Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-22T04:28:07.206Z Has data issue: false hasContentIssue false

2 - Monosynaptic Ia excitation and post-activation depression

Published online by Cambridge University Press:  08 August 2009

Emmanuel Pierrot-Deseilligny
Affiliation:
Groupe Hospitalier Pitié-Salpétrière, Paris
David Burke
Affiliation:
University of Sydney
Get access

Summary

The extent to which the spinal stretch reflex is involved in normal motor control and the contribution of monosynaptic Ia connections in its generation are not yet completely clarified. Regardless of these uncertainties, there is continuing interest in the reflex connections of the primary endings of muscle spindles, as detailed below.

Muscle synergies laid down in the spinal cord

The execution of even the simplest movement involves a large number of muscles, but the pattern of muscle activity is consistent for any given type of movement (see Illert, 1996). Beevor (1904, cited by Illert, 1996) claimed that the neuronal arrangements for stereotyped movements are laid down in the spinal cord. The various muscle synergies could thus be represented by different sets of spinal connections, which have been termed ‘spinal functional units’ (Baldissera, Hultborn & Illert, 1981), and are thought to be mobilised during voluntary movements, as was postulated long ago by Forster (1879, cited by Hultborn, 2001). One objective in the study of reflexes is to identify the pattern of connections underlying a particular form of behaviour. This entails tracing the effects of a given input to see how widely it is distributed to excite or inhibit different neurones. The classical example of such a study was provided by Sherrington (1910), who detailed the muscles that contract or relax in the flexor reflex (see Chapter 9).

Type
Chapter
Information
The Circuitry of the Human Spinal Cord
Its Role in Motor Control and Movement Disorders
, pp. 63 - 112
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ashby, P. & Labelle, K. (1977). Effects of extensor and flexor group I afferent volleys on the excitability of individual soleus motoneurones in man. Journal of Neurology, Neurosurgery and Psychiatry, 40, 910–19CrossRefGoogle Scholar
Ashby, P. & Zilm, D. (1982). Characteristics of postsynaptic potentials produced in single human motoneurones by homonymous group I volleys. Experimental Brain Research, 47, 41–8CrossRefGoogle Scholar
Ashby, P., Hilton-Brown, P. & Stålberg, E. (1986). Afferent projections to human tibialis anterior motor units active at various levels of muscle contraction. Acta Physiologica Scandinavica, 127, 523–32CrossRefGoogle ScholarPubMed
Awiszus, F. & Feistner, H. (1993). The relationship between estimates of Ia-excitatory post-synaptic potential amplitude and conduction velocity in human soleus motoneurons. Experimental Brain Research, 95, 365–70CrossRefGoogle Scholar
Aymard, C., Katz, R., Lafitte, C.et al. (2000). Presynaptic inhibition and homosynaptic depression: a comparison between lower and upper limbs in normal subjects and patients with hemiplegia. Brain, 123, 1688–702CrossRefGoogle ScholarPubMed
Baldissera, F., Hultborn, H. & Illert, M. (1981). Integration in spinal neuronal systems. In Handbook of Physiology, section I, The Nervous System, vol. II, Motor Control, ed. Brooks, V. B., pp. 508–95. Bethesda, USA: American Physiological SocietyGoogle Scholar
Bayoumi, A. & Ashby, P. (1989). Projections of group Ia afferents to motoneurons of thigh muscles in man. Experimental Brain Research, 76, 223–8CrossRefGoogle ScholarPubMed
Beevor, C. E. (1904). The Croonian Lectures on Muscular Movements and their Representation in the Central Nervous System. London: AdlardGoogle Scholar
Berger, W., Dietz, V. & Quintern, J. (1984). Corrective reactions to stumbling in man: neuronal coordination of bilateral leg muscle activity during gait. Journal of Physiology (London), 405, 1–37Google Scholar
Bergmans, J., Delwaide, P. J. & Gadea-Ciria, M. (1978). Short-latency effects of low-threshold muscular afferent fibers on different motoneuronal pools of the lower limb in man. Experimental Neurology, 60, 380–5CrossRefGoogle ScholarPubMed
Birnbaum, A. & Ashby, P. (1982). Postsynaptic potentials in individual soleus motoneurons in man produced by Achilles tendon taps and electrical stimulation of tibial nerve. Electroencephalography and Clinical Neurophysiology, 54, 469–71CrossRefGoogle ScholarPubMed
Bouaziz, Z., Bouaziz, M. & Hugon, M. (1975). Modulation of soleus electromyogram by electrical stimulation of medial gastrocnemius nerve in man. Electromyography, 15, 31–42Google ScholarPubMed
Brock, L. G., Eccles, J. C. & Rall, W. (1951). Experimental investigations on the afferent fibres in muscle nerves. Proceedings of the Royal Society B, 138, 453–75CrossRefGoogle ScholarPubMed
Buller, N. P., Garnett, R. & Stephens, J. A. (1980). The reflex responses of single motor unit in human hand muscles following afferent stimulation. Journal of Physiology (London), 303, 337–49CrossRefGoogle Scholar
Burke, D., Hagbarth, K.-E., Löfstedt, L. & Wallin, B. G. (1976). The responses of human muscle spindle endings to vibration of non-contracting muscles. Journal of Physiology (London), 261, 673–93CrossRefGoogle ScholarPubMed
Burke, D., Gandevia, S. C. & McKeon, B. (1983). The afferent volleys responsible for spinal proprioceptive reflexes in man. Journal of Physiology (London), 339, 535–52CrossRefGoogle ScholarPubMed
Burke, D., Gandevia, S. C. & McKeon, B. (1984). Monosynaptic and oligosynaptic contributions to human ankle jerk and H-reflex. Journal of Neurophysiology, 52, 435–48CrossRefGoogle ScholarPubMed
Burke, D., Adams, R. W. & Skuse, N. F. (1989). The effect of voluntary contraction on the H reflex of various muscles. Brain, 112, 417–33CrossRefGoogle Scholar
Burke, R. E. (1981). Motor units: anatomy, physiology and functional organization. In Handbook of Physiology, section I, The Nervous System, vol. II, Motor Control, Part 1, ed. Brooks, V. B., pp. 345–422. Bethesda, MD: American Physiological SocietyGoogle Scholar
Bussel, B., Katz, R., Pierrot-Deseilligny, E., Bergego, C. & Hayat, A. (1980). Vestibular and proprioceptive influences on the postural reactions to a sudden body displacement in man. In Spinal and Supraspinal Mechanisms of Voluntary Motor Control and Locomotion, ed. Desmedt, J. E., vol. 8, pp. 310–22. Basel: KargerGoogle Scholar
Capaday, C. (2002). The special nature of human walking and its neural control. Trends in Neurosciences, 25, 370–6CrossRefGoogle ScholarPubMed
Cavallari, P. & Katz, R. (1989). Pattern of projections of group I afferents from forearm muscles to motoneurones supplying biceps and triceps muscles in man. Experimental Brain Research, 78, 465–78CrossRefGoogle Scholar
Cavallari, P., Katz, R. & Pénicaud, A. (1992). Pattern of projections of group I afferents from elbow muscles to motoneurones supplying wrist muscles in man. Experimental Brain Research, 91, 311–19CrossRefGoogle Scholar
Chalmers, G. R. & Bawa, P. (1997). Synaptic connections from large afferents of wrist flexor and extensor muscles to synergistic motoneurones in man. Experimental Brain Research, 116, 351–8CrossRefGoogle ScholarPubMed
Christensen, L. A. D., Andersen, J. B., Sinkjaer, T. & Nielsen, J. (2001). Transcranial magnetic stimulation and stretch reflexes in the tibialis anterior muscle during human walking. Journal of Physiology (London), 531, 545–57CrossRefGoogle ScholarPubMed
Clough, J. F. M., Kernell, D. & Phillips, C. G. (1968). The distribution of monosynaptic excitation from the pyramidal tract and from primary spindle afferents to motoneurones of the baboon's hand and forearm. Journal of Physiology (London), 198, 145–66CrossRefGoogle ScholarPubMed
Cody, F. W. J., MacDermott, P. B., Matthews, P. B. C. & Richardson, H. C. (1986). Observations on the genesis of the stretch reflex in Parkinson's disease. Brain, 109, 229–49CrossRefGoogle ScholarPubMed
Coppin, C. M. C., Jack, J. J. B. & MacLennan, C. R. (1970). A method for the selective electrical stimulation of tendon organ afferent fibres from the cat soleus muscle. Journal of Physiology (London), 210, 18–20PGoogle Scholar
Créange, A., Faist, M., Katz, R. & Pénicaud, A. (1992). Distribution of heteronymous Ia facilitation and recurrent inhibition in the human deltoid motor nucleus. Experimental Brain Research, 90, 620–4CrossRefGoogle ScholarPubMed
Crone, C. & Nielsen, J. (1989). Methodological implications of the post-activation depression of the soleus H-reflex in man. Experimental Brain Research, 78, 28–32CrossRefGoogle ScholarPubMed
Curtis, D. R. & Eccles, J. C. (1960). Synaptic action during and after repetitive stimulation. Journal of Physiology (London), 150, 374–98CrossRefGoogle ScholarPubMed
Diener, H. C., Dichgans, J., Bootz, F. & Bacher, M. (1984a). Early stabilization of human posture after a sudden disturbance: influence of rate and amplitude of displacement. Experimental Brain Research, 56, 126–34CrossRefGoogle Scholar
Diener, H. C., Dichgans, J., Guschlbauer, B. & Mau, H. (1984b). The significance of proprioception on postural stabilization as assessed by ischaemia. Brain Research, 296, 103–9CrossRefGoogle Scholar
Dietz, V. (1981). Contribution of spinal stretch reflexes to the activity of leg muscles in running. In Muscle Receptors and Movement, ed. Taylor, A. & Prochazka, A., pp. 339–46. London: MacMillanCrossRefGoogle Scholar
Dietz, V., Schmidtbleicher, D. & Noth, J. (1979). Neuronal mechanisms of human locomotion. Journal of Neurophysiology, 42, 1212–22CrossRefGoogle ScholarPubMed
Dietz, V., Mauritz, K. H. & Dichgans, J. (1980). Body oscillations in balancing due to segmental stretch reflex activity. Experimental Brain Research, 40, 89–95CrossRefGoogle ScholarPubMed
Dietz, V., Noth, J. & Schmidtbleicher, D. (1981). Interaction between pre-activity and stretch reflex in human triceps brachii during landing from forward falls. Journal of Physiology (London), 311, 113–25CrossRefGoogle ScholarPubMed
Duncan, A. & McDonagh, M. J. N. (2000). Stretch reflex distinguished from pre-programmed muscle activations following landing impacts in man. Journal of Physiology (London), 526, 456–68CrossRefGoogle ScholarPubMed
Dyhre-Poulsen, P., Simonsen, E. B. & Voigt, M. (1991). Dynamic control of muscle stiffness and H reflex modulation during hopping and jumping in man. Journal of Physiology (London), 437, 287–304CrossRefGoogle ScholarPubMed
Eccles, J. C., Eccles, R. M. & Lundberg, A. (1957). The convergence of monosynaptic excitatory afferents onto many different species of alpha motoneurones. Journal of Physiology (London), 137, 22–50CrossRefGoogle Scholar
Eccles, J. C. & Rall, W. (1951). Effects induced in a monosynaptic reflex path by its activation. Journal of Neurophysiology, 14, 353–76CrossRefGoogle Scholar
Eccles, R. M. & Lundberg, A. (1958). Integrative pattern of Ia synaptic actions of motoneurones of hip and knee muscles. Journal of Physiology (London), 144, 271–98CrossRefGoogle ScholarPubMed
Eccles, R. M., Shealy, C. N. & Willis, W. D. (1963). Patterns of innervation of kitten motoneurones. Journal of Physiology (London), 165, 395–402CrossRefGoogle ScholarPubMed
Edgerton, V. R., Smith, J. L. & Simpson, D. R. (1975). Muscle fibre type populations of human leg muscles. Histochemical Journal, 7, 259–66CrossRefGoogle ScholarPubMed
Edgley, S., Jankowska, E. & McCrea, D. (1986). The heteronymous monosynaptic actions of triceps surae group Ia afferents on hip and knee extensor motoneurones in the cat. Experimental Brain Research, 61, 443–6CrossRefGoogle ScholarPubMed
Engberg, I. & Lundberg, A. (1969). An electromyographic analysis of muscular activity in the hindlimb of the cat during unrestrained locomotion. Acta Physiologica Scandinavica, 75, 105–22CrossRefGoogle ScholarPubMed
Ertekin, C., Mungan, B. & Uludag, B. (1996). Sacral cord conduction time of the soleus H-reflex. Journal of Clinical Neurophysiology, 13, 77–83CrossRefGoogle ScholarPubMed
Evarts, E. V. (1973). Motor cortex reflexes associated with learned movement. Science, 179, 501–3CrossRefGoogle ScholarPubMed
Ferris, D. P., Aagaard, P., Simonsen, E. B., Farley, C. T. & Dyhre-Poulsen, P. (2001). Soleus H-reflex gain in humans walking and running under simulated reduced gravity. Journal of Physiology (London), 530, 167–80CrossRefGoogle ScholarPubMed
Fetz, E. E. & Gustafsson, B. (1983). Relation between shapes of post-synaptic potentials and changes in firing probability of cat motoneurones. Journal of Physiology (London), 341, 387–410CrossRefGoogle ScholarPubMed
Fetz, E. E., Jankowska, E., Johannisson, T. & Lipski, J. (1979). Autogenetic inhibition of motoneurones by impulses in group Ia muscle spindle afferents. Journal of Physiology (London), 293, 173–95CrossRefGoogle ScholarPubMed
Floeter, M. K. & Kohn, A. F. (1997). H-reflexes of different sizes exhibit differential sensitivity to low frequency depression. Electroencephalography and Clinical Neurophysiology, 105, 470–5CrossRefGoogle ScholarPubMed
Forster, M. (1879). Textbook of Physiology (cited by Liddell, E. G. T. 1960, in The Discovery of Reflexes, p. 98 and 101, Oxford: Clarendon Press)Google Scholar
Fournier, E., Meunier, S., Pierrot-Deseilligny, E. & Shindo, M. (1986). Evidence for interneuronally mediated Ia excitatory effects to human quadriceps motoneurones. Journal of Physiology (London), 377, 143–69CrossRefGoogle ScholarPubMed
Fritz, N., Illert, M., Motte, S., Reeh, P. & Saggau, P. (1989). Pattern of monosynaptic Ia connections in the cat forelimb. Journal of Physiology (London), 419, 321–51CrossRefGoogle ScholarPubMed
Fukushima, Y., Yamashita, N. & Shimada, Y. (1982). Facilitation of H reflex by homonymous Ia afferent fibres in man. Journal of Neurophysiology, 48, 1079–88CrossRefGoogle Scholar
Funase, K., Higashi, T., Sakakibara, A., Imanaka, K., Nishihira, Y. & Miles, T. S. (2001). Patterns of muscle activation in human hopping. European Journal of Applied Physiology, 84, 503–9CrossRefGoogle ScholarPubMed
Gallago, R., Kuno, M., Nunez, R. & Snider, W. D. (1979). Disuse enhances synaptic efficacy in spinal motoneurones. Journal of Physiology (London), 321, 191–205CrossRefGoogle Scholar
Gandevia, S. C. & Burke, D. (1984). Saturation in human somatosensory pathways. Experimental Brain Research, 54, 582–5CrossRefGoogle ScholarPubMed
Gracies, J. M., Meunier, S., Pierrot-Deseilligny, E. & Simonetta, M. (1991). Pattern of propriospinal-like excitation to different species of human upper limb motoneurones. Journal of Physiology (London), 434, 151–67CrossRefGoogle ScholarPubMed
Gracies, J. M., Pierrot-Deseilligny, E. & Robain, G. (1994). Evidence for further recruitment of group I fibres with high stimulus intensities when using surface electrodes in man. Electroencephalography and Clinical Neurophysiology, 93, 353–7CrossRefGoogle Scholar
Greenwood, R. & Hopkins, A. (1976). Landing from an unexpected fall and a voluntary step. Brain, 99, 375–86CrossRefGoogle Scholar
Grey, M. J., Ladouceur, M., Andersen, J. B., Nielsen, J. B. & Sinkjaer, T. (2001). Group II muscle afferents probably contribute to the medium latency soleus stretch reflex during walking in humans. Journal of Physiology (London), 534, 925–33CrossRefGoogle ScholarPubMed
Hagbarth, K.-E., Hägglund, J. V., Wallin, E. U. & Young, R. R. (1981). Grouped spindle and electromyographic responses to abrupt wrist extension movement in man. Journal of Physiology (London), 312, 81–96CrossRefGoogle ScholarPubMed
Hammar, I., Slawinska, U. & Jankowska, E. (2002). A comparison of postactivation depression of synaptic actions evoked by different afferents and at different locations in the feline spinal cord. Experimental Brain Research, 145, 126–9CrossRefGoogle ScholarPubMed
Hammond, P. H. (1956). The influence of prior instruction to the subject on an apparently neuromuscular response. Journal of Physiology (London), 132, 17–18PGoogle Scholar
Hammond, P. H. (1960). An experimental study of servo action in human muscular control. Proceedings IIIrd International Conference on Medical Electronics, pp. 190–9. London: Institution of Electrical Engineers
Heckman, C. J., Condon, M. S., Hutton, R. S. & Enoka, R. M. (1984). Can Ib axons be selectively activated by electrical stimuli in human subjects?Experimental Neurology, 86, 576–82CrossRefGoogle ScholarPubMed
Henneman, E. & Mendell, L. M. (1981). Functional organization of motoneurone pool and its inputs. In Handbook of Physiology, Section I, The Nervous System, vol. II, Motor Control, Part 1, ed. Brooks, V. B., pp. 423–507. Bethesda, MD, USA: American Physiological SocietyGoogle Scholar
Hirst, G. D. S., Redman, S. J. & Wong, K. (1981). Post-tetanic potentiation and facilitation of synaptic potentials evoked in cat spinal motoneurones. Journal of Physiology (London), 321, 97–109CrossRefGoogle ScholarPubMed
Hongo, T., Lundberg, A., Phillips, C. G. & Thompson, R. F. (1984). The pattern of monosynaptic Ia-connections to hindlimb motor nuclei in the baboon: a comparison with the cat. Proceedings of the Royal Society B, 221, 261–89CrossRefGoogle ScholarPubMed
Honig, M. G., Collins, W. F. & Mendell, L. M. (1983). α-motoneuron excitatory post-synaptic potentials exhibit different frequency sensitivities to single Ia-afferent fiber stimulation. Journal of Neurophysiology, 49, 886–901CrossRefGoogle Scholar
Hultborn, H. (2001). State-dependent modulation of sensory feedback. Journal of Physiology (London), 533, 5–13CrossRefGoogle ScholarPubMed
Hultborn, H. & Nielsen, J. B. (1998). Modulation of transmitter release from Ia afferents by their preceding activity – a ‘postactivation depression’. In Presynaptic Inhibition and Neural Control, ed. Rudomin, P., Romo, R. & Mendell, L., pp. 178–91. New York: Oxford University PressGoogle Scholar
Hultborn, H., Meunier, S., Morin, C. & Pierrot-Deseilligny, E. (1987). Assessing changes in presynaptic inhibition of Ia fibres: a study in man and the cat. Journal of Physiology (London), 389, 729–56CrossRefGoogle Scholar
Hultborn, H., Illert, M., Nielsen, J., Paul, A., Ballegaard, M. & Wiese, H. (1996). On the mechanism of the post-activation depression of the H-reflex in human subjects. Experimental Brain Research, 108, 450–62CrossRefGoogle ScholarPubMed
Illert, M. (1996). Monosynaptic Ia pathways and motor behaviour of the cat distal forelimb. Acta Neurobiologiae Experimentalis, 56, 423–33Google ScholarPubMed
Inglis, J. T., Meunier, S., Leeper, J. B., Burke, D. & Gandevia, S. C. (1997). Weak short-latency spinal projections to the long flexor of the human thumb. Experimental Brain Research, 115, 165–8CrossRefGoogle Scholar
Jankowska, E. & McCrea, D. (1983). Shared reflex pathways from Ib tendon organ afferents and Ia muscle spindle afferents in the cat. Journal of Physiology (London), 338, 99–111CrossRefGoogle ScholarPubMed
Jolly, W. A. (1911). On the time relations of the knee-jerk and simple reflexes. Quarterly Journal of Experimental Physiology, 4, 67–87CrossRefGoogle Scholar
Katz, R., Mazzocchio, R., Pénicaud, A. & Rossi, A. (1993). Distribution of recurrent inhibition in the human upper limb. Acta Physiologica Scandinavica, 149, 189–98CrossRefGoogle ScholarPubMed
Katz, R., Morin, C., Pierrot-Deseilligny, E. & Hibino, R. (1977). Conditioning of H-reflex by a preceding subthreshold tendon reflex stimulus. Journal of Neurology, Neurosurgery and Psychiatry, 40, 575–80CrossRefGoogle ScholarPubMed
Katz, R., Pénicaud, A. & Rossi, A. (1991). Reciprocal Ia inhibition between elbow flexors and extensors in the human. Journal of Physiology (London), 437, 269–86CrossRefGoogle ScholarPubMed
Kearney, R. E., Lortie, M. & Stein, R. B. (1999). Modulation of stretch reflexes during imposed walking movements of the human ankle. Journal of Neurophysiology, 81, 2893–902CrossRefGoogle ScholarPubMed
Kuno, M. (1964). Mechanism of facilitation and depression of the excitatory synaptic potential in spinal motoneurones. Journal of Physiology (London), 175, 100–12CrossRefGoogle Scholar
Lamy, J. C., Wargon, I., Baret, M.et al. (2005). Post-activation depression in various spinal pathways in humans. Experimental Brain Research, submittedCrossRefGoogle ScholarPubMed
Lance, J. W. & Gail, P. (1965). Spread of phasic muscle reflexes in normal and spastic subjects. Journal of Neurology, Neurosurgery and Psychiatry, 28, 328–34CrossRefGoogle ScholarPubMed
Lee, R. G. & Tatton, W. G. (1975). Motor responses to sudden limb displacements in primates with specific CNS lesions and in human patients with motor system disorders. Canadian Journal of Neurological Sciences, 2, 285–93CrossRefGoogle ScholarPubMed
Liddell, E. G. T. & Sherrington, C. S. (1924). Reflexes in response to stretch (myotatic reflexes). Proceedings of the Royal Society, London B, 96, 212–42CrossRefGoogle Scholar
Lloyd, D. P. C. (1943a). Neuron patterns controlling transmission of ipsilateral hind limb reflexes in cat. Journal of Neurophysiology, 6, 293–315CrossRefGoogle Scholar
Lloyd, D. P. C. (1943b). Conduction and synaptic transmission of the reflex response to stretch in spinal cats. Journal of Neurophysiology, 6, 317–26CrossRefGoogle Scholar
Lloyd, D. P. C. (1946). Integrative pattern of excitation and inhibition in two-neuron reflex arcs. Journal of Neurophysiology, 9, 439–44CrossRefGoogle ScholarPubMed
Lloyd, D. P. C. & Wilson, V. G. (1957). Reflex depression in rythmically activated monosynaptic reflex pathways. Journal of General Physiology, 40, 409–26CrossRefGoogle Scholar
Lundberg, A. & Winsbury, G. (1960). Selective adequate activation of large afferents from muscle spindles and Golgi tendon organs. Acta Physiologica Scandinavica, 49, 155–64CrossRefGoogle ScholarPubMed
Lüscher, R. R., Ruenzel, P. & Henneman, E. (1983). Effects of impulse frequency, PTP, and temperature on responses elicited in large populations of motoneurons by impulses in single Ia-fibers. Journal of Neurophysiology, 50, 1045–58CrossRefGoogle ScholarPubMed
McClelland, V. M., Miller, S. & Eyre, J. A. (2001). Short latency heteronymous excitatory and inhibitory reflexes between antagonist and heteronymous muscles of the human shoulder and upper limb. Brain Research, 899, 82–93CrossRefGoogle ScholarPubMed
Macefield, G., Gandevia, S. C. & Burke, D. (1989). Conduction velocities of muscle and cutaneous afferents in the upper and lower limbs of human subjects. Brain, 112, 1519–32CrossRefGoogle ScholarPubMed
Magladery, J. W. & McDougal, D. B. (1950). Electrophysiological studies of nerve and reflex activity in normal man. I. Identification of certain reflexes in the electromyogram and the conduction velocity of peripheral nerve fibres. Bulletin of Johns Hopkins Hospital, 86, 265–90Google Scholar
Magladery, J. W., McDougal, D. B. & Stoll, J. (1950). Electrophysiological studies of nerve and reflex activity in normal man. II. The effects of peripheral ischemia. Bulletin of Johns Hopkins Hospital, 86, 291–312Google ScholarPubMed
Magladery, J. W., Porter, W. E., Park, A. M. & Teasdall, R. D. (1951). Electrophysiological studies of nerve and reflex activity in normal man. IV. Two-neurone reflex and identification of certain action potentials from spinal roots and cord. Bulletin of Johns Hopkins Hospital, 88, 499–519Google ScholarPubMed
Malmgren, K. & Pierrot-Deseilligny, E. (1988). Evidence for non-monosynaptic Ia excitation of wrist flexor motoneurones, possibly via propriospinal neurones. Journal of Physiology (London), 405, 747–64CrossRefGoogle ScholarPubMed
Mao, C. C., Ashby, P., Wang, M. & McCrea, D. (1984). Synaptic connections from large muscle afferents to the motoneurones of various leg muscles in man. Experimental Brain Research, 56, 341–50CrossRefGoogle Scholar
Marchand-Pauvert, V. & Nielsen, J. B. (2002). Modulation of non-monosynaptic excitation from ankle dorsiflexor afferents to quadriceps motoneurones during human gait. Journal of Physiology (London), 538, 647–57CrossRefGoogle Scholar
Marchand-Pauvert, V., Mazevet, D., Nielsen, J., Petersen, N. & Pierrot-Deseilligny, E. (2000a). Distribution of non-monosynaptic excitation to early and late recruited units in human forearm muscles. Experimental Brain Research 134, 274–8CrossRefGoogle Scholar
Marchand-Pauvert, V., Nicolas, G. & Pierrot-Deseilligny, E. (2000b). Monosynaptic Ia projections from intrinsic hand muscles to forearm motoneurones in humans. Journal of Physiology (London), 525, 241–52CrossRefGoogle Scholar
Marque, P., Nicolas, G., Marchand-Pauvert, V., Gautier, J., Simonetta-Moreau, M. & Pierrot-Deseilligny, E. (2001). Group I projections from intrinsic foot muscles to motoneurones of leg and thigh muscles in humans. Journal of Physiology (London), 536, 313–27CrossRefGoogle Scholar
Marsden, C. D., Merton, P. A. & Morton, H. B. (1972). Servo action in human voluntary movement. Nature, 238, 140–3CrossRefGoogle ScholarPubMed
Marsden, C. D., Merton, P. A., Morton, H. B. & Adam, J. (1977). The effect of posterior column lesions on servo responses from the human long thumb flexor. Brain, 100, 185–200CrossRefGoogle ScholarPubMed
Marsden, C. D., Rothwell, J. C. & Day, B. L. (1983). Long-latency automatic responses to muscle stretch in man: origin and function. In Motor Control Mechanisms in Health and Disease, ed. Desmedt, J. E., pp. 509–39. New York: Raven PressGoogle Scholar
Matthews, P. B. C. (1972). Mammalian Muscle Spindles and Their Central Action. 630 pp. London: ArnoldGoogle Scholar
Matthews, P. B. C. (1984). Evidence from use of vibration that the human long-latency stretch reflex depends upon spindle secondary afferents. Journal of Physiology (London), 348, 383–415CrossRefGoogle ScholarPubMed
Matthews, P. B. C. (1989). Long-latency stretch reflexes of two intrinsic muscles of the human hand analysed by cooling the arm. Journal of Physiology (London), 419, 519–38CrossRefGoogle Scholar
Matthews, P. B. C. (1991). The human stretch and the motor cortex. Trends in Neurosciences, 14, 87–91CrossRefGoogle ScholarPubMed
Matthews, P. B. C., Farmer, S. F. & Ingram, D. A. (1990). On the localization of the stretch reflex of intrinsic hand muscles in a patient with mirror movements. Journal of Physiology (London), 428, 561–77CrossRefGoogle Scholar
Mauritz, K. H. & Dietz, V. (1980). Characteristics of postural instability induced by ischaemic blocking of leg afferents. Experimental Brain Research, 38, 117–19CrossRefGoogle ScholarPubMed
Mazevet, D. & Pierrot-Deseilligny, E. (1994). Pattern of descending excitation of presumed propriospinal neurones at the onset of voluntary movement in man. Acta Physiologica Scandinavica, 150, 27–38CrossRefGoogle Scholar
Mazzocchio, R., Rothwell, J. C. & Rossi, A. (1995). Distribution of Ia effects onto human hand muscle motoneurones as revealed using an H reflex technique. Journal of Physiology (London), 489, 263–73CrossRefGoogle ScholarPubMed
Melvill Jones, G. & Watt, D. G. D. (1971a). Observations on the control of stepping and hopping movements in man. Journal of Physiology (London), 219, 709–27CrossRefGoogle Scholar
Melvill Jones, G. & Watt, D. G. D. (1971b). Muscular control of landing from unexpected falls in man. Journal of Physiology (London), 219, 729–37CrossRefGoogle Scholar
Mendell, L. M. (1984). Modifiability of spinal synapses. Physiological Reviews, 64, 260–324CrossRefGoogle ScholarPubMed
Meunier, S. & Pierrot-Deseilligny, E. (1989). Gating of the afferent volley of the monosynaptic stretch reflex during movement in man. Journal of Physiology (London), 419, 753–63CrossRefGoogle ScholarPubMed
Meunier, S., Pénicaud, A., Pierrot-Deseilligny, E. & Rossi, A. (1990). Monosynaptic Ia excitation and recurrent inhibition from quadriceps to ankle flexors and extensors in man. Journal of Physiology (London), 423, 661–75CrossRefGoogle ScholarPubMed
Meunier, S., Pierrot-Deseilligny, E. & Simonetta, M. (1993). Pattern of monosynaptic heteronymous Ia connections in the human lower limb. Experimental Brain Research, 96, 533–44CrossRefGoogle ScholarPubMed
Meunier, S., Pierrot-Deseilligny, E. & Simonetta-Moreau, M. (1994). Pattern of heteronymous recurrent inhibition in the human lower limb. Experimental Brain Research, 102, 149–59CrossRefGoogle ScholarPubMed
Meunier, S., Mogyoros, I., Kiernan, M. & Burke, D. (1996). Effects of femoral nerve stimulation on the electromyogram and reflex excitability of tibialis anterior and soleus. Muscle and Nerve, 19, 1110–153.0.CO;2-2>CrossRefGoogle ScholarPubMed
Miller, T. A., Mogyoros, I. & Burke, D. (1995). Homonymous and heteronymous monosynaptic reflexes in biceps brachii. Muscle and Nerve, 18, 585–92CrossRefGoogle ScholarPubMed
Myklebust, B. M. & Gottlieb, G. L. (1993). Reciprocal excitation and reflex irradiation of short-latency reflexes in the healthy neonate. Child Development, 64, 1036–45CrossRefGoogle Scholar
Nakazawa, K., Kawashima, N., Obata, H., Yamanaka, K., Nozaki, D. & Akai, M. (2003). Facilitation of both stretch reflex and corticospinal pathways of the tibialis anterior muscle during standing in humans. Neuroscience Letters, 338, 53–6CrossRefGoogle ScholarPubMed
Nardone, A., Tarantola, J., Miscio, G., Pisano, F., Schenone, A. & Schieppati, M. (2000). Loss of large-diameter spindle afferent fibres is not detrimental to the control of body sway during upright stance: evidence from neuropathy. Experimental Brain Research, 135, 155–62CrossRefGoogle Scholar
Nielsen, J. B. & Hultborn, H. (1993). Regulated properties of motoneurons and primary afferents: new aspects on possible spinal mechanisms underlying spasticity. In Spasticity: Mechanisms and Management, ed. Thilmann, A. F., Burke, D. J. & Rymer, W. Z., pp. 177–92. Heidelberg, Berlin: Springer VerlagCrossRefGoogle Scholar
Nielsen, J., Petersen, N. & Crone, C. (1995). Changes in transmission across synapses of Ia afferents in spastic patients. Brain, 118, 995–1004CrossRefGoogle ScholarPubMed
Ongerboer de Visser, B. W., Schimsheimer, R. J. & Hart, A. A. M. (1984). The H-reflex of the flexor carpi radialis muscle: a study in control and radiation-induced brachial plexus lesions. Journal of Neurology, Neurosurgery and Psychiatry, 47, 1098–101CrossRefGoogle Scholar
O'Sullivan, M. C., Eyre, J. A. & Miller, S. (1991). Radiation of phasic stretch reflex in biceps brachii to muscles of the arm in man and its restriction during development. Journal of Physiology (London), 439, 529–43CrossRefGoogle ScholarPubMed
O'Sullivan, M. C., Miller, S., Ramesh, V.et al. (1998). Abnormal development of biceps brachii phasic stretch reflex and persistence of short latency heteronymous excitatory responses to triceps brachii in spastic cerebral palsy. Brain, 121, 2381–95CrossRefGoogle ScholarPubMed
Petersen, N., Morita, H., Christensen, L., Sinkjaer, T. & Nielsen, J. (1998). Evidence that a transcortical pathway contributes to stretch reflexes in the tibialis anterior in man. Journal of Physiology (London), 512, 267–76CrossRefGoogle ScholarPubMed
Pierrot-Deseilligny, E., Morin, C., Bergego, C. & Tankov, N. (1981). Pattern of group I fibre projections from ankle flexor and extensor muscles in man. Experimental Brain Research, 42, 337–50Google Scholar
Rossi-Durand, C., Jones, K. E., Adams, S. & Bawa, P. (1999). Comparison of the depression of H-reflexes following previous activation in upper and lower limb muscles in human subjects. Experimental Brain Research, 126, 117–27CrossRefGoogle ScholarPubMed
Rothwell, J. C., Day, B. L. & Marsden, C. D. (1986). Habituation and conditioning of the human long latency stretch reflex. Experimental Brain Research, 63, 197–204CrossRefGoogle ScholarPubMed
Sabbahi, M. A. & Khalil, M. (1988). Segmental H-reflex studies in upper and lower limbs of patients with radiculopathy. Archives of Physical Medicine and Rehabilitation, 71, 223–7Google Scholar
Saito, K. (1979). Development of spinal reflexes in the rat fetus studied in vitro. Journal of Physiology (London), 294, 581–94CrossRefGoogle ScholarPubMed
Santello, M. & McDonagh, M. J. N. (1998). The control of timing and amplitude of electromyogram activity in landing movements in humans. Experimental Physiology, 83, 857–74CrossRefGoogle ScholarPubMed
Schieppati, M. & Nardone, A. (1999). Group II spindle afferent fibers in humans: their possible role in the reflex control of stance. In Progress in Brain Research, ed. Binder, M. D., vol. 123, pp. 461–72. Amsterdam: Elsevier ScienceGoogle Scholar
Schillings, A. M., Wezel, B. M. H., Mulder, T. H. & Duysens, J. (1999). Widespread short-latency stretch reflexes and their modulation during stumbling over obstacles. Brain Research, 816, 480–6CrossRefGoogle ScholarPubMed
Schimsheimer, R. J., Ongerboer de Visser, B. W. & Kemp, B. (1985). The flexor carpi radialis H-reflex in lesions of the sixth and seventh cervical nerve roots. Journal of Neurology, Neurosurgery and Psychiatry, 48, 445–9CrossRefGoogle ScholarPubMed
Schimsheimer, R. J., Ongerboer de Visser, B. W., Kemp, B. & Bour, L. J. (1987). The flexor carpi radialis H-reflex in polyneuropathy: relations to conduction velocities of the median nerve and the soleus H reflex latency. Journal of Neurology, Neurosurgery and Psychiatry, 50, 447–52CrossRefGoogle ScholarPubMed
Schindler-Ivens, S. & Shields, R. (2000). Low frequency depression of H-reflexes in humans with acute and chronic spinal-cord injury. Experimental Brain Research, 133, 233–40CrossRefGoogle ScholarPubMed
Schmied, A., Morin, D., Vedel, J. P. & Pagni, S. (1997). The ‘size principle’ and synaptic effectiveness of muscle afferent projections to human extensor carpi radialis motoneurones during wrist extension. Experimental Brain Research, 113, 214–29CrossRefGoogle Scholar
Semmler, J. G. & Türker, K. S. (1994). Compound group I excitatory input is differentially distributed to motoneurones of the human tibialis anterior. Neuroscience Letters, 178, 206–10CrossRefGoogle Scholar
Severin, F. V. (1970). The role of the gamma motor system in the activation of the extensor alpha motor neurones during controlled locomotion. Biophysics, 15, 1138–44Google Scholar
Sherrington, C. (1910). Flexion–reflex of the limb, crossed extension-reflex, and reflex stepping and standing. Journal of Physiology (London), 40, 28–121CrossRefGoogle ScholarPubMed
Sinkjaer, T., Andersen, J. B. & Larsen, B. (1996). Soleus stretch reflex modulation during gait in man. Journal of Neurophysiology, 76, 1112–20CrossRefGoogle Scholar
Stein, R. B., Misiaszek, J. E. & Pearson, K. G. (2000). Functional role of muscle reflexes for force generation in the decerebrate walking cat. Journal of Physiology (London), 525, 781–91CrossRefGoogle ScholarPubMed
Táboríková, H. & Sax, D. S. (1969). Conditioning H reflex by preceding subthreshold H reflex stimulus. Brain, 92, 203–12CrossRefGoogle ScholarPubMed
Trontelj, J. V. (1973). A study of the H-reflex by single fibre electromyogram. Journal of Neurology, Neurosurgery and Psychiatry, 36, 951–9CrossRefGoogle Scholar
Boxtel, A. (1986). Differential effects of low-frequency depression, vibration-induced inhibition, and post-tetanic potentiation on H-reflexes and tendon jerks in the human soleus muscle. Journal of Neurophysiology, 55, 551–68CrossRefGoogle Scholar
Verhagen, W. I. M., Schrooten, G. J. M., Schiphof, P. R. & Ammers, V. (1988). The H-reflex of the medial vastus muscle: a study in controls and patients with radiculopathy. Electromyography and Clinical Neurophysiology, 28, 421–5Google ScholarPubMed
Voigt, M., Bojsen-Moller, F., Simonsen, E. B. & Dyhre-Poulsen, P. (1995). The influence of tendon Youngs modulus, dimensions and instantaneous moment arms on the efficiency of human movement. Journal of Biomechanics, 28, 281–91CrossRefGoogle ScholarPubMed
Voigt, M.Dyhre-Poulsen, P. & Simonsen, E. B. (1998). Modulation of short latency stretch reflexes during human hopping. Acta Physiologica Scandinavica, 163, 181–94CrossRefGoogle ScholarPubMed
Wood, S. A., Gregory, J. E. & Proske, U. (1996). The influence of muscle spindle discharge on the human H reflex and the monosynaptic reflex in the cat. Journal of Physiology (London), 497, 279–90CrossRefGoogle Scholar
Yang, J. F., Stein, R. B. & James, K. B. (1991). Contribution of peripheral afferents to the activation of the soleus muscle during walking in humans. Experimental Brain Research, 87, 679–87CrossRefGoogle ScholarPubMed
Zehr, E. P. & Stein, R. B. (1999). What function do reflexes have during human locomotion?Progress in Neurobiology, 58, 185–205CrossRefGoogle ScholarPubMed
Zhu, Y., Starr, A., Su, S. H., Woodward, K. G. & Haldeman, S. (1992). The H-reflex to magnetic stimulation of lower-limb nerves. Archives of Neurology, 49, 66–71CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×