Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-5nwft Total loading time: 0 Render date: 2024-06-07T19:19:31.578Z Has data issue: false hasContentIssue false

Preface

Published online by Cambridge University Press:  05 June 2012

Ernest Naylor
Affiliation:
Bangor University
Get access

Summary

There is increasing recognition of chronobiology in our understanding of the time-base of ecology, behaviour and physiology of plants and animals. However, much of the scientific effort so far in this field of study has focussed on daily and seasonal rhythmicity associated with solar periodicity of the environment. Impressively, this has led to the concept of heritable circadian biological clocks and a search for their molecular basis in the genetic makeup of living systems. Partly because of early and perhaps lingering scepticism, the possibility that some organisms might also innately phase their behaviour to lunar events has lagged behind as a field of study. Yet, living organisms in many seas and coasts are repeatedly exposed to lunar cycles, indirectly through oscillations of ocean tides. Moreover, marine animals and plants have been in existence for greater lengths of evolutionary time than have the terrestrial organisms that are often the material for classical studies of circadian rhythmicity. It is therefore reasonable to consider the extent to which marine organisms have adapted to tidal oscillations driven by lunar gravity, and also to ask whether lunar and semilunar events exhibited by such organisms are related to fortnightly variations in tidal height or even to moonlight cycles directly. Accordingly, alongside the concept of circadian and circa-annual rhythms in marine organisms, it is necessary to consider the existence of innate biological clocks of circatidal, circasemilunar and circalunar periodicities.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Preface
  • Ernest Naylor
  • Book: Chronobiology of Marine Organisms
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511803567.001
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Preface
  • Ernest Naylor
  • Book: Chronobiology of Marine Organisms
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511803567.001
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Preface
  • Ernest Naylor
  • Book: Chronobiology of Marine Organisms
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511803567.001
Available formats
×