoritics and Planetary Science, 37, 577599.CrossRefGoogle Scholar
Lin, Y., El Goresy, A., Boyet, M., et al. (2011). Earliest solid condensates consisting of the assemblage Oldhamite, Sinoite, Graphite and excess 36S in Lawrencite from Almahata Sitta MS-17 EL3 chondrite fragment. In Workshop on Formation of the First Solids in the Solar System, LPI Contributions, 1639, 9040.Google Scholar
Lin, Y., Kimura, M., Hiyagon, H., and Monoi, A. (2003). Unusually abundant refractory inclusions from Sahara 97159 (EH3): A comparative study with other groups of chondrites. Geochimica et Cosmochimica Acta, 67, 49354948.CrossRefGoogle Scholar
Lodders, K., and Fegley, B. (1993). Lanthanide and actinide chemistry at high C/O ratios in the solar nebula. Earth and Planetary Science Letters, 117, 125145.CrossRefGoogle Scholar
Lusby, D., Scott, E. R. D., and Keil, K. (1987). Ubiquitous high-FeO silicates in enstatite chondrites. Journal of Geophysical Research, 92, 679.CrossRefGoogle Scholar
Manzari, P. (2010). Investigation of Enstatite Chondrites: Mineralogical and Chemical Features of EH3 and EL3 Chondrules. PhD thesis, Dipartimento Geomineralogico – Università degli Studi di Bari, Italy.Google Scholar
Marrocchi, Y., and Libourel, G. (2013). Sulfur and sulfides in chondrules. Geochimica et Cosmochimica Acta, 119, 117136.CrossRefGoogle Scholar
McCoy, T. J., Dickinson, T. L., and Lofgren, G. E. (1999). Partial melting of the Indarch (EH4) Meteorite: A textural, chemical and phase relations view of melting and melt migration. Meteoritics and Planetary Science, 34, 735746.CrossRefGoogle Scholar
McCoy, T. J., and Nittler, L. R. (2014). Mercury. In Davis, A. M. (Ed.), Planets, Asteroids, Comets and the Solar System. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (Second Edition), 1, 119126. Amsterdam, Netherlands: Elsevier.Google Scholar
Metzler, K., and Pack, A. (2016). Chemistry and oxygen isotopic composition of cluster chondrite clasts and their components in LL3 chondrites. Meteoritics and Planetary Science, 51, 276302.CrossRefGoogle Scholar
Milani, A., Kneževic, Z., Novakovic, B., and Cellino, A. (2010). Dynamics of the Hungaria asteroids. Icarus, 207, 769794.CrossRefGoogle Scholar
Miller, K. E., Lauretta, D. S., Connolly, H. C. Jr., et al. (2017). Formation of unequilibrated R chondrite chondrules and opaque phases. Geochimica et Cosmochimica Acta, 209, 2450.CrossRefGoogle Scholar
Nakashima, D., Kimura, M., Yamada, K., et al. (2010). Study of chondrules in CH chondrites I: Oxygen isotope ratios of chondrules. Meteoritics and Planetary Science Supplement, 73, 5288.Google Scholar
Pack, A., Shelley, J. M. G., and Palme, H. (2004). Chondrules with peculiar REE patterns: Implications for solar nebular condensation at high C/O. Science, 303, 9971000.CrossRefGoogle ScholarPubMed
Pasek, M. A., Milsom, J. A., Ciesla, F. J., et al. (2005). Sulfur chemistry with time-varying oxygen abundance during Solar System formation. Icarus, 175, 114.CrossRefGoogle Scholar
Petaev, M. I., and Wood, J. A. (1998). The condensation with partial isolation model of condensation in the solar nebula. Meteoritics and Planetary Science, 33, 11231137.CrossRefGoogle Scholar
Petaev, M. I., and Wood, J. A. (2001). Condensation in Fractionated Nebular Systems. II. Formation of Enstatite Chondrites in Dust-enriched Nebular Reservoirs. Meteoritics and Planetary Science Supplement, 36, A162.Google Scholar
Piani, L., Marrocchi, Y., Libourel, G., and Tissandier, L. (2016). Magmatic sulfides in the porphyritic chondrules of EH enstatite chondrites. Geochimica et Cosmochimica Acta, 195, 8499.CrossRefGoogle Scholar
Piani, L., Robert, F., Beyssac, O., et al. (2012). Structure, composition, and location of organic matter in the enstatite chondrite Sahara 97096 (EH3). Meteoritics and Planetary Science, 47, 829.CrossRefGoogle Scholar
Pignatale, F. C., Liffman, K., Maddison, S. T., and Brooks, G. (2016). 2D condensation model for the inner Solar Nebula: an enstatite-rich environment. Monthly Notices of the Royal Astronomical Society, 457, 13591370.CrossRefGoogle Scholar
Rambaldi, E. R., Rajan, R. S., Housley, R. M., and Wang, D. (1986). Gallium-bearing sphalerite in a metal-sulfide nodule of the Qingzhen (EH3) chondrite. Meteoritics, 21, 2331.CrossRefGoogle Scholar
Rambaldi, E. R., Rajan, R. S., Wang, D., and Housley, R. M. (1983). Evidence for RELICT grains in chondrules of Qingzhen, an E3 type enstatite chondrite. Earth and Planetary Science Letters, 66, 1124.CrossRefGoogle Scholar
Ramdohr, P. (1963). Opaque minerals in stony meteorites. Journal of Geophysical Research, 68, 20112036.CrossRefGoogle Scholar
Rubin, A. E. (1983). The Adhi Kot breccia and implications for the origin of chondrules and silica-rich clasts in enstatite chondrites. Earth and Planetary Science Letters, 64, 201212.CrossRefGoogle Scholar
Rubin, A. E. (2000). Petrologic, geochemical and experimental constraints on models of chondrule formation. Earth Science Reviews, 50, 327.CrossRefGoogle Scholar
Rubin, A. E. (2010). Physical properties of chondrules in different chondrite groups: Implications for multiple melting events in dusty environments. Geochimica et Cosmochimica Acta, 74, 48074828.CrossRefGoogle Scholar
Rubin, A. E., and Grossman, J. N. (1987). Size-frequency distributions of EH3 chondrules. Meteoritics, 22, 237251.CrossRefGoogle Scholar
Rubin, A. E., and Scott, W. R. D. (1997). Abee and related EH chondrite impact-melt breccias. Geochimica et Cosmochimica Acta, 61, 425435.CrossRefGoogle Scholar
Rudraswami, N. G., Ushikubo, T., Nakashima, D., and Kita, N. T. (2011). Oxygen isotope systematics of chondrules in the Allende CV3 chondrite: High precision ion microprobe studies. Geochimica et Cosmochimica Acta, 75, 75967611.CrossRefGoogle Scholar
Schneider, D. M., Akridge, D. G., and Sears, D. W. G. (1998). Size Distribution of Metal Grains and Chondrules in Enstatite Chondrites. Meteoritics and Planetary Science Supplement, 33, 136.Google Scholar
Schneider, D. M., Symes, S. J. K., Benoit, P. H., and Sears, D. W. G. (2002). Properties of chondrules in EL3 chondrites, comparison with EH3 chondrites, and the implications for the formation of enstatite chondrites. Meteoritics and Planetary Science, 37, 14011416.CrossRefGoogle Scholar
Scott, E. R. D., and Krot, A. N. (2014). Chondrites and their components. In Davis, A. M. (Ed.), Meteorites and Cosmochemical Processes. In Holland, H. D. and Turekian, K. K. (Eds.), Treatise on Geochemistry (Second Edition), 1, 65137. Amsterdam, Netherlands: Elsevier.Google Scholar
Simon, S. B., Sutton, S. R., and Grossman, L. (2016). The valence and coordination of titanium in ordinary and enstatite chondrites. Geochimica et Cosmochimica Acta, 189, 377390.CrossRefGoogle Scholar
Skinner, B., and Luce, F. (1971). Solid solution of the type (Ca, Mg, Mn, Fe)S and their use as geothermometers for the enstatite chondrites. American Mineralogist, 56, 12691296.Google Scholar
Soulié, C., Libourel, G., and Tissandier, L. (2017). Olivine dissolution in molten silicates: An experimental study with application to chondrule formation. Meteoritics and Planetary Science, 52, 225250.CrossRefGoogle Scholar
Tanaka, R., and Nakamura, E. (2017). Silicate-SiO reaction in a protoplanetary disk recorded by oxygen isotopes in chondrules. Nature Astronomy, 1, 0137.CrossRefGoogle Scholar
Tenner, T. J., Nakashima, D., Ushikubo, T., Kita, N. T., and Weisberg, M. K. (2015). Oxygen isotope ratios of FeO-poor chondrules in CR3 chondrites: Influence of dust enrichment and H2O during chondrule formation. Geochimica et Cosmochimica Acta, 148, 228250.CrossRefGoogle Scholar
Tenner, T. J., Ushikubo, T., Kurahashi, E., Kita, N. T., and Nagahara, H. (2013). Oxygen isotope systematics of chondrule phenocrysts from the CO3.0 chondrite Yamato 81020: Evidence for two distinct oxygen isotope reservoirs. Geochimica et Cosmochimica Acta, 102, 226245.CrossRefGoogle Scholar
Trieloff, M., Storck, J. -C., Mostefaoui, S., et al. (2013). A precise 53Mn-53Cr age of sphalerites from the primitive EH3 chondrite sahara 97158. Meteoritics and Planetary Science Supplement, 76, 5251.Google Scholar
Uesugi, M., Akaki, T., Sekiya, M., and Nakamura, T. (2005). Motion of iron sulfide inclusions inside a shock-melted chondrule. Meteoritics and Planetary Science, 40, 1103.CrossRefGoogle Scholar
Ushikubo, T., Kimura, M., Kita, N. T., and Valley, J. W. (2012). Primordial oxygen isotope reservoirs of the solar nebula recorded in chondrules in Acfer 094 carbonaceous chondrite. Geochimica et Cosmochimica Acta, 90, 242264.CrossRefGoogle Scholar
van Niekerk, D., and Keil, K. (2011). Metal/sulfide-silicate intergrowth textures in EL3 meteorites: Origin by impact melting on the EL parent body. Meteoritics and Planetary Science, 46, 14841497.CrossRefGoogle Scholar
Varela, M. E., Sylvester, P., Brandstätter, F., and Engler, A. (2015). Nonporphyritic chondrules and chondrule fragments in enstatite chondrites: Insights into their origin and secondary processing. Meteoritics and Planetary Science, 50, 13381361.CrossRefGoogle Scholar
Weisberg, M. K., Ebel, D. S., Bigolski, J. N., and Friedrich, J. M. (2016). Metal-sulfide nodules in enstatite and ordinary chondrites. 79th Annual Meeting of the Meteoritical Society, 1921, 6549.Google Scholar
Weisberg, M. K., Ebel, D. S., Connolly, H. C., Kita, N. T., and Ushikubo, T. (2011). Petrology and oxygen isotope compositions of chondrules in E3 chondrites. Geochimica et Cosmochimica Acta, 75, 65566569.CrossRefGoogle Scholar
Weisberg, M. K., Fogel, R. A., and Prinz, M. (1997). Kamacite-enstatite intergrowths in enstatite chondrites. In 28th Lunar and Planetary Science Conference, p. 523.Google Scholar
Weisberg, M. K., and Prinz, M. (1998). Sahara 97096: A highly primitive EH3 chondrite with layered sulfide-metal-rich chondrules. In 29th Lunar and Planetary Science Conference, #1741.Google Scholar
Weisberg, M. K., Prinz, M., and Fogel, R. A. (1994). The evolution of enstatite and chondrules in unequilibrated enstatite chondrites: Evidence from iron-rich pyroxene. Meteoritics, 29, 362373.CrossRefGoogle Scholar
Weisberg, M., and Kimura, M. (2012). The unequilibrated enstatite chondrites. Chemie der Erde, 72, 101115.CrossRefGoogle Scholar
Whitby, J. A., Gilmour, J. D., Turner, G., Prinz, M., and Ash, R. D. (2002). Iodine-Xenon dating of chondrules from the Qingzhen and Kota Kota enstatite chondrites. Geochimica et Cosmochimica Acta, 66, 347359.CrossRefGoogle Scholar
Wood, J. A., and Hashimoto, A. (1993). Mineral equilibrium in fractionated nebular systems. Geochimica et Cosmochimica Acta, 57, 23772388.CrossRefGoogle Scholar
Yu, Y., Hewins, R. H., and Zanda, B. (1996). Sodium and sulfur in chondrules: Heating time and cooling curves. In Hewins, R. H., Jones, R. H., and Scott, E. R. D. (Eds.), Chondrules and the Protoplanetary Disk, 213219. Cambridge, UK: Cambridge University Press.Google Scholar
Zhang, Y., Benoit, P. H., and Sears, D. W. G. (1995). The classification and complex thermal history of the enstatite chondrites. Journal of Geophysical Research, 100, 94179438.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×