Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-17T03:27:08.776Z Has data issue: false hasContentIssue false

Chapter 8 - Neuroinflammation and Staging

from Section 2 - Progress with Clinical Staging

Published online by Cambridge University Press:  08 August 2019

Patrick D. McGorry
Affiliation:
University of Melbourne
Ian B. Hickie
Affiliation:
University of Sydney
Get access

Summary

The staging model of mental illness is developing beyond the clinical level aiming to include biological processes and markers that may reflect the dynamic biological processes of stages of mental illness. The neurobiology of inflammation in mental illness has gained much attention in recent years. Since neuroinflammation has been shown to be an important possible feature of psychosis, schizophrenia and depression, in this chapter it is attempted to map changes and dysregulation of the immune system and inflammation to the different clinical stages of severe mental illness. The literature suggests that an increased inflammatory response may define a subgroup of individuals in ultra-high-risk states, in acute disease episodes and in those with severe mental illness. In addition, the literature clearly points to the dynamic nature of the immune response in mental illness and shows an involvement of both the innate and adaptive immune system in mental illness. A focus on inflammation only might be insufficient and a broader understanding of the interaction between innate and adaptive immune systems and the complex neuroimmune interaction is required.

Type
Chapter
Information
Clinical Staging in Psychiatry
Making Diagnosis Work for Research and Treatment
, pp. 172 - 190
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aguliar-Valles, A., Kim, J., Jung, S., Woodside, B., & Luheshi, G. N. (2014). Role of brain transmigrating neutrophils in depression-like behavior during systemic infection. Molecular Psychiatry, 19(5), 599606.Google Scholar
Akhondzadeh, S., Jafari, S., Raisi, F., Nasehi, A. A., Ghoreishi, A., Salehi, B., … Kamalipour, A. (2009). Clinical trial of adjunctive celecoxib treatment in patients with major depression: a double blind and placebo controlled trial. Depression and Anxiety, 26(7), 607611.Google Scholar
Almeida, O. P., Alfonso, H., Jamrozik, K., Hankey, G. J., & Flicker, L. (2010). Aspirin use, depression, and cognitive impairment in later life: the health in men study. Journal of the American Geriatrics Society, 58(5), 990992.CrossRefGoogle ScholarPubMed
Almeida, O. P., Flicker, L., Yeap, B. B., Alfonso, H., McCaul, K., & Hankey, G. J. (2012). Aspirin decreases the risk of depression in older men with high plasma homocysteine. Translational Psychiatry, 2, e151.Google Scholar
Amminger, G. P., Schafer, M. R., Klier, C. M., Slavik, J. M., Holzer, I., Holub, M., … Berk, M. (2012). Decreased nervonic acid levels in erythrocyte membranes predict psychosis in help-seeking ultra-high-risk individuals. Molecular Psychiatry, 17(12), 11501152.Google Scholar
Amminger, G. P., Schafer, M. R., Papageorgiou, K., Klier, C. M., Cotton, S. M., Harrigan, S. M., … Berger, G. E. (2010). Long-chain omega-3 fatty acids for indicated prevention of psychotic disorders: a randomized, placebo-controlled trial. Archives of General Psychiatry, 67(2), 146154.Google Scholar
Arion, D., Unger, T., Lewis, D. A., Levitt, P., & Mirnics, K. (2007). Molecular evidence for increased expression of genes related to immune and chaperone function in the prefrontal cortex in schizophrenia. Biological Psychiatry, 62(7), 711721.Google Scholar
Barbaresko, J., Koch, M., Schulze, M. B., & Nothlings, U. (2013). Dietary pattern analysis and biomarkers of low-grade inflammation: a systematic literature review. Nutrition Reviews, 71(8), 511527.Google Scholar
Baune, B. (2009). Conceptual challenges of a tentative model of stress-induced depression. PLoS One, 4(1), e4266.Google Scholar
Baune, B. T. (2015). Inflammation and neurodegenerative disorders: is there still hope for therapeutic intervention? Current Opinion in Psychiatry, 28(2), 148154.Google Scholar
Baune, B. T., Wiede, F., Braun, A., Golledge, J., Arolt, V., & Koerner, H. (2008). Cognitive dysfunction in mice deficient for TNF- and its receptors. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147B(7), 10561064.Google Scholar
Berger, G. E., Wood, S., & McGorry, P. (2003). Incipient neurovulnerability and neuroprotection in early psychosis. Psychopharmacology Bulletin, 37(2), 79101.Google Scholar
Berger, G. E., Wood, S. J., Wellard, R. M., Proffitt, T. M., McConchie, M., Amminger, G. P., … McGorry, P. D. (2008). Ethyl-eicosapentaenoic acid in first-episode psychosis: a 1H-MRS study. Neuropsychopharmacology, 33(10), 24672473.Google Scholar
Berk, M., Copolov, D., Dean, O., Lu, K., Jeavons, S., Schapkaitz, I., … Bush, A. (2008). N-acetyl cysteine as a glutathione precursor for schizophrenia: a double-blind, randomized, placebo-controlled trial. Biological Psychiatry, 64, 361368.Google Scholar
Bertelsen, M., Jeppesen, P., Petersen, L., Thorup, A., Ohlenschlaeger, J., le Quach, P., … Nordentoft, M. (2008). Five-year follow-up of a randomized multicenter trial of intensive early intervention vs standard treatment for patients with a first episode of psychotic illness: the OPUS trial. Archives of General Psychiatry, 65(7), 762771.Google Scholar
Blank, T., & Prinz, M. (2013). Microglia as modulators of cognition and neuropsychiatric disorders. Glia, 61(1), 6270.Google Scholar
Borovcanin, M., Jovanovic, I., Radosavljevic, G., Djukic Dejanovic, S., Bankovic, D., Arsenijevic, N., & Lukic, M. L. (2012). Elevated serum level of type-2 cytokine and low IL-17 in first episode psychosis and schizophrenia in relapse. Journal of Psychiatric Research, 46(11), 14211426.Google Scholar
Calviello, G., Su, H. M., Weylandt, K. H., Fasano, E., Serini, S., & Cittadini, A. (2013). Experimental evidence of omega-3 polyunsaturated fatty acid modulation of inflammatory cytokines and bioactive lipid mediators: their potential role in inflammatory, neurodegenerative, and neoplastic diseases. BioMed Research International, 2013, 743171.Google Scholar
Camara, M. L., Corrigan, F., Jaehne, E. J., Jawahar, M. C., Anscomb, H., & Baune, B. T. (2015). Effects of centrally administered etanercept on behavior, microglia, and astrocytes in mice following a peripheral immune challenge. Neuropsychopharmacology, 40(2), 502512.CrossRefGoogle ScholarPubMed
Clark, S. R., Schubert, K. O., & Baune, B. T. (2015). Towards indicated prevention of psychosis: using probabilistic assessments of transition risk in psychosis prodrome. Journal of Neural Transmission, 122(1), 155169.Google Scholar
Conradi, H. J., Ormel, J., & De Jonge, P. (2011). Presence of individual (residual) symptoms during depressive episodes and periods of remission: a 3-year prospective study. Psychological Medicine, 41(6), 11651174.CrossRefGoogle ScholarPubMed
Couch, Y., Anthony, D. C., Dolgov, O., Revischin, A., Festoff, B., Santos, A. I., … Strekalova, T. (2013). Microglial activation, increased TNF and SERT expression in the prefrontal cortex define stress-altered behaviour in mice susceptible to anhedonia. Brain, Behavior, and Immunity, 29, 136146.Google Scholar
Dantzer, R., O’Connor, J. C., Freund, G. G., Johnson, R. W., & Kelley, K. W. (2008). From inflammation to sickness and depression: when the immune system subjugates the brain. Nature Reviews Neuroscience, 9(1), 4656.Google Scholar
Do, K. Q., Trabesinger, A. H., Kirsten-Krüger, M., Lauer, C. J., Dydak, U., Hell, D., … Cuénod, M. (2000). Schizophrenia: glutathione deficit in cerebrospinal fluid and prefrontal cortex in vivo. European Journal of Neuroscience, 12, 37213728.Google Scholar
Dunner, D. L., Rush, A. J., Russell, J. M., Burke, M., Woodard, S., Wingard, P., & Allen, J. (2006). Prospective, long-term, multicenter study of the naturalistic outcomes of patients with treatment-resistant depression. Journal of Clinical Psychiatry, 67(5), 688695.Google Scholar
Erickson, K. I., Gildengers, A. G., & Butters, M. A. (2013). Physical activity and brain plasticity in late adulthood. Dialogues in Clinical Neuroscience, 15(1), 99108.Google Scholar
Eyre, H. A., Air, T., Proctor, S., Rositano, S., & Baune, B. T. (2014). A critical review of the efficacy of non-steroidal anti-inflammatory drugs in depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 57C, 1116.Google Scholar
Eyre, H., & Baune, B. T. (2012). Neuroplastic changes in depression: a role for the immune system. Psychoneuroendocrinology, 37(9), 13971416.Google Scholar
Eyre, H. A., & Baune, B. T. (2015). Anti-inflammatory intervention in depression. JAMA Psychiatry, 72(5), 511.Google Scholar
Eyre, H., Papps, E., & Baune, B. T. (2013). Treating depression and depression-like behaviour with physical activity: an immune perspective. Frontiers in Psychiatry, 4, 3.Google Scholar
Fava, G. A., Ruini, C., & Belaise, C. (2007). The concept of recovery in major depression. Psychological Medicine, 37(3), 307317.Google Scholar
Fields, C., Drye, L., Vaidya, V., & Lyketsos, C. (2012). Celecoxib or naproxen treatment does not benefit depressive symptoms in persons age 70 and older: findings from a randomized controlled trial. American Journal of Geriatric Psychiatry, 20(6), 505513.Google Scholar
Flatow, J., Buckley, P., & Miller, B. J. (2013). Meta-analysis of oxidative stress in schizophrenia. Biological Psychiatry, 74, 400409.Google Scholar
Fond, G., Hamdani, N., Kapczinski, F., Boukouaci, W., Drancourt, N., Dargel, A., … Leboyer, M. (2014). Effectiveness and tolerance of anti-inflammatory drugs’ add-on therapy in major mental disorders: a systematic qualitative review. Acta Psychiatrica Scandinavica, 129(3), 163179.Google Scholar
Freund-Levi, Y., Eriksdotter-Jonhagen, M., Cederholm, T., Basun, H., Faxen-Irving, G., Garlind, A., … Palmblad, J. (2006). Omega-3 fatty acid treatment in 174 patients with mild to moderate Alzheimer disease: OmegAD study – a randomized double-blind trial. Archives of Neurology, 63(10), 14021408.Google Scholar
Freund-Levi, Y., Hjorth, E., Lindberg, C., Cederholm, T., Faxen-Irving, G., Vedin, I., … Eriksdotter Jonhagen, M. (2009). Effects of omega-3 fatty acids on inflammatory markers in cerebrospinal fluid and plasma in Alzheimer’s disease: the OmegAD study. Dementia and Geriatric Cognitive Disorders, 27(5), 481490.Google Scholar
Gallagher, P. J., Castro, V., Fava, M., Weilburg, J. B., Murphy, S. N., Gainer, V. S., … Perlis, R. H. (2012). Antidepressant response in patients with major depression exposed to NSAIDs: a pharmacovigilance study. American Journal of Psychiatry, 169(10), 10651072.Google Scholar
Garcia-Rizo, C., Fernandez-Egea, E., Oliveira, C., Justicia, A., Bernardo, M., & Kirkpatrick, B. (2012). Inflammatory markers in antipsychotic-naïve patients with nonaffective psychosis and deficit vs. nondeficit features. Psychiatry Research, 198(2), 212215.Google Scholar
Gupta, S., Knight, A. G., Keller, J. N., & Bruce-Keller, A. J. (2012). Saturated long-chain fatty acids activate inflammatory signaling in astrocytes. Journal of Neurochemistry, 120(6), 10601071.CrossRefGoogle ScholarPubMed
Hamer, M., Sabia, S., Batty, G. D., Shipley, M. J., Tabak, A. G., Singh-Manoux, A., & Kivimaki, M. (2012). Physical activity and inflammatory markers over 10 years: follow-up in men and women from the Whitehall II cohort study. Circulation, 126(8), 928933.Google Scholar
Haroon, E., Raison, C. L., & Miller, A. H. (2012). Psychoneuroimmunology meets neuropsychopharmacology: translational implications of the impact of inflammation on behavior. Neuropsychopharmacology, 37(1), 137162.Google Scholar
Hegelstad, W. T., Larsen, T. K., Auestad, B., Evensen, J., Haahr, U., Joa, I., … McGlashan, T. (2012). Long-term follow-up of the TIPS early detection in psychosis study: effects on 10-year outcome. American Journal of Psychiatry, 169(4), 374380.Google Scholar
Hjorth, E., Zhu, M., Toro, V. C., Vedin, I., Palmblad, J., Cederholm, T., … Schultzberg, M. (2013). Omega-3 fatty acids enhance phagocytosis of Alzheimer’s disease-related amyloid-beta42 by human microglia and decrease inflammatory markers. Journal of Alzheimer’s Disease, 35(4), 697713.Google Scholar
Insel, T. (2007). The arrival of preemptive psychiatry. Early Intervention in Psychiatry, 1, 56.Google Scholar
Jaturapatporn, D., Isaac, M. G., McCleery, J., & Tabet, N. (2012). Aspirin, steroidal and non-steroidal anti-inflammatory drugs for the treatment of Alzheimer’s disease. Cochrane Database of Systematic Reviews, 2, CD006378.Google Scholar
Kendler, K. S., Thornton, L. M., & Gardner, C. O. (2001). Genetic risk, number of previous depressive episodes, and stressful life events in predicting onset of major depression. American Journal of Psychiatry, 158(4), 582586.Google Scholar
Keshavan, M. S., Sanders, R. D., Pettegrew, J. W., Dombrowsky, S. M., & Panchalingam, K. (1993). Frontal lobe metabolism and cerebral morphology in schizophrenia: 31P MRS and MRI studies. Schizophrenia Research, 10, 241246.Google Scholar
Kiecolt-Glaser, J. K., Epel, E. S., Belury, M. A., Andridge, R., Lin, J., Glaser, R., … Blackburn, E. (2013). Omega-3 fatty acids, oxidative stress, and leukocyte telomere length: a randomized controlled trial. Brain, Behavior, and Immunity, 28, 1624.Google Scholar
Krstic, D., & Knuesel, I. (2013). Deciphering the mechanism underlying late-onset Alzheimer disease. Nature Reviews: Neurology, 9(1), 2534.Google Scholar
Labrousse, V. F., Nadjar, A., Joffre, C., Costes, L., Aubert, A., Gregoire, S., … Laye, S. (2012). Short-term long chain omega3 diet protects from neuroinflammatory processes and memory impairment in aged mice. PLoS One, 7(5), e36861.Google Scholar
Larsen, T. K., Melle, I., Auestad, B., Haahr, U., Joa, I., Johannessen, J. O., … McGlashan, T. (2011). Early detection of psychosis: positive effects on 5-year outcome. Psychological Medicine, 41(7), 14611469.Google Scholar
Latour, A., Grintal, B., Champeil-Potokar, G., Hennebelle, M., Lavialle, M., Dutar, P., … Denis, I. (2013). Omega-3 fatty acids deficiency aggravates glutamatergic synapse and astroglial aging in the rat hippocampal CA1. Aging Cell, 12(1), 7684.Google Scholar
Lavoie, S., Berger, M., Schlögelhofer, M., Schäfer, M. R., Rice, S., Kim, S. W., … Amminger, G. P. (2017). Erythrocyte glutathione levels as long-term predictor of transition to psychosisTranslational Psychiatry, 7(3), e1064.CrossRefGoogle ScholarPubMed
Leonard, B., & Maes, M. (2012). Mechanistic explanations how cell-mediated immune activation, inflammation and oxidative and nitrosative stress pathways and their sequels and concomitants play a role in the pathophysiology of unipolar depression. Neuroscience and Biobehavioral Reviews, 36(2), 764785.Google Scholar
Lewinsohn, P. M., Rohde, P., Seeley, J. R., Klein, D. N., & Gotlib, I. H. (2000). Natural course of adolescent major depressive disorder in a community sample: predictors of recurrence in young adults. American Journal of Psychiatry, 157(10), 15841591.Google Scholar
Libov, I., Miodownik, C., Bersudsky, Y., Dwolatzky, T., Lerner, V. (2007). Efficacy of piracetam in the treatment of tardive dyskinesia in schizophrenic patients: a randomized, double-blind, placebo-controlled crossover study. Journal of Clinical Psychiatry, 68, 10311037.Google Scholar
Liu, Y. H., Zeng, F., Wang, Y. R., Zhou, H. D., Giunta, B., Tan, J., & Wang, Y. J. (2013). Immunity and Alzheimer’s disease: immunological perspectives on the development of novel therapies. Drug Discovery Today, 18(23–24), 12121220.Google Scholar
Loef, M., & Walach, H. (2013). The omega-6/omega-3 ratio and dementia or cognitive decline: a systematic review on human studies and biological evidence. Journal of Nutrition in Gerontology and Geriatrics, 32(1), 123.Google Scholar
Lourida, I., Soni, M., Thompson-Coon, J., Purandare, N., Lang, I. A., Ukoumunne, O. C., & Llewellyn, D. J. (2013). Mediterranean diet, cognitive function, and dementia: a systematic review. Epidemiology, 24(4), 479489.Google Scholar
Maes, M., Mihaylova, I., Kubera, M., & Ringel, K. (2012). Activation of cell-mediated immunity in depression: association with inflammation, melancholia, clinical staging and the fatigue and somatic symptom cluster of depression. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 36(1), 169175.Google Scholar
Mahar, I., Bambico, F. R., Mechawar, N., & Nobrega, J. N. (2014). Stress, serotonin, and hippocampal neurogenesis in relation to depression and antidepressant effects. Neuroscience and Biobehavioral Reviews, 38, 173192.Google Scholar
March, J., Silva, S., Petrycki, S., Curry, J., Wells, K., Fairbank, J., … Treatment for Adolescents with Depression Study Team. (2004). Fluoxetine, cognitive-behavioral therapy, and their combination for adolescents with depression: treatment for Adolescents with Depression Study (TADS) randomized controlled trial. JAMA, 292(7), 807820.Google ScholarPubMed
McAfoose, J., & Baune, B. T. (2009). Evidence for a cytokine model of cognitive function. Neuroscience and Biobehavioral Reviews, 33(3), 355366.Google Scholar
McGorry, P. D. (2007). Issues for DSM-V: clinical staging – a heuristic pathway to valid nosology and safer, more effective treatment in psychiatry. American Journal of Psychiatry, 164(6), 859860.Google Scholar
McGorry, P. D., Hickie, I. B., Yung, A. R., Pantelis, C., & Jackson, H. J. (2006). Clinical staging of psychiatric disorders: a heuristic framework for choosing earlier, safer and more effective interventions. Australian and New Zealand Journal of Psychiatry, 40(8), 616622.Google Scholar
McGorry, P., Keshavan, M., Goldstone, S., Amminger, P., Allott, K., Berk, M., … Hickie, I. (2014). Biomarkers and clinical staging in psychiatry. World Psychiatry, 13(3), 211223.Google Scholar
McGorry, P. D., Nelson, B., Goldstone, S., & Yung, A. R. (2010). Clinical staging: a heuristic and practical strategy for new research and better health and social outcomes for psychotic and related mood disorders. Canadian Journal of Psychiatry, 55(8), 486497.Google Scholar
Miller, A. H., Maletic, V., & Raison, C. L. (2009). Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biological Psychiatry, 65(9), 732741.Google Scholar
Miller, B. J., Buckley, P., Seabolt, W., Mellor, A., & Kirkpatrick, B. (2011). Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biological Psychiatry, 70(7), 663671.Google Scholar
Miller, B. J., Culpepper, N., & Rapaport, M. H. (2014). C-reactive protein levels in schizophrenia. Clinical Schizophrenia & Related Psychoses, 7, 223230.Google Scholar
Miller, G. E., & Cole, S. W. (2012). Clustering of depression and inflammation in adolescents previously exposed to childhood adversity. Biological Psychiatry, 72(1), 3440.CrossRefGoogle ScholarPubMed
Mizwicki, M. T., Liu, G., Fiala, M., Magpantay, L., Sayre, J., Siani, A., … Teplow, D. B. (2013). 1alpha,25-dihydroxyvitamin D3 and resolvin D1 retune the balance between amyloid-beta phagocytosis and inflammation in Alzheimer’s disease patients. Journal of Alzheimer’s Disease, 34(1), 155170.Google Scholar
Monji, A., Kato, T., & Kanba, S. (2009). Cytokines and schizophrenia: microglia hypothesis of schizophrenia. Psychiatry and Clinical Neurosciences, 63(3), 257265.Google Scholar
Monsonego, A., Nemirovsky, A., & Harpaz, I. (2013). CD4 T cells in immunity and immunotherapy of Alzheimer’s disease. Immunology, 139(4), 438446.Google Scholar
Moylan, S., Berk, M., Dean, O. M., Samuni, Y., Williams, L. J., O’Neil, A., … Maes, M. (2014). Oxidative & nitrosative stress in depression: why so much stress? Neuroscience and Biobehavioral Reviews, 45C, 4662.Google Scholar
Moylan, S., Maes, M., Wray, N. R., & Berk, M. (2013). The neuroprogressive nature of major depressive disorder: pathways to disease evolution and resistance, and therapeutic implications. Molecular Psychiatry, 18(5), 595606.Google Scholar
Muller, N. (2013). The role of anti-inflammatory treatment in psychiatric disorders. Psychiatria Danubina, 25(3), 292298.Google Scholar
Muller, N., Myint, A. M., & Schwarz, M. J. (2011). Inflammatory biomarkers and depression. Neurotoxicity Research, 19(2), 308318.Google Scholar
Muller, N., Myint, A. M., & Schwarz, M. J. (2012). Inflammation in schizophrenia. Advances in Protein Chemistry and Structural Biology, 88, 4968.Google Scholar
Muller, N., Riedel, M., Scheppach, C., Brandstatter, B., Sokullu, S., Krampe, K., … Schwarz, M. J. (2002). Beneficial antipsychotic effects of celecoxib add-on therapy compared to risperidone alone in schizophrenia. American Journal of Psychiatry, 159(6), 10291034.Google Scholar
Muller, N., Schwarz, M. J., Dehning, S., Douhe, A., Cerovecki, A., Goldstein-Muller, B., … Riedel, M. (2006). The cyclooxygenase-2 inhibitor celecoxib has therapeutic effects in major depression: results of a double-blind, randomized, placebo controlled, add-on pilot study to reboxetine. Molecular Psychiatry, 11(7), 680684.Google Scholar
Musil, R., Schwarz, M. J., Riedel, M., Dehning, S., Cerovecki, A., Spellmann, I., … Muller, N. (2011). Elevated macrophage migration inhibitory factor and decreased transforming growth factor-beta levels in major depression: no influence of celecoxib treatment. Journal of Affective Disorders, 134(1–3), 217225.Google Scholar
Naert, G., & Rivest, S. (2013). A deficiency in CCR2+ monocytes: the hidden side of Alzheimer’s disease. Journal of Molecular Cell Biology, 5(5), 284293.Google Scholar
Nagelhus, E. A., Amiry-Moghaddam, M., Bergersen, L. H., Bjaalie, J. G., Eriksson, J., Gundersen, V., … Tonjum, T. (2013). The glia doctrine: addressing the role of glial cells in healthy brain ageing. Mechanisms of Ageing and Development, 134(10), 449459.Google Scholar
Nery, F. G., Monkul, E. S., Hatch, J. P., Fonseca, M., Zunta-Soares, G. B., Frey, B. N., … Soares, J. C. (2008). Celecoxib as an adjunct in the treatment of depressive or mixed episodes of bipolar disorder: a double-blind, randomized, placebo-controlled study. Human Psychopharmacology, 23(2), 8794.Google Scholar
Norman, R. M., Manchanda, R., Malla, A. K., Windell, D., Harricharan, R., & Northcott, S. (2011). Symptom and functional outcomes for a 5 year early intervention program for psychoses. Schizophrenia Research, 129(2–3), 111115.Google Scholar
Orr, S. K., Trepanier, M. O., & Bazinet, R. P. (2013). n-3 polyunsaturated fatty acids in animal models with neuroinflammation. Prostaglandins, Leukotrienes and Essential Fatty Acids, 88(1), 97103.Google Scholar
Park, S. E., Dantzer, R., Kelley, K. W., & McCusker, R. H. (2011). Central administration of insulin-like growth factor-I decreases depressive-like behavior and brain cytokine expression in mice. Journal of Neuroinflammation, 8, 12.Google Scholar
Pasco, J. A., Jacka, F. N., Williams, L. J., Henry, M. J., Nicholson, G. C., Kotowicz, M. A., & Berk, M. (2010). Clinical implications of the cytokine hypothesis of depression: the association between use of statins and aspirin and the risk of major depression. Psychotherapy and Psychosomatics, 79(5), 323325.Google Scholar
Ponomarev, E. D., Veremeyko, T., & Weiner, H. L. (2013). MicroRNAs are universal regulators of differentiation, activation, and polarization of microglia and macrophages in normal and diseased CNS. Glia, 61(1), 91103.Google Scholar
Raison, C. L., Rutherford, R. E., Woolwine, B. J., Shuo, C., Schettler, P., Drake, D. F., … Miller, A. H. (2012). A randomized controlled trial of the tumor necrosis factor antagonist infliximab for treatment-resistant depression: the role of baseline inflammatory biomarkers. Archives of General Psychiatry, 70, 3141.Google Scholar
Ripke, S., Sanders, A. R., Kendler, K. S., Levinson, D. F., Sklar, P., Holmans, P. A., … Cichon, S. (2011). Genome-wide association study identifies five new schizophrenia loci. Nature Genetics, 43(10), 969976.Google Scholar
Saetre, P., Emilsson, L., Axelsson, E., Kreuger, J., Lindholm, E., & Jazin, E. (2007). Inflammation-related genes up-regulated in schizophrenia brains. BMC Psychiatry, 7, 46.Google Scholar
Schubert, K. O., Clark, S. R., & Baune, B. T. (2015). The use of clinical and biological characteristics to predict outcome following first episode psychosis. Australian and New Zealand Journal of Psychiatry, 49(1), 2435.Google Scholar
Shamir, E., Barak, Y., Shalman, I., Laudon, M., Zisapel, N., Tarrasch, R., … Weizman, R. (2001). Melatonin treatment for tardive dyskinesia: a double-blind, placebo-controlled, crossover study. Archives of General Psychiatry, 58, 10491052.Google Scholar
Sheline, Y. I., Gado, M. H., & Kraemer, H. C. (2003). Untreated depression and hippocampal volume loss. American Journal of Psychiatry, 160(8), 15161518.Google Scholar
Shelton, R. C. (2012). Does concomitant use of NSAIDs reduce the effectiveness of antidepressants? American Journal of Psychiatry, 169(10), 10121015.Google Scholar
Shi, J., Levinson, D. F., Duan, J., Sanders, A. R., Zheng, Y., Pe’er, I., … Gejman, P. V. (2009). Common variants on chromosome 6p22.1 are associated with schizophrenia. Nature, 460, 753757.Google Scholar
Slavich, G. M., & Irwin, M. R. (2014). From stress to inflammation and major depressive disorder: a social signal transduction theory of depression. Psychological Bulletin, 140(3), 774815.Google Scholar
Stojanovic, A., Martorell, L., Montalvo, I., Ortega, L., Monseny, R., Vilella, E., & Labad, J. (2014). Increased serum interleukin-6 levels in early stages of psychosis: associations with at-risk mental states and the severity of psychotic symptoms. Psychoneuroendocrinology, 41, 2332.Google Scholar
Terrando, N., Monaco, C., Ma, D., Foxwell, B. M., Feldmann, M., & Maze, M. (2010). Tumor necrosis factor-alpha triggers a cytokine cascade yielding postoperative cognitive decline. Proceedings of the National Academy of Sciences of the United States of America, 107(47), 2051820522.Google Scholar
Tobinick, E. L., & Gross, H. (2008). Rapid cognitive improvement in Alzheimer’s disease following perispinal etanercept administration. Journal of Neuroinflammation, 5, 2.Google Scholar
Torres, K. C., Santos, R. R., de Lima, G. S., Ferreira, R. O., Mapa, F. C., Pereira, P. A., … Romano-Silva, M. A. (2012). Decreased expression of CCL3 in monocytes and CCR5 in lymphocytes from frontotemporal dementia as compared with Alzheimer’s disease patients. Journal of Neuropsychiatry and Clinical Neurosciences, 24(3), E11E12.Google Scholar
Uher, R., Carver, S., Power, R. A., Mors, O., Maier, W., Rietschel, M., … McGuffin, P. (2012). Non-steroidal anti-inflammatory drugs and efficacy of antidepressants in major depressive disorder. Psychological Medicine, 42(10), 20272035.Google Scholar
Videbech, P., & Ravnkilde, B. (2004). Hippocampal volume and depression: a meta-analysis of MRI studies. American Journal of Psychiatry, 161(11), 19571966.Google Scholar
Warner-Schmidt, J. L., Vanover, K. E., Chen, E. Y., Marshall, J. J., & Greengard, P. (2011). Antidepressant effects of selective serotonin reuptake inhibitors (SSRIs) are attenuated by antiinflammatory drugs in mice and humans. Proceedings of the National Academy of Sciences of the United States of America, 108(22), 92629267.Google Scholar
Wyss-Coray, T., & Rogers, J. (2012). Inflammation in Alzheimer disease: a brief review of the basic science and clinical literature. Cold Spring Harbor Perspectives in Medicine, 2(1), a006346.CrossRefGoogle ScholarPubMed
Xu, M., & He, L. (2010). Convergent evidence shows a positive association of interleukin-1 gene complex locus with susceptibility to schizophrenia in the Caucasian population. Schizophrenia Research, 120(1–3), 131142.CrossRefGoogle Scholar
Yao, J. K., & Keshavan, M. S. (2011). Antioxidants, redox signaling, and pathophysiology in schizophrenia: an integrative view. Antioxidants & Redox Signaling, 15, 20112035.Google Scholar
Zhang, X. Y., Zhou, D. F., Cao, L. Y., Xu, C. Q., Chen, D. C., & Wu, G. Y. (2004). The effect of vitamin E treatment on tardive dyskinesia and blood superoxide dismutase: a double-blind placebo-controlled trial. Journal of Clinical Psychopharmacology, 24, 8386.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×