Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gq7q9 Total loading time: 0 Render date: 2024-07-20T13:45:52.925Z Has data issue: false hasContentIssue false

1 - General methodology

Published online by Cambridge University Press:  08 August 2009

Emmanuel Pierrot-Deseilligny
Affiliation:
Groupe Hospitalier Pitié-Salpétrière, Paris
David Burke
Affiliation:
University of Sydney
Get access

Summary

The following chapters discuss methods that allow the selective investigation of different spinal pathways. Whatever the pathway investigated, its activation produces changes in the excitability of spinal motoneurones, ‘the final common path’ in the motor system. A prerequisite for any investigation of changes in the spinal circuitry in human subjects is therefore to be able to assess changes in motoneurone excitability quantitatively, using valid reproducible methods. Several non-invasive methods have been developed, and these are considered in this chapter with their advantages and disadvantages. All are, of course, indirect, and valid conclusions can only be obtained if congruent results are obtained with different methods relying on different principles. All may be, and many have been, used in studies on patients, but here the methodology should be simple and rapid.

This initial chapter is technical and non-specialist readers could bypass it, referring back if they need to clarify how results were obtained or understand the advantages and limitations of a particular technique. However, the chapter is required reading for those who want to understand fully the particular techniques used for the different pathways and how to use those techniques.

The monosynaptic reflex: H reflex and tendon jerk

The ‘monosynaptic reflex’ forms the basis of the first technique available to investigate spinal pathways in animals and humans. The principle is based on the apparent simplicity of the monosynaptic projection of Ia afferents to homonymous motoneurones. Subsequent studies have shown that the so-called monosynaptic reflex is not as simple as was initially thought.

Type
Chapter
Information
The Circuitry of the Human Spinal Cord
Its Role in Motor Control and Movement Disorders
, pp. 1 - 62
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abbruzzese, M., Ratto, S., Abbruzzese, G. & Favale, E. (1985). Electroneurographic correlates of the monosynaptic reflex: experimental studies and normative data. Journal of Neurology, Neurosurgery and Psychiatry, 48, 434–44CrossRefGoogle ScholarPubMed
Aimonetti, J. M., Vedel, J. P., Schmied, A. & Pagni, S. (2000). Distribution of presynaptic inhibition on type-identified motoneurones in the extensor carpi radialis pool in man. Journal of Physiology (London), 522, 125–35CrossRefGoogle ScholarPubMed
Amjad, A. M., Breeze, P., Conway, B. A., Halliday, D. M. & Rosenberg, J. R. (1989). A framework for the analysis of neuronal networks. Progress in Brain Research, 80, 243–55 (discussion 239–42)CrossRefGoogle ScholarPubMed
Araki, T., Eccles, J. C. & Ito, M. (1960). Correlation of the inhibitory post-synaptic potential of motoneurones with the latency and time course of inhibition of monosynaptic reflexes. Journal of Physiology (London), 154, 354–77CrossRefGoogle ScholarPubMed
Ashby, P. & Labelle, K. (1977). Effects of extensor and flexor group I afferent volleys on the excitability of individual soleus motoneurones in man. Journal of Neurology, Neurosurgery and Psychiatry, 40, 910–19CrossRefGoogle Scholar
Ashby, P. & Zilm, D. (1982a). Relationship between excitatory post-synaptic potential shape and cross correlation profile explored by computer simulation for studies on human motoneurons. Experimental Brain Research, 47, 33–40CrossRefGoogle Scholar
Ashby, P. & Zilm, D. (1982b). Characteristics of postsynaptic potentials produced in single human motoneurones by homonymous group I volleys. Experimental Brain Research, 47, 41–8CrossRefGoogle Scholar
Awiszus, F. (1997). Spike train analysis. Journal of Neuroscience Methods, 74, 155–66CrossRefGoogle ScholarPubMed
Aymard, C., Katz, R., Lafitte, C.et al. (2000). Presynaptic inhibition and homosynaptic depression: a comparison between lower and upper limbs in normal subjects and patients with hemiplegia. Brain, 123, 1688–702CrossRefGoogle ScholarPubMed
Baldissera, F., Hultborn, H. & Illert, M. (1981). Integration in spinal neuronal systems. In Handbook of Physiology, section I, The Nervous System, vol. II, Motor Control, ed. Brooks, V. B., pp. 508–95. Bethesda, MD: American Physiological SocietyGoogle Scholar
Baldissera, F., Cavallari, P. & Dworzak, F. (1994). Motor neuron ‘bistability’. A pathogenetic mechanism for cramps and myokymia. Brain, 117, 929–39CrossRefGoogle ScholarPubMed
Barker, A. T., Jalinous, R. & Freeston, I. L. (1985). Non-invasive magnetic stimulation of the human motor cortex. Lancet, I, 1106–7CrossRefGoogle Scholar
Bathien, N. & Morin, C. (1972). Variations comparées des réflexes spinaux au cours de l'attention intensive et sélective. Physiology and Behaviour, 9, 533–8CrossRefGoogle Scholar
Bawa, P. & Lemon, R. N. (1993). Recruitment of motor units in response to transcranial magnetic stimulation in man. Journal of Physiology (London), 471, 445–64CrossRefGoogle ScholarPubMed
Berardelli, A., Inghilleri, M., Cruccu, G. & Manfredi, M. (1990). Descending volley after electrical and magnetic transcranial stimulation in man. Neuroscience Letters, 112, 54–8CrossRefGoogle ScholarPubMed
Bostock, H., Cikurel, K. & Burke, D. (1998). Threshold tracking techniques in the study of human peripheral nerve. Muscle and Nerve, 21, 137–583.0.CO;2-C>CrossRefGoogle Scholar
Boyd, S. G., Rothwell, J. C., Cowan, J. M. A.et al. (1986). A method of monitoring function of cortical pathways during scoliosis surgery with a note on motor conduction velocities. Journal of Neurology, Neurosurgery and Psychiatry, 49, 251–7CrossRefGoogle Scholar
Bremner, F. D., Baker, J. R. & Stephens, J. A. (1991a). Correlation between the discharge of motor units from the same and from different finger muscles in man. Journal of Physiology (London), 432, 355–80CrossRefGoogle Scholar
Bremner, F. D., Baker, J. R. & Stephens, J. A. (1991b). Variation in the degree of synchronization exhibited by motor units lying in different finger muscles in man. Journal of Physiology (London), 432, 381–99CrossRefGoogle Scholar
Brown, P., Salenius, S., Rothwell, J. C. & Hari, R. (1998). Cortical correlate of the Piper rhythm in humans. Journal of Neurophysiology, 80, 2911–17CrossRefGoogle ScholarPubMed
Brunia, C. H. M. (1971). The influence of a task on the Achilles tendon reflexes during a fixed foreperiod of one second. Physiology and Behaviour, 6, 367–73CrossRefGoogle Scholar
Buchthal, F. & Schmalbruch, H. (1970). Contraction times of twitches evoked by H-reflexes. Acta Physiologica Scandinavica, 80, 378–82CrossRefGoogle ScholarPubMed
Burke, D., Gandevia, S. C. & McKeon, B. (1984). Monosynaptic and oligosynaptic contributions to human ankle jerk and H-reflex. Journal of Neurophysiology, 52, 435–48CrossRefGoogle ScholarPubMed
Burke, D., Adams, R. W. & Skuse, N. F. (1989). The effect of voluntary contraction on the H reflex of various muscles. Brain, 112, 417–33CrossRefGoogle Scholar
Burke, D., Hicks, R. G. & Stephen, J. P. H. (1990). Corticospinal volleys evoked by anodal and cathodal stimulation of the human motor cortex. Journal of Physiology (London), 425, 283–99CrossRefGoogle ScholarPubMed
Burke, D., Hicks, R., Gandevia, S. C., Stephen, J.Woodforth, I. & Crawford, M. (1993). Direct comparison of corticospinal volleys in human subjects to transcranial magnetic and electrical stimulation. Journal of Physiology (London), 470, 383–93CrossRefGoogle ScholarPubMed
Burke, D., Fuhr, P., Hallett, M. & Pierrot-Deseilligny, E. (1999). H reflexes of the median and tibial nerves. In Recommendations on the Practice of Clinical Neurophysiology, ed. Deuchl, G. & Eisen, A., pp. 259–62. Amsterdam: ElsevierGoogle Scholar
Capaday, C. (1997). Neurophysiological methods for studies of the motor system in freely moving human subjects. Journal of Neuroscience Methods, 74, 201–18CrossRefGoogle ScholarPubMed
Chan, J. H. L., Lin, C. S.-Y., Pierrot-Deseilligny, E. & Burke, D. (2002). Excitability changes in stimulated axons may influence responses to paired-pulse transcranial magnetic stimulation in human subjects. Journal of Physiology (London), 542, 951–61CrossRefGoogle Scholar
Cohen, L. G. & Hallett, M. (1988). Methodology for non-invasive mapping of human motor cortex with electrical stimulation. Electroencephalography and Clinical Neurophysiology, 69, 403–11CrossRefGoogle ScholarPubMed
Collins, D. F., Burke, D. & Gandevia, S. C. (2001). Large involuntary forces consistent with plateau-like behavior of human motoneurons. Journal of Neuroscience, 21, 4059–65CrossRefGoogle ScholarPubMed
Collins, D. F., Burke, D. & Gandevia, S. C. (2002). Sustained contractions produced by plateau-like behaviour in human motoneurones. Journal of Physiology (London), 538, 289–301CrossRefGoogle ScholarPubMed
Crone, C. & Nielsen, J. (1989). Methodological implications of the post-activation depression of the soleus H-reflex in man. Experimental Brain Research, 78, 28–32CrossRefGoogle ScholarPubMed
Crone, C., Hultborn, H., Mazières, L., Morin, C., Nielsen, J. & Pierrot-Deseilligny, E. (1990). Sensitivity of monosynaptic test reflexes to facilitation and inhibition as a function of the test reflex size: a study in man and the cat. Experimental Brain Research, 81, 35–45CrossRefGoogle ScholarPubMed
Davey, P. H., Ellaway, P. H., Baker, J. R. & Friedland, C. L. (1993). Rhythmicity associated with a high degree of short-term synchrony of motor unit discharge in man. Experimental Physiology, 78, 649–61CrossRefGoogle ScholarPubMed
Day, B. L., Dressler, D., Hess, C. W.et al. (1989). Electric and magnetic stimulation of human motor cortex: surface electromyogram and single motor unit responses. Journal of Physiology (London), 412, 449–73CrossRefGoogle ScholarPubMed
Day, B. L., Riescher, H., Struppler, A., Rothwell, J. C. & Marsden, C. D. (1991). Changes in the response to magnetic and electrical stimulation of the motor cortex following muscle stretch in man. Journal of Physiology (London), 433, 41–57CrossRefGoogle ScholarPubMed
Deschuytere, J., Rosselle, N. & DeKeyser, C. (1976). Monosynaptic reflexes in the superficial forearm flexors in man and their clinical significance. Journal of Neurology, Neurosurgery and Psychiatry, 39, 555–65CrossRefGoogle ScholarPubMed
Di Lazzaro, V., Oliviero, A., Profice, P.et al. (1998). Comparison of descending volleys evoked by transcranial magnetic and electric stimulation in conscious humans. Electroencephalography and Clinical Neurophysiology, 109, 397–401CrossRefGoogle ScholarPubMed
Di Lazzaro, V., Oliviero, A., Profice, P. (2001). Descending spinal cord volleys evoked by transcranial magnetic and electrical stimulation of the motor cortex leg area in conscious humans. Journal of Physiology (London), 537, 1047–58CrossRefGoogle ScholarPubMed
Di Lazzaro, V., Oliviero, A., Pilato, F.et al. (2002). Descending volleys evoked by transcranial magnetic stimulation of the brain in conscious humans: effects of coil shape. Clinical Neurophysiology, 113, 114–19CrossRefGoogle ScholarPubMed
Eccles, J. C. (1964). The Physiology of Synapses. 316 pp. Berlin: Springer VerlagCrossRefGoogle Scholar
Eccles, R. M. & Lundberg, A. (1957). Spatial facilitation in the direct inhibitory pathways. Nature, 179, 1305–6CrossRefGoogle Scholar
Edgley, S. A., Eyre, J. A., Lemon, R. N. & Miller, S. (1990). Excitation of the corticospinal tract by electromagnetic stimulation of the scalp on the macaque monkey. Journal of Physiology (London), 425, 301–20CrossRefGoogle ScholarPubMed
Eisen, A. & Fisher, M. (1999). The F wave. In Recommendations for the Practice of Clinical Neurophysiology: Guidelines of the International Federation of Clinical Neurophysiology, ed. Deuschl, G. & Eisen, A., pp. 255–7. Amsterdam: ElsevierGoogle Scholar
Eisen, A. & Odusote, K. (1979). Amplitude of the F-wave: a potential means of documenting spasticity. Neurology, 29, 1306–9CrossRefGoogle ScholarPubMed
Ellaway, P. H. (1978). Cumulative sum technique and its application to the analysis of peristimulus time histogram. Electroencephalography and Clinical Neurophysiology, 45, 302–4CrossRefGoogle Scholar
Espiritu, M. G., Lin, C. S.-Y. & Burke, D. (2003). Motoneuron excitability and the F wave. Muscle and Nerve, 27, 720–7CrossRefGoogle ScholarPubMed
Farmer, S. F., Bremner, F. D., Halliday, D. M., Rosenberg, J. R. & Stephens, J. A. (1993). The frequency content of common synaptic inputs to motoneurones studied during voluntary isometric contraction in man. Journal of Physiology (London), 470, 127–55CrossRefGoogle ScholarPubMed
Farmer, S. F., Halliday, D. M., Conway, B. A., Stephens, J. A. & Rosenberg, J. R. (1997). A review of recent applications of cross-correlation methodologies to human motor unit recording. Journal of Neuroscience Methods, 74, 175–87CrossRefGoogle ScholarPubMed
Fisher, M. A. (1992). H-reflexes and F-waves: physiology and clinical indications. Muscle and Nerve, 15, 1223–33CrossRefGoogle ScholarPubMed
Forget, R., Pantieri, R., Pierrot-Deseilligny, E., Shindo, M. & Tanaka, R. (1989). Facilitation of quadriceps motoneurones by group I afferents from pretibial flexors in man. 2. Possible interneuronal pathway. Experimental Brain Research, 78, 10–20CrossRefGoogle Scholar
Fournier, E., Katz, R. & Pierrot-Deseilligny, E. (1984). A reevaluation of the pattern of group I fibre projections in the human lower limb on using randomly alternated stimulations. Experimental Brain Research, 56, 193–6CrossRefGoogle Scholar
Fournier, E., Meunier, S., Pierrot-Deseilligny, E. & Shindo, M. (1986). Evidence for interneuronally mediated Ia excitatory effects to human quadriceps motoneurones. Journal of Physiology (London), 377, 143–69CrossRefGoogle ScholarPubMed
Fujiki, M., Isono, M., Mori, S. & Ueno, S. (1996). Corticospinal direct responses to transcranial magnetic stimulation in humans. Electroencephalography and Clinical Neurophysiology, 101, 48–57CrossRefGoogle Scholar
Gassel, M. M. (1963). A study of femoral nerve conduction time. Archives of Neurology, 9, 607–14CrossRefGoogle Scholar
Gassel, M. M. & Ott, K. (1969). A novel and accelerated method of evaluating motoneuron excitability. Transactions of the American Neurological Association, 94, 269–70Google ScholarPubMed
Gassel, M. M. & Ott, K. (1970). Local sign and late effects on motoneuron excitability of cutaneous stimulation in man. Brain, 93, 95–106CrossRefGoogle ScholarPubMed
Gerilovsky, L., Ysvetinov, P. & Trenkova, G. (1989). Peripheral effects on the amplitude of monopolar and bipolar H-reflex potentials from the soleus muscles. Experimental Brain Research, 76, 173–81CrossRefGoogle Scholar
Gorassini, M., Bennett, D. J. & Yang, J. F. (1998). Self-sustained firing of human motor units. Neuroscience Letters, 247, 13–16CrossRefGoogle ScholarPubMed
Gorassini, M., Yang, J. F., Siu, M. & Bennett, D. J. (2002). Intrinsic activation of human motoneurons: possible contribution to motor unit excitation. Journal of Neurophysiology, 87, 1850–8CrossRefGoogle ScholarPubMed
Gustafsson, B. & McCrea, D. (1984). Influence of stretch-evoked synaptic potentials on firing probability of cat spinal motoneurones. Journal of Physiology (London), 347, 431–51CrossRefGoogle ScholarPubMed
Halliday, D. M., Rosenberg, J. R., Amjad, A. M., Breeze, P., Conway, B. A. & Farmer, S. F. (1995). A framework for the analysis of mixed time series/point process-data theory and application to the study of physiological tremor, single motor unit discharges and electromyography. Progress in Biophysics and Molecular Biology, 64, 237–78CrossRefGoogle Scholar
Henneman, E. & Mendell, L. M. (1981). Functional organization of motoneurone pool and its inputs. In Handbook of Physiology, Section I, The Nervous System, vol. II, Motor Control, Part 1, ed. Brooks, V. B., pp. 423–507. Bethesda, MD: American Physiological SocietyGoogle Scholar
Hess, C. W., Mills, K. R. & Murray, N. M. F. (1987). Responses in small hand muscles from magnetic stimulation of the human brain. Journal of Physiology (London), 388, 397–419CrossRefGoogle ScholarPubMed
Hicks, R., Burke, D., Stephen, J., Woodforth, I. & Crawford, M. (1992). Corticospinal volleys evoked by electrical stimulation of human motor cortex after withdrawal of volatile anaesthesics. Journal of Physiology (London), 456, 393–404CrossRefGoogle Scholar
Hodes, R. & Dement, W. C. (1964). Depression of electrically induced reflexes in man during low voltage EEG. Electroencephalography and Clinical Neurophysiology, 17, 617–29CrossRefGoogle ScholarPubMed
Hoffmann, P. (1918). Über die Beriehungen der Sehnenreflexe zur willkürlichen Bewegung und zum Tonus. Zeitschrift für Biologie, 68, 351–70Google Scholar
Hoffmann, P. (1922). Untersuchungen über die Eigenreflexe (Sehnen reflexe) menschlischer Muskeln. Berlin: SpringerCrossRefGoogle Scholar
Hugon, M. (1973). Methodology of the Hoffmann reflex in man. In New Developments in Electromyography and Clinical Neurophysiology, Vol. 3, ed. Desmedt, J. E., pp. 277–293. Basel: KargerGoogle Scholar
Hultborn, H. (1999). Plateau potentials and their role in regulating motoneuronal firing. Progress in Brain Research, 123, 39–48CrossRefGoogle ScholarPubMed
Hultborn, H. & Nielsen, J. B. (1995). H-reflexes and F-responses are not equally sensitive to changes in motoneuronal excitability. Muscle and Nerve, 18, 1471–4CrossRefGoogle Scholar
Hultborn, H., Illert, M., Nielsen, J., Paul, A., Ballegaard, M. & Wiese, H. (1996). On the mechanism of the post-activation depression of the H-reflex in human subjects. Experimental Brain Research, 108, 450–62CrossRefGoogle ScholarPubMed
Hultborn, H., Enriquez-Denton, M. E., Wienecke, J. & Nielsen, J. B. (2003). Variable amplification of synaptic input to cat spinal motoneurones by dendritic persistent inward current. Journal of Physiology (London), 552, 945–52CrossRefGoogle ScholarPubMed
Hunt, C. C. (1955). Monosynaptic reflex response of spinal motoneurones to graded afferent stimulation. Journal of General Physiology, 38, 813–53CrossRefGoogle Scholar
Hutton, R. S., Roy, R. R. & Edgerton, V. R. (1988). Coexistent Hoffmann reflexes in human leg muscles are commonly due to volume conduction. Experimental Neurology, 100, 265–73CrossRefGoogle ScholarPubMed
Katz, R., Morin, C., Pierrot-Deseilligny, E. & Hibino, R. (1977). Conditioning of H-reflex by a preceding subthreshold tendon reflex stimulus. Journal of Neurology, Neurosurgery and Psychiatry, 40, 575–80CrossRefGoogle ScholarPubMed
Katz, R., Meunier, S. & Pierrot-Deseilligny, E. (1988). Changes in presynaptic inhibition of Ia fibres in man while standing. Brain, 111, 417–37CrossRefGoogle ScholarPubMed
Kernell, D. & Hultborn, H. (1990). Synaptic effects on recruitment gain: a mechanism of importance for the input-output relations of motoneurone pools?Brain Research, 507, 176–9CrossRefGoogle ScholarPubMed
Kiernan, M. C., Mogyoros, I., Hales, J. P., Gracies, J. M. & Burke, D. (1997). Excitability changes in human cutaneous afferents induced by prolonged repetitive axonal activity. Journal of Physiology (London), 500, 255–64CrossRefGoogle ScholarPubMed
Kimura, J., Yanagisawa, H., Yamada, Y., Mitsudome, A., Sasaki, H. & Kimura, A. (1984). Is the F wave elicited in a select group of motoneurons?Muscle and Nerve, 7, 382–99CrossRefGoogle Scholar
Kirkwood, P. A. & Sears, T. A. (1978). The synaptic connections to intercostal motoneurones as revealed by the average common excitation potentials. Journal of Physiology (London), 275, 103–34CrossRefGoogle Scholar
Kirkwood, P. A. & Sears, T. A. (1982). Excitatory post-synaptic potentials from single muscle spindle afferents in external intercostal motoneurones of the cat. Journal of Physiology (London), 322, 287–314CrossRefGoogle ScholarPubMed
Lamy, J. C., Wargon, I., Baret, M.et al. (2005). Post-activation depression in various spinal pathways in humans. Experimental Brain Research, submittedCrossRefGoogle ScholarPubMed
LeFever, R. S. & Luca, C. J. (1982). A procedure for decomposing the myoelectric signal into its constituent action potentials. IEEE Transactions of Biomedical Engineering, 29, 158–64CrossRefGoogle ScholarPubMed
Lin, C. S.-Y., Chan, J. H. L., Pierrot-Deseilligny, E. & Burke, D. (2002). Excitability of human muscle afferents studied using threshold tracking of the H reflex. Journal of Physiology (London), 545, 661–9CrossRefGoogle ScholarPubMed
Lloyd, D. P. C. (1941). A direct central inhibitory action on dromically conducted impulses. Journal of Neurophysiology, 4, 184–90CrossRefGoogle Scholar
Lundberg, A. (1975). The control of spinal mechanisms from the brain. In The Nervous System. The Basic Neurosciences, vol. 1, ed. Tower, B., pp. 253–65. New York: Raven PressGoogle Scholar
McAuley, J. H., Rothwell, J. C. & Marsden, C. D. (1997). Frequency peaks of tremor, muscle vibration and electromyographic activity at 10 Hz, 20 Hz and 40 Hz during human muscle finger contraction may reflect rhythmicities of central neural firing. Experimental Brain Research, 114, 525–41CrossRefGoogle ScholarPubMed
Magladery, J. W. & McDougal, D. B. (1950). Electrophysiological studies of nerve and reflex activity in normal man. I. Identification of certain reflexes in the electromyogram and the conduction velocity of peripheral nerve fibers. Bulletin of the Johns Hopkins Hospital, 86, 265–90Google Scholar
Magladery, J. W., Porter, W. E., Park, A. M. & Teasdall, R. D. (1951a). Electrophysiological studies of nerve and reflex activity in normal man. IV. Two-neurone reflex and identification of certain action potentials from spinal roots and cord. Bulletin of the Johns Hopkins Hospital, 88, 499–519Google Scholar
Magladery, J. W., Teasdall, R. D., Park, A. M. & Porter, W. E. (1951b). Electrophysiological studies of nerve and reflex activity in normal man. V. Excitation and inhibition of two-neurone reflexes by afferent impulses in the same nerve trunk. Bulletin of the Johns Hopkins Hospital, 88, 520–37Google Scholar
Magladery, J. W., Teasdall, R. D., Park, A. M. & Languth, H. W. (1952). Electrophysiological studies of reflex activity in patients with lesions of the nervous system. I. A comparison of spinal motoneurone excitability following afferent nerve volleys in normal persons and patients with upper motor neurone lesions. Bulletin of the Johns Hopkins Hospital, 91, 219–43Google Scholar
Malmgren, K. & Pierrot-Deseilligny, E. (1988). Evidence for non-monosynaptic Ia excitation of wrist flexor motoneurones, possibly via propriospinal neurones. Journal of Physiology (London), 405, 747–64CrossRefGoogle ScholarPubMed
Mao, C. C., Ashby, P., Wang, M. & McCrea, D. (1984). Synaptic connections from large muscle afferents to the motoneurones of various leg muscles in man. Experimental Brain Research, 56, 341–50CrossRefGoogle Scholar
Marchand-Pauvert, V., Simonetta-Moreau, M. & Pierrot-Deseilligny, E. (1999). Cortical control of spinal pathways mediating group II excitation to thigh motoneurones. Journal of Physiology (London), 517, 301–13CrossRefGoogle ScholarPubMed
Marchand-Pauvert, V., Nicolas, G. & Pierrot-Deseilligny, E. (2000). Monosynaptic Ia projections from intrinsic hand muscles to forearm motoneurones in humans. Journal of Physiology (London), 525, 241–52CrossRefGoogle ScholarPubMed
Marchand-Pauvert, V., Nicolas, G., Burke, D. & Pierrot-Deseilligny, E. (2002). Suppression of the H reflex by disynaptic autogenetic inhibitory pathways activated by the test volley. Journal of Physiology (London), 542, 963–76CrossRefGoogle Scholar
Marque, P., Nicolas, G., Marchand-Pauvert, V., Gautier, J., Simonetta-Moreau, M. & Pierrot-Deseilligny, E. (2001). Group I projections from intrinsic foot muscles to motoneurones of leg and thigh muscles in humans. Journal of Physiology (London), 536, 313–27CrossRefGoogle Scholar
Matthews, P. B. C. (1972). Mammalian Muscle Spindles and their Central Actions. London: ArnoldGoogle Scholar
Matthews, P. B. C. (1996). Relationship of firing intervals of human motor units to the trajectory of post-spike after-hyperpolarization and synaptic noise. Journal of Physiology (London), 492, 597–628CrossRefGoogle ScholarPubMed
Mazevet, D. & Pierrot-Deseilligny, E. (1994). Pattern of descending excitation of presumed propriospinal neurones at the onset of voluntary movement in man. Acta Physiologica Scandinavica, 150, 27–38CrossRefGoogle Scholar
Meinck, H. M. (1980). Facilitation and inhibition of the human H-reflex as a function of the amplitude of the control reflex. Electroencephalography and Clinical Neurophysiology, 48, 203–11CrossRefGoogle ScholarPubMed
Merton, P. A. & Morton, H. B. (1980). Stimulation of the cerebral cortex in the intact human subject. Nature, 285, 227CrossRefGoogle ScholarPubMed
Meunier, S., Penicaud, A., Pierrot-Deseilligny, E. & Rossi, A. (1990). Monosynaptic Ia excitation and recurrent inhibition from quadriceps to ankle flexors and extensors in man. Journal of Physiology (London), 423, 661–75CrossRefGoogle ScholarPubMed
Miles, T. S. (1997). Estimating post-synaptic potentials in tonically discharging human motoneurons. Journal of Neuroscience Methods, 74, 167–74CrossRefGoogle ScholarPubMed
Miles, T. S., Le, T. H. & Türker, K. S. (1989). Biphasic inhibitory responses and their inhibitory post-synaptic potentials evoked by tibial nerve stimulation in human soleus motor neurones. Experimental Brain Research, 77, 637–45CrossRefGoogle Scholar
Milner-Brown, S. H., Stein, R. E. & Yemm, R. (1973). The orderly recruitment of human motor units during voluntary isometric contractions. Journal of Physiology (London), 230, 359–70CrossRefGoogle ScholarPubMed
Mills, K. R., Boniface, S. J. & Schubert, M. (1992). Magnetic brain stimulation with a double coil: the importance of coil orientation. Electroencephalography and Clinical Neurophysiology, 85, 17–21CrossRefGoogle ScholarPubMed
Mogyoros, I., Kiernan, M. C., Gracies, J. M. & Burke, D. (1997). The effect of stimulus duration on the latency of submaximal nerve volleys. Muscle and Nerve, 19, 1354–63.0.CO;2-U>CrossRefGoogle Scholar
Nielsen, J. & Kagamihara, Y. (1993). Differential projection of the sural nerve on early and late recruited human tibialis anterior motor units: change of recruitment gain. Acta Physiologica Scandinavica 147, 385–401CrossRefGoogle ScholarPubMed
Nielsen, J., Petersen, N. & Ballegaard, M. (1995). Latency of effect evoked by electrical and magnetic brain stimulation in lower limb motoneurones in man. Journal of Physiology (London), 484, 791–802CrossRefGoogle Scholar
Nielsen, J., Morita, H., Baumgarten, J., Petersen, N. & Christensen, L. O. (1999). On the comparability of H-reflexes and motor evoked potentials. Electroencephalography and Clinical Neurophysiology, 51, 93–101Google Scholar
Paillard, J. (1955). Réflexes et régulations d'origine proprioceptive chez l'Homme. Thèse de Sciences. Paris: ArnetteGoogle Scholar
Panizza, M. E., Nilsson, J. & Hallett, M. (1989). Optimal stimulus duration for the H reflex. Muscle and Nerve, 12, 576–9CrossRefGoogle ScholarPubMed
Panizza, M. E., Nilsson, J., Roth, B. J., Basser, P. J. & Hallett, M. (1992). Relevance of stimulus duration for activation of motor and sensory fibers: implications for the study of H-reflexes and magnetic stimulation. Electroencephalography and Clinical Neurophysiology, 85, 22–9CrossRefGoogle Scholar
Patton, H. D. & Amassian, V. E. (1954). Single and multiple unit analysis of cortical stage of pyramidal tract activation. Journal of Neurophysiology, 17, 345–63CrossRefGoogle ScholarPubMed
Pauvert, V., Pierrot-Deseilligny, E. & Rothwell, J. C. (1998). Role of spinal premotoneurones in mediating corticospinal input to forearm motoneurones in man. Journal of Physiology (London), 508, 301–12CrossRefGoogle ScholarPubMed
Petersen, N., Morita, H. & Nielsen, J. (1998). Evaluation of reciprocal inhibition of the soleus H-reflex during tonic plantar flexion in man. Journal of Neuroscience Methods, 84, 1–8CrossRefGoogle ScholarPubMed
Petersen, N., Morita, H. & Nielsen, J. (1999). Modulation of reciprocal inhibition between ankle extensors and flexors during walking in man. Journal of Physiology (London), 520, 605–19CrossRefGoogle ScholarPubMed
Pierrot-Deseilligny, E. & Mazevet, D. (2000). The monosynaptic reflex: a tool to investigate motor control in humans. Interest and limits. Clinical Neurophysiology, 30, 67–80CrossRefGoogle ScholarPubMed
Pierrot-Deseilligny, E., Morin, C., Bergego, C. & Tankov, N. (1981). Pattern of group I fibre projections from ankle flexor and extensor muscles in man. Brain Research, 42, 337–50Google Scholar
Poliakov, A. & Miles, T. S. (1992). Quantitative analysis of reflex responses in the averaged surface electromyogram. Journal of Neuroscience Methods, 43, 195–200CrossRefGoogle ScholarPubMed
Priori, A., Bertolasi, L., Dressler, D.et al. (1993). Transcranial electric and magnetic stimulation of the leg area of the human motor cortex: single motor unit and surface electromyogram responses in the tibialis anterior muscle. Electroencephalography and Clinical Neurophysiology, 89, 131–7CrossRefGoogle ScholarPubMed
Renshaw, B. (1940). Activity in the simplest spinal reflex pathways. Journal of Neurophysiology, 3, 373–87CrossRefGoogle Scholar
Rothwell, J. C. (1997). Techniques and mechanisms of action of transcranial stimulation of the human motor cortex. Journal of Neuroscience Methods, 74, 113–22CrossRefGoogle ScholarPubMed
Rothwell, J. C., Thompson, P. D., Day, B. L.et al. (1987). Motor cortex stimulation in intact man. I. General characteristics of electromyogram responses in different muscles. Brain, 110, 1173–90CrossRefGoogle Scholar
Rothwell, J. C., Thompson, P. D., Day, B. L., Boyd, S. & Marsden, C. D. (1991). Stimulation of the human motor cortex through the scalp. Experimental Physiology, 76, 159–200CrossRefGoogle ScholarPubMed
Rothwell, J. C., Burke, D., Hicks, R., Stephen, J., Woodforth, I. & Crawford, M. (1994). Transcranial electrical stimulation of the motor cortex in man: further evidence for the site of activation. Journal of Physiology, 481, 243–50CrossRefGoogle Scholar
Schieppati, M. (1987). The Hoffmann reflex: a means of assessing spinal reflex excitability and its descending control in man. Progress in Neurobiology, 28, 345–76CrossRefGoogle ScholarPubMed
Schimsheimer, R. J., Ongerboer de Visser, B. W., Kemp, B. & Bour, L. J. (1987). The flexor carpi radialis H-reflex in polyneuropathy: relations to conduction velocities of the median nerve and the soleus H-reflex latency. Journal of Neurology, Neurosurgery and Psychiatry, 50, 447–52CrossRefGoogle ScholarPubMed
Schubert, M., Curt, A., Jensen, L. & Dietz, V. (1997). Corticospinal input in human gait: modulation of magnetically-evoked motor responses. Experimental Brain Research, 115, 244–6CrossRefGoogle ScholarPubMed
Sears, T. A. & Stagg, D. (1976). Short-term synchronization of intercostal motoneurone activity. Journal of Physiology (London), 263, 357–81CrossRefGoogle ScholarPubMed
Shindo, M., Yanagawa, S., Morita, H. & Hashimoto, T. (1994). Conditioning effect in single human motoneurones: a new method using the unitary H reflex. Journal of Physiology (London), 481, 469–77CrossRefGoogle ScholarPubMed
Stephens, J. A., Usherwood, T. P. & Garnett, R. (1976). Technique for studying synaptic connections of single motoneurones in man. Nature, 263, 343–4CrossRefGoogle ScholarPubMed
Táboríková, H. & Sax, D. S. (1968). Motoneurone pool and the H reflex. Journal of Neurology, Neurosurgery and Psychiatry, 31, 354–61CrossRefGoogle ScholarPubMed
Táboríková, H. & Sax, D. S. (1969). Conditioning H reflex by preceding subthreshold H reflex stimulus. Brain, 92, 203–12CrossRefGoogle ScholarPubMed
Trontelj, J. V. (1973). A study of the F response by single fibre electromyography. In New Developments in Electromyography and Clinical Neurophysiology, vol. 3, ed. Desmedt, J. E., pp. 318–22. Basel: KargerGoogle Scholar
Türker, K. S. & Powers, R. K. (1999). Effects of large excitatory and inhibitory inputs on motoneuron discharge rate and probability. Journal of Neurophysiology, 82, 829–40CrossRefGoogle ScholarPubMed
Türker, K. S. & Powers, R. K. (2003). Estimation of postsynaptic potentials in rat hypoglossal motoneurones: insights for human work. Journal of Physiology (London), 551, 419–31CrossRefGoogle ScholarPubMed
Vagg, R., Mogyoros, I., Kiernan, M. C. & Burke, D. (1998). Activity-dependent hyperpolarization of motor axons produced by natural activity. Journal of Physiology (London), 507, 919–25CrossRefGoogle ScholarPubMed
Werhahn, K., Fong, J. K. Y., Meyer, B. U.et al. (1994). The effect of magnetic coil orientation on the latency of surface electromyogram and single motor unit responses in the first dorsal interosseus muscle. Electroencephalography and Clinical Neurophysiology, 93, 138–48CrossRefGoogle Scholar
Wood, S. A., Gregory, J. E. & Proske, U. (1996). The influence of muscle spindle discharge on the human H reflex and the monosynaptic reflex in the cat. Journal of Physiology (London), 497, 279–90CrossRefGoogle Scholar
Yates, S. K. & Brown, W. F. (1979). Characteristics of the F response: a single motor unit study. Journal of Neurology, Neurosurgery and Psychiatry, 42, 161–70CrossRefGoogle Scholar
Zhu, Y., Starr, A., Su, S. H., Woodward, K. G. & Haldeman, S. (1992). The H-reflex to magnetic stimulation of lower-limb nerves. Archives of Neurology, 49, 66–71CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×