Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-20T22:45:11.764Z Has data issue: false hasContentIssue false

8 - Presynaptic inhibition of Ia terminals

Published online by Cambridge University Press:  08 August 2009

Emmanuel Pierrot-Deseilligny
Affiliation:
Groupe Hospitalier Pitié-Salpétrière, Paris
David Burke
Affiliation:
University of Sydney
Get access

Summary

The synaptic efficacy of the afferent volleys entering the spinal cord can be modulated by presynaptic inhibition. As a result, the information flowing through sensory terminals can be modified before it reaches the target neurones through a process that can be controlled selectively by supraspinal centres to optimise motor performance and sensory discrimination. All afferents are subject to presynaptic inhibition controlled by descending tracts (cf. Rudomin & Schmidt 1999) but, so far, methods have been developed for human subjects to estimate only presynaptic inhibition of Ia terminals. This is because it is easy to stimulate Ia afferents selectively, and they are the only afferents to have significant monosynaptic projections onto motoneurones.

Background from animal experiments

Initial findings

In the cat, Frank and Fuortes (1957) described a depression of monosynaptic Ia EPSPs in motoneurones occurring without a detectable change in motoneurone membrane potential or conductance. This presynaptic inhibition was extensively investigated by Eccles and colleagues. They described its main features and showed that the inhibition is associated with primary afferent depolarisation (PAD), both phenomena most probably mediated by the same interneurones acting on Ia terminals through axo-axonic synapses (see Eccles, 1964). These interneurones are referred to as PAD interneurones in the following, even though there is so far no record of PAD in human subjects.

General features

Location

Although PAD interneurones have not yet been specifically labelled, there are strong indications that last-order PAD interneurones mediating presynaptic inhibition of Ia terminals are located within the intermediate zone.

Type
Chapter
Information
The Circuitry of the Human Spinal Cord
Its Role in Motor Control and Movement Disorders
, pp. 337 - 383
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aimonetti, J. M., Vedel, J. P., Schmied, A. & Pagni, S. (2000a). Distribution of presynaptic inhibition on type-identified motoneurones in the extensor carpi radialis pool in man. Journal of Physiology (London), 522, 125–35CrossRefGoogle Scholar
Aimonetti, J. M., Vedel, J. P., Schmied, A. & Pagni, S. (2000b). Mechanical cutaneous stimulation alters Ia presynaptic inhibition in human wrist extensor muscles: a single motor unit study. Journal of Physiology (London), 522, 137–45CrossRefGoogle Scholar
Andén, N. E., Jukes, M. G., Lundberg, A. & Vyklický, L. (1966). The effect of DOPA on the spinal cord. 3. Depolarization evoked in the central terminals of ipsilateral Ia afferents by volleys in the flexor reflex afferents. Acta Physiologica Scandinavica, 68, 322–36CrossRefGoogle Scholar
Aniss, A. M., Diener, H. C., Hore, J., Gandevia, S. C. & Burke, D. (1990). Behavior of human muscle receptors when reliant on proprioceptive feedback during standing. Journal of Neurophysiology, 64, 661–70CrossRefGoogle ScholarPubMed
Artieda, J., Queseda, P. & Obeso, J. A. (1991). Reciprocal inhibition between forearm muscles in spastic hemiplegia. Neurology, 41, 286–9CrossRefGoogle ScholarPubMed
Ashby, P., Verrier, M. & Carleton, S. (1980). Vibratory inhibition of the monosynaptic reflex. In Progress in Clinical Neurophysiology, vol. 8, ed. Desmedt, J. E., pp. 254–62. Basel: KargerGoogle Scholar
Aymard, C., Katz, R., Lafitte, C.et al., (2000). Presynaptic inhibition and homosynaptic depression: a comparison between lower and upper limbs in normal subjects and patients with hemiplegia. Brain, 123, 1688–702CrossRefGoogle ScholarPubMed
Aymard, C., Baret, M., Katz, R., Lafitte, C., Pénicaud, A. & Raoul, S. (2001). Modulation of presynaptic inhibition of Ia afferents during voluntary wrist flexion and extension in man. Experimental Brain Research, 137, 127–31CrossRefGoogle ScholarPubMed
Barnes, C. D. & Pompeiano, O. (1970a). Inhibition of monosynaptic extensor reflex attributable to presynaptic depolarisation of the group Ia afferent fibres produced by vibration of a flexor muscle. Archives Italiennes de Biologie, 108, 233–58Google Scholar
Barnes, C. D. & Pompeiano, O. (1970b). Presynaptic and postsynaptic effects in the monosynaptic reflex pathway to extensor motoneurones following vibration of synergic muscles. Archives Italiennes de Biologie, 108, 259–94Google Scholar
Berardelli, A., Day, B. L., Marsden, C. D. & Rothwell, J. C. (1987). Evidence favouring presynaptic inhibition between antagonist muscle afferents in the human forearm. Journal of Physiology (London), 391, 71–83CrossRefGoogle ScholarPubMed
Binder, M. D., Kroin, J. S., Moore, G. P. & Stuart, D. G. (1977). The response of Golgi tendon organs to single motor unit contractions. Journal of Physiology (London), 271, 337–49CrossRefGoogle ScholarPubMed
Burke, D. & Ashby, P. (1972). Are spinal ‘presynaptic’ inhibitory mechanisms suppressed in spasticity?Journal of the Neurological Sciences, 15, 321–6CrossRefGoogle ScholarPubMed
Burke, D., Hagbarth, K.-E., Löfstedt, L. & Wallin, B. G. (1976). The response of human muscle spindle endings to vibration of non-contracting muscles. Journal of Physiology (London), 261, 673–93CrossRefGoogle ScholarPubMed
Burke, D., Gracies, J. M., Mazevet, D., Meunier, S. & Pierrot-Deseilligny, E. (1994). Non monosynaptic transmission of the cortical command for voluntary movement in man. Journal of Physiology (London), 480, 191–207CrossRefGoogle ScholarPubMed
Butchart, P., Farquhar, R., Part, N. J. & Roberts, R. C. (1993). The effect of age and voluntary contraction on presynaptic inhibition of soleus muscle Ia afferent terminals in man. Experimental Physiology, 78, 235–42CrossRefGoogle ScholarPubMed
Calancie, B., Broton, J. G., Klose, K. J., Traad, M., Difini, J. & Ayyar, D. R. (1993). Evidence that alterations in presynaptic inhibition contribute to segmental hypo- and hyperexcitability after spinal cord injury in man. Electroencephalography and Clinical Neurophysiology, 89, 177–86CrossRefGoogle ScholarPubMed
Capaday, C. & Stein, R. B. (1986). Amplitude modulation of the soleus H-reflex in the human during walking and standing. Journal of Neuroscience, 6, 1308–13CrossRefGoogle ScholarPubMed
Capaday, C. & Stein, R. B. (1987) Difference in the amplitude of the human soleus H-reflex during walking and running. Journal of Physiology (London), 392, 513–22CrossRefGoogle ScholarPubMed
Capaday, C., Lavoie, B. A. & Cormeau, F. (1995). Differential effects of a flexor nerve input on the soleus H-reflex during standing and walking. Canadian Journal of Physiology and Pharmacology, 73, 436–49CrossRefGoogle ScholarPubMed
Carpenter, D., Engberg, I. & Lundberg, A. (1966). Primary afferent depolarization evoked from the sensorimotor cortex. Acta Physiologica Scandinavica, 59, 126–42CrossRefGoogle Scholar
Cavallari, P. & Katz, R. (1989). Pattern of projections of group I afferents from forearm muscles to motoneurones supplying biceps and triceps muscles in man. Experimental Brain Research, 78, 465–78CrossRefGoogle Scholar
Chen, R. S., Tsai, C. H. & Lu, C. S. (1995). Reciprocal inhibition in writer's cramp. Movement Disorders, 10, 556–61CrossRefGoogle ScholarPubMed
Childers, M. K., Biswas, S. S., Petroski, G. & Merveille, O. (1999). Inhibitory casting decreases a vibratory inhibition index of the H-reflex in the spastic upper limb. Archives of Physical Medicine and Rehabilitation, 80, 714–16CrossRefGoogle ScholarPubMed
Coppin, C. M., Jack, J. J. B. & MacLennan, C. R. (1970). A method for the selective electrical activation of tendon organ afferent fibres from the cat soleus muscle. Journal of Physiology (London), 210, 18P–20pGoogle ScholarPubMed
Crone, C. & Nielsen, J. (1989a). Spinal mechanisms in man contributing to reciprocal inhibition during voluntary dorsiflexion of the foot. Journal of Physiology (London), 416, 255–72CrossRefGoogle Scholar
Crone, C. & Nielsen, J. (1989b). Methodological implications of the post-activation depression of the soleus H-reflex in man. Experimental Brain Research, 78, 28–32CrossRefGoogle Scholar
Gail, P., Lance, J. W. & Neilson, P. D. (1966). Differential effects on tonic and phasic reflex mechanisms produced by vibration of muscle in man. Journal of Neurology, Neurosurgery and Psychiatry, 29, 1–11CrossRefGoogle ScholarPubMed
Delwaide, P. J. (1973). Human monosynaptic reflexes and presynaptic inhibition. In New Developments in Electromyography and Clinical Neurophysiology, vol. 3, ed. Desmedt, J. E., pp. 508–22. Basel: KargerGoogle Scholar
Delwaide, P. J. (1993). Pathophysiological mechanisms of spasticity at the spinal cord level. In Spasticity: Mechanisms and Management, ed. Thilmann, A. F., Burke, D. J. & Rymer, W. Z., pp. 296–308. Berlin: SpringerCrossRefGoogle Scholar
Delwaide, P. J. & Pennisi, G. (1994). Tizanidine and electrophysiologic analysis of spinal control mechanisms in humans with spasticity. Neurology, 44, S21–7; S27–8Google ScholarPubMed
Delwaide, P. J., Pepin, J. L. & Maertens de Noordhout, A. (1993). The audiospinal reaction in Parkinsonian patients reflects functional changes in reticular nuclei. Annals of Neurology, 33, 63–9CrossRefGoogle ScholarPubMed
Desmedt, J. E. & Godaux, E. (1978). Mechanism of the vibration paradox: excitatory and inhibitory effects of tendon vibration on single soleus muscle motor units in man. Journal of Physiology (London), 285, 197–207CrossRefGoogle ScholarPubMed
Devanandan, M. S., Eccles, R. M. & Yokota, T. (1965). Muscle stretch and the presynaptic inhibition of the group Ia pathway to motoneurones. Journal of Physiology (London), 179, 430–41CrossRefGoogle Scholar
Devanandan, M. S., Eccles, R. M. & Stenhouse, D. (1966). Presynaptic inhibition evoked by muscle contraction. Journal of Physiology (London), 185, 471–85CrossRefGoogle ScholarPubMed
Dietz, V., Quintern, J. & Berger, W. (1985). Afferent control of human stance and gait: evidence for blocking group I afferents during gait. Experimental Brain Research, 61, 153–63CrossRefGoogle Scholar
Dietz, V., Faist, M. & Pierrot-Deseilligny, E. (1990). Amplitude modulation of the quadriceps H-reflex in the human during the early stance phase of gait. Experimental Brain Research, 79, 221–4CrossRefGoogle Scholar
Eccles, J. C. (1964). The Physiology of Synapses, 316 pp. Berlin: Springer VerlagCrossRefGoogle Scholar
Eccles, J. C., Magni, F. & Willis, W. D. (1962a). Depolarization of central terminals of group I afferent fibres from muscles. Journal of Physiology (London), 160, 62–93CrossRefGoogle Scholar
Eccles, J. C., Kostyuk, P. G. & Schmidt, R. F. (1962b). Central pathways responsible for depolarization of primary afferent fibres. Journal of Physiology (London), 161, 237–57CrossRefGoogle Scholar
Eccles, J. C., Schmidt, R. F. & Willis, W. D. (1962c). Presynaptic inhibition of the spinal monosynaptic reflex pathway. Journal of Physiology (London), 161, 282–97CrossRefGoogle Scholar
Eguibar, J. R., Quevedo, J., Jimenez, I. & Rudomin, P. (1994). Selective cortical control of information flow through different intraspinal collaterals of the same muscle afferent fiber. Brain Research, 643, 328–33CrossRefGoogle ScholarPubMed
El-Tohamy, A. & Sedgwick, E. M. (1983). Spinal inhibition in man: depression of the soleus H reflex by stimulation of the nerve to the antagonist muscle. Journal of Physiology (London), 337, 497–508CrossRefGoogle ScholarPubMed
Enriquez-Denton, M., Nielsen, J., Perrault, M., Morita, H., Petersen, N. & Hultborn, H. (2000) Presynaptic control of transmission along the pathway mediating disynaptic reciprocal inhibition in the cat. Journal of Physiology (London), 526, 623–37CrossRefGoogle ScholarPubMed
Faist, M., Mazevet, D., Dietz, V. & Pierrot-Deseilligny, E. (1994). A quantitative assessment of presynaptic inhibition of Ia afferents in spastics. Differences in hemiplegics and paraplegics. Brain, 117, 1449–55CrossRefGoogle ScholarPubMed
Faist, M., Dietz, V. & Pierrot-Deseilligny, E. (1996). Modulation of presynaptic inhibition of Ia afferents during human gait. Experimental Brain Research, 109, 441–9CrossRefGoogle ScholarPubMed
Faist, M., Ertel, M., Berger, W. & Dietz, V. (1999). Impaired modulation of quadriceps tendon jerk reflex during spastic gait: differences between cerebral and spinal lesions. Brain, 122, 567–79CrossRefGoogle Scholar
Ferris, D. P., Aagaard, P., Simonsen, E. B., Farley, C. T. & Dyhre-Poulsen, P. (2001). Soleus H-reflex gain in humans walking and running under simulated reduced gravity. Journal of Physiology (London), 530, 167–80CrossRefGoogle ScholarPubMed
Fetz, E. E., Jankowska, E., Johannisson, T. & Lipski, J. (1979). Autogenetic inhibition of motoneurones by impulses in group Ia muscle spindle afferents. Journal of Physiology (London), 293, 173–95CrossRefGoogle ScholarPubMed
Frank, K. & Fuortes, M. G. F. (1957). Presynaptic and postsynaptic inhibition of monosynaptic reflexes. Federation Proceedings, 16, 39–40Google Scholar
Gillies, J. D., Lance, J. W., Neilson, P. D. & Tassinari, C. A. (1969). Presynaptic inhibition of the monosynaptic reflex by vibration. Journal of Physiology (London), 205, 329–39CrossRefGoogle ScholarPubMed
Gracies, J. M., Pierrot-Deseilligny, E. & Robain, G. (1994). Evidence for further recruitment of group I fibres with high stimulus intensities when using surface electrodes in man. Electroencephalography and Clinical Neurophysiology, 93, 353–7CrossRefGoogle Scholar
Hagbarth, K.-E. & Eklund, G. (1966). Motor effects of vibratory muscle stimuli in man. In Muscular Afferents and Motor Control, ed. Granit, R., pp. 177–86. Stockholm: Almqvist & WiksellGoogle Scholar
Hongo, T., Jankowska, E. & Lundberg, A. (1972). The rubrospinal tract. III. Effects on primary afferent terminals. Experimental Brain Research, 15, 39–53CrossRefGoogle Scholar
Huang, Y. Z., Edwards, M. J., Bhatia, K. P. & Rothwell, J. C. (2004). One-Hz repetitive transcranial magnetic stimulation of the premotor cortex alters reciprocal inhibition in DYT1 dystonia. Movement Disorders, 19, 54–9CrossRefGoogle ScholarPubMed
Hultborn, H., Meunier, S., Morin, C. & Pierrot-Deseilligny, E. (1987a). Assessing changes in presynaptic inhibition of Ia fibres: a study in man and the cat. Journal of Physiology (London), 389, 729–56CrossRefGoogle Scholar
Hultborn, H., Meunier, S., Pierrot-Deseilligny, E. & Shindo, M. (1987b). Changes in presynaptic inhibition of Ia fibres at the onset of voluntary contraction in man. Journal of Physiology (London), 389, 757–72CrossRefGoogle Scholar
Hultborn, H., Illert, M., Nielsen, J., Paul, A., Ballegaard, M. & Wiese, H. (1996). On the mechanism of the post-activation depression of the H-reflex in human subjects. Experimental Brain Research, 108, 450–62CrossRefGoogle ScholarPubMed
Iles, J. F. (1996). Evidence for cutaneous and corticospinal modulation of presynaptic inhibition of Ia afferents from the human lower limb. Journal of Physiology (London), 491, 197–207CrossRefGoogle ScholarPubMed
Iles, J. F. & Pisini, J. V. (1992). Vestibular-evoked postural reactions in man and modulation of transmission in spinal reflex pathways. Journal of Physiology (London), 455, 407–24CrossRefGoogle ScholarPubMed
Iles, J. F. & Roberts, R. C. (1986). Presynaptic inhibition of monosynaptic reflexes in the lower limbs of subjects with upper motoneurone disease. Journal of Neurology, Neurosurgery and Psychiatry, 49, 937–44CrossRefGoogle Scholar
Iles, J. F. & Roberts, R. C. (1987). Inhibition of monosynaptic reflexes in the human lower limb. Journal of Physiology (London), 385, 69–87CrossRefGoogle ScholarPubMed
Katz, R., Morin, C., Pierrot-Deseilligny, E. & Hibino, R. (1977). Conditioning of H-reflex by a preceding subthreshold tendon reflex stimulus. Journal of Neurology, Neurosurgery and Psychiatry, 40, 575–80CrossRefGoogle ScholarPubMed
Katz, R., Meunier, S. & Pierrot-Deseilligny, E. (1988). Changes in presynaptic inhibition of Ia fibres in man while standing. Brain, 111, 417–37CrossRefGoogle ScholarPubMed
Koelman, J. H. T. M., Bour, L. J., Hilgevoord, A. A. J., Bruggen, G. J. & Ongerboer de Visser, B. W. (1993). Soleus H-reflex tests and clinical signs of the upper motor neuron syndrome. Journal of Neurology, Neurosurgery and Psychiatry, 56, 776–81CrossRefGoogle ScholarPubMed
Lelli, S., Panizza, M. & Hallett, M. (1991). Spinal inhibitory mechanisms in Parkinson's disease. Neurology, 41, 553–6CrossRefGoogle ScholarPubMed
Lev-Tov, A. & Pinco, M. (1992). In vitro studies of prolonged depression in the neonatal rat spinal cord. Journal of Physiology (London), 447, 149–69CrossRefGoogle ScholarPubMed
Llewellyn, M., Yang, J. F. & Prochazka, A. (1990). Human H-reflexes are smaller in difficult beam walking than in normal treadmill walking. Experimental Brain Research, 83, 22–8CrossRefGoogle ScholarPubMed
Lorenzano, C., Priori, A., Currà, A., Gilio, F., Manfredi, M. & Berardelli, A. (2000). Impaired electromyogram inhibition elicited by tendon stimulation in dystonia. Neurology, 55, 1789–93CrossRefGoogle ScholarPubMed
Lund, S., Lundberg, A. & Vyklický, L. (1965). Inhibitory action from the flexor reflex afferents on transmission to Ia afferents. Acta Physiologica Scandinavica, 64, 345–55CrossRefGoogle ScholarPubMed
Lundberg, A. (1998). Introduction. In Presynaptic Inhibition and Neural Control, ed. Rudomin, P., Romo, R. & Mendell, L., pp. 3–10. New York: Oxford University PressGoogle Scholar
Lundberg, A. & Vyklický, L. (1963). Inhibitory interaction between spinal reflexes to primary afferents. Experientia, 19, 247–8CrossRefGoogle Scholar
Marchand-Pauvert, V., Nicolas, G. & Pierrot-Deseilligny, E. (2000). Monosynaptic Ia projections from intrinsic hand muscles to forearm motoneurones in humans. Journal of Physiology (London), 525, 241–52CrossRefGoogle ScholarPubMed
Marchand-Pauvert, V., Nicolas, G., Burke, D. & Pierrot-Deseilligny, E. (2002). Suppression of the H reflex by disynaptic autogenetic inhibitory pathways activated by the test volley. Journal of Physiology (London), 542, 963–76CrossRefGoogle Scholar
Matthews, P. B. C. (1972). Mammalian Muscle Spindles and their Central Action. London: ArnoldGoogle Scholar
Meunier, S. & Morin, C. (1989) Changes in presynaptic inhibition of Ia fibres to soleus motoneurones during voluntary dorsiflexion of the foot. Experimental Brain Research, 76, 510–18CrossRefGoogle Scholar
Meunier, S. & Pierrot-Deseilligny, E. (1989). Gating of the afferent volley of the monosynaptic stretch reflex during movement in man. Journal of Physiology (London), 419, 753–63CrossRefGoogle ScholarPubMed
Meunier, S. & Pierrot-Deseilligny, E. (1998). Cortical control of presynaptic inhibition of Ia afferents in humans. Experimental Brain Research, 119, 415–26CrossRefGoogle ScholarPubMed
Meunier, S., Pierrot-Deseilligny, E. & Simonetta, M. (1993). Pattern of monosynaptic heteronymous Ia connections in the human lower limb. Experimental Brain Research, 96, 533–44CrossRefGoogle ScholarPubMed
Meunier, S., Garnero, L., Ducorps, A.et al. (2001). Human brain mapping in dystonia reveals both endophenotypic traits and adaptive reorganization. Annals of Neurology, 50, 521–7CrossRefGoogle ScholarPubMed
Mizuno, Y., Tanaka, R. & Yanagisawa, N. (1971). Reciprocal group I inhibition of triceps surae motoneurones in man. Journal of Neurophysiology, 34, 1010–17CrossRefGoogle Scholar
Morin, C., Katz, R., Mazières, L. & Pierrot-Deseilligny, E. (1982). Comparison of soleus H reflex facilitation at the onset of soleus contractions produced voluntarily and during the stance phase of human gait. Neuroscience Letters, 33, 47–53CrossRefGoogle ScholarPubMed
Morin, C., Pierrot-Deseilligny, E. & Hultborn, H. (1984). Evidence for presynaptic inhibition of Ia fibres in man. Neuroscience Letters, 44, 137–42CrossRefGoogle ScholarPubMed
Morita, H., Shindo, M., Yanagawa, S., Yoshida, T., Momoi, H. & Yanagisawa, N. (1995). Progressive decrease in heteronymous monosynaptic Ia facilitation with human ageing. Experimental Brain Research, 104, 167–70CrossRefGoogle ScholarPubMed
Morita, H., Petersen, N., Christensen, L. O. D., Sinkjær, T. & Nielsen, J. (1998). Sensitivity of H-reflexes and stretch reflexes to presynaptic inhibition in humans. Journal of Neurophysiology, 80, 610–20CrossRefGoogle ScholarPubMed
Morita, H., Olivier, E., Baumgarten, J., Petersen, N. T., Christensen, L. O. D. & Nielsen, J. B. (2000a). Differential changes in corticospinal and Ia input to tibialis anterior and soleus motoneurones during voluntary contraction in man. Acta Physiologica Scandinavica, 84, 698–709Google Scholar
Morita, H., Shindo, M., Ikeda, S. & Yanagisawa, N. (2000b). Decrease in presynaptic inhibition on heteronymous monosynaptic Ia terminals in patients with Parkinson's disease. Movement Disorders, 15, 830–43.0.CO;2-E>CrossRefGoogle Scholar
Morita, H., Crone, C., Christenhuis, D., Petersen, N. T. & Nielsen, J. B. (2001). Modulation of presynaptic inhibition and disynaptic reciprocal Ia inhibition during voluntary movement in spasticity. Brain, 124, 826–37CrossRefGoogle ScholarPubMed
Nakashima, K., Rothwell, J. C., Day, B. L., Thompson, P. D., Shannon, K. & Marsden, C. D. (1989). Reciprocal inhibition between forearm muscles in patients with writer's cramp and other occupational cramps, symptomatic hemidystonia and hemiparesis due to stroke. Brain, 112, 681–97CrossRefGoogle Scholar
Nakashima, K., Rothwell, J. C., Day, B. L., Thompson, P. D. & Marsden, C. D. (1990). Cutaneous effects on presynaptic inhibition of flexor Ia afferents in the human forearm. Journal of Physiology (London), 426, 369–80CrossRefGoogle ScholarPubMed
Nakashima, K., Shimoyama, R., Yokoyama, Y. & Takahashi, K. (1994). Reciprocal inhibition between the forearm muscles in patients with Parkinson's disease. Electromyography and Clinical Neurophysiology, 34, 67–72Google ScholarPubMed
Nielsen, J. (1998). Co-Contraction of Antagonistic Muscles in Man, 18 pp. Copenhagen: Laegeforeningens ForlagGoogle ScholarPubMed
Nielsen, J. & Hultborn, H. (1993). Regulated properties of motoneurons and primary afferents: new aspects on possible spinal mechanisms underlying spasticity. In Spasticity: Mechanisms and Management, ed. Thilmann, A. F., Burke, D. J. & Rymer, W. Z., pp. 177–92. New York: Springer VerlagCrossRefGoogle Scholar
Nielsen, J. & Kagamihara, Y. (1993). The regulation of presynaptic inhibition during co-contraction of antagonistic muscles in man. Journal of Physiology (London), 464, 575–93CrossRefGoogle ScholarPubMed
Nielsen, J. & Petersen, N. (1994). Is presynaptic inhibition distributed to corticospinal fibres in man?Journal of Physiology (London), 477, 47–58CrossRefGoogle ScholarPubMed
Nielsen, J. & Sinkjær, T. (2002). Reflex excitation of muscles during human walking. In Sensorimotor Control of Movement and Posture, ed. Gandevia, S. C., Proske, U. & Stuart, D. G., pp. 369–75. New York: Plenum PublishersCrossRefGoogle Scholar
Nielsen, J., Sinkjær, T., Toft, E. & Kagamihara, Y. (1994). Segmental reflexes and ankle joint muscle stiffness during co-contraction of antagonistic muscles in man. Experimental Brain Research, 102, 350–8CrossRefGoogle ScholarPubMed
Nielsen, J., Petersen, N. & Crone, C. (1995). Changes in transmission across synapses of Ia afferents in spastic patients. Brain, 118, 995–1004CrossRefGoogle ScholarPubMed
Panizza, M. E., Hallett, M. & Cohen, L. G. (1987). Abnormality of reciprocal inhibition in patients with hand cramps. Annals of Neurology, 22, 146Google Scholar
Panizza, M. E., Lelli, S., Nilsson, J. & Hallett, M. (1990). H-reflex recovery curve and reciprocal inhibition of H-reflex in different kinds of dystonia. Neurology, 40, 824–8CrossRefGoogle ScholarPubMed
Pierrot-Deseilligny, E. (1990). Electrophysiological assessment of the spinal mechanisms underlying spasticity. In New Trends and Advanced Techniques in Clinical Neurophysiology, ed. Rossini, P. M. & Mauguière, F., pp. 364–73. Amsterdam: ElsevierGoogle Scholar
Pierrot-Deseilligny, E. (1997). Assessing changes in presynaptic inhibition of Ia afferents during movement in humans. Journal of Neuroscience Methods, 74, 189–99CrossRefGoogle ScholarPubMed
Pierrot-Deseilligny, E. & Bussel, B. (1973). A comparison of H reflex at the onset of a voluntary movement or a polysynaptic reflex. Brain Research, 60, 482–4CrossRefGoogle ScholarPubMed
Pierrot-Deseilligny, E., Morin, C., Bergego, C. & Tankov, N. (1981). Pattern of group I fibre projections from ankle flexor and extensor muscles in man. Experimental Brain Research, 42, 337–50Google Scholar
Priori, A., Berardelli, A., Inghilleri, M., Pedace, F., Giovannelli, M. & Manfredi, M. (1998). Electrical stimulation over muscle tendons in humans. Evidence favouring presynaptic inhibition of Ia fibres due to the activation of group III tendon afferents. Brain, 121, 373–80CrossRefGoogle ScholarPubMed
Roberts, R. C., Part, M. J., Farquhar, R. & Butchart, P. (1994). Presynaptic inhibition of soleus Ia afferent terminals in Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 57, 1488–491CrossRefGoogle ScholarPubMed
Rossi, A., Decchi, B. & Ginanneschi, F. (1999). Presynaptic excitability of group Ia fibres to muscle nociceptive stimulation in humans. Brain Research, 818, 12–22CrossRefGoogle ScholarPubMed
Rudomin, P. & Schmidt, R. F. (1999). Presynaptic inhibition in the vertebrate spinal cord revisited. Experimental Brain Research, 129, 1–37CrossRefGoogle ScholarPubMed
Rudomin, P., Jimenez, I., Solodkin, M. & Duenas, S. (1983). Sites of action of segmental and descending control of transmission on pathways mediating primary afferent depolarisation of Ia and Ib afferent fibres in cat spinal cord. Journal of Physiology (London), 50, 743–69Google Scholar
Rudomin, P., Jimenez, I. & Enriquez, M. (1991). Effects of stimulation of group I afferents from flexor muscles on heterosynaptic facilitation of monosynaptic reflexes produced by Ia and descending inputs: a test for presynaptic inhibition. Experimental Brain Research, 85, 93–102CrossRefGoogle Scholar
Rudomin, P., Jimenez, I. & Quevedo, J. (1998). Selectivity of the presynaptic control of synaptic effectiveness of group I afferents in the mammalian spinal cord. In Presynaptic Inhibition and Neural Control, ed. Rudomin, P., Romo, R. & Mendell, L., pp. 282–302. New York: Oxford University PressGoogle Scholar
Shindo, M., Yanagawa, S., Morita, H. & Hashimoto, T. (1994). Conditioning effect in single human motoneurones: a new method using the unitary H reflex. Journal of Physiology (London), 481, 469–77CrossRefGoogle ScholarPubMed
Simonsen, E. B. & Dyhre-Poulsen, P. (1999). Amplitude of the human soleus H reflex during walking and running. Journal of Physiology (London), 515, 929–39CrossRefGoogle ScholarPubMed
Sinkjær, T., Andersen, J. B. & Larsen, B. (1996). Soleus stretch reflex modulation during gait in man. Journal of Neurophysiology, 76, 1112–20CrossRefGoogle Scholar
Stein, R. B. (1995). Presynaptic inhibition in humans. Progress in Neurobiology, 47, 533–44CrossRefGoogle ScholarPubMed
Tsai, C. H., Chen, R. S. & Lu, C. S. (1997). Reciprocal inhibition in Parkinson's disease. Acta Neurologica Scandinavica, 95, 13–18CrossRefGoogle ScholarPubMed
Taylor, S., Ashby, P. & Verrier, M. (1984). Neurophysiological changes following traumatic spinal lesions in man. Journal of Neurology, Neurosurgery and Psychiatry, 47, 1102–8CrossRefGoogle ScholarPubMed
Vagg, R., Mogyoros, I., Kiernan, M. C. & Burke, D. (1998). Activity-dependent hyperpolarisation of human motor axons produced by natural activity. Journal of Physiology (London), 507, 919–25CrossRefGoogle Scholar
Valls-Solè, J., Alvarez, R. & Tolosa, E. S. (1994). Vibration-induced presynaptic inhibition of the soleus H reflex is temporarily reduced by cortical stimulation in human subjects. Neuroscience Letters, 170, 149–52CrossRefGoogle ScholarPubMed
Verschueren, S. M. P., Swinnen, S. P., Desloovere, K. & Duysens, J. (2003). Vibration-induced changes in electromyogram during human locomotion. Journal of Neurophysiology, 89, 1299–307CrossRefGoogle ScholarPubMed
Wood, S. A., Gregory, J. E. & Proske, U. (1996). The influence of muscle spindle discharge on the human H reflex and the monosynaptic reflex in the cat. Journal of Physiology (London), 497, 279–90CrossRefGoogle Scholar
Yang, J. F., Stein, R. B. & James, K. B. (1991). Contribution of peripheral afferents to the activation of the soleus muscle during walking in humans. Experimental Brain Research, 87, 679–87CrossRefGoogle ScholarPubMed
Zehr, E. P. & Stein, R. B. (1999). Interaction of the Jendrassik maneuver with segmental presynaptic inhibition. Experimental Brain Research, 124, 474–80CrossRefGoogle ScholarPubMed
Zengel, J. E., Reid, S. A., Sypert, W. & Munson, J. B. (1983). Presynaptic inhibition, excitatory post-synaptic potential amplitude, and motor-unit type in triceps surae motoneurons in the cat. Journal of Neurophysiology, 49, 922–31CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×