Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-06-07T20:07:51.044Z Has data issue: false hasContentIssue false

2 - Global patterns of mangrove extinction risk: implications for ecosystem services and biodiversity loss

Published online by Cambridge University Press:  05 June 2014

Beth A. Polidoro
Affiliation:
Dominion University and Arizona State University
Kent E. Carpenter
Affiliation:
Dominion University
Farid Dahdouh-Guebas
Affiliation:
Université Libre de Bruxelles – ULB
Joanna C. Ellison
Affiliation:
University of Tasmania
Nico E. Koedam
Affiliation:
Vrije Universiteit Brussel – VUB
Jean W. H. Yong
Affiliation:
Singapore University of Technology and Design
Brooke Maslo
Affiliation:
Rutgers University, New Jersey
Julie L. Lockwood
Affiliation:
Rutgers University, New Jersey
Get access

Summary

What are mangroves?

Mangroves are unique plant species found in tropical and subtropical estuarine and nearshore marine regions worldwide. Mangrove species have several physiological adaptations to saline, water-saturated soils, including viviparous or cryptoviviparous seeds that disperse by water, and salt-exclusion or salt-excretion capabilities to cope with high salt concentrations in nearshore saturated soils and sediments. Many species also have specialized aerial roots, or pneumatophores, that enable oxygenation of roots in water-logged soils. Species restricted to tropical intertidal habitat have been defined as “true mangrove” species, while those not exclusive to this habitat are sometimes referred to as “mangrove associates” (Lugo & Snedaker, 1974). Others include as mangroves any tree, shrub, palm, or ground fern exceeding 0.5 m in height and which normally grows in the intertidal zone of tropical coastal or estuarine environments (Duke, 1992). In view of the global variety of mangrove types and their floristics, there are approximately 70 species of mangroves, which are quite taxonomically diverse, as they represent 17 families (Table 2.1). The Mangrove Reference Database and Herbarium provides a larger overview of all known species, subspecies and hybrids (Massó i Alemán et al., 2010).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aburto-Oropez, O., Ezcurra, E., Danemann, G., et al. (2008). Mangroves in the Gulf of California increase fishery yields. Proceedings of the National Academy of Sciences of the United States of America, 105, 10456–10459.CrossRefGoogle Scholar
Alongi, D. M. (2002). Present state and future of the world’s mangrove forests. Environmental Conservation, 29, 331–349.CrossRefGoogle Scholar
Barbier, E. B., Koch, E. W., Silliman, B. R., et al. (2008). Coastal ecosystem based management with non-linear ecological functions and values. Science, 319, 321–323.CrossRefGoogle Scholar
Biswas, S. R., Choudhury, J. K., Nishat, A. & Rahman, M. M. (2007). Do invasive plants threaten the Sundarbans mangrove forest of Bangladesh?Forest Ecology and Management, 245, 1–9.CrossRefGoogle Scholar
Bosire, J. O., Dahdouh-Guebas, F., Walton, M., et al. (2008). Functionality of restored mangroves: A review. Aquatic Botany, 89, 251–259.CrossRefGoogle Scholar
Bouillon, S. (2011). Storage beneath mangroves. Nature Geoscience, 4, 282–283.CrossRefGoogle Scholar
Bouillon, S., Dahdouh-Guebas, F., Rao, A. V. V. S., Koedam, N. & Dehairs, F. (2003). Sources of organic carbon in mangrove sediments: Variability and possible ecological implications. Hydrobiologia, 495, 33–39.CrossRefGoogle Scholar
Bouillon, S., Moens, T. & Dehairs, F. (2005). Carbon sources supporting benthic mineralization in mangrove and adjacent seagrass sediments (Gazi Bay, Kenya). Biogeosciences, 1, 71–78.CrossRefGoogle Scholar
Cannicci, S., Burrows, D., Fratini, S., et al. (2008). Faunistic impact on vegetation structure and ecosystem function in mangrove forests: A review. Aquatic Botany, 89, 186–200.CrossRefGoogle Scholar
Carpenter, K. E., Abrar, M., Aeby, G., et al. (2008). One-third of reef-building corals face elevated extinction risk from climate change and local impacts. Science, 321, 560–563.CrossRefGoogle ScholarPubMed
Chimner, R. A., Fry, B., Kaneshiro, M. Y. & Cormier, N. (2006). Current extent and historical expansion of introduced mangroves on O’ahu, Hawai’i. Pacific Science, 60, 377–383.CrossRefGoogle Scholar
Cohen, J. E., Small, C., Mellinger, A., Gallup, J. & Sachs, J. (1997). Estimates of coastal populations. Science, 278, 1209–1213.CrossRefGoogle Scholar
Costanza, R., d’Arge, R., de Groot, R., et al. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387, 253–260.CrossRefGoogle Scholar
Dahdouh-Guebas, F. (2011). World Atlas of Mangroves: Mark Spalding, Mami Kainuma and Lorna Collins (eds), book review. Human Ecology, 39, 107–109.CrossRefGoogle Scholar
Dahdouh-Guebas, F., Verneirt, M., Cannicci, S., et al. (2002). An exploratory study on grapsid crab zonation in Kenyan mangroves. Wetlands Ecology and Management, 10, 179–187.CrossRefGoogle Scholar
Dahdouh-Guebas, F., Hettiarachchi, S., Lo Seen, D., et al. (2005a). Transitions in ancient inland freshwater resource management in Sri Lanka affect biota and human populations in and around coastal lagoons. Current Biology, 15, 579–586.CrossRefGoogle ScholarPubMed
Dahdouh-Guebas, F., Jayatissa, L. P., Di Nitto, D., et al. (2005b). How effective were mangroves as a defence against the recent tsunami?Current Biology, 15, 443–447.CrossRefGoogle ScholarPubMed
Das, S., Vincent, J. R. (2009). Mangroves protected villages and reduced death toll during Indian super cyclone. Proceedings of the National Academy of Sciences of the United States of America, 106, 7357–7360.CrossRefGoogle ScholarPubMed
Di Nitto, D., Dahdouh-Guebas, F., Kairo, J. G., Decleir, H. & Koedam, N. (2008). Digital terrain modelling to investigate the effects of sea level rise on mangrove propagule establishment. Marine Ecology Progress Series, 356, 175–188.CrossRefGoogle Scholar
Dittmar, T., Hertkorn, N., Kattner, G. & Lara, R. J. (2006). Mangroves, a major source of dissolved organic carbon to the oceans. Global Biogeochemical Cycles, 20, GB1012, .CrossRefGoogle Scholar
Dodd, R. S. & Ong, J. E. (2008). Future of mangrove ecosystems to 2025. In Polunin, N. V. C. (ed.), Aquatic Ecosystems: Trends and Global Prospects. Cambridge: Cambridge University Press, pp. 172–187.CrossRefGoogle Scholar
Donato, D. C., Boone Kauffman, J., Murdiyarso, D., et al. (2011). Mangroves among the most carbon-rich forests in the tropics. Nature Geoscience, 4, 293–297.CrossRefGoogle Scholar
Dorenbosch, M., van Riel, M. C., Nagelkerken, I. & van der Velde, G. (2004). The relationship of reef fish densities to the proximity of mangrove and seagrass nurseries. Estuarine, Coastal and Shelf Science, 60, 37–48.CrossRefGoogle Scholar
Duke, N. C. (1992). Mangrove floristics and biogeography. In Robertson, A. I. & Alongi, D. M. (eds.), Tropical Mangrove Ecosystems. Washington, DC: American Geophysical Union, pp. 63–100.CrossRefGoogle Scholar
Duke, N. C. (2006). Australia’s Mangroves: The Authoritative Guide to Australia’s Mangrove Plants. St Lucia: University of Queensland.Google Scholar
Duke, N. C., Pinzon, Z. S. & Prada, M. C. T. (1997). Large-scale damage to mangrove forests following two large oil spills in Panama. Biotropica, 29, 2–14.CrossRefGoogle Scholar
Duke, N. C., Ball, M. C. & Ellison, J. C. (1998). Factors influencing biodiversity and distributional gradients in mangroves. Global Ecology and Biogeography Letters, 7, 27–47.CrossRefGoogle Scholar
Duke, N. C., Meynecke, J. O., Dittmann, S., et al. (2007). A world without mangroves. Science, 317, 41.CrossRefGoogle ScholarPubMed
Ellison, A. M. (2008). Managing mangroves with benthic biodiversity in mind: Moving beyond roving banditry. Journal of Sea Research, 59, 2–15.CrossRefGoogle Scholar
Ellison, A. M. & Farnsworth, E. J. (1996). Anthropogenic disturbance of Caribbean mangrove ecosystems: Past impacts, present trends, and future predictions. Biotropica, 28, 549–565.CrossRefGoogle Scholar
Ellison, A. M., Farnsworth, E. J. & Merkt, R. E. (1999). Origins of mangrove ecosystems and the mangrove biodiversity anomaly. Global Ecology and Biogeography, 8, 95–115.CrossRefGoogle Scholar
Ellison, A. M., Mukherjee, B. B. & Karim, A. (2000). Testing patterns of zonation in mangroves: Scale-dependence and environmental correlates in the Sundarbans of Bangladesh. Journal of Ecology, 88, 813–824.CrossRefGoogle Scholar
Ellison, J. C. (1998). Impacts of sediment burial on mangroves. Marine Pollution Bulletin, 37, 420–426.CrossRefGoogle Scholar
Ellison, J. C. (2005). Holocene palynology and sea-level change in two estuaries in southern Irian Jaya. Palaeogeography, Palaeoclimatology, Palaeoecology, 220, 291–309.CrossRefGoogle Scholar
Ellison, J. C. (2009). Wetlands of the Pacific Island Region. Wetlands Ecology and Management, 17, 169–206.CrossRefGoogle Scholar
Ellison, J. C. (2012). Climate Change Vulnerability Assessment and Adaption Planning for Mangrove Systems. Washington, DC: WWF US.Google Scholar
Emerton, L. & Kekulandala, L. D. C. B. (2002). Assessment of the Economic Value of Muthurajawela Wetland, Occasional Paper 4. Colombo: IUCN Sri Lanka Country Office.Google Scholar
Ewel, K. C., Twilley, R. R. & Ong, J. E. (1998). Different kinds of mangrove forests provide different goods and services. Global Ecology and Biogeography Letters, 7, 83–94.CrossRefGoogle Scholar
FAO. (2003). Status and trends in mangrove area extent worldwide. In Wilkie, M. L. & Fortuna, S. (eds.), Forest Resources Assessment Working Paper No. 63. Rome: Forest Resources Division, FAO. .Google Scholar
FAO. (2007). The World’s Mangroves 1980–2005, FAO Forestry Paper 153. Rome: Forest Resources Division, FAO.Google Scholar
Field, C. B., Osborn, J. G., Hoffman, L. L., et al. (1998). Mangrove biodiversity and ecosystem function. Global Ecology and Biogeography Letters, 7, 3–14.CrossRefGoogle Scholar
Fourqurean, J. W., SmithIII, T. J., Possley, J., et al. (2010). Are mangroves in the tropical Atlantic ripe for invasion? Exotic mangrove trees in the forests of south Florida. Biological Invasions, 12, 2509–2522.CrossRefGoogle Scholar
Gilman, E., Ellison, J., Duke, N. C. & Field, F. (2008). Threats to mangroves from climate change and adaptation options: A review. Aquatic Botany, 89, 237–250.CrossRefGoogle Scholar
Giri, C., Pchieng, E., Tieszen, L. L., et al. (2011). Status and distribution of mangrove forests of the world using earth observation satellite data. Global Ecology and Biogeography, 20, 154–159.CrossRefGoogle Scholar
Glaser, M. (2003). Interrelations between mangrove ecosystem, local economy and social sustainability in Caete Estuary, North Brazil. Wetland Ecology and Management, 11, 265–272.CrossRefGoogle Scholar
Granek, E. & Ruttenberg, B. I. (2008). Changes in biotic and abiotic processes following mangrove clearing. Estuarine, Coastal and Shelf Science, 80, 555–562.CrossRefGoogle Scholar
Hemminga, M. A., Slim, F. J., Kazungu, J., et al. (1994). Carbon outwelling from a mangrove forest with adjacent seagrass beds and coarl reefs (Gazi Bay, Kenya). Marine Ecology Progress Series, 106, 291–301.CrossRefGoogle Scholar
Hogarth, P. J. (2007). The Biology of Mangroves and Seagrasses. New York, NY: Oxford University Press.CrossRefGoogle Scholar
IUCN. (2003). Guidelines for Application of IUCN Red List Criteria at Regional and National Levels: version 3.0. .
IUCN. (2011). IUCN Red List of Threatened Species. .
Kairo, J. G., Dahdouh-Guebas, F., Gwada, P. O., Ochieng, C. & Koedam, N. (2002). Regeneration status of mangrove forests in Mida Creek, Kenya: A compromised or secured future?Ambio, 31, 562–568.CrossRefGoogle ScholarPubMed
Kathiresan, K., Bingham, B. L. (2001). Biology of mangroves and mangrove ecosystems. Advances in Marine Biology, 40, 81–251.CrossRefGoogle Scholar
Koedam, N. & Dahdouh-Guebas, F. (2008). Ecological quality changes precede changes in quantity in mangrove forests. Science (E-Letter 02/10/2008).
Kristensen, E., Mangion, P., Tang, M., et al. (2011). Microbial carbon oxidation rates and pathways in sediments of two Tanzanian mangrove forests. Biogeochemistry, 103, 143–158.CrossRefGoogle Scholar
LewisIII, R. R. (2005). Ecological engineering for successful management and restoration of mangrove forests. Ecological Engineering, 24, 403–418.CrossRefGoogle Scholar
Lopez-Hoffman, L., Monroe, L. E., Narvaez, E., Martinez-Ramos, M. & Ackerly, D. D. (2006). Sustainability of mangrove harvesting: How do harvesters perceptions differ from ecological analysis?Ecology and Society, 11, 14.CrossRefGoogle Scholar
Lugo, A. E. (2002). Conserving Latin American and Caribbean mangroves: Issues and challenges. Madera y Bosques, 8, 5–25.CrossRefGoogle Scholar
Lugo, A. E. & Snedaker, S. C. (1974). The ecology of mangroves. Annual Reviews of Ecology and Systematics, 5, 39–63.CrossRefGoogle Scholar
Luther, D. & Greenburg, R. (2009). Mangroves: A global perspective on the evolution and conservation of their terrestrial vertebrates. Bioscience, 59, 602–612.CrossRefGoogle Scholar
Massó i Alemán, S., Bourgeois, C., Appeltans, W., et al. (2010). The ‘Mangrove Reference Database and Herbarium’. Plant Ecology and Evolution, 143, 225–232.CrossRefGoogle Scholar
Miththapala, S. (2008). Mangroves. Coastal Ecosystems Series, vol. 2. Colombo, Sri Lanka: Ecosystems and Livelihoods Group Asia IUCN.Google Scholar
Mumby, P. J., Edwards, A. J., Arias-Gonzalez, J. E., et al. (2004). Mangroves enhance the biomass of coral reef fish communities in the Caribbean. Nature, 427, 533–536.CrossRefGoogle ScholarPubMed
Nagelkerken, I., Blaber, S., Bouillon, S., et al. (2008). The habitat function of mangroves for terrestrial and marina fauna: A review. Aquatic Botany, 89, 155–185.CrossRefGoogle Scholar
Ng, P. K. L., Wang, L. K. & Lim, K. K. P. (2008). Private Lives: An Expose of Singapore Mangroves. Singapore: Raffles Museum of Biodiversity Research, National University of Singapore.Google Scholar
Ong, J. E. (1993). Mangroves – A carbon source and sink. Chemosphere, 27, 1097–1107.CrossRefGoogle Scholar
Ong, J. E. (2003). Plants of the Merbok mangrove, Kedah, Malaysia and the urgent need for their conservation. Folia Malaysiana, 4, 1–18.Google Scholar
Polidoro, B. A., Carpenter, K. E., Collins, L., et al. (2010). The loss of species: Mangrove extinction risk and geographic areas of global concern. PLoS ONE, 5, e10095.CrossRefGoogle ScholarPubMed
Polidoro, B. A., Brooks, T., Carpenter, K. E., et al. (2012). Patterns of extinction risk and threat for marine vertebrates and habitat species in the Tropical Eastern Pacific. Marine Ecology Progress Series, 448, 93–104.CrossRefGoogle Scholar
Primavera, J. H. (1998). Mangroves as nurseries: Shrimp populations in mangrove and non-mangrove habitats. Estuarine, Coastal and Shelf Science, 46, 457–464.CrossRefGoogle Scholar
Primavera, J. H. (2000). Development and conservation of Philippine mangroves: Institutional issues. Ecological Economics, 35, 91–106.CrossRefGoogle Scholar
Primavera, J. H., Sadaba, R. B., Lebata, M. J. H. L. & Altamirano, J. P. (2004). Handbook of Mangroves in the Philippines – Panay. Philippines: SEAFDEC Aquaculture Department and UNESCO Man and the Biosphere ASPACO Project.Google Scholar
Quisthoudt, K., Schmitz, N., Randin, C. F., et al. (2012). Temperature variation among latitudinal range limits worldwide. Trees, 26, 1919–1931.CrossRefGoogle Scholar
Ren, H., Lu, H., Shen, W., et al. (2009). Sonneratia apetala Buch.Ham in the mangrove ecosystems of China: An invasive species or restoration species?Ecological Engineering, 35, 1243–1248.CrossRefGoogle Scholar
Ricklefs, R. E. & Latham, R. E. (1993). Global patterns of diversity in mangrove floras. In Ricklef, R. E. & Schluter, D. (eds.), Species Diversity in Ecological Communities. Chicago, IL: University of Chicago Press.Google Scholar
Robertson, A. I. & Blaber, S. J. M. (1992). Plankton, epibenthos and fish communities. In Robertson, A. I. & Alongi, D. M. (eds.), Tropical Mangrove Ecosystems. Washington, DC: American Geophysical Union. pp. 173–224.CrossRefGoogle Scholar
Robertson, A. I. & Duke, N. C. (1987). Mangroves as nursery sites: Comparisons of the abundance and species composition of fish and crustaceans in mangroves and other nearshore habitats in tropical Australia. Marine Biology, 96, 193–205.CrossRefGoogle Scholar
Robertson, A. I. & Phillips, M. J. (1995). Mangroves as filters of shrimp pond effluent: Predictions and biogeochemical research needs. Hydrobiologia, 295, 311–321.CrossRefGoogle Scholar
Rodriguez, J. P., Rodrigues-Clark, K. M., Baillie, J. E. M., et al. (2011). Establishing IUCN Red List criteria for threatened ecosystems. Conservation Biology, 25, 21–29.CrossRefGoogle ScholarPubMed
Rönnbäck, P. (1999). The ecological basis for economic value of seafood production supported by mangrove ecosystems. Ecological Economics, 29, 235–252.CrossRefGoogle Scholar
Saenger, P. (2002). Mangrove Ecology, Silviculture and Conservation. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
Sheaves, M. (2005). Nature and consequences of biological connectivity in mangrove systems. Marine Ecology Progress Series, 302, 293–305.CrossRefGoogle Scholar
Sheue, C. R., Yong, J. W. H. & Yang, Y. P. (2005). The Bruguiera (Rhizophoraceae) species in the mangroves of Singapore, especially on the new record and the rediscovery. Tawania, 50, 251–260.Google Scholar
SmithIII, T. J., Boto, K. G., Frusher, S. D. & Giddens, R. L. (1991). Keystone species and mangrove forest dynamics: The influence of burrowing by crabs on soil nutrient status and forest productivity. Estuarine, Coastal and Shelf Science, 33, 419–432.CrossRefGoogle Scholar
Spalding, M., Kainuma, M. & Collins, L. (2010). World Atlas of Mangroves. London: Earthscan.Google Scholar
Sukardjo, S. (2009). Mangroves for national development and conservation in Indonesia: Challenges for the future. Marine Research in Indonesia, 34, 47–61.Google Scholar
Sullivan, C. (2005). The Importance of Mangroves. Department of Planning and Natural Resources, Division of Fish and Wildlife, USVI. Fact Sheet #28. .
Syvitski, J. P. M., Kettner, K. T., Overeem, I., et al. (2009). Sinking deltas due to human activities. Nature Geoscience, 2, 681–687.CrossRefGoogle Scholar
Tomlinson, P. B. (1986). The Botany of Mangroves. Cambridge: Cambridge University Press.Google Scholar
Trott, L. A. & Alongi, D. M. (2000). The impact of shrimp pond effluent on water quality and phytoplankton biomass in a tropical mangrove estuary. Marine Pollution Bulletin, 40, 947–951.CrossRefGoogle Scholar
Valiela, I., Bowen, J. L. & York, J. K. (2001). Mangrove forests: One of the world’s threatened major tropical environments. Bioscience, 51, 807–815.CrossRefGoogle Scholar
Wells, S., Ravilious, C. & Corcoran, E. (2006). In the Front Line: Shoreline Protection and Other Ecosystem Services from Mangroves and Coral Reefs, Cambridge: UNEP World Conservation Monitoring Centre.Google Scholar
Zan, Q. J., Wang, B. S. & Wang, Y. J. (2003). Ecological assessment on the introduced Sonneratia caseolaris and S. apetala at the mangrove forest of Shenzhen Bay, China. Acta Botanica Sinica, 45, 544–551.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×