Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-19T09:07:23.823Z Has data issue: false hasContentIssue false

Part 8 - Attributing Findings to a Known or Suspected Disorder

Published online by Cambridge University Press:  03 November 2020

Keith Josephs
Affiliation:
Mayo Clinic Alzheimer’s Disease Research Center
Federico Rodriguez-Porcel
Affiliation:
Medical University of South Carolina
Rhonna Shatz
Affiliation:
University of Cincinnati
Daniel Weintraub
Affiliation:
University of Pennsylvania
Alberto Espay
Affiliation:
University of Cincinnati
Get access
Type
Chapter
Information
Common Pitfalls in Cognitive and Behavioral Neurology
A Case-Based Approach
, pp. 113 - 128
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Barbe, F. et al. 2001. Treatment with continuous positive airway pressure is not effective in patients with sleep apnea but no daytime sleepiness. a randomized, controlled trial. Ann Intern Med 134(11) 10151023.CrossRefGoogle Scholar
Bucks, R. S., Olaithe, M. and Eastwood, P. 2013. Neurocognitive function in obstructive sleep apnoea: a meta-review. Respirology 18(1) 6170.CrossRefGoogle ScholarPubMed
Emamian, F. et al. 2016. The association between obstructive sleep apnea and Alzheimer’s disease: a meta-analysis perspective. Front Aging Neurosci 8 78.CrossRefGoogle ScholarPubMed
Foldvary-Schaefer, N. R. and Waters, T. E. 2017. Sleep-disordered breathing. Continuum 23(4) 10931116.Google Scholar
Haddock, N. and Wells, M. E. 2018. The association between treated and untreated obstructive sleep apnea and depression. Neurodiagn J 58(1) 3039.CrossRefGoogle ScholarPubMed
Liguori, C. et al. 2017. Obstructive sleep apnea is associated with early but possibly modifiable Alzheimer’s disease biomarkers changes. Sleep 40(5) zsx011 110.Google ScholarPubMed
Mery, V. P. et al. 2017. Reduced cognitive function in patients with Parkinson disease and obstructive sleep apnea. Neurology 88(12) 11201128.CrossRefGoogle ScholarPubMed
Naegele, B. et al. 2006. Which memory processes are affected in patients with obstructive sleep apnea? An evaluation of 3 types of memory. Sleep 29(4) 533544.CrossRefGoogle ScholarPubMed
Peppard, P. E. et al. 2013. Increased prevalence of sleep-disordered breathing in adults. Am J Epidemiol 177(9) 10061014.CrossRefGoogle ScholarPubMed
Rosenzweig, I. et al. 2015. Sleep apnoea and the brain: a complex relationship. Lancet Respir Med 3(5) 404414.CrossRefGoogle Scholar
Vaessen, T. J. A., Overeem, S. and Sitskoorn, M. M. 2015. Cognitive complaints in obstructive sleep apnea. Sleep Med Rev 19(Suppl C) 5158.CrossRefGoogle ScholarPubMed
Wang, J., Gu, B. J., Masters, C. L. and Wang, Y. J. 2017. A systemic view of Alzheimer disease – insights from amyloid-beta metabolism beyond the brain. Nat Rev Neurol 13(11) 703.CrossRefGoogle ScholarPubMed
Zhou, J., Camacho, M., Tang, X. and Kushida, C. A. 2016. A review of neurocognitive function and obstructive sleep apnea with or without daytime sleepiness. Sleep Med 23(Suppl C) 99108.CrossRefGoogle ScholarPubMed

References

Aziz, A. L. et al. 2017. Difference in imaging biomarkers of neurodegeneration between early and late-onset amnestic Alzheimer’s disease. Neurobiol Aging 54 2230.CrossRefGoogle ScholarPubMed
Chaudhury, S. et al. 2018. Polygenic risk score in postmortem diagnosed sporadic early-onset Alzheimer’s disease. Neurobiol Aging 62 244.e241.CrossRefGoogle ScholarPubMed
Harvey, R. J., Skelton-Robinson, M. and Rossor, M. N. 2003. The prevalence and causes of dementia in people under the age of 65 years. J Neurol Neurosurg Psychiatry 74(9) 12061209.CrossRefGoogle ScholarPubMed
Joubert, S. et al. 2016. Early-onset and late-onset Alzheimer’s disease are associated with distinct patterns of memory impairment. Cortex 74 217232.CrossRefGoogle ScholarPubMed
Karch, C. M. and Goate, A. M. 2015. Alzheimer’s disease risk genes and mechanisms of disease pathogenesis. Biol Psychiatry 77(1) 4351.CrossRefGoogle ScholarPubMed
Mendez, M. F. 2017. Early-onset Alzheimer disease. Neurol Clin 35(2) 263281.Google Scholar
Mendez, M. F. 2019. Early-onset Alzheimer disease and its variants. Continuum 25(1) 3451.Google ScholarPubMed
Ossenkoppele, R. et al. 2015. Prevalence of amyloid PET positivity in dementia syndromes: a meta-analysis. JAMA 313(19) 19391949.CrossRefGoogle ScholarPubMed
Palasi, A. et al. 2015. Differentiated clinical presentation of early and late-onset Alzheimer’s disease: is 65 years of age providing a reliable threshold? J Neurol 262(5) 12381246.CrossRefGoogle ScholarPubMed
Phillips, J. S. et al. 2018. Tau PET imaging predicts cognition in atypical variants of Alzheimer’s disease. Hum Brain Mapp 39(2) 691708.CrossRefGoogle ScholarPubMed
Pilotto, A., Padovani, A. and Borroni, B. 2013. Clinical, biological, and imaging features of monogenic Alzheimer’s disease. Biomed Res Int 2013 689591.CrossRefGoogle ScholarPubMed
Vanhoutte, M. et al. 2017. (18)F-FDG PET hypometabolism patterns reflect clinical heterogeneity in sporadic forms of early-onset Alzheimer’s disease. Neurobiol Aging 59 184196.CrossRefGoogle ScholarPubMed
Wattmo, C. and Wallin, A. K. 2017. Early- versus late-onset Alzheimer’s disease in clinical practice: cognitive and global outcomes over 3 years. Alzheimers Res Ther 9(1) 70.CrossRefGoogle ScholarPubMed
Zhu, X.-C. et al. 2015. Rate of early onset Alzheimer’s disease: a systematic review and meta-analysis. Ann Transl Med 3(3) 3838.Google ScholarPubMed

References

Billioti de Gage, S. et al. 2014. Benzodiazepine use and risk of Alzheimer’s disease: case-control study. BMJ 349 g5205.Google Scholar
Buffett-Jerrott, S. E. and Stewart, S. H. 2002. Cognitive and sedative effects of benzodiazepine use. Curr Pharm Des 8(1) 4558.CrossRefGoogle ScholarPubMed
Cao, Y. J. et al. 2008. Physical and cognitive performance and burden of anticholinergics, sedatives, and ACE inhibitors in older women. Clin Pharmacol Ther 83(3) 422429.CrossRefGoogle ScholarPubMed
Carriere, I. et al. 2009. Drugs with anticholinergic properties, cognitive decline, and dementia in an elderly general population: the 3-city study. Arch Intern Med 169(14) 13171324.CrossRefGoogle Scholar
Gray, S. L. et al. 2015. Cumulative use of strong anticholinergics and incident dementia: a prospective cohort study. JAMA Intern Med 175(3) 401407.Google Scholar
Hilmer, S. N. et al. 2009. Drug burden index score and functional decline in older people. Am J Med 122(12) 11421149.CrossRefGoogle ScholarPubMed
Kaufman, D. W. et al. 2002. Recent patterns of medication use in the ambulatory adult population of the United States: the Slone survey. JAMA 287(3) 337344.CrossRefGoogle ScholarPubMed
Lechevallier-Michel, N. et al. 2005. Drugs with anticholinergic properties and cognitive performance in the elderly: results from the PAQUID Study. Br J Clin Pharmacol 59(2) 143151.CrossRefGoogle ScholarPubMed
Mulsant, B. H. et al. 2003. Serum anticholinergic activity in a community-based sample of older adults: relationship with cognitive performance. Arch Gen Psychiatry 60(2) 198203.CrossRefGoogle Scholar
Nebes, R. D. et al. 2005. Serum anticholinergic activity, white matter hyperintensities, and cognitive performance. Neurology 65(9) 14871489.CrossRefGoogle ScholarPubMed
Papenberg, G. et al. 2017. Anticholinergic drug use is associated with episodic memory decline in older adults without dementia. Neurobiol Aging 55 2732.CrossRefGoogle ScholarPubMed
Risacher, S. L. et al. 2016. Association between anticholinergic medication use and cognition, brain metabolism, and brain atrophy in cognitively normal older adults. JAMA Neurol 73(6) 721732.CrossRefGoogle ScholarPubMed
Villalba-Moreno, A. M. et al. 2016. Systematic review on the use of anticholinergic scales in poly pathological patients. Arch Gerontol Geriatr 62 18.Google Scholar

References

Allcock, L. M. et al. 2006. Orthostatic hypotension in Parkinson’s disease: association with cognitive decline? Int J Geriatr Psychiatry 21(8) 778783.CrossRefGoogle ScholarPubMed
Allcock, L. M., Ullyart, K., Kenny, R. A. and Burn, D. J. 2004. Frequency of orthostatic hypotension in a community based cohort of patients with Parkinson’s disease. J Neurol Neurosurg Psychiatry 75(10) 14701471.Google Scholar
Centi, J. et al. 2017. Effects of orthostatic hypotension on cognition in Parkinson disease. Neurology 88(1) 1724.CrossRefGoogle ScholarPubMed
Espay, A. J. et al. 2016. Neurogenic orthostatic hypotension and supine hypertension in Parkinson’s disease and related synucleinopathies: prioritisation of treatment targets. Lancet Neurol 15(9) 954966.Google Scholar
Fereshtehnejad, S. M. et al. 2015. New clinical subtypes of Parkinson disease and their longitudinal progression: a prospective cohort comparison with other phenotypes. JAMA Neurol 72(8) 863873.Google Scholar
Freeman, R. et al. 2011. Consensus statement on the definition of orthostatic hypotension, neurally mediated syncope and the postural tachycardia syndrome. Clin Auton Res 21(2) 6972.CrossRefGoogle ScholarPubMed
Freidenberg, D. L., Shaffer, L. E., Macalester, S. and Fannin, E. A. 2013. Orthostatic hypotension in patients with dementia: clinical features and response to treatment. Cogn Behav Neurol 26(3) 105120.CrossRefGoogle ScholarPubMed
Gibbons, C. H. et al. 2017. The recommendations of a consensus panel for the screening, diagnosis, and treatment of neurogenic orthostatic hypotension and associated supine hypertension. J Neurol 264(8) 15671582.CrossRefGoogle ScholarPubMed
Goldstein, D. S. and Sharabi, Y. 2009. Neurogenic orthostatic hypotension: a pathophysiological approach. Circulation 119(1) 139146.CrossRefGoogle ScholarPubMed
Huang, C. C. et al. 2007. Effect of age on adrenergic and vagal baroreflex sensitivity in normal subjects. Muscle Nerve 36(5) 637642.CrossRefGoogle ScholarPubMed
Low, P. A. et al. 1995. Prospective evaluation of clinical characteristics of orthostatic hypotension. Mayo Clin Proc 70(7) 617622.Google Scholar
Low, P. A. and Singer, W. 2008. Management of neurogenic orthostatic hypotension: an update. Lancet Neurol 7(5) 451458.Google Scholar
Low, P. A. and Tomalia, V. A. 2015. Orthostatic hypotension: mechanisms, causes, management. J Clin Neurol 11(3) 220226.CrossRefGoogle ScholarPubMed
Merola, A. et al. 2016. Orthostatic hypotension in Parkinson’s disease: does it matter if asymptomatic? Parkinsonism Relat Disord 33 6571.CrossRefGoogle ScholarPubMed
Rutan, G. H. et al. 1992. Orthostatic hypotension in older adults. The Cardiovascular Health Study. CHS Collaborative Research Group. Hypertension 19(6 Pt 1) 508519.Google Scholar
Tsukamoto, T., Kitano, Y. and Kuno, S. 2013. Blood pressure fluctuation and hypertension in patients with Parkinson’s disease. Brain Behav 3(6) 710714.CrossRefGoogle ScholarPubMed
Veronese, N. et al. 2015. Orthostatic changes in blood pressure and mortality in the elderly: the Pro.V.A Study. Am J Hypertens 28(10) 12481256.Google Scholar
Wolters, F. J. et al. 2016. Orthostatic hypotension and the long-term risk of dementia: a population-based study. PLoS Med 13(10) e1002143.CrossRefGoogle ScholarPubMed

References

Armstrong, M. J. et al. 2013. Criteria for the diagnosis of corticobasal degeneration. Neurology 80(5) 496503.CrossRefGoogle ScholarPubMed
Borroni, B. et al. 2011. CSF Alzheimer’s disease–like pattern in corticobasal syndrome: evidence for a distinct disorder. J Neurol Neurosurg Psychiatry 82(8) 834838.Google Scholar
Boyd, C. D. et al. 2014. Visuoperception test predicts pathologic diagnosis of Alzheimer disease in corticobasal syndrome. Neurology 83(6) 510519.CrossRefGoogle ScholarPubMed
Chahine, L. M. et al. 2014. Corticobasal syndrome: five new things. Neurol Clin Pract 4(4) 304312.Google Scholar
Hassan, A. and Josephs, K. A. 2016. Alien hand syndrome. Curr Neurol Neurosci Rep 16(8) 73.Google Scholar
Hassan, A., Whitwell, J. L. and Josephs, K. A. 2011. The corticobasal syndrome-Alzheimer’s disease conundrum. Expert Rev Neurother 11(11) 15691578.CrossRefGoogle ScholarPubMed
Lee, S. E. et al. 2011. Clinicopathological correlations in corticobasal degeneration. Ann Neurol 70(2) 327340.CrossRefGoogle ScholarPubMed
Pardini, M. et al. 2019. FDG-PET patterns associated with underlying pathology in corticobasal syndrome. Neurology 92(10) e1121.CrossRefGoogle ScholarPubMed
Rodriguez-Porcel, F. et al. 2016. Fulminant corticobasal degeneration: agrypnia excitata in corticobasal syndrome. Neurology 86(12) 11641166.CrossRefGoogle ScholarPubMed
Shelley, B. P. et al. 2009. Is the pathology of corticobasal syndrome predictable in life? Mov Disord 24(11) 15931599.CrossRefGoogle ScholarPubMed
Whitwell, J. L. et al. 2010. Imaging correlates of pathology in corticobasal syndrome. Neurology 75(21) 18791887.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×