Skip to main content Accessibility help
×
  • Cited by 76
Publisher:
Cambridge University Press
Online publication date:
August 2015
Print publication year:
2015
Online ISBN:
9781139044097

Book description

Shock waves are an important feature of solar system plasmas, from the solar corona out to the edge of the heliosphere. This engaging introduction to collisionless shocks in space plasmas presents a comprehensive review of the physics governing different types of shocks and processes of particle acceleration, from fundamental principles to current research. Motivated by observations of planetary bow shocks, interplanetary shocks and the solar wind termination shock, it emphasises the physical theory underlying these shock waves. Readers will develop an understanding of the complex interplay between particle dynamics and the electric and magnetic fields that explains the observations of in situ spacecraft. Written by renowned experts in the field, this up-to-date text is the ideal companion for both graduate students new to heliospheric physics and researchers in astrophysics who wish to apply the lessons of solar system shocks to different astrophysical environments.

Reviews

'The authors, together with the publishers, are to be congratulated for producing a book that is such an enjoyable as well as an informative read. It should prove an ideal source of information for postgraduate students of space-plasma physics and astrophysics, as well as being a high-quality reference work for professionals in these and related fields.'

Source: The Observatory

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
Further reading
Akimoto, K., Papadopoulos, K. and Winske, D. 1985a. Ion-acoustic instabilities driven by an ion velocity ring. J. Plasma Phys., 34 Google Scholar, 467.
Akimoto, K., Papadopoulos, K. and Winske, D. 1985b. Lower-hybrid instabilities driven by an ion velocity ring. J. Plasma Phys., 34 Google Scholar, 445.
Alexandrova, O., Mangeney, A., Maksimovic, M., Cornilleau-Wehrlin, N., Bosqued, J.-M. and André, M. 2006. Alfvén vortex filaments observed in magnetosheath downstream of a quasiperpendicular bow shock. J. Geophys. Res., 111 Google Scholar(A10), 12208.
Amano, T. and Hoshino, M. 2007. Electron injection at high Mach number quasi-perpendicular shocks: surfing and drift acceleration. Astrophys. J., 661 Google Scholar, 190.
Amano, T. and Hoshino, M. 2012. Recent Progress in the theory of electron injection in collisionless shocks. Leubner, M. P. and Vörös, Z. (eds), Multiscale Dynamical Processes in Space and Astrophysical Plasmas. Berlin Google Scholar: Springer, p. 143.
Anderson, J. E. 1963. Magnetohydrodynamic Shock Waves. Cambridge, MA Google Scholar: MIT Press.
Anderson, K. A., Lin, R. P., Martel, F., Lin, C. S., Parks, G.K. and Réme, H. 1979. Thin sheets of energetic electrons upstream from the Earth's bow shock. Geophys. Res. Lett., 6 Google Scholar, 401.
Axford, W. I. 1981a. Acceleration of cosmic rays by shock waves. In International Cosmic Ray Conference. International Cosmic Ray Conference, vol. 12 Google Scholar, p. 155.
Axford, W. I. 1981b. Late paper: Acceleration of cosmic rays by shock waves. In S. A., Colgate (ed.), ESA Special Publication. ESA Special Publication, vol. 161 Google Scholar, p. 125.
Axford, W. I., Leer, E. and Skadron, G. 1977. The acceleration of cosmic rays by shock waves. In International Cosmic Ray Conference. InternationalCosmicRay Conference, vol. 11 Google Scholar, p. 132.
Axford, W. I., Leer, E. and McKenzie, J. F. 1982. The structure of cosmic ray shocks. Astron. Astrophys., 111 Google Scholar, 317
Bale, S.D., Reiner, M. J., Bougeret, J.-L., et al. 1999. The source region of an interplanetary type II radio burst. Geophys. Res. Lett., 26 Google Scholar, 1573.
Bale, S.D., Mozer, F. S. and Horbury, T. S. 2003. Density-transition scale at quasiperpendicular collisionless shocks. Phys. Rev. Lett., 91 Google Scholar(26), 265004.
Bale, S.D., Balikhin, M. A., Horbury, T. S., et al. 2005. Quasi-perpendicular shock structure and processes. Space Sci. Rev., 118 Google Scholar, 161.
Balikhin, M., Krasnosselskikh, V. and Gedalin, M. 1995. The scales in quasiperpendicular shocks. Adv. Space Res., 15 Google Scholar, 247–260.
Balikhin, M., Walker, S., Treumann, R., et al. 2005. Ion sound wave packets at the quasiperpendicular shock front. Geophys. Res. Lett., 32 Google Scholar, 24106.
Baring, M. G., Ellison, D. C. and Jones, F. C. 1993. The injection and acceleration of particles in oblique shocks–A unified Monte Carlo description. Astrophys. J., 409 Google Scholar, 327.
Barnes, C.W. and Simpson, J. A. 1976. Evidence for interplanetary acceleration of nucleons in corotating interaction regions. Astrophys. J. Lett., 210 Google Scholar, L91.
Bell, A. R. 1978a. The acceleration of cosmic rays in shock fronts. I. MNRAS, 182 Google Scholar, 147.
Bell, A. R. 1978b. The acceleration of cosmic rays in shock fronts. II. MNRAS, 182 Google Scholar, 443.
Bell, A. R. 2004. Turbulent amplification of magnetic field and diffusive shock acceleration of cosmic rays. MNRAS, 353 Google Scholar, 550.
Bellan, P. M. 2006. Fundamentals of Plasma Physics. Cambridge Google Scholar: Cambridge University Press.
Birdsall, C. K. and Langdon, A. B. 2004. Plasma Physics via Computer Simulation. Abingdon Google Scholar: Taylor and Francis Group.
Biskamp, D. 1973. Collisionless shock waves in plasmas. Nucl. Fusion, 13 Google Scholar(5), 719.
Biskamp, D. and Chodura, R. 1973. Collisionless dissipation of a cross-field electric current. Phys. Fluids, 16 Google Scholar, 893–901.
Biskamp, D and Welter, H. 1972a. Numerical studies of magnetosonic collisionless shock-waves. Nucl. Fusion</jt., 12 Google Scholar(6), 663.
Biskamp, D. and Welter, H. 1972b. Structure of the earth's bow shock. J. Geophys. Res., 77 Google Scholar, 6052.
Blanco-Cano, X., Omidi, N. and Russell, C. T. 2006. Macrostructure of collisionless bow shocks: 2. ULF waves in the foreshock and magnetosheath. J. Geophys. Res., 111 Google Scholar(A10), 10205.
Blandford, R. and Eichler, D. 1987. Particle acceleration at astrophysical shocks: A theory of cosmic ray origin. Phys. Rep., 154 Google Scholar, 1.
Blandford, R. D. and Ostriker, J. P. 1978. Particle acceleration by astrophysical shocks. Astrophys. J. Lett., 221 Google Scholar, L29.
Bonifazi, C. and Moreno, G. 1981. Reflected and diffuse ions backstreaming from the earth's bow shock. I Basic properties. J. Geophys. Res., 86 Google Scholar, 4397.
Boyd, T. J. M. and Sanderson, J. J. 2003. The Physics of Plasmas. Cambridge Google Scholar: Cambridge University Press.
Buneman, O. 1958. Instability, turbulence, and conductivity in current-carrying plasma. Phys. Rev. Lett., 1 Google Scholar, 8.
Burgess, D. 1987a. Shock drift acceleration at lowenergies. J. Geophys. Res., 92 Google Scholar, 1119.
Burgess, D. 1987b. Simulations of backstreaming ion beams formed at oblique shocks by direct reflection. Ann. Geophys., 5 Google Scholar, 133.
Burgess, D. 1989. Cyclical behavior at quasiparallel collisionless shocks. Geophys. Res. Lett., 16 Google Scholar, 345.
Burgess, D. 1995. Foreshock-shock interaction at collisionless quasi-parallel shocks. Adv. Space Res., 15 Google Scholar, 159.
Burgess, D. 2006. Simulations of electron acceleration at collisionless shocks: The effects of surface fluctuations. Astrophys. J., 653 Google Scholar, 316.
Burgess, D. and Scholer, M. 2007. Shock front instability associated with reflected ions at the perpendicular shock. Phys. Plasmas, 14 Google Scholar(1), 012108.
Burgess, D., Wilkinson, W. P. and Schwartz, S. J. 1989. Ion distributions and thermalization at perpendicular and quasi-perpendicular supercritical collisionless shocks. J. Geophys. Res., 94 Google Scholar, 8783.
Burlaga, L. F., Ness, N. F., Acuña, M.H., et al. 2005. Crossing the termination shock into the heliosheath: Magnetic fields. Science, 309 Google Scholar, 2027.
Burlaga, L. F., Ness, N. F., Acuña, M.H., Lepping, R. P., Connerney, J. E. P. and Richardson, J. D. 2008. Magnetic fields at the solar wind termination shock. Nature, 454 Google Scholar, 75.
Burrows, R.H., Zank, G. P., Webb, G. M., Burlaga, L. F. and Ness, N. F. 2010. Pickup ion dynamics at the heliospheric termination shock observed by Voyager 2. Astrophys. J., 715 Google Scholar, 1109.
Cairns, I.H. and Robinson, P. A. 1999. Strong evidence for stochastic growth of Langmuir-likewaves in Earth's foreshock. Phys. Rev. Lett., 82 Google Scholar, 3066.
Cairns, I.H., Robinson, P. A. and Zank, G. P. 2000. Progress on coronal, interplanetary, foreshock, and outer heliospheric radio emissions. Publ. Astron. Soc. Aust., 17 Google Scholar, 22.
Cargill, P. J. and Papadopoulos, K. 1988. A mechanism for strong shock electron heating in supernova remnants. Astrophys. J. Lett., 329 Google Scholar, L29.
Chalov, S.V. 2012. Influence of large-scale variations in the magnetic field direction on the acceleration of interstellar pickup protons at the heliospheric termination shock. Astron. Lett., 38 Google Scholar, 191.
Chapman, S. and Cowling, T. G. 1970. The Mathematical Theory of Non-uniform Gases: An Account of the Kinetic Theory of Viscosity, Thermal Conduction and Diffusion in Gases, 3rd edn. Cambridge Google Scholar: Cambridge University Press.
Cipolla, Jr., J.W., Silevitch, M. B. and Golden, K. I. 1977. Ion cyclotron beam mode-whistler mode plasma instabilities and their role in parallel shock wave structures. Phys. Fluids, 20 Google Scholar, 282.
Comişel, H., Scholer, M., Soucek, J. and Matsukiyo, S. 2011. Non-stationarity of the quasi-perpendicular bow shock: comparison between Cluster observations and simulations. Ann. Geophys., 29 Google Scholar, 263.
Coroniti, F.V. 1970. Dissipation discontinuities in hydromagnetic shock waves. J. Plasma Phys., 4 Google Scholar, 265.
Courant, R., Friedrichs, K. and Lewy, H. 1928. Ǘber die partiellen Differenzengleichungen der mathematischen Physik. Math. Ann., 100 Google Scholar, 32.
Davidson, R. C. 1972. Methods in Nonlinear Plasma Theory. New York Google Scholar: Academic Press.
Davidson, R. C., Gladd, N. T., Wu, C. S. and Huba, J.D. 1977. Effects of finite plasma beta on the lower-hybrid-drift instability. Phys. Fluids, 20 Google Scholar, 301.
Dawson, J. 1962. One-dimensional plasma model. Phys. Fluids, 5 Google Scholar, 445.
de Hoffmann, F. and Teller, E. 1950. Magneto-hydrodynamic shocks. Phys. Rev., 80 Google Scholar, 692.
Decker, R. B. 1983. Formation of shockspike events at quasi-perpendicular shocks. J. Geophys. Res., 88 Google Scholar, 9959.
Decker, R. B., Krimigis, S. M., Roelof, E.C., et al. 2008. Mediation of the solar wind termination shock by non-thermal ions. Nature, 454 Google Scholar, 67.
Drake, J. F., Opher, M., Swisdak, M. and Chamoun, J. N. 2010. A magnetic reconnection mechanism for the generation of anomalous cosmic rays. Astrophys. J., 709 Google Scholar, 963.
Drury, L. O. 1983. An introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas. Rep. Prog. Phys., 46 Google Scholar, 973.
Drury, L. O. 1995. Particle acceleration in shocks. 233 Google Scholar, 251.
Drury, L. O. 2004. Current status of shock acceleration theory. J. Korean Astron. Soc., 37 Google Scholar, 393.
Drury, L. O. and Voelk, J.H. 1981. Hydromagnetic shock structure in the presence of cosmic rays. Astrophys. J., 248 Google Scholar, 344.
Dubouloz, N. and Scholer, M. 1995. Twodimensional simulations of magnetic pulsations upstream of the Earth's bowshock. J. Geophys. Res., 100 Google Scholar, 9461.
Earl, J.A. 1974. The diffusive idealization of charged-particle transport in random magnetic fields. Astrophys. J., 193 Google Scholar, 231.
Eastwood, J. P., Balogh, A., Lucek, E.A., Mazelle, C. and Dandouras, I. 2005a. Quasi-monochromatic ULF foreshock waves as observed by the four-spacecraft Cluster mission: 1. Statistical properties. J. Geophys. Res., 110 Google Scholar, 11219.
Eastwood, J. P., Lucek, E.A., Mazelle, C., et al. 2005b. The foreshock. Space Sci. Rev., 118 Google Scholar, 41.
Edmiston, J. P., Kennel, C. F. and Eichler, D. 1982. Escape of heated ions upstream of quasi-parallel shocks. Geophys. Res. Lett., 9 Google Scholar, 531.
Eichler, D. 1984. On the theory of cosmicray- mediated shocks with variable compression ratio. Astrophys. J., 277 Google Scholar, 429.
Ellison, D. C. 1981. Monte Carlo simulation of charged particles upstream of the earth's bow shock. Geophys. Res. Lett., 8 Google Scholar, 991.
Ellison, D. C. 1985. Shock acceleration of diffuse ions at the earth's bow shock Acceleration efficiency and A/Z enhancement. J. Geophys. Res., 90 Google Scholar, 29.
Ellison, D. C. and Eichler, D. 1984. Monte Carlo shock-like solutions to the Boltzmann equation with collective scattering. Astrophys. J., 286 Google Scholar, 691.
Ellison, D. C. and Moebius, E. 1987. Diffusive shock acceleration–Comparison of a unified shock model to bow shock observations. Astrophys. J., 318 Google Scholar, 474.
Ellison, D. C., Moebius, E. and Paschmann, G. 1990. Particle injection and acceleration at earth's bow shock–Comparison of upstream and downstream events. Astrophys. J., 352 Google Scholar, 376.
Ellison, D. C., Giacalone, J., Burgess, D. and Schwartz, S. J. 1993. Simulations of particle acceleration in parallel shocks: Direct comparison between Monte Carlo and one-dimensional hybrid codes. J.Geophys. Res., 982 Google Scholar, 21085.
Ellison, D. C., Baring, M. G. and Jones, F. C. 1996. Nonlinear Particle Acceleration in Oblique Shocks. Astrophys. J., 473 Google Scholar, 1029.
Fahr, H. J., Kausch, T. and Scherer, H. 2000. A 5-fluid hydrodynamic approach to model the solar system-interstellar medium interaction. Astron. Astrophys., 357 Google Scholar, 268.
Fairfield, D.H. 1969. Bow shock associated waves observed in the far upstream interplanetary medium.J. Geophys. Res., 74 Google Scholar, 3541.
Feldman, W. C., Bame, S. J., Gary, S. P., et al. 1982. Electron heating within the Earth's bow shock. Phys. Rev. Lett., 49 Google Scholar(3), 199.
Feldman, W. C., Anderson, R. C., Bame, S. J., et al. 1983. Electron velocity distributions near the earth's bow shock. J. Geophys. Res., 88 Google Scholar, 96.
Filbert, P. C. and Kellogg, P. J. 1979. Electrostatic noise at the plasma frequency beyond the earth's bow shock. J. Geophys. Res., 84 Google Scholar, 1369.
Fisk, L.A. and Gloeckler, G. 2006. The common spectrum for accelerated ions in the quiet-time solar wind. Astrophys. J. Lett., 640 Google Scholar, L79.
Fisk, L.A. and Gloeckler, G. 2009. The acceleration of anomalous cosmic rays by stochastic acceleration in the heliosheath. Adv. Space Res., 43 Google Scholar, 1471.
Fisk, L.A., Kozlovsky, B. and Ramaty, R. 1974. An interpretation of the observed oxygen and nitrogen enhancements in low-energy cosmic rays. Astrophys. J. Lett., 190 Google Scholar, L35.
Fitzenreiter, R. J. 1995. The electron foreshock. Adv. Space Res., 15 Google Scholar, 9.
Fitzenreiter, R. J., Scudder, J. D. and Klimas, A. J. 1990. Three-dimensional analytical model for the spatial variation of the foreshock electron distribution function–Systematics and comparisons with ISEE observations. J. Geophys. Res., 95 Google Scholar, 4155.
Florinski, V. 2009. Pickup ion acceleration at the termination shock and in the heliosheath. Space Sci. Rev., 143 Google Scholar, 111.
Florinski, V., Zank, G. P., Jokipii, J. R., Stone, E.C. and Cummings, A.C. 2004. Do anomalous cosmic rays modify the termination shock?Astrophys. J., 610 Google Scholar, 1169.
Florinski, V., Decker, R. B. and Le Roux, J. A. 2008. Pitch angle distributions of energetic particles near the heliospheric termination shock. J. Geophys. Res., 113 Google Scholar, 7103.
Florinski, V., Decker, R. B. and Zank, G. P. 2010. Mediation of the heliospheric termination shock by termination-shockaccelerated particles. Twelfth International Solar Wind Conference Proceedings, 1216 Google Scholar, 576.
Forman, M. A. and Morfill, G. E. 1979. Timedependent acceleration of solar wind plasma to mev energies at corotating interplanetary shocks. In International Cosmic Ray Conference. International Cosmic Ray Conference, vol. 5 Google Scholar, p. 328.
Formisano, V. and Kennel, C. F. 1969. Small amplitude waves in high β plasmas. J. Plasma Phys., 3 Google Scholar, 55.
Forslund, D., Morse, R., Nielson, C. and Fu, J. 1972. Electron cyclotron drift instability and turbulence. Phys. Fluids, 15 Google Scholar, 1303–1318.
Fuselier, S. A. 1995. Ion distributions in the Earth's foreshock upstream from the bow shock. Adv. Space Res., 15 Google Scholar, 43.
Fuselier, S. A., Thomsen, M. F., Gosling, J. T., Bame, S. J. and Russell, C. T. 1986. Gyrating and intermediate ion distributions upstream from the earth's bowshock. J. Geophys. Res., 91 Google Scholar, 91.
Garcia-Munoz, M., Mason, G. M. and Simpson, J. A. 1973. The anomalous 1972 low energy galactic cosmic ray proton and helium spectra. In International Cosmic Ray Conference. International Cosmic Ray Conference, vol. 2 Google Scholar, p. 1304.
Gargaté, L. and Spitkovsky, A. 2012. Ion acceleration in non-relativistic astrophysical shocks. Astrophys. J., 744 Google Scholar, 67.
Gary, S. P. 1978. The electromagnetic ion beam instability and energy loss of fast alpha particles. Nucl. Fusion, 18 Google Scholar, 327.
Gary, S. P. 1992. The mirror and ion cyclotron anisotropy instabilities. J. Geophys. Res., 97 Google Scholar, 8519.
Gary, S. P. 1993. Theory of Space Plasma Microinstabilities. Cambridge Google Scholar: Cambridge University Press.
Gary, S. P. and Mellott, M. M. 1985. Whistler damping at oblique propagation–Laminar shock precursors. J. Geophys. Res., 90 Google Scholar, 99.
Gary, S. P. and Tokar, R. L. 1985. The second-order theory of electromagnetic hot ion beam instabilities. J. Geophys. Res., 90 Google Scholar, 65.
Gary, S. P., Foosland, D.W., Smith, C.W., Lee, M. A. and Goldstein, M. L. 1984. Electromagnetic ion beam instabilities. Phys. Fluids, 27 Google Scholar, 1852.
Gary, S. P., Tokar, R. L. and Winske, D. 1987. Ion/ion and electron/ion cross-field instabilities near the lower hybrid frequency. J. Geophys. Res., 92 Google Scholar, 10029.
Gary, S. P., Fuselier, S. A. and Anderson, B. J. 1993. Ion anisotropy instabilities in the magnetosheath. J. Geophys. Res., 98 Google Scholar, 1481.
Gedalin|M. 1996. Transmitted ions and ion heating in nearly perpendicular low-Mach number shocks. J. Geophys. Res., 101 Google Scholar, 15569.
Gedalin, M. and Gri, E. 1999. Role of overshoots in the formation of the downstream distribution of adiabatic electrons. J. Geophys. Res., 104 Google Scholar, 14821–14826.
Giacalone, J. 2004. Large-scale hybrid simulations of particle acceleration at a parallel shock. Astrophys. J., 609 Google Scholar, 452.
Giacalone, J. 2005. The efficient acceleration of thermal protons by perpendicular shocks. Astrophys. J. Lett., 628 Google Scholar, L37.
Giacalone, J. and Decker, R. 2010. The origin of low-energy anomalous cosmic rays at the solar-wind termination shock. Astrophys. J., 710 Google Scholar, 91.
Giacalone, J. and Jokipii, J. R. 1999. The transport of cosmic rays across a turbulent magnetic field. Astrophys. J., 520 Google Scholar, 204.
Giacalone, J. and Jokipii, J. R. 2007. Magnetic field amplification by shocks in turbulent fluids. Astrophys. J. Lett., 663 Google Scholar, L41.
Giacalone, J. and Kóta, J. 2006. Acceleration of Solar-Energetic Particles by Shocks. Space Sci. Rev., 124 Google Scholar, 277.
Giacalone, J., Burgess, D., Schwartz, S. J. and Ellison, D. C. 1992. Hybrid simulations of protons strongly accelerated by a parallel collisionless shock. Geophys. Res. Lett., 19 Google Scholar, 433.
Giacalone, J., Burgess, D., Schwartz, S. J. and Ellison, D. C. 1993. Ion injection and acceleration at parallel shocks – Comparisons of self-consistent plasma simulations with existing theories. Astrophys. J., 402 Google Scholar, 550.
Giacalone, J., Burgess, D., Schwartz, S. J., Ellison, D. C. and Bennett, L. 1997. Injection and acceleration of thermal protons at quasi-parallel shocks: A hybrid simulation parameter survey. J. Geophys. Res., 102 Google Scholar, 19789.
Gloeckler, G., Hovestadt, D. and Fisk, L. A. 1979. Observed distribution functions of H, He, C, O, and Fe in corotating energetic particle streams – Implications for interplanetary acceleration and propagation. Astrophys. J. Lett., 230 Google Scholar, L191.
Goedbloed, J. P., Keppens, R. and Poedts, S. 2010. Advanced Magnetohydrodynamics: With Applications to Laboratory and Astrophysical Plasmas. Cambridge Google Scholar: Cambridge University Press.
Golden, K. I., Linson, L. M. and Mani, S. A. 1973. Ion streaming instabilities with application to collisionless shock wave structure. Phys. Fluids, 16 Google Scholar, 2319.
Goodrich, C. C. and Scudder, J. D. 1984. The adiabatic energy change of plasma electrons and the frame dependence of the cross-shock potential at collisionlessmagnetosonic shock waves. J. Geophys. Res., 89 Google Scholar, 6654.
Gordon, B. E., Lee, M. A., Möbius, E. and Trattner, K. J. 1999. Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks and Earth's bow shock revisited. J. Geophys. Res., 104 Google Scholar, 28263.
Gosling, J. T. and Thomsen, M. F. 1985. Specularly reflected ions, shock foot thicknesses, and shock velocity determinations in space. J. Geophys. Res., 90 Google Scholar, 9893.
Gosling, J. T., Asbridge, J. R., Bame, S. J., et al. 1981. Interplanetary ions during an energetic storm particle event – The distribution function from solar wind thermal energies to 1.6 MeV. J. Geophys. Res., 86 Google Scholar, 547.
Gosling, J. T., Thomsen, M. F., Bame, S. J., Feldman, W. C., Paschmann, G. and Sckopke, N. 1982. Evidence for specularly reflected ions upstream from the quasiparallel bow shock. Geophys. Res. Lett., 9 Google Scholar, 1333.
Gosling, J. T., Thomsen, M. F., Bame, S. J. and Russell, C. T. 1989a. Ion reflection and downstream thermalization at the quasiparallel bow shock. J. Geophys. Res., 94 Google Scholar, 10027.
Gosling, J. T., Thomsen, M. F., Bame, S. J. and Russell, C. T. 1989b. Suprathermal electrons at earth's bowshock. J. Geophys. Res., 94 Google Scholar, 10011.
Greenstadt, E.W., Fredricks, R.W., Scarf, F. L., Russell, C. T., Anderson, R. R. and GurnettD. A. 1981. Whistler mode wave propagation in the solar wind near the bow shock. J. Geophys. Res., 86 Google Scholar, 4511–4516.
Greenstadt, E.W., Coroniti, F.V., Moses, S. L., et al. 1991. Weak, quasiparallel profiles of earth's bow shock – A comparison between numerical simulations and ISEE 3 observations on the far flank. Geophys. Res. Lett., 18 Google Scholar, 2301.
Greenstadt, E.W., Coroniti, F.V., Moses, S. L. and Smith, E. J. 1992. Plasma wave profiles of earth's bow shock at low Mach numbers – ISEE 3 observations on the far flank. J. Geophys. Res., 97 Google Scholar, 10841.
Gurnett, D. A. 1985. Plasmawaves and instabilities. In Tsurutani, B. T. and Stone, R. G. (eds), Collisionless Shocks in the Heliosphere: Reviews of Current Research. Geophysical Monograph Series, vol. 35. Washington DC Google Scholar: American Geophysical Union, pp. 207–224.
Hada, T., Oonishi, M., Lembège, B. and Savoini, P. 2003. Shock front nonstationarity of supercritical perpendicular shocks. J. Geophys. Res., 108 Google Scholar, 1233.
Hamza, A. M. and Meziane, K. 2011. On turbulence in the quasi-perpendicular bow shock. Planet. Space Sci., 59 Google Scholar, 475.
Helder, E.A., Vink, J., Bykov, A. M., Ohira, Y., Raymond, J. C. and Terrier, R. 2012. Observational signatures of particle acceleration in supernova remnants. Space Sci. Rev., 173 Google Scholar, 369.
Hellinger, P. and Mangeney, A. 1999. Electromagnetic ion beam instabilities: Oblique pulsations. J. Geophys. Res., 104 Google Scholar, 4669.
Hellinger|P. and Trávníček, P. 2005. Magnetosheath compression: Role of characteristic compression time, alpha particle abundance, and alpha/proton relative velocity. J. Geophys. Res., 110 Google Scholar, 4210.
Hellinger, P., Trčvníček|P. and Matsumoto, H. 2002. Reformation of perpendicular shocks: Hybrid simulations. Geophys. Res. Lett., 29 Google Scholar(24), 2234.
Hellinger, P., Trávníček, P., Lembège, B. and Savoini, P. 2007. Emission of nonlinear whistler waves at the front of perpendicular supercritical shocks: Hybrid versus full particle simulations. Geophys. Res. Lett., 34 Google Scholar, 14109.
Hobara, Y., Balikhin, M., Krasnoselskikh, V., Gedalin, M. and Yamagishi, H. 2010. Statistical study of the quasi-perpendicular shock ramp widths. J. Geophys. Res., 115 Google Scholar(A14), 11106.
Hoppe, M. M., Russell, C. T., Frank, L. A., Eastman, T. E. and Greenstadt, E.W. 1981. Upstream hydromagneticwaves and their association with backstreaming ion populations – ISEE 1 and 2 observations. J. Geophys. Res., 86 Google Scholar, 4471.
Horbury, T. S., Cargill, P. J., Lucek, E.A., et al. 2001. Cluster magnetic field observations of the bowshock: Orientation, motion and structure. Ann. Geophys., 19 Google Scholar, 1399.
Hovestadt, D., Vollmer, O., Gloeckler, G. and Fan, C.Y. 1973. Differential energy spectra of low-energy (<8.5 MeV per nucleon) heavy cosmic rays during solar quiet times. Phys. Rev. Lett., 31 Google Scholar, 650.
Huba, J.D. and Wu, C. S. 1976. Effects of a magnetic field gradient on the lower hybrid drift instability. Phys. Fluids, 19 Google Scholar, 988.
Hubert, D., Lacombe, C., Harvey, C. C., Moncuquet, M., Russell, C. T. and Thomsen, M. F. 1998. Nature, properties, and origin of low-frequency waves from an oblique shock to the inner magnetosheath. J. Geophys. Res., 103 Google Scholar, 26783.
Hull, A. J. and Scudder, J. D. 2000. Model for the partition of temperature between electrons and ions across collisionless, fast mode shocks. J. Geophys. Res., 105 Google Scholar, 27323.
Hull, A. J., Scudder, J. D., Fitzenreiter, R. J., Ogilvie, K.W., Newbury, J. A. and Russell, C. T. 2000. Electron temperature and de Hoffmann-Teller potential change across the Earth's bow shock: New results from ISEE 1.J. Geophys. Res., 105 Google Scholar, 20957.
Hull, A. J., Larson, D. E., Wilber, M., et al. 2006. Large-amplitude electrostaticwaves associated with magnetic ramp substructure at Earth's bow shock. Geophys. Res. Lett., 33 Google Scholar, 15104.
Ipavich, F. M., Gloeckler, G., Fan, C.Y., et al. 1979. Initial observations of low energy charged particles near the earth's bow shock on ISEE-1. Space Sci. Rev., 23 Google Scholar, 93.
Isenberg, P.A. 1997. A hemispherical model of anisotropic interstellar pickup ions. J. Geophys. Res., 102 Google Scholar, 4719.
Jokipii, J. R. 1971. Deceleration and acceleration of cosmic rays in the solar wind. Phys. Rev. Lett., 26 Google Scholar, 666.
Jokipii, J. R. 1982. Particle drift, diffusion, and acceleration at shocks. Astrophys. J., 255 Google Scholar, 716.
Jokipii, J. R. 1986. Particle acceleration at a termination shock. I – Application to the solar wind and the anomalous component. J. Geophys. Res., 91 Google Scholar, 2929.
Jokipii, J. R. 1987. Rate of energy gain and maximum energy in diffusive shock acceleration. Astrophys. J., 313 Google Scholar, 842.
Jokipii, J. R., Kota, J. and Giacalone, J. 1993. Prependicular transport in 1- and 2- dimensional shock simulations. Geophys. Res. Lett., 20 Google Scholar, 1759.
Jones, F. C. and Ellison, D. C. 1991. The plasma physics of shock acceleration. Space Sci. Rev., 58 Google Scholar, 259.
Kallenbach, R., Hilchenbach, M., Chalov, S.V., Le Roux, J. A. and Bamert, K. 2005. On the ‘injection problem’ at the solar wind termination shock. Astron. Astrophys., 439 Google Scholar, 1.
Kan, J. R., Lyu, L. H. and Mandt, M. E. 1991. Quasi-parallel collisionless shocks. Space Sci. Rev., 57 Google Scholar, 201.
Kantrowitz, A. and Petschek, H. E. 1966. MHD Characteristics and shock waves. In Kunkel, W.B. (ed.), Plasma Physics in Theory and Application. New York Google Scholar: McGraw Hill, p. 148.
Kennel, C. F. 1987. Critical Mach numbers in classical magnetohydrodynamics. J. Geophys. Res., 92 Google Scholar, 13427.
Kennel, C. F. and Petschek, H. E. 1966. Limit on stably trapped particle fluxes. J. Geophys. Res., 71 Google Scholar, 1.
Kennel, C. F. and Sagdeev, R. Z. 1967. Collisionless shock waves in high β plasmas: 1. J. Geophys. Res., 72 Google Scholar, 3303.
Kennel, C. F., Edmiston, J. P. and Hada, T. 1985. A quarter century of collisionless shock research. In Stone, R. G. and Tsurutani, B. T. (eds), Collisionless Shocks in the Heliosphere: A Tutorial Review. Geophysical Monograph Series, vol. 34. Washington DC Google Scholar: American Geophysical Union, p. 1.
Kis, A., Scholer, M., Klecker, B., et al. 2004. Multi-spacecraft observations of diffuse ions upstream of Earth's bow shock. Geophys. Res. Lett., 312 Google Scholar, 20801.
Knock, S. A., Cairns, I. H., Robinson, P. A. and Kuncic, Z. 2003. Theoretically predicted properties of type II radio emission from an interplanetary foreshock. J. Geophys. Res., 108 Google Scholar, 1126.
Krall, N. A. and Trivelpiece, A.W. 1973. Principles of Plasma Physics. New York Google Scholar: McGraw-Hill.
Krasnoselskikh, V.V., Lembège, B., Savoini, P. and Lobzin, V.V. 2002. Nonstationarity of strong collisionless quasiperpendicular shocks: Theory and full particle numerical simulations. Phys. Plasmas, 9 Google Scholar, 1192.
Krasnoselskikh, V., Balikhin, M., Walker, S. N., et al. 2013. The dynamic quasiperpendicular shock: Cluster discoveries. Space Sci. Rev., 178 Google Scholar, 535.
Krauss-Varban, D. 1995. Waves associated with quasi-parallel shocks: Generation, mode conversion and implications. Adv. Space Res., 15 Google Scholar, 271.
Krauss-Varban, D. and Burgess, D. 1991. Electron acceleration at nearly perpendicular collisionless shocks. II – Reflection at curved shocks. J. Geophys. Res., 96 Google Scholar, 143.
Krauss-Varban, D. and Omidi, N. 1991. Structure of medium Mach number quasiparallel shocks – Upstream and downstream waves. J. Geophys. Res., 961 Google Scholar, 17715.
Krauss-Varban, D. and Omidi, N. 1993. Propagation characteristics of waves upstream and downstream of quasiparallel shocks. Geophys. Res. Lett., 20 Google Scholar, 1007.
Krauss-Varban, D., Burgess, D. and Wu, C. S. 1989. Electron acceleration at nearly perpendicular collisionless shocks. I – One-dimensional simulations without electron scale fluctuations. J. Geophys. Res., 94 Google Scholar, 15089.
Krymskii, G. F. 1977. A regular mechanism for the acceleration of charged particles on the front of a shock wave. Akad. Nauk SSSR Dokl., 234 Google Scholar, 1306.
Kucharek, H. and Scholer, M. 1991. Origin of diffuse superthermal ions at quasiparallel supercritical collisionless shocks. J. Geophys. Res., 962 Google Scholar, 21195.
Kucharek, H. and Scholer, M. 1995. Injection and acceleration of interstellar pickup ions at the heliospheric termination shock. J. Geophys. Res., 100 Google Scholar, 1745–1754.
Kucharek, H., Möbius, E., Scholer, M., Mouikis, C., Kistler, L., Horbury, T., Balogh, A., Réme, H. and Bosqued, J. 2004. On the origin of field-aligned beams at the quasi-perpendicular bow shock: multi-spacecraft observations by Cluster. Ann. Geophys., 22 Google Scholar, 2301.
Kuncic, Z., Cairns, I.H. and Knock, S. A. 2004. A Quantitative model for terrestrial foreshock radio emissions: 1. Predicted properties. J. Geophys. Res., 109 Google Scholar, 2108.
Kuramitsu, Y. and Krasnoselskikh, V. 2005a. Acceleration of charged particles by gyroresonant surfing at quasiparallel shocks. Astron. Astrophys., 438 Google Scholar, 391.
Kuramitsu, Y. and Krasnoselskikh, V. 2005b. Gyroresonant surfing acceleration. Phys. Rev. Lett., 94 Google Scholar(3), 031102.
Lacombe, C., Mangeney, A., Harvey, C. C. and Scudder, J. D. 1985. Electron plasma waves upstream of the Earth's bow shock. J. Geophys. Res., 90 Google Scholar(A1), 73.
Lampe, M., Manheimer, W. M., McBride, J. B., et al. 1972. Theory and simulation of the beam cyclotron instability. Phys. Fluids, 15 Google Scholar, 662.
Landau, L. D., Lifshitz, E.M. and Pitaevskii, L. P. 1984. Electrodynamics of Continuous Media, 2nd edn. Oxford Google Scholar: Butterworth-Heinemann.
le Roux, J. A., Webb, G. M., Florinski, V. and Zank, G. P. 2007. A focused transport approach to pickup ion shock acceleration: Implications for the termination shock. Astrophys. J., 662 Google Scholar, 350.
Lee|J. K. and Birdsall, C. K. 1979. Velocity space ring-plasma instability, magnetized, Part I: Theory. Phys. Fluids, 22 Google Scholar, 1306.
Lee, M. A. 1971. Self-consistent kinetic equations and the evolution of a relativistic plasma in an ambient magnetic field. Plasma Phys., 13 Google Scholar, 1079.
Lee, M. A. 1982. Coupled hydromagnetic wave excitation and ion acceleration upstream of the earth's bow shock. J. Geophys. Res., 87 Google Scholar, 5063.
Lee, M. A. 1983. Coupled hydromagnetic wave excitation and ion acceleration at interplanetary traveling shocks. J. Geophys. Res., 88 Google Scholar, 6109.
Lee, M. A. and Ip, W.-H. 1987. Hydromagnetic wave excitation by ionised interstellar hydrogen and helium in the solar wind. J. Geophys. Res., 92 Google Scholar, 11041.
Lee, M. A., Shapiro, V.D. and Sagdeev, R. Z. 1996. Pickup ion energization by shock surfing. J. Geophys. Res., 101 Google Scholar, 4777.
Lee, M. A., Mewaldt, R.A. and Giacalone, J. 2012. Shock acceleration of ions in the heliosphere. Space Sci. Rev., 173 Google Scholar, 247.
Lee, R. E., Chapman, S.C. and Dendy, R. O. 2004. Numerical simulations of local shock reformation and ion acceleration in supernova remnants. Astrophys. J., 604 Google Scholar, 187.
Lefebvre, B., Schwartz, S. J., Fazakerley, A. F. and Décréau, P. 2007. Electron dynamics and cross-shock potential at the quasi-perpendicular Earth's bow shock. J. Geophys. Res., 112 Google Scholar(A11), 9212.
Lembège, B. 2003. Full particle electromagnetic simulation of collisionless shocks. In Büchner, J., Dum, C. and Scholer, M. (eds), Space Plasma Simulation. Lecture Notes in Physics, vol. 615. Berlin Google Scholar: Springer-Verlag, p. 54.
Lembège, B. and Dawson, J. M. 1987. Selfconsistent study of a perpendicular collisionless and nonresistive shock. Phys. Fluids, 30 Google Scholar, 1767.
Lembège, B. and Savoini, P. 2002. Formation of reflected electron bursts by the nonstationarity and nonuniformity of a collisionless shock front. J. Geophys. Res., 107 Google Scholar, 1037.
Lembège, B., Giacalone, J., Scholer, M., et al. 2004. Selected problems in collisionless-shock physics. Space Sci. Rev., 110 Google Scholar, 161.
Lembège, B., Savoini, P., Hellinger, P. and Trávníček, P.M. 2009. Nonstationarity of a two-dimensional perpendicular shock: Competingmechanisms. J. Geophys. Res., 114 Google Scholar, 3217.
Lemons, D. S. and Gary, S. P. 1978. Currentdriven instabilities in a laminar perpendicular shock. J. Geophys. Res., 83 Google Scholar, 1625.
Leroy, M. M. 1983. Structure of perpendicular shocks in collisionless plasma. Phys. Fluids, 26 Google Scholar, 2742.
Leroy, M. M. and Mangeney, A. 1984. A theory of energization of solar wind electrons by the earth's bow shock. Ann. Geophys., 2 Google Scholar, 449.
Leroy, M. M. and Winske, D. 1983. Backstreaming ions from oblique earth bow shocks. Ann. Geophys., 1 Google Scholar, 527.
Leroy, M. M., Goodrich, C. C., Winske, D., Wu, C. S. and Papadopoulos|K. 1981. Simulation of a perpendicular bow shock. Geophys. Res. Lett., 8 Google Scholar, 1269.
Leroy, M. M., Winske, D., Goodrich, C. C., Wu, C. S. and Papadopoulos, K. 1982. The structure of perpendicular bow shocks. J. Geophys. Res., 87 Google Scholar, 5081.
LeVeque, R. J. 1992. Numerical Methods for Conservation Laws. Basel Google Scholar: Birkhäuser.
Liewer, P.C., Decyk, V. K., Dawson, J. M. and Lembège, B. 1991. Numerical studies of electron dynamics in oblique quasiperpendicular collisionless shock waves. J. Geophys. Res., 96 Google Scholar, 9455–9465.
Liewer, .C., Goldstein, B. E. and Omidi, N. 1993. Hybrid simulations of the effects of interstellar pickup hydrogen on the solar wind termination shock. J. Geophys. Res., 98 Google Scholar, 15211.
Lin, R. P., Meng, C.-I. and Anderson, K. A. 1974. 30- to 100-keV protons upstream from the earth's bow shock. J. Geophys. Res., 79 Google Scholar, 489.
Lipatov, A. S. 2002. The Hybrid Multiscale Simulation Technology: An Introduction with Application to Astrophysical and Laboratory Plasmas. Berlin Google Scholar: Springer.
Lipatov, A. S. and Zank, G. P. 1999. Pickup Ion Acceleration at Low- βp Perpendicular Shocks. Phys. Rev. Lett., 82 Google Scholar, 3609.
Liu, Y. C.-M., Lee, M. A. and Kucharek, H. 2005. Aquasilinear theory of ion ‘thermalization’ and wave excitation downstream of Earth's bow shock. J. Geophys. Res., 110 Google Scholar, 9101.
Livesey, W. A., Russell, C. T. and Kennel, C. F. 1984. A comparison of specularly reflected gyrating ion orbits with observed shock foot thicknesses. J. Geophys. Res., 89 Google Scholar, 6824.
Lobzin, V.V., Krasnoselskikh, V.V., Bosqued, J.-M., Pinçon, J.-L., Schwartz, S. J. and Dunlop, M. 2007. Nonstationarity and reformation of high-Mach-number quasiperpendicular shocks: Cluster observations. Geophys. Res. Lett., 340 Google Scholar, L05107.
Lowe, R. E. and Burgess, D. 2003. The properties and causes of rippling in quasiperpendicular collisionless shock fronts. Ann. Geophys., 21 Google Scholar, 671.
Lucek, E.A., Constantinescu, D., Goldstein, M. L., et al. 2005. The magnetosheath. Space Sci. Rev., 118 Google Scholar, 95.
Lucek, E.A., Horbury, T. S., Dandouras, I. and Rème, H. 2008. Cluster observations of the Earth's quasi-parallel bow shock. J. Geophys. Res., 113 Google Scholar, 7.
Malkov, M. A. 1998. Ion leakage from quasiparallel collisionless shocks: Implications for injection and shock dissipation. Phys. Rev. E, 58 Google Scholar, 4911.
Malkov, M. A. and Voelk, H. J. 1995. Theory of ion injection at shocks. Astron. Astrophys., 300 Google Scholar, 605.
Mandt, M. E. and Kan, J. R. 1990. Dispersive and viscous scale lengths in the two-stage ion heating at quasi-parallel collisionless shocks. J. Geophys. Res., 95 Google Scholar, 6353.
Matsukiyo, S. and Scholer, M. 2003. Modified two-stream instability in the foot of high Mach number quasi-perpendicular shocks. J. Geophys. Res., 108 Google Scholar, 1459.
Matsukiyo, S. and Scholer, M. 2006a. On microinstabilities in the foot of high Mach number perpendicular shocks. J. Geophys. Res., 111 Google Scholar, 6104.
Matsukiyo, S. and Scholer, M. 2006b. On reformation of quasi-perpendicular collisionless shocks. Adv. Space Res., 38 Google Scholar, 57.
Matsukiyo, S. and Scholer, M. 2011. Microstructure of the heliospheric termination shock: Full particle electrodynamic simulations. J. Geophys. Res., 116 Google Scholar, 8106.
Mazelle, C., Lembège, B., Morgenthaler, A., et al. 2010. Self-reformation of the quasiperpendicular shock: CLUSTER observations. Twelfth International Solar Wind Conference, 1216 Google Scholar, 471.
McDonald, F.B., Teegarden, B. J., Trainor, J. H. and Webber, W. R. 1974. The anomalous abundance of cosmic-ray nitrogen and oxygen nuclei at low energies. Astrophys. J. Lett., 187 Google Scholar, L105.
McKean, M. E., Winske, D. and Gary, S. P. 1994. Two-dimensional simulations of ion anisotropy instabilities in the magnetosheath. J. Geophys. Res., 99 Google Scholar, 11141.
McKean, M. E., Omidi, N. and Krauss-Varban, D. 1995. Wave and ion evolution downstream of quasi-perpendicular bow shocks. J. Geophys. Res., 100 Google Scholar, 3427.
McKenzie, J. F. and Völk, H. J. 1982. Nonlinear theory of cosmic ray shocks including self-generated Alfven waves. Astron. Astrophys., 116 Google Scholar, 191.
Mellott, M. M. 1985. Subcritical collisionless shock waves. In Tsurutani, B. T. and Stone, R. G. (eds), Collisionless Shocks in the Heliosphere: Reviews of Current Research. Geophysical Monograph Series, vol. 35. Washington DC Google Scholar: American Geophysical Union, p. 131.
Mellott, M. M. and Greenstadt, E.W. 1984. The structure of oblique subcritical bow shocks – ISEE 1 and 2 observations. J. Geophys. Res., 89 Google Scholar, 2151.
Mellott, M. M. and Greenstadt, E.W. 1988. Plasma waves in the range of the lower hybrid frequency – ISEE 1 and 2 observations at the earth's bow shock. J. Geophys. Res., 93 Google Scholar, 9695–9708.
Melrose, D.B. 1986. Instabilities in Space and Laboratory Plasmas. Cambridge Google Scholar: Cambridge University Press.
Moiseev, S. S. and Sagdeev, R. Z. 1963. Collisionless shock waves in a plasma in a weak magnetic field. J. Nucl. Energy, 5 Google Scholar, 43.
Moullard, O., Burgess, D., Horbury, T. S. and Lucek, E.A. 2006. Ripples observed on the surface of the Earth's quasiperpendicular bow shock. J. Geophys. Res., 111 Google Scholar(A10), 9113.
Muschietti, L. and Lembège, B. 2006. Electron cyclotron microinstability in the foot of a perpendicular shock:Aself-consistent PIC simulation. Adv. Space Res., 37 Google Scholar, 483.
Newbury, J. A., Russell, C. T. and Gedalin, M. 1998. The ramp widths of high-Machnumber, quasi-perpendicular collisionless shocks. J. Geophys. Res., 103 Google Scholar, 29581.
Ohsawa, Y. 1985. Strong ion acceleration by a collisionless magnetosonic shock wave propagating perpendicularly to a magnetic field. Phys. Fluids, 28 Google Scholar, 2130.
Oka, M., Terasawa, T., Saito, Y. and Mukai, T. 2005. Field-aligned beam observations at the quasi-perpendicular bow shock: Generation and shock angle dependence. J. Geophys. Res., 110 Google Scholar, A05101.
Omidi, N. and Winske, D. 1992. Kinetic structure of slow shocks – Effects of the electromagnetic ion/ion cyclotron instability. J. Geophys. Res., 97 Google Scholar, 14801.
Omidi, N., Quest, K.B. and Winske, D. 1990. Low Mach number parallel and quasi-parallel shocks. J. Geophys. Res., 95 Google Scholar, 20717.
Omidi, N., Blanco-Cano, X. and Russell, C. T. 2005. Macrostructure of collisionless bow shocks: 1. Scale lengths. J. Geophys. Res., 110 Google Scholar, 12212.
Onsager, T. G., Holzworth, R.H., Koons, H. C., Bauer, O.H. and Gurnett, D. A. 1989. High-frequency electrostatic waves near earth's bow shock. J. Geophys. Res., 94 Google Scholar, 13397–13408.
Onsager, T. G., Thomsen, M. F., Gosling, J. T., Bame, S. J. and Russell, C. T. 1990. Survey of coherent ion reflection at the quasi-parallel bow shock. J. Geophys. Res., 95 Google Scholar, 2261.
Onsager, T. G., Winske, D. and Thomsen, M. F. 1991. Interaction of a finite-length ion beam with a background plasma – Reflected ions at the quasi-parallel bow shock. J. Geophys. Res., 96 Google Scholar, 1775.
Papadopoulos, K. 1985. Microinstabilities and anomalous transport. In Stone, R. G. and Tsurutani, B. T. (eds), Collisionless Shocks in the Heliosphere: A Tutorial Review. Geophysical Monograph Series, vol. 34. Washington DC Google Scholar: American Geophysical Union, p. 59.
Papadopoulos, K. 1988. Electron heating in superhigh Mach number shocks. 144 Google Scholar, 535.
Papadopoulos, K., Davidson, R. C., Dawson, J. M., et al. 1971. Heating of counterstreaming ion beams in an external magnetic field. Phys. Fluids, 14 Google Scholar, 849.
Parker, E.N. 1961. A quasi-linear model of plasma shock structure in a longitudinal magnetic field. J. Nucl. Energy, 2 Google Scholar, 146.
Parker, E.N. 1965. The passage of energetic charged particles through interplanetary space. Planet. Space Sci., 13 Google Scholar, 9.
Paschmann, G., Sckopke, N., Asbridge, J.R., Bame, S. J. and Gosling, J. T. 1980. Energization of solar wind ions by reflection from the earth's bow shock. J. Geophys. Res., 85 Google Scholar, 4689.
Paschmann, G., Sckopke, N., Papamastorakis, I., Asbridge, J.R., Bame, S. J. and Gosling|J. T. 1981. Characteristics of reflected and diffuse ions upstream from the earth's bow shock. J. Geophys. Res., 86 Google Scholar, 4355.
Pesses, M. E. 1981 Google Scholar. On the Acceleration of Ions by Interplanetary Shock Waves. 1: Single Encounter Considerations. Tech. rept. NASA-TM-83913. NASA STI Program.
Pesses, M. E., Eichler, D. and Jokipii, J. R. 1981. Cosmic ray drift, shock wave acceleration, and the anomalous component of cosmic rays. Astrophys. J. Lett., 246 Google Scholar, L85.
Pesses, M. E., Decker, R. B. and Armstrong, T. P. 1982. The acceleration of charged particles in interplanetary shock waves. Space Sci. Rev., 32 Google Scholar, 185.
Pizzo, V. 1978. A three-dimensional model of corotating streams in the solar wind. I – Theoretical foundations. J. Geophys. Res., 83 Google Scholar, 5563.
Pritchett, P. L. 2003. Particle-in-cell simulation of plasmas – A tutorial. In Büchner, J., Dum, C., and Scholer, M. (eds), Space Plasma Simulation. Lecture Notes in Physics, vol. 615. Berlin Google Scholar: Springer Verlag, p. 1.
Reames, D.V. 1999. Particle acceleration at the Sun and in the heliosphere. Space Sci. Rev., 90 Google Scholar, 413.
Richardson, J. D., Kasper, J. C., Wang, C., Belcher, J.W. and Lazarus, A. J. 2008. Cool heliosheath plasma and deceleration of the upstream solar wind at the termination shock. Nature, 454 Google Scholar, 63>/sp>.
Riquelme, M. A. and Spitkovsky, A. 2009. Nonlinear study of Bell's cosmic ray current-driven instability. Astrophys. J., 694 Google Scholar,626.
Riquelme, M. A. and Spitkovsky, A. 2011. Electron injection by whistler waves in non-relativistic shocks. Astrophys. J., 733 Google Scholar, 63.
Rodriguez, P. and Gurnett, D. A. 1975. Electrostatic and electromagnetic turbulence associated with the earth's bow shock. J. Geophys. Res., 80 Google Scholar, 19–31.
Rodriguez, P. and Gurnett, D. A. 1976. Correlation of bow shock plasma wave turbulence with solar wind parameters. J. Geophys. Res., 81 Google Scholar, 2871–2882.
Russell, C. T., Smith, E. J., Tsurutani, B. T., Gosling, J. T. and Bame, S. J. 1983. Multiple spacecraft observations of interplanetary shocks: Characteristics of the upstream ULF turbulence. In Neugebauer, M. (ed.), Solar Wind Five Google Scholar. NASA Conference Publication, vol. CP-2280. NASA, Scientific and Technical Information Branch, p. 385.
Sagdeev, R. Z. 1966. Cooperative phenomena and shock waves in collisionless plasmas. Rev. Plasma Phys., 4 Google Scholar, 23.
Sarris, E. T., Krimigis, S. M. and Armstrong, T. P. 1976. Observations of a high-energy ion shock spike in interplanetary space. Geophys. Res. Lett., 3 Google Scholar, 133.
Savoini, P. and Lembège, B. 2001. Two-dimensional simulations of a curved shock: Self-consistent formation of the electron foreshock. J. Geophys. Res., 106 Google Scholar, 12975.
Savoini, P., Lembége, B. and Stienlet, J. 2010. Origin of backstreaming electrons within the quasi-perpendicular foreshock region: Two-dimensional self-consistent PIC simulation. J. Geophys. Res., 115 Google Scholar, 9104.
Scholer, M. 1990. Diffuse ions at a quasiparallel collisionless shock – Simulations. Geophys. Res. Lett., 17 Google Scholar, 1821.
Scholer, M. 1993. Upstream waves, shocklets, short large-amplitude magnetic structures and the cyclic behavior of oblique quasi-parallel collisionless shocks. J. Geophys. Res., 98 Google Scholar, 47.
Scholer, M. and Burgess, D. 1992. The role of upstream waves in supercritical quasiparallel shock re-formation. J. Geophys. Res., 97 Google Scholar, 8319.
Scholer, M. and Burgess, D. 2007. Whistler waves, core ion heating, and nonstationarity in oblique collisionless shocks. Phys. Plasmas, 14 Google Scholar(7), 072103.
Scholer, M. and Fujimoto, M. 1993. Low-Mach number quasi-parallel shocks- Upstream waves. J. Geophys. Res., 98 Google Scholar, 15275.
Scholer, M. and Matsukiyo, S. 2004. Nonstationarity of quasi-perpendicular shocks: a comparison of full particle simulations with different ion to electron mass ratio. Ann. Geophys., 22 Google Scholar, 2345.
Scholer, M. and Terasawa, T. 1990. Ion reflection and dissipation at quasi-parallel collisionless shocks. Geophys. Res. Lett., 17 Google Scholar, 119.
Scholer, M., Hovestadt, D., Ipavich, F.M. and Gloeckler, G. 1983. Acceleration of low-energy protons and alpha particles at interplanetary shock waves. J. Geophys. Res., 88 Google Scholar, 1977.
Scholer, M., Fujimoto, M. and Kucharek, H. 1993. Two-dimensional simulations of supercritical quasi-parallel shocks: upstream waves, downstream waves, and shock re-formation. J. Geophys. Res., 98 Google Scholar, 18971.
Scholer, M., Kucharek, H. and Jayanti, V. 1997. Waves and turbulence in high Mach number nearly parallel collisionless shocks. J. Geophys. Res., 102 Google Scholar, 9821.
Scholer, M., Kucharek, H. and Trattner, K.-H. 1999a. Injection and acceleration of H+ and He2C at Earth's bow shock. Ann. Geophys., 17 Google Scholar, 583.
Scholer, M., Mann, G., Chalov, S., Desai, M. I., Fisk, L. A., Jokipii, J. R., Kallenbach, R., Keppler, E., Kóta, J., Kunow, H., Lee, M. A., Sanderson, T. R. and Simnett, G. M. 1999b. Origin, injection, and acceleration of CIR particles: Theory report of working group 7. Space Sci. Rev., 89 Google Scholar, 369– 399.
Scholer, M., Kucharek, H., Krasnosselskikh, V.V. and Trattner, K.-H. 2000. Injection and acceleration of ions at collisionless shocks: Kinetic simulations. In Mewaldt, R. A., Jokipii, J. R., Lee, M. A., Möbius, E. and Zurbuchen, T.H. (eds), Acceleration and Transport of Energetic Particles Observed in the Heliosphere. American Institute of Physics Conference Series, vol. 528 Google Scholar, p. 250.
Scholer, M., Shinohara, I. and Matsukiyo, S. 2003a. Quasi-perpendicular shocks: Length scale of the cross-shock potential, shock reformation, and implication for shock surfing. J. Geophys. Res., 108 Google Scholar, 1014.
Scholer, M., Kucharek, H. and Shinohara, I. 2003b. Short large-amplitude magnetic structures and whistler wave precursors in a full-particle quasi-parallel shock simulation. J. Geophys. Res., 108 Google Scholar, 1273.
Schure, K. M., Bell, A. R., O'C Drury, L. and Bykov, A.M. 2012. Diffusive shock acceleration and magnetic field amplification. Space Sci. Rev., 173 Google Scholar, 491.
Schwartz, S. J. 1985. Solar wind and the Earth's bow shock. In Priest, E. R. (ed.), Solar System Magnetic Fields. Dordrecht Google Scholar: Reidel, p. 190.
Schwartz, S. J. 1998. Shock and discontinuity normals, Mach numbers, and related parameters. ISSI Scientific Reports Series, 1 Google Scholar, 249.
Schwartz, S. J. and Burgess, D. 1991. Quasiparallel shocks – A patchwork of threedimensional structures. Geophys. Res. Lett., 18 Google Scholar, 373.
Schwartz, S. J., Thomsen, M. F. and Gosling, J. T. 1983. Ions upstream of the earth's bow shock – A theoretical comparison of alternative source populations. J. Geophys. Res., 88 Google Scholar, 2039.
Schwartz, S. J., Thomsen, M. F., Bame, S. J. and Stansberry, J. 1988. Electron heating and the potential jump across fast mode shocks. J. Geophys. Res., 93 Google Scholar, 12923.
Schwartz, S. J., Burgess, D., Wilkinson, W. P.,Kessel, R. L., Dunlop|M. and Luehr, H. 1992. Observations of short largeamplitude magnetic structures at a quasiparallel shock. J. Geophys. Res., 97 Google Scholar, 4209.
Schwartz, S. J., Burgess, D. and Moses, J. J. 1996. Low-frequency waves in the Earth's magnetosheath: present status. Ann. Geophys., 14 Google Scholar, 1134.
Sckopke, N., Paschmann, G., Bame, S. J., Gosling, J. T. and Russell, C. T. 1983. Evolution of ion distributions across the nearly perpendicular bow shock – Specularly and non-specularly reflected-gyrating ions. J. Geophys. Res., 88 Google Scholar, 6121.
Sckopke, N., Paschmann, G., Brinca, A. L., Carlson, C.W. and Luehr, H. 1990. Ion thermalization in quasi-perpendicular shocks involving reflected ions. J. Geophys. Res., 95 Google Scholar, 6337.
Scudder|J. D. 1995. A review of the physics of electron heating at collisionless shocks. Adv. Space Res., 15 Google Scholar, 181.
Scudder, J. D., Aggson, T. L., Mangeney, A., Lacombe, C. and Harvey, C. C. 1986a. The resolved layer of a collisionless, high beta, supercritical, quasi-perpendicular shock wave. I – Rankine-Hugoniot geometry, currents, and stationarity. J. Geophys. Res., 91 Google Scholar, 11019.
Scudder, J. D., Aggson, T. L., Mangeney, A., Lacombe, C. and Harvey, C. C. 1986b. The resolved layer of a collisionless, high beta, supercritical, quasi-perpendicular shock wave. II – Dissipative fluid electrodynamics. J. Geophys. Res., 91 Google Scholar, 11053.
Scudder, J. D., Mangeney, A., Lacombe, C., Harvey, C. C. and Wu, C. S. 1986c. The resolved layer of a collisionless, high beta, supercritical, quasi-perpendicular shock wave. III – Vlasov electrodynamics. J. Geophys. Res., 91 Google Scholar, 11075.
Sentman, D. D., Edmiston, J. P. and Frank, L. A. 1981. Instabilities of low frequency, parallel propagating electromagnetic waves in the earth's foreshock region. J. Geophys. Res., 86 Google Scholar, 7487.
Shimada, N and Hoshino, M. 2003. The dynamics of electron-ion coupling in the shock transition region. Phys. Plasmas, 10 Google Scholar(4), 1113.
Shimada, N. and Hoshino, M. 2004. Electron heating and acceleration in the shock transition region: Background plasma parameter dependence. Phys. Plasmas, 11 Google Scholar, 1840.
Sonnerup, B.U.Ö. 1969. Acceleration of particles reflected at a shock front. J. Geophys. Res., 74 Google Scholar, 1301.
Steenberg, C.D. and Moraal, H. 1996. An acceleration/modulation model for anomalous cosmic-ray hydrogen in the heliosphere. Astrophys. J., 463 Google Scholar, 776.
Steenberg, C.D. and Moraal, H. 1999. Form of the anomalous cosmic ray spectrum at the solar wind termination shock. J. Geophys. Res., 104 Google Scholar, 24879>.
Stix, T. H. 1992. Waves in Plasmas. College Park, MD Google Scholar: American Institute of Physics.
Stone, E.C., Cummings, A.C., McDonald, F. B., Heikkila, B. C., Lal, N. and Webber, W. R. 2005. Voyager 1 explores the termination shock region and the heliosheath beyond. Science, 309 Google Scholar, 2017.
Stone, E.C., Cummings, A.C., McDonald, F. B., Heikkila, B. C., Lal, N. and Webber, W. R. 2008. An asymmetric solar wind termination shock. Nature, 454 Google Scholar, 71.
Stringer, T. E. 1963. Low-frequency waves in an unbounded plasma. J. Nucl. Energy, 5 Google Scholar, 89.
Sugiyama, T. 2011. Time sequence of energetic particle spectra in quasiparallel shocks in large simulation systems. Phys. Plasmas, 18 Google Scholar(2), 022302.
Sugiyama|T. and Terasawa|T. 1999. A scatter-free ion acceleration process in the parallel shock. Adv. Space Res., 24 Google Scholar, 73.
Sugiyama, T., Fujimoto, M. and Mukai, T. 2001. Quick ion injection and acceleration at quasi-parallel shocks. J. Geophys. Res., 106 Google Scholar, 21657.
Tanaka, M., Goodrich, C. C., Winske, D. and Papadopoulos, K. 1983. A source of the backstreaming ion beams in the foreshock region. J. Geophys. Res., 88 Google Scholar, 3046.
Terasawa, T. 1979. Energy spectrum and pitch angle distribution of particles reflected by MHD shock waves of fast mode. Planet. Space Sci., 27 Google Scholar, 193.
Thomas, V.A. 1989. Dimensionality effects in hybrid simulations of high Mach number collisionless perpendicular shocks. J. Geophys. Res., 94 Google Scholar, 12009.
Thomas, V.A., Winske, D. and Omidi, N. 1990. Re-forming supercritical quasiparallel shocks. I – One- and two-dimensional simulations. J. Geophys. Res., 951 Google Scholar, 18809.
Thomsen, M. F., Gary, S. P., Feldman,W.C., Cole, T. E. and Barr, H. C. 1983. Stability of electron distributions within the earth's bow shock. J. Geophys. Res., 88 Google Scholar, 3035–3045.
Thomsen, M. F., Gosling, J. T., Bame, S. J. and Mellott, M. M. 1985. Ion and electron heating at collisionless shocks near the critical Mach number. J. Geophys. Res., 90 Google Scholar, 137.
Thomsen, M. F., Gosling, J. T., Bame, S. J. and Russell, C. T. 1990a. Magnetic pulsations at the quasi-parallel shock. J. Geophys. Res., 95 Google Scholar, 957.
Thomsen, M. F., Gosling, J. T., Bame, S. J., Onsager, T. G. and Russell, C. T. 1990b. Two-state ion heating at quasi-parallel shocks. J. Geophys. Res., 95 Google Scholar, 6363.
Thomsen, M. F., Gosling, J. T., Onsager, T. G. and Russell, C. T. 1993. Ion and electron heating at the low-Mach-number, quasi-parallel bow shock. J. Geophys. Res., 98 Google Scholar, 3875.
Tidman, D.A. and Krall, N. A. 1971. Shock Waves in Collisionless Plasmas. New York Google Scholar: Wiley-Interscience.
Tokar, R. L., Gurnett, D. A. and Feldman, W. C. 1984. Whistler mode turbulence generated by electron beams in earth's bowshock. J. Geophys. Res., 89 Google Scholar, 105–114.
Trattner, K. J. and Scholer, M. 1991. Diffuse alpha particles upstream of simulated quasi-parallel supercritical collisionless shocks. Geophys. Res. Lett., 18 Google Scholar, 1817.
Trattner, K. J., Möbius, E., Scholer, M., Klecker, B., Hilchenbach, M. and Luehr, H. 1994. Statistical analysis of diffuse ion events upstream of the Earth's bow shock. J. Geophys. Res., 99 Google Scholar, 13389.
Umeda, T., Yamao, M. and Yamazaki, R. 2008. Two-dimensional full particle simulation of a perpendicular collisionless shock with a shock-rest-frame model. Astrophys. J. Lett., 681 Google Scholar, L85.
Umeda, T., Kidani, Y., Yamao, M., Matsukiyo, S. and Yamazaki, R. 2010. On the reformation at quasi- and exactly perpendicular shocks: Full particle-in-cell simulations. J. Geophys. Res., 115 Google Scholar, 10250.
Umeda, T., Kidani, Y., Matsukiyo, S. and Yamazaki, R. 2012. Modified two-stream instability at perpendicular collisionless shocks: Full particle simulations. J. Geophys. Res., 117 Google Scholar, 3206.
Van Hollebeke, M.A. I., McDonald, F.B., Trainor, J.H. and von Rosenvinge, T. T. 1978. The radial variation of corotating energetic particle streams in the inner and outer solar system. J. Geophys. Res., 83 Google Scholar, 4723.
Veltri, P., Mangeney, A. and Scudder, J. D. 1990. Electron heating in quasiperpendicular shocks – A Monte Carlo simulation. J. Geophys. Res., 95 Google Scholar(Sept.), 14939–14959.
Walker, S., Alleyne, H., Balikhin, M., André, M. and Horbury, T. 2004. Electric field scales at quasi-perpendicular shocks. Ann. Geophys., 22 Google Scholar, 2291–2300.
Webb, G. M., Axford, W. I. and Terasawa, T. 1983.On the drift mechanism for energetic charged particles at shocks. Astrophys. J., 270 Google Scholar, 537.
Webb, G. M., Axford, W. I. and Forman, M. A. 1985. Cosmic-ray acceleration at stellar wind terminal shocks. Astrophys. J., 298 Google Scholar, 684.
Winske, D. 1985. Microtheory of collisionless shock current layers. In Tsurutani, B. T. and Stone, R. G. (eds), Collisionless Shocks in the Heliosphere: Reviews of Current Research, Geophysical Monograph Series, vol. 35. Washington DC Google Scholar: American Geophysical Union, p. 225.
Winske, D. and Leroy, M. M. 1984. Diffuse ions produced by electromagnetic ion beam instabilities. J. Geophys. Res., 89 Google Scholar, 2673.
Winske, D. and Quest, K. B. 1988. Magnetic field and density fluctuations at perpendicular supercritical collisionless shocks. J. Geophys. Res., 93 Google Scholar, 9681.
Winske, D., Giacalone, J., Thomsen, M. F. and Mellott, M. M. 1987. A comparative study of plasma heating by ion acoustic and modified two-stream instabilities at subcritical quasi-perpendicular shocks. J. Geophys. Res., 92 Google Scholar, 4411.
Winske, D., Thomas, V.A., Omidi, N. and Quest, K. B. 1990. Re-forming supercritical quasi-parallel shocks. II – Mechanism for wave generation and front re-formation. J. Geophys. Res., 95 Google Scholar, 18821.
Winske, D., Yin, L., Omidi, N., et al. 2003. Hybrid simulation codes: Past, present and future – A Tutorial. In Büchner, J., Dum, C., and Scholer, M. (eds), Space Plasma Simulation. Lecture Notes in Physics, vol. 615. Berlin Google Scholar: Springer Verlag, p. 136.
Wong, H.V. 1970. Electrostatic electron–ion streaming instability. Phys. Fluids, 13 Google Scholar, 757.
Woods, L.C. 1969. On the structure of collisionless magneto-plasma shock waves at super-critical Alfvén-Mach numbers. J. Plasma Phys., 3 Google Scholar, 435.
Wu, C. S. 1984. A fast Fermi process – Energetic electrons accelerated by a nearly perpendicular bow shock. J. Geophys. Res., 89 Google Scholar, 8857.
Wu, C. S., Winske, D., Tanaka, M., et al. 1984. Microinstabilities associated with a high Mach number, perpendicular bow shock. Space Sci. Rev., 37 Google Scholar, 63.
Wu, P., Winske, D., Gary, S. P., Schwadron, N. A. and Lee, M. A. 2009. Energy dissipation and ion heating at the heliospheric termination shock. J. Geophys. Res., 114 Google Scholar, 8103.
Yuan, X., Cairns, I.H. and Robinson, P. A. 2007. Simulation of energetic electron bursts upstream of re-forming shocks. Astrophys. J., 671 Google Scholar, 439.
Zank, G. P., Pauls, H. L., Cairns, I.H. and Webb, G. M. 1996. Interstellar pickup ions and quasi-perpendicular shocks: Implications for the termination shock and interplanetary shocks. J. Geophys. Res., 101 Google Scholar, 457.
Zank, G. P., Heerikhuisen, J., Pogorelov, N.V., Burrows, R. and McComas, D. 2010. Microstructure of the heliospheric termination shock: Implications for energetic neutral atom observations. Astrophys. J., 708 Google Scholar, 1092.
Zhou, Y. M., Wong, H. K. and Wu, C. S. 1983. Lower hybrid drift instability with temperature gradient in a perpendicular shock wave. J. Geophys. Res., 88 Google Scholar, 3026.
Zilbersher, D. and Gedalin, M. 1997. Pickup ion dynamics at the structured quasiperpendicular shock. Planet. Space Sci., 45 Google Scholar, 693.
Balogh, A., and Treumann, R. A. 2013. Physics of Collisionless Shocks – Space Plasma ShockWaves. Heidelberg–Berlin–New York Google Scholar: Springer-Verlag.
Gary, S. P. 1993. Theory of Space Plasma Microinstabilities. Cambridge Google Scholar: Cambridge University Press.
Russell, C. T. (ed.) 1995. Physics of Collisionless Shocks. Advances in Space Research, vol. 15, no. 8/9. Oxford Google Scholar: Pergamon, for COSPAR.
Schlickeiser, R. 2002. Cosmic Ray Astrophysics Google Scholar. Astronomy and astrophysics library. Berlin–Heidelberg–New York: Springer-Verlag.
Stone, R. G., and Tsurutani, B. T. (eds) 1985. Collisionless Shocks in the Heliosphere: A Tutorial Review. Geophysical Monograph Series, vol. 34. Washington, DC Google Scholar: American Geophysical Union.
Tidman, D. A., and Krall, N. A. 1971. Shock Waves in Collisionless Plasmas. New York Google Scholar: Wiley-Interscience.
Tsurutani, B. T., and Stone, R. G. (eds). 1985. Collisionless Shocks in the Heliosphere: Reviews of Current Research. Geophysical Monograph Series, vol. 34. Washington, DC Google Scholar: American Geophysical Union.

Metrics

Altmetric attention score

12 readers on Mendeley

Full text views

Total number of HTML views: 0
Total number of PDF views: 3769 *
Loading metrics...

Book summary page views

Total views: 6406 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 22nd April 2025. This data will be updated every 24 hours.

Usage data cannot currently be displayed.