Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xm8r8 Total loading time: 0 Render date: 2024-07-03T09:39:49.094Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 September 2012

Erick J. Weinberg
Affiliation:
Columbia University, New York
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Classical Solutions in Quantum Field Theory
Solitons and Instantons in High Energy Physics
, pp. 312 - 323
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] R. F., Dashen, B., Hasslacher, and A., Neveu, “Nonperturbative methods and extended hadron models in field theory. 2. Two-dimensional models and extended hadrons”, Phys. Rev.D 10, 4130 (1974).Google Scholar
[2] A. M., Polyakov, “Particle spectrum in the quantum field theory”, JETP Lett. 20, 194 (1974).Google Scholar
[3] T. H. R., Skyrme, “A nonlinear theory of strong interactions”, Proc. Roy. Soc. Lond.A 247, 260 (1958).Google Scholar
[4] T. H. R., Skyrme, “Particle states of a quantized meson field”, Proc. Roy. Soc. Lond.A 262, 237 (1961).Google Scholar
[5] P. M., Morse and H., Feshbach, Methods of Theoretical Physics (New York: McGraw-Hill, 1953), p. 734.
[6] J., Goldstone and R., Jackiw, “Quantization of nonlinear waves”, Phys. Rev.D 11, 1486 (1975).Google Scholar
[7] J.-L., Gervais and B., Sakita, “Extended particles in quantum field theories”, Phys. Rev.D 11, 2943 (1975).Google Scholar
[8] J.-L., Gervais, A., Jevicki, and B., Sakita, “Perturbation expansion around extended particle states in quantum field theory”, Phys. Rev.D 12, 1038 (1975).Google Scholar
[9] C. G., Callan Jr., and D. J., Gross, “Quantum perturbation theory of solitons”, Nucl. Phys.B 93, 29 (1975).Google Scholar
[10] N. H., Christ and T. D., Lee, “Quantum expansion of soliton solutions”, Phys. Rev.D 12, 1606 (1975).Google Scholar
[11] E., Tomboulis, “Canonical quantization of nonlinear waves”, Phys. Rev.D 12, 1678 (1975).Google Scholar
[12] M., Creutz, “Quantum mechanics of extended objects in relativistic field theory”, Phys. Rev.D 12, 3126 (1975).Google Scholar
[13] R., Rajaraman and E. J., Weinberg, “Internal symmetry and the semiclassical method in quantum field theory”, Phys. Rev.D 11, 2950 (1975).Google Scholar
[14] R., Jackiw and C., Rebbi, “Solitons with fermion number 1/2”, Phys. Rev.D 13, 3398 (1976).Google Scholar
[15] R., Jackiw and J. R., Schrieffer, “Solitons with fermion number 1/2 in condensed matter and relativistic field theories”, Nucl. Phys.B 190, 253 (1981).Google Scholar
[16] R., Rajaraman, “Intersoliton forces in weak coupling quantum field theories”, Phys. Rev.D 15, 2866 (1977).Google Scholar
[17] N. S., Manton, “The force between 't Hooft–Polyakov monopoles”, Nucl. Phys.B 126, 525 (1977).Google Scholar
[18] N. S., Manton, “An effective Lagrangian for solitons”, Nucl. Phys.B 150, 397 (1979).Google Scholar
[19] J. K., Perring and T. H. R., Skyrme, “A model unified field equation”, Nucl. Phys. 31, 550 (1962).Google Scholar
[20] R. F., Dashen, B., Hasslacher, and A., Neveu, “Nonperturbative methods and extended hadron models in field theory. I. Semiclassical functional methods”, Phys. Rev.D 10, 4114 (1974).Google Scholar
[21] R. F., Dashen, B., Hasslacher, and A., Neveu, “The particle spectrum in model field theories from semiclassical functional integral techniques”, Phys. Rev.D 11, 3424 (1975).Google Scholar
[22] R., Easther, J. T., Giblin Jr, L., Hui, and E. A., Lim, “New mechanism for bubble nucleation: Classical transitions”, Phys. Rev.D 80, 123519 (2009).Google Scholar
[23] J. T., Giblin Jr, L., Hui, E. A., Lim, and I.-S., Yang, “How to run through walls: Dynamics of bubble and soliton collisions”, Phys. Rev.D 82, 045019 (2010).Google Scholar
[24] I. L., Bogolyubsky and V. G., Makhankov, “On the pulsed soliton lifetime in two classical relativistic theory models”, JETP Lett. 24, 12 (1976).Google Scholar
[25] M., Gleiser, “Pseudostable bubbles”, Phys. Rev.D 49, 2978 (1994).Google Scholar
[26] E. J., Copeland, M., Gleiser, and H.-R., Muller, “Oscillons: Resonant configurations during bubble collapse”, Phys. Rev.D 52, 1920 (1995).Google Scholar
[27] M., Gleiser and D., Sicilia, “General theory of oscillon dynamics”, Phys. Rev.D 80, 125037 (2009).Google Scholar
[28] M. A., Amin and D., Shirokoff, “Flat-top oscillons in an expanding universe”, Phys. Rev.D 81, 085045 (2010).Google Scholar
[29] M. P., Hertzberg, “Quantum radiation of oscillons”, Phys. Rev.D 82, 045022 (2010).Google Scholar
[30] A. B., Zamolodchikov and A. B., Zamolodchikov, “Relativistic factorized S-matrix in two dimensions having O(N) isotopic symmetry”, Nucl. Phys.B 133, 525 (1978).Google Scholar
[31] A. B., Zamolodchikov and A. B., Zamolodchikov, “Factorized S-matrices in two dimensions as the exact solutions of certain relativistic quantum field models”, Annals Phys. 120, 253 (1979).Google Scholar
[32] W. E., Thirring, “A soluble relativistic field theory?”, Annals Phys. 3, 91 (1958).Google Scholar
[33] S., Coleman, “The quantum sine-Gordon equation as the massive Thirring model”, Phys. Rev.D 11, 2088 (1975).Google Scholar
[34] S., Mandelstam, “Soliton operators for the quantized sine-Gordon equation”, Phys. Rev.D 11, 3026 (1975).Google Scholar
[35] G. H., Derrick, “Comments on nonlinear wave equations as models for elementary particles”, J. Math. Phys. 5, 1252 (1964).Google Scholar
[36] A. M., Polyakov and A. A., Belavin, “Metastable states of two-dimensional isotropic ferromagnets”, JETP Lett. 22, 245 (1975).Google Scholar
[37] H. B., Nielsen and P., Olesen, “Vortex line models for dual strings”, Nucl. Phys.B 61, 45 (1973).Google Scholar
[38] B., Plohr, “The behavior at infinity of isotropic vortices and monopoles”, J. Math. Phys. 22, 2184 (1981).Google Scholar
[39] L., Perivolaropoulos, “Asymptotics of Nielsen–Olesen vortices”, Phys. Rev.D 48, 5961 (1993).Google Scholar
[40] L., Jacobs and C., Rebbi, “Interaction energy of superconducting vortices”, Phys. Rev.B 19, 4486 (1979).Google Scholar
[41] E. J., Weinberg, “Multivortex solutions of the Ginzburg–Landau equations”, Phys. Rev.D 19, 3008 (1979).Google Scholar
[42] C. H., Taubes, “Arbitrary N-vortex solutions to the first order Landau–Ginzburg equations”, Commun. Math. Phys. 72, 277 (1980).Google Scholar
[43] R., Jackiw and P., Rossi, “Zero modes of the vortex–fermion system”, Nucl. Phys.B 190, 681 (1981).Google Scholar
[44] E. J., Weinberg, “Index calculations for the fermion–vortex system”, Phys. Rev.D 24, 2669 (1981).Google Scholar
[45] E., Witten, “Superconducting strings”, Nucl. Phys.B 249, 557 (1985).Google Scholar
[46] C. G., Callan Jr., and J. A., Harvey, “Anomalies and fermion zero modes on strings and domain walls”, Nucl. Phys.B 250, 427 (1985).Google Scholar
[47] G., Lazarides and Q., Shafi, “Superconducting strings in axion models”, Phys. Lett. 151B, 123 (1985).Google Scholar
[48] A., Vilenkin and E. P. S., Shellard, Cosmic Strings and other Topological Defects (Cambridge University Press, 1994).
[49] N. D., Mermin, “The topological theory of defects in ordered media”, Rev. Mod. Phys. 51, 591 (1979).Google Scholar
[50] S., Coleman, “Classical lumps and their quantum descendants.” In Aspects of Symmetry, S., Coleman (Cambridge University Press, 1985).
[51] T., Vachaspati and A., Achucarro, “Semilocal cosmic strings”, Phys. Rev.D 44, 3067 (1991).Google Scholar
[52] M., Hindmarsh, “Existence and stability of semilocal strings”, Phys. Rev. Lett. 68, 1263 (1992).Google Scholar
[53] M., Hindmarsh, “Semilocal topological defects”, Nucl. Phys.B 392, 461 (1993).Google Scholar
[54] A., Achucarro, K., Kuijken, L., Perivolaropoulos, and T., Vachaspati, “Dynamical simulations of semilocal strings”, Nucl. Phys.B 388, 435 (1992).Google Scholar
[55] T., Vachaspati, “Vortex solutions in the Weinberg–Salam model”, Phys. Rev. Lett. 68, 1977 (1992).Google Scholar
[56] T., Vachaspati, “Electroweak strings”, Nucl. Phys.B 397, 648 (1993).Google Scholar
[57] M., James, L., Perivolaropoulos, and T., Vachaspati, “Detailed stability analysis of electroweak strings”, Nucl. Phys.B 395, 534 (1993).Google Scholar
[58] A. S., Schwarz, “Field theories with no local conservation of the electric charge”, Nucl. Phys.B 208, 141 (1982).Google Scholar
[59] M. G., Alford, K., Benson, S., Coleman, J., March-Russell, and F., Wilczek, “The interactions and excitations of non-Abelian vortices”, Phys. Rev. Lett. 64, 1632 (1990).Google Scholar
[60] M. G., Alford, K., Benson, S., Coleman, J., March-Russell, and F., Wilczek, “Zero modes of non-Abelian vortices”, Nucl. Phys.B 349, 414 (1991).Google Scholar
[61] M., Bucher, H.-K., Lo, and J., Preskill, “Topological approach to Alice electrodynamics”, Nucl. Phys.B 386, 3 (1992).Google Scholar
[62] M., Bucher, K.-M., Lee, and J., Preskill, “On detecting discrete Cheshire charge”, Nucl. Phys.B 386, 27 (1992).Google Scholar
[63] J., Preskill and L. M., Krauss, “Local discrete symmetry and quantum mechanical hair”, Nucl. Phys.B 341, 50 (1990).Google Scholar
[64] E., Cartan, “La topologie des espaces représentatifs des groupes de Lie”, Œuvres complètes I, 2 (Paris: Éditions du CNRS, 1984), p. 1307.
[65] G., 't Hooft, “Magnetic monopoles in unified gauge theories”, Nucl. Phys.B 79, 276 (1974).Google Scholar
[66] P. A. M., Dirac, “Quantized singularities in the electromagnetic field”, Proc. Roy. Soc. Lond.A 133, 60 (1931).Google Scholar
[67] D., Zwanziger, “Quantum field theory of particles with both electric and magnetic charges”, Phys. Rev. 176, 1489 (1968).Google Scholar
[68] J. S., Schwinger, “Sources and magnetic charge”, Phys. Rev. 173, 1536 (1968).Google Scholar
[69] E., Witten, “Dyons of charge еθ/2π”, Phys. Lett. 86B, 283 (1979).Google Scholar
[70] T. T., Wu and C. N., Yang, “Concept of nonintegrable phase factors and global formulation of gauge fields”, Phys. Rev.D 12, 3845 (1975).Google Scholar
[71] J. J., Thomson, “On momentum in the electric field”, Philos. Mag. 8, 331 (1904).Google Scholar
[72] I., Tamm, “Die verallgemeinerten Kugelfunktionen und die Wellenfunktionen eines Elektrons im Felde eines Magnetpoles”, Z. Phys. 71, 141 (1931).Google Scholar
[73] T. T., Wu and C. N., Yang, “Dirac monopole without strings: Monopole harmonics”, Nucl. Phys.B 107, 365 (1976).Google Scholar
[74] H. A., Olsen, P., Osland, and T. T., Wu, “On the existence of bound states for a massive spin-one particle and a magnetic monopole”, Phys. Rev.D 42, 665 (1990).Google Scholar
[75] E. J., Weinberg, “Monopole vector spherical harmonics”, Phys. Rev.D 49, 1086 (1994).Google Scholar
[76] M. I., Monastyrsky and A. M., Perelomov, “Concerning the existence of monopoles in gauge field theories”, JETP Lett. 21, 43 (1975).Google Scholar
[77] H., Georgi and S. L., Glashow, “Unified weak and electromagnetic interactions without neutral currents”, Phys. Rev. Lett. 28, 1494 (1972).Google Scholar
[78] T. W., Kirkman and C. K., Zachos, “Asymptotic analysis of the monopole structure”, Phys. Rev.D 24, 999 (1981).Google Scholar
[79] K., Lee and E. J., Weinberg, “Nontopological magnetic monopoles and new magnetically charged black holes”, Phys. Rev. Lett. 73, 1203 (1994).Google Scholar
[80] E. J., Weinberg and A. H., Guth, “Nonexistence of spherically symmetric monopoles with multiple magnetic charge”, Phys. Rev.D 14, 1660 (1976).Google Scholar
[81] E. B., Bogomolny, “Stability of classical solutions”, Sov. J. Nucl. Phys. 24, 449 (1976).Google Scholar
[82] M. K., Prasad and C. M., Sommerfield, “An exact classical solution for the 't Hooft monopole and the Julia–Zee dyon”, Phys. Rev. Lett. 35, 760 (1975).Google Scholar
[83] E. J., Weinberg, “Parameter counting for multimonopole solutions”, Phys. Rev.D 20 (1979) 936.Google Scholar
[84] A., Jaffe and C., Taubes, Vortices and Monopoles (Boston: Birkhäuser, 1980).
[85] N. H., Christ, A. H., Guth, and E. J., Weinberg, “Canonical formalism for gauge theories with application to monopole solutions”, Nucl. Phys.B 114, 61 (1976).Google Scholar
[86] B., Julia and A., Zee, “Poles with both magnetic and electric charges in non-Abelian gauge theory”, Phys. Rev.D 11, 2227 (1975).Google Scholar
[87] R., Jackiw and C., Rebbi, “Spin from isospin in a gauge theory”, Phys. Rev. Lett. 36, 1116 (1976).Google Scholar
[88] P., Hasenfratz and G., 't Hooft, “Fermion–boson puzzle in a gauge theory”, Phys. Rev. Lett. 36, 1119 (1976).Google Scholar
[89] A. S., Goldhaber, “Spin and statistics connection for charge–monopole composites”, Phys. Rev. Lett. 36, 1122 (1976).Google Scholar
[90] C., Callias, “Index theorems on open spaces”, Commun. Math. Phys. 62, 213 (1978).Google Scholar
[91] V. A., Rubakov, “Adler–Bell–Jackiw anomaly and fermion number breaking in the presence of a magnetic monopole”, Nucl. Phys.B 203, 311 (1982).Google Scholar
[92] C. G., Callan Jr., “Disappearing dyons”, Phys. Rev.D 25, 2141 (1982).Google Scholar
[93] C. G., Callan Jr., “Dyon–fermion dynamics”, Phys. Rev.D 26, 2058 (1982).Google Scholar
[94] A. S., Blaer, N. H., Christ, and J.-F., Tang, “Anomalous fermion production by a Julia–Zee dyon”, Phys. Rev. Lett. 47, 1364 (1981).Google Scholar
[95] A. S., Blaer, N. H., Christ, and J.-F., Tang, “Fermion emission from a Julia–Zee dyon”, Phys. Rev.D 25, 2128 (1982).Google Scholar
[96] P., Klimo and J. S., Dowker, “Dirac monopoles for general gauge theories”, Int. J. Theor. Phys. 8, 409 (1973).Google Scholar
[97] F., Englert and P., Windey, “Quantization condition for 't Hooft monopoles in compact simple Lie groups”, Phys. Rev.D 14, 2728 (1976).Google Scholar
[98] P., Goddard, J., Nuyts, and D. I., Olive, “Gauge theories and magnetic charge”, Nucl. Phys.B 125, 1 (1977).Google Scholar
[99] E., Lubkin, “Geometric definition of gauge invariance”, Annals Phys. 23, 233 (1963).Google Scholar
[100] R. A., Brandt and F., Neri, “Stability analysis for singular non-Abelian magnetic monopoles”, Nucl. Phys.B 161, 253 (1979).Google Scholar
[101] S., Coleman, “The magnetic monopole fifty years later.” In The Unity of Fundamental Interactions, ed. A., Zichichi (New York: Plenum, 1983).
[102] A., Sinha, “SU(3) magnetic monopoles”, Phys. Rev.D 14, 2016 (1976).Google Scholar
[103] Yu. S., TyupkinV. A., Fateev, and A. S., Shvarts, “Existence of heavy particles in gauge field theories”, JETP Lett. 21, 41 (1975).Google Scholar
[104] E. J., Weinberg, D., London, and J. L., Rosner, “Magnetic monopoles with Zn charges”, Nucl. Phys.B 236, 90 (1984).Google Scholar
[105] C. P., Dokos and T. N., Tomaras, “Monopoles and dyons in the SU(5) model”, Phys. Rev.D 21, 2940 (1980).Google Scholar
[106] C. L., Gardner and J. A., Harvey, “Stable grand unified monopoles with multiple Dirac charge”, Phys. Rev. Lett. 52, 879 (1984).Google Scholar
[107] G., Lazarides and Q., Shafi, “The fate of primordial magnetic monopoles”, Phys. Lett. 94B, 149 (1980).Google Scholar
[108] A., Abouelsaood, “Are there chromodyons?”, Nucl. Phys.B 226, 309 (1983).Google Scholar
[109] P. C., Nelson and A., Manohar, “Global color is not always defined”, Phys. Rev. Lett. 50, 943 (1983).Google Scholar
[110] A. P., Balachandran, G., Marmo, N., Mukunda, J. S., Nilsson, E. C. G., Sudarshan, and F., Zaccaria, “Monopole topology and the problem of color”, Phys. Rev. Lett. 50, 1553 (1983).Google Scholar
[111] A. P., Balachandran, G., Marmo, N., Mukunda, J. S., Nilsson, E. C. G., Sudarshan, and F., Zaccaria, “Nonabelian monopoles break color. I. Classical mechanics”, Phys. Rev.D 29, 2919 (1984).Google Scholar
[112] A. P., Balachandran, G., Marmo, N., Mukunda, J. S., Nilsson, E. C. G., Sudarshan, and F., Zaccaria, “Nonabelian monopoles break color. II. Field theory and quantum mechanics”, Phys. Rev.D 29, 2936 (1984).Google Scholar
[113] P. A., Horvathy and J. H., Rawnsley, “Internal symmetries of nonabelian gauge field configurations”, Phys. Rev.D 32, 968 (1985).Google Scholar
[114] P. A., Horvathy and J. H., Rawnsley, “The problem of ‘global color’ in gauge theories”, J. Math. Phys. 27, 982 (1986).Google Scholar
[115] H., Guo and E. J., Weinberg, “Instabilities of chromodyons in SO(5) gauge theory”, Phys. Rev.D 77, 105026 (2008).Google Scholar
[116] V. A., Rubakov, “Superheavy magnetic monopoles and proton decay”, JETP Lett. 33, 644 (1981).Google Scholar
[117] C. G., Callan Jr., “Monopole catalysis of baryon decay”, Nucl. Phys.B 212, 391 (1983).Google Scholar
[118] F., Wilczek, “Remarks on dyons”, Phys. Rev. Lett. 48, 1146 (1982).Google Scholar
[119] S., Dawson and A. N., Schellekens, “Monopole catalysis of proton decay in SO(10) grand unified models”, Phys. Rev.D 27, 2119 (1983).Google Scholar
[120] A. H., Guth, “The inflationary universe: a possible solution to the horizon and flatness problems”, Phys. Rev.D 23, 347 (1981).Google Scholar
[121] D. A., Kirzhnits and A. D., Linde, “Macroscopic consequences of the Weinberg model”, Phys. Lett. 42B, 471 (1972).Google Scholar
[122] L. A., Dolan and R., Jackiw, “Symmetry behavior at finite temperature”, Phys. Rev.D 9, 3320 (1974).Google Scholar
[123] S., Weinberg, “Gauge and global symmetries at high temperature”, Phys. Rev.D 9, 3357 (1974).Google Scholar
[124] D. A., Kirzhnits and A. D., Linde, “Symmetry behavior in gauge theories”, Annals Phys. 101, 195 (1976).Google Scholar
[125] S., Coleman and E. J., Weinberg, “Radiative corrections as the origin of spontaneous symmetry breaking”, Phys. Rev.D 7, 1888 (1973).Google Scholar
[126] A. H., Guth and E. J., Weinberg, “Could the universe have recovered from a slow first-order phase transition?”, Nucl. Phys.B 212, 321 (1983).Google Scholar
[127] A. H., Guth and E. J., Weinberg, “Cosmological consequences of a first-order phase transition in the SU(5) grand unified model”, Phys. Rev.D 23, 876 (1981).Google Scholar
[128] T. W. B., Kibble, “Topology of cosmic domains and strings”, J. Phys.A 9, 1387 (1976).Google Scholar
[129] M. B., Einhorn, D. L., Stein, and D., Toussaint, “Are grand unified theories compatible with standard cosmology?”, Phys. Rev.D 21, 3295 (1980).Google Scholar
[130] A., Vilenkin, “Gravitational field of vacuum domain walls and strings”, Phys. Rev.D 23, 852 (1981).Google Scholar
[131] A., Vilenkin, “Gravitational field of vacuum domain walls”, Phys. Lett. 133B, 177 (1983).Google Scholar
[132] J., Ipser and P., Sikivie, “Gravitationally repulsive domain wall”, Phys. Rev.D 30, 712 (1984).Google Scholar
[133] Ya. B., Zeldovich, I. Yu., Kobzarev, and L. B., Okun, “Cosmological consequences of a spontaneous breakdown of a discrete symmetry”, JETP 40, 1 (1975).Google Scholar
[134] T., Vachaspati, Kinks and Domain Walls: An Introduction to Classical and Quantum Solitons (Cambridge University Press, 2006).
[135] N., Bevis, M., Hindmarsh, M., Kunz, and J., Urrestilla, “Fitting CMB data with cosmic strings and inflation”, Phys. Rev. Lett. 100, 021301 (2008).Google Scholar
[136] R., Battye and A., Moss, “Updated constraints on the cosmic string tension”, Phys. Rev.D 82, 023521 (2010).Google Scholar
[137] T. W. B., Kibble, “Cosmic strings reborn?”, [astro-ph/0410073].
[138] J., Polchinski, “Introduction to cosmic F- and D-strings”, [hep-th/0412244].
[139] Ya. B., Zeldovich and M. Y., Khlopov, “On the concentration of relic magnetic monopoles in the universe”, Phys. Lett. 79B, 239 (1978).Google Scholar
[140] J., Preskill, “Cosmological production of superheavy magnetic monopoles”, Phys. Rev. Lett. 43, 1365 (1979).Google Scholar
[141] E. N., Parker, “The origin of magnetic fields”, Astrophys. J. 160, 383 (1970).Google Scholar
[142] M. S., Turner, E. N., Parker, and T. J., Bogdan, “Magnetic monopoles and the survival of galactic magnetic fields”, Phys. Rev.D 26, 1296 (1982).Google Scholar
[143] F. C., Adams, M., Fatuzzo, K., Freese, G., Tarle, R., Watkins, and M. S., Turner, “Extension of the Parker bound on the flux of magnetic monopoles”, Phys. Rev. Lett. 70, 2511 (1993).Google Scholar
[144] Y., Rephaeli and M. S., Turner, “The magnetic monopole flux and the survival of intracluster magnetic fields”, Phys. Lett. 121B, 115 (1983).Google Scholar
[145] M., Ambrosio et al. [MACRO Collaboration], “Final results of magnetic monopole searches with the MACRO experiment”, Eur. Phys. J.C 25, 511 (2002).Google Scholar
[146] E. W., Kolb, S. A., Colgate, and J. A., Harvey, “Monopole catalysis of nucleon decay in neutron stars”, Phys. Rev. Lett. 49, 1373 (1982).Google Scholar
[147] S., Dimopoulos, J., Preskill, and F., Wilczek, “Catalyzed nucleon decay in neutron stars”, Phys. Lett. 119B, 320 (1982).Google Scholar
[148] K., Freese, M. S., Turner, and D. N., Schramm, “Monopole catalysis of nucleon decay in old pulsars”, Phys. Rev. Lett. 51, 1625 (1983).Google Scholar
[149] E. W., Kolb and M. S., Turner, “Limits from the soft X-ray background on the temperature of old neutron stars and on the flux of superheavy magnetic monopoles”, Astrophys. J. 286, 702 (1984).Google Scholar
[150] J. A., Harvey, “Monopoles in neutron stars”, Nucl. Phys.B 236, 255 (1984).Google Scholar
[151] K., Freese and E., Krasteva, “Bound on the flux of magnetic monopoles from catalysis of nucleon decay in white dwarfs”, Phys. Rev.D 59, 063007 (1999).Google Scholar
[152] J., Arafune, M., Fukugita, and S., Yanagita, “Monopole abundance in the Solar System and the intrinsic heat in the Jovian planets”, Phys. Rev.D 32, 2586 (1985).Google Scholar
[153] P., Langacker and S.-Y., Pi, “Magnetic monopoles in grand unified theories”, Phys. Rev. Lett. 45, 1 (1980).Google Scholar
[154] T. W. B., Kibble and E. J., Weinberg, “When does causality constrain the monopole abundance?”, Phys. Rev.D 43, 3188 (1991).Google Scholar
[155] E. J., Weinberg and P., Yi, “Magnetic monopole dynamics, supersymmetry, and duality”, Phys. Rept. 438, 65 (2007).Google Scholar
[156] S., Coleman, S. J., Parke, A., Neveu, and C. M., Sommerfield, “Can one dent a dyon?”, Phys. Rev.D 15, 544 (1977).Google Scholar
[157] C. H., Taubes, “The existence of a nonminimal solution to the SU(2) Yang–Mills–Higgs equations on R3.PartI”, Commun. Math. Phys. 86, 257 (1982).Google Scholar
[158] C. H., Taubes, “The existence of a nonminimal solution to the SU(2) Yang–Mills–Higgs equations on R3.PartII”, Commun. Math. Phys. 86, 299 (1982).Google Scholar
[159] J., Hong, Y., Kim, and P. Y., Pac, “On the multivortex solutions of the Abelian Chern–Simons–Higgs theory”, Phys. Rev. Lett. 64, 2230 (1990).Google Scholar
[160] R., Jackiw and E. J., Weinberg, “Self-dual Chern–Simons vortices”, Phys. Rev. Lett. 64, 2234 (1990).Google Scholar
[161] R., Jackiw, K., Lee, and E. J., Weinberg, “Self-dual Chern–Simons solitons”, Phys. Rev.D 42, 3488 (1990).Google Scholar
[162] C., Lee, K., Lee, and H., Min, “Self-dual Maxwell–Chern–Simons solitons”, Phys. Lett.B 252, 79 (1990).Google Scholar
[163] L., Brink, J. H., Schwarz, and J., Scherk, “Supersymmetric Yang–Mills theories”, Nucl. Phys.B 121, 77 (1977).Google Scholar
[164] E., Witten and D. I., Olive, “Supersymmetry algebras that include topological charges”, Phys. Lett. 78B, 97 (1978).Google Scholar
[165] C. M., Miller, K., Schalm, and E. J., Weinberg, “Nonextremal black holes are BPS”, Phys. Rev.D 76, 044001 (2007).Google Scholar
[166] H., Nastase, M. A., Stephanov, P., van Nieuwenhuizen, and A., Rebhan, “Topological boundary conditions, the BPS bound, and elimination of ambiguities in the quantum mass of solitons”, Nucl. Phys.B 542, 471 (1999).Google Scholar
[167] N., Graham and R. L., Jaffe, “Energy, central charge, and the BPS bound for (1+1)-dimensional supersymmetric solitons”, Nucl. Phys.B 544, 432 (1999).Google Scholar
[168] M. A., Shifman, A. I., Vainshtein, and M. B., Voloshin, “Anomaly and quantum corrections to solitons in two-dimensional theories with minimal supersymmetry”, Phys. Rev.D 59, 045016 (1999).Google Scholar
[169] O., Bergman, “Three-pronged strings and 1/4 BPS states in N = 4 super-Yang–Mills theory”, Nucl. Phys.B 525, 104 (1998).Google Scholar
[170] O., Bergman and B., Kol, “String webs and 1/4 BPS monopoles”, Nucl. Phys.B 536, 149 (1998).Google Scholar
[171] K., Lee and P., Yi, “Dyons in N = 4 supersymmetric theories and three-pronged strings”, Phys. Rev.D 58, 066005 (1998).Google Scholar
[172] W., Nahm, “The construction of all self-dual multimonopoles by the ADHM method.” In Monopoles in Quantum Field Theory, eds. N.S., Craigie et al. (Singapore: World Scientific, 1982).
[173] W., Nahm, “Multimonopoles in the ADHM construction.” In Gauge Theories and Lepton Hadron Interactions, eds. Z., Horvath et al. (Budapest: Central Research Institute for Physics, 1982).
[174] W., Nahm, “All self-dual multimonopoles for arbitrary gauge groups.” In Structural Elements in Particle Physics and Statistical Mechanics, eds. J., Honerkamp et al. (New York: Plenum, 1983).
[175] W., Nahm, “Self-dual monopoles and calorons.” In Group Theoretical Methods in Physics, eds. G., Denardo et al. (Berlin: Springer-Verlag, 1984).
[176] N., Manton and P., Sutcliffe, Topological Solitons (Cambridge University Press, 2004).
[177] S. A., Brown, H., Panagopoulos, and M. K., Prasad, “Two separated SU(2) Yang–Mills–Higgs monopoles in the ADHMN Construction”, Phys. Rev.D 26, 854 (1982).Google Scholar
[178] P., Houston and L., O'Raifeartaigh, “On the charge distribution of static axial and mirror symmetric monopole systems”, Phys. Lett. 94B, 153 (1980).Google Scholar
[179] R. S., Ward, “A Yang–Mills–Higgs monopole of charge 2”, Commun. Math. Phys. 79, 317 (1981).Google Scholar
[180] P., Forgacs, Z., Horvath, and L., Palla, “Exact multimonopole solutions in the Bogomolny–Prasad–Sommerfield limit”, Phys. Lett. 99B, 232 (1981)Google Scholar
[180a] P., Forgacs, Z., Horvath, and L., Palla, “Exact multimonopole solutions in the Bogomolny–Prasad–Sommerfield limit”, Phys. Lett. 101, 457 (1981)].Google Scholar
[181] M. K., Prasad and P., Rossi, “Construction of exact Yang–Mills–Higgs multimonopoles of arbitrary charge”, Phys. Rev. Lett. 46, 806 (1981).Google Scholar
[182] C., Rebbi and P., Rossi, “Multimonopole solutions in the Prasad–Sommerfield limit”, Phys. Rev.D 22, 2010 (1980).Google Scholar
[183] N. J., Hitchin, N. S., Manton, and M. K., Murray, “Symmetric monopoles”, Nonlinearity 8, 661 (1995).Google Scholar
[184] C. J., Houghton and P. M., Sutcliffe, “Tetrahedral and cubic monopoles”, Commun. Math. Phys. 180, 343 (1996).Google Scholar
[185] C. J., Houghton and P. M., Sutcliffe, “Monopole scattering with a twist”, Nucl. Phys.B 464, 59 (1996).Google Scholar
[186] P. M., Sutcliffe, “Monopole zeros”, Phys. Lett.B 376, 103 (1996).Google Scholar
[187] C. J., Houghton and P. M., Sutcliffe, “Octahedral and dodecahedral monopoles”, Nonlinearity 9, 385 (1996).Google Scholar
[188] C. J., Houghton, N. S., Manton, and P. M., Sutcliffe, “Rational maps, monopoles and skyrmions”, Nucl. Phys.B 510, 507 (1998).Google Scholar
[189] N. S., Manton, “A remark on the scattering of BPS monopoles”, Phys. Lett. 110B, 54 (1982).Google Scholar
[190] P. J., Ruback, “Vortex string motion in the Abelian Higgs model”, Nucl. Phys.B 296, 669 (1988).Google Scholar
[191] N. S., Manton and T. M., Samols, “Radiation from monopole scattering”, Phys. Lett.B 215, 559 (1988).Google Scholar
[192] D., Stuart, “The geodesic approximation for the Yang–Mills–Higgs equations”, Commun. Math. Phys. 166, 149 (1994).Google Scholar
[193] N. S., Manton, “Monopole interactions at long range”, Phys. Lett. 154B, 397 (1985).Google Scholar
[194] G. W., Gibbons and N. S., Manton, “The moduli space metric for well separated BPS monopoles”, Phys. Lett.B 356, 32 (1995).Google Scholar
[195] M. F., Atiyah and N. J., Hitchin, “Low-energy scattering of non-Abelian magnetic monopoles”, Phil. Trans. Roy. Soc. Lond.A 315, 459 (1985).Google Scholar
[196] M. F., Atiyah and N. J., Hitchin, “Low-energy scattering of non-Abelian monopoles”, Phys. Lett. 107A, 21 (1985).Google Scholar
[197] M. F., Atiyah and N. J., Hitchin, The Geometry and Dynamics of Magnetic Monopoles (Princeton University Press, 1988).
[198] G. W., Gibbons and N. S., Manton, “Classical and quantum dynamics of BPS monopoles”, Nucl. Phys.B 274, 183 (1986).Google Scholar
[199] E. J., Weinberg, “Fundamental monopoles and multimonopole solutions for arbitrary simple gauge groups”, Nucl. Phys.B 167, 500 (1980).Google Scholar
[200] E. J., Weinberg and P., Yi, “Explicit multimonopole solutions in SU(N) gauge theory”, Phys. Rev.D 58, 046001 (1998).Google Scholar
[201] S. A., Connell, “The dynamics of the SU(3) charge (1, 1) magnetic monopole”, University of South Australia preprint (1994).
[202] J. P., Gauntlett and D. A., Lowe, “Dyons and S-duality in N = 4 supersymmetric gauge theory”, Nucl. Phys.B 472, 194 (1996).Google Scholar
[203] K., Lee, E. J., Weinberg, and P., Yi, “Electromagnetic duality and SU(3) monopoles”, Phys. Lett.B 376, 97 (1996).Google Scholar
[204] K., Lee, E. J., Weinberg, and P., Yi, “The moduli space of many BPS monopoles for arbitrary gauge groups”, Phys. Rev.D 54, 1633 (1996).Google Scholar
[205] M. K., Murray, “A note on the (1, 1,…, 1) monopole metric”, J. Geom. Phys. 23, 31 (1997).Google Scholar
[206] G., Chalmers, “Multimonopole moduli spaces for SU(N) gauge group”, hep-th/9605182 (1996).
[207] C., Lu, “Two monopole systems and the formation of non-Abelian clouds”, Phys. Rev.D 58, 125010 (1998).Google Scholar
[208] E. J., Weinberg, “Fundamental monopoles in theories with arbitrary symmetry breaking”, Nucl. Phys.B 203, 445 (1982).Google Scholar
[209] K., Lee, E. J., Weinberg, and P., Yi, “Massive and massless monopoles with non-Abelian magnetic charges”, Phys. Rev.D 54, 6351 (1996).Google Scholar
[210] E. J., Weinberg, “A continuous family of magnetic monopole solutions”, Phys. Lett. 119B, 151 (1982).Google Scholar
[211] R. S., Ward, “Magnetic monopoles with gauge group SU(3) broken to U(2)”, Phys. Lett. 107B, 281 (1981).Google Scholar
[212] A. S., Dancer and R. A., Leese, “A numerical study of SU(3) charge-two monopoles with minimal symmetry breaking”, Phys. Lett.B 390, 252 (1997).Google Scholar
[213] A. S., Dancer, “Nahm data and SU(3) monopoles”, Nonlinearity 5, 1355 (1992).Google Scholar
[214] P., Irwin, “SU(3) monopoles and their fields”, Phys. Rev.D 56, 5200 (1997).Google Scholar
[215] C. J., Houghton and E. J., Weinberg, “Multicloud solutions with massless and massive monopoles”, Phys. Rev.D 66, 125002 (2002).Google Scholar
[216] A. S., Dancer, “Nahm's equations and hyper-Kähler geometry”, Commun. Math. Phys. 158, 545 (1993).Google Scholar
[217] A., Dancer and R., Leese, “Dynamics of SU(3) monopoles”, Proc. Roy. Soc. Lond.A 440, 421 (1993).Google Scholar
[218] X., Chen and E. J., Weinberg, “Scattering of massless and massive monopoles in an SU(N)theory”, Phys. Rev.D 64, 065010 (2001).Google Scholar
[219] C. M., Miller and E. J., Weinberg, “Interactions of massless monopole clouds”, Phys. Rev.D 80, 065025 (2009).Google Scholar
[220] X., Chen, H., Guo, and E. J., Weinberg, “Massless monopoles and the moduli space approximation”, Phys. Rev.D 64, 125004 (2001).Google Scholar
[221] C., Montonen and D. I., Olive, “Magnetic monopoles as gauge particles?”, Phys. Lett. 72B, 117 (1977).Google Scholar
[222] H., Osborn, “Topological charges for N = 4 supersymmetric gauge theories and monopoles of spin 1”, Phys. Lett. 83B, 321 (1979).Google Scholar
[223] A., Sen, “Dyon–monopole bound states, self-dual harmonic forms on the multimonopole moduli space, and SL(2,Z) invariance in string theory”, Phys. Lett.B 329, 217 (1994).Google Scholar
[224] T., Banks, C. M., Bender, and T. T., Wu, “Coupled anharmonic oscillators. I. Equal-mass case”, Phys. Rev.D 8, 3346 (1973).Google Scholar
[225] T., Banks and C. M., Bender, “Coupled anharmonic oscillators. II. Unequal-mass case”, Phys. Rev.D 8, 3366 (1973).Google Scholar
[226] S., Coleman, “Fate of the false vacuum: Semiclassical theory”, Phys. Rev.D 15, 2929 (1977).Google Scholar
[227] A. A., Belavin, A. M., Polyakov, A. S., Shvarts, and Y. S., Tyupkin, “Pseudoparticle solutions of the Yang–Mills equations”, Phys. Lett. 59B, 85 (1975).Google Scholar
[228] S., Coleman, “The uses of instantons.” In Aspects of Symmetry, S., Coleman (Cambridge University Press, 1985).
[229] J. S., Langer, “Theory of the condensation point”, Annals Phys. 41, 108 (1967).Google Scholar
[230] C. G., Callan Jr., and S., Coleman, “Fate of the false vacuum. II. First quantum corrections”, Phys. Rev.D 16, 1762 (1977).Google Scholar
[231] S., Coleman, “Quantum tunneling and negative eigenvalues”, Nucl. Phys.B 298, 178 (1988).Google Scholar
[232] R. P., Feynman and A. R., Hibbs, Quantum Mechanics and Path Integrals (New York: McGraw-Hill, 1965).
[233] R., Jackiw and C., Rebbi, “Vacuum periodicity in a Yang–Mills quantum theory”, Phys. Rev. Lett. 37, 172 (1976).Google Scholar
[234] C. G., Callan Jr., R. F., Dashen, and D. J., Gross, “The structure of the gauge theory vacuum”, Phys. Lett. 63B, 334 (1976).Google Scholar
[235] C. W., Bernard and E. J., Weinberg, “The interpretation of pseudoparticles in physical gauges”, Phys. Rev.D 15, 3656 (1977).Google Scholar
[236] V. N., Gribov, “Quantization of non-Abelian gauge theories”, Nucl. Phys.B 139, 1 (1978).Google Scholar
[237] R., Jackiw and C., Rebbi, “Conformal properties of a Yang–Mills pseudoparticle”, Phys. Rev.D 14, 517 (1976).Google Scholar
[238] G., 't Hooft, “Computation of the quantum effects due to a four-dimensional pseudoparticle”, Phys. Rev.D 14, 3432 (1976).Google Scholar
[239] G., 't Hooft, unpublished
[240] R., Jackiw, C., Nohl, and C., Rebbi, “Conformal properties of pseudoparticle configurations”, Phys. Rev.D 15, 1642 (1977).Google Scholar
[241] A. S., Schwarz, “On regular solutions of Euclidean Yang–Mills equations”, Phys. Lett. 67B, 172 (1977).Google Scholar
[242] R., Jackiw and C., Rebbi, “Degrees of freedom in pseudoparticle systems”, Phys. Lett. 67B, 189 (1977).Google Scholar
[243] M. F., Atiyah, N. J., Hitchin, and I. M., Singer, “Deformations of instantons”, Proc. Nat. Acad. Sci. 74, 2662 (1977).Google Scholar
[244] L. S., Brown, R. D., Carlitz, and C., Lee, “Massless excitations in instanton fields”, Phys. Rev.D 16, 417 (1977).Google Scholar
[245] M. F., Atiyah and I. M., Singer, “The index of elliptic operators. 1”, Annals Math. 87, 484 (1968).Google Scholar
[246] M. F., Atiyah, N. J., Hitchin, V. G., Drinfeld, and Y. I., Manin, “Construction of instantons”, Phys. Lett. 65A, 185 (1978).Google Scholar
[247] V. G., Drinfeld and Y. I., Manin, “A description of instantons”, Commun. Math. Phys. 63, 177 (1978).Google Scholar
[248] N. H., Christ, E. J., Weinberg, and N. K., Stanton, “General self-dual Yang–Mills solutions”, Phys. Rev.D 18, 2013 (1978).Google Scholar
[249] E., Corrigan, D. B., Fairlie, S., Templeton, and P., Goddard, “A Green's function for the general self-dual gauge field”, Nucl. Phys.B 140, 31 (1978).Google Scholar
[250] E., Corrigan and P., Goddard, “Construction of instanton and monopole solutions and reciprocity”, Annals Phys. 154, 253 (1984).Google Scholar
[251] E., Witten, “Small instantons in string theory”, Nucl. Phys.B 460, 541 (1996).Google Scholar
[252] M. R., Douglas, “Gauge fields and D-branes”, J. Geom. Phys. 28, 255 (1998).Google Scholar
[253] A. A., Belavin and A. M., Polyakov, “Quantum fluctuations of pseudoparticles”, Nucl. Phys.B 123, 429 (1977).Google Scholar
[254] C. W., Bernard, N. H., Christ, A. H., Guth, and E. J., Weinberg, “Pseudoparticle parameters for arbitrary gauge groups”, Phys. Rev.D 16, 2967 (1977).Google Scholar
[255] J. S., Bell and R., Jackiw, “A PCAC puzzle: π0→ γγ in the σ-model”, Nuovo Cim.A 60, 47 (1969).Google Scholar
[256] S. L., Adler, “Axial vector vertex in spinor electrodynamics”, Phys. Rev. 177, 2426 (1969).Google Scholar
[257] W. A., Bardeen, “Anomalous Ward identities in spinor field theories”, Phys. Rev. 184, 1848 (1969).Google Scholar
[258] K., Fujikawa, “Path integral measure for gauge invariant fermion theories”, Phys. Rev. Lett. 42, 1195 (1979).Google Scholar
[259] C. G., Callan Jr., R. F., Dashen, and D. J., Gross, “Toward a theory of the strong interactions”, Phys. Rev.D 17, 2717 (1978).Google Scholar
[260] S., Weinberg, “The U(1) problem”, Phys. Rev.D 11, 3583 (1975).Google Scholar
[261] G., 't Hooft, “Symmetry breaking through Bell–Jackiw anomalies”, Phys. Rev. Lett. 37, 8 (1976).Google Scholar
[262] N. S., Manton, “Topology in the Weinberg–Salam theory”, Phys. Rev.D 28, 2019 (1983).Google Scholar
[263] F. R., Klinkhamer and N. S., Manton, “A saddle point solution in the Weinberg–Salam theory”, Phys. Rev.D 30, 2212 (1984).Google Scholar
[264] V. A., Rubakov and M. E., Shaposhnikov, “Electroweak baryon number nonconservation in the early universe and in high-energy collisions”, Usp. Fiz. Nauk 166, 493 (1996).Google Scholar
[265] K., Nakamura et al. [Particle Data Group Collaboration], “Review of particle physics”, J. Phys. G 37, 075021 (2010).Google Scholar
[266] R. J., Crewther, P. Di, Vecchia, G., Veneziano, and E., Witten, “Chiral estimate of the electric dipole moment of the neutron in quantum chromodynamics”, Phys. Lett. 88B, 123 (1979).Google Scholar
[267] R. D., Peccei and H. R., Quinn, “CP conservation in the presence of instantons”, Phys. Rev. Lett. 38, 1440 (1977).Google Scholar
[268] R. D., Peccei and H. R., Quinn, “Constraints imposed by CP conservation in the presence of instantons”, Phys. Rev.D 16, 1791 (1977).Google Scholar
[269] S., Weinberg, “A new light boson?”, Phys. Rev. Lett. 40, 223 (1978).Google Scholar
[270] F., Wilczek, “Problem of strong P and T invariance in the presence of instantons”, Phys. Rev. Lett. 40, 279 (1978).Google Scholar
[271] S., Coleman, V., Glaser, and A., Martin, “Action minima among solutions to a class of Euclidean scalar field equations”, Commun. Math. Phys. 58, 211 (1978).Google Scholar
[272] A., Kusenko, K., Lee, and E. J., Weinberg, “Vacuum decay and internal symmetries”, Phys. Rev.D 55, 4903 (1997).Google Scholar
[273] E. J., Weinberg, “Vacuum decay in theories with symmetry breaking by radiative corrections”, Phys. Rev.D 47, 4614 (1993).Google Scholar
[274] I., Affleck, “Quantum statistical metastability”, Phys. Rev. Lett. 46, 388 (1981).Google Scholar
[275] A. D., Linde, “Decay of the false vacuum at finite temperature”, Nucl. Phys.B 216, 421 (1983).Google Scholar
[276] S., Coleman and F., De Luccia, “Gravitational effects on and of vacuum decay”, Phys. Rev.D 21, 3305 (1980).Google Scholar
[277] A. R., Brown and E. J., Weinberg, “Thermal derivation of the Coleman–De Luccia tunneling prescription”, Phys. Rev.D 76, 064003 (2007).Google Scholar
[278] G. W., Gibbons and S. W., Hawking, “Cosmological event horizons, thermodynamics, and particle creation”, Phys. Rev.D 15, 2738 (1977).Google Scholar
[279] G. W., Gibbons and S. W., Hawking, “Action integrals and partition functions in quantum gravity”, Phys. Rev.D 15, 2752 (1977).Google Scholar
[280] S. J., Parke, “Gravity, the decay of the false vacuum and the new inflationary universe scenario”, Phys. Lett. 121B, 313 (1983).Google Scholar
[281] L. G., Jensen and P. J., Steinhardt, “Bubble nucleation and the Coleman–Weinberg model”, Nucl. Phys.B 237, 176 (1984).Google Scholar
[282] L. G., Jensen and P. J., Steinhardt, “Bubble nucleation for flat potential barriers”, Nucl. Phys.B 317, 693 (1989).Google Scholar
[283] J. C., Hackworth and E. J., Weinberg, “Oscillating bounce solutions and vacuum tunneling in de Sitter spacetime”, Phys. Rev.D 71, 044014 (2005).Google Scholar
[284] P., Batra and M., Kleban, “Transitions between de Sitter minima”, Phys. Rev.D 76, 103510 (2007).Google Scholar
[285] T., Banks, “Heretics of the false vacuum: Gravitational effects on and of vacuum decay. 2”, hep-th/0211160 (2002).
[286] S. W., Hawking and I. G., Moss, “Supercooled phase transitions in the very early universe”, Phys. Lett. 110B, 35 (1982).Google Scholar
[287] K., Lee and E. J., Weinberg, “Decay of the true vacuum in curved space-time”, Phys. Rev.D 36, 1088 (1987).Google Scholar
[288] L. F., Abbott and S., Deser, “Stability of gravity with a cosmological constant”, Nucl. Phys.B 195, 76 (1982).Google Scholar
[289] J. C., Hackworth, “Vacuum decay in de Sitter spacetime”, Ph. D. thesis, Columbia University (2006).Google Scholar
[290] G., Lavrelashvili, “The number of negative modes of the oscillating bounces”, Phys. Rev.D 73, 083513 (2006).Google Scholar
[291] T., Tanaka, “The no-negative mode theorem in false vacuum decay with gravity”, Nucl. Phys.B 556, 373 (1999).Google Scholar
[292] A., Khvedelidze, G. V., Lavrelashvili, and T., Tanaka, “On cosmological perturbations in closed FRW model with scalar field and false vacuum decay”, Phys. Rev.D 62, 083501 (2000).Google Scholar
[293] G. V., Lavrelashvili, “Negative mode problem in false vacuum decay with gravity”, Nucl. Phys. Proc. Suppl. 88, 75 (2000).Google Scholar
[294] S., Gratton and N., Turok, “Homogeneous modes of cosmological instantons”, Phys. Rev.D 63, 123514 (2001).Google Scholar
[295] S., Coleman and P. J., Steinhardt, unpublished.
[296] A. A., Starobinsky, “Stochastic de Sitter (inflationary) stage in the early universe.” In Field Theory, Quantum Gravity and Strings, eds. H. J., De Vega and N., Sanchez (New York: Springer-Verlag, 1986).
[297] A. S., Goncharov, A. D., Linde, and V. F., Mukhanov, “The global structure of the inflationary universe”, Int. J. Mod. Phys.A 2, 561 (1987).Google Scholar
[298] A. D., Linde, “Hard art of the universe creation (stochastic approach to tunneling and baby universe formation)”, Nucl. Phys.B 372, 421 (1992).Google Scholar
[299] A. D., Linde, “A new inflationary universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems”, Phys. Lett. 108B, 389 (1982).Google Scholar
[300] A., Albrecht and P. J., Steinhardt, “Cosmology for grand unified theories with radiatively induced symmetry breaking”, Phys. Rev. Lett. 48, 1220 (1982).Google Scholar
[301] J., Garriga and A., Megevand, “Coincident brane nucleation and the neutralization of Λ”, Phys. Rev.D 69, 083510 (2004).Google Scholar
[302] A., Masoumi and E. J., Weinberg, “Bounces with O(3)×O(2) symmetry.” (2012).
[303] S. W., Hawking, I. G., Moss, and J. M., Stewart, “Bubble collisions in the very early universe”, Phys. Rev.D 26, 2681 (1982).Google Scholar
[304] J., Garriga, A. H., Guth, and A., Vilenkin, “Eternal inflation, bubble collisions, and the persistence of memory”, Phys. Rev.D 76, 123512 (2007).Google Scholar
[305] S., Chang, M., Kleban, and T. S., Levi, “When worlds collide”, JCAP 0804, 034 (2008).
[306] S., Chang, M., Kleban, and T. S., Levi, “Watching worlds collide: effects on the CMB from cosmological bubble collisions”, JCAP 0904, 025 (2009).
[307] A., Aguirre, M. C., Johnson, and M., Tysanner, “Surviving the crash: Assessing the aftermath of cosmic bubble collisions”, Phys. Rev.D 79, 123514 (2009).Google Scholar
[308] B., Freivogel, M., Kleban, A., Nicolis, and K., Sigurdson, “Eternal inflation, bubble collisions, and the disintegration of the persistence of memory”, JCAP 0908, 036 (2009).
[309] J. J., Blanco-Pillado and M. P., Salem, “Observable effects of anisotropic bubble nucleation”, JCAP 1007, 007 (2010).Google Scholar
[310] L. F., Abbott and S., Coleman, “The collapse of an anti-de Sitter bubble”, Nucl. Phys.B 259, 170 (1985).Google Scholar
[311] J. E., Humphreys, Introduction to Lie Algebras and Representation Theory (New York: Springer-Verlag, 1972).
[312] P., Ramond, Group Theory (Cambridge University Press, 2010).
[313] H. J., de Vega and F. A., Schaposnik, “Classical vortex solution of the Abelian Higgs model”, Phys. Rev.D 14, 1100 (1976).Google Scholar
[314] J. E., Kiskis, “Fermions in a pseudoparticle field”, Phys. Rev.D 15, 2329 (1977).Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Erick J. Weinberg, Columbia University, New York
  • Book: Classical Solutions in Quantum Field Theory
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139017787.016
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Erick J. Weinberg, Columbia University, New York
  • Book: Classical Solutions in Quantum Field Theory
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139017787.016
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Erick J. Weinberg, Columbia University, New York
  • Book: Classical Solutions in Quantum Field Theory
  • Online publication: 05 September 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9781139017787.016
Available formats
×