Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T11:58:42.387Z Has data issue: false hasContentIssue false

Chapter 5 - Genetic, epigenetic and gene-environment interactions

Impact on the pathogenesis of mental illnesses in women

from Section 1 - The social, genetic and environmental aspects

Published online by Cambridge University Press:  05 March 2016

David J. Castle
Affiliation:
University of Melbourne
Kathryn M. Abel
Affiliation:
University of Manchester
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abel, K. M. & Allin, M. (2015) Placental programming & neurodevelopmental outcomes. In: Placenta and neurodisability, 2nd Edition, (Baker, P., & Sibley, C., eds.). London, UK: The MacKeith Press.Google Scholar
Allen, L. S., Hines, M., Shryne, J. E., & Gorski, R. A. (1989) Two sexually dimorphic cell groups in the human brain. Journal of Neuroscience 9:497506.CrossRefGoogle ScholarPubMed
Amateau, S. K., Alt, J. J., Stamps, C. L., McCarthy, M. M. (2004) Brain oestradiol content in newborn rats: sex differences, regional heterogeneity, and possible de novo synthesis by the female telencephalon. Endocrinology 145:29062917.Google Scholar
Amir, R. E., de Veyver, I. B., Wan, M., Tran, C. Q., Francke, U., & Zoghbi, H. Y. (1999) Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nature Genetics 23:185188.Google Scholar
Auger, A. P., & Auger, C. J. (2011) Epigenetic turn ons and turn offs: Chromatin reorganization and brain differentiation. Endocrinology 152:349353.Google Scholar
Auger, A. P., & Jessen, H. M. (2009) Corepressors, nuclear receptors, and epigenetic factors on DNA: a tail of repression. Psychoneuroendocrinology 34 Suppl 1:S39S47.Google Scholar
Auger, A. P., Jessen, H. M., & Edelmann, M. N. (2010) Epigenetic organization of brain sex differences and juvenile social play behavior. Hormones and Behavior 3:358363.Google Scholar
Auger, A. P., & Olesen, K. M. (2009) Brain sex differences and the organisation of juvenile social play behaviour. Journal of Neuroendocrinology 21:519525.CrossRefGoogle ScholarPubMed
Auger, A. P., Perrot-Sinal, T. S., Auger, C. J., Ekas, L. A., Tetel, M. J., & McCarthy, M. M. (2002) Expression of the nuclear receptor coactivator, cAMP response element-binding protein, is sexually dimorphic and modulates sexual differentiation of neonatal rat brain. Endocrinology 143:30093016.Google Scholar
Auger, A. P., Tetel, M. J., & McCarthy, M. M. (2000) Steroid receptor coactivator-1 (SRC-1) mediates the development of sex-specific brain morphology and behavior. Proceedings of the National Academy of Sciences, USA 97:75517555.Google Scholar
Auger, C. J., & Auger, A. P. (2013) Permanent and plastic epigenesis in neuroendocrine systems. Frontiers in Neuroendocrinology 34(3):190197.Google Scholar
Auger, C. J., Coss, D., Auger, A. P., & Forbes-Lorman, R. M. (2011) Epigenetic control of vasopressin expression is maintained by steroid hormones in the adult male rat brain. Proceedings of the National Academy of Sciences, USA 108:42424247.Google Scholar
Bleier, R., Byne, W., & Siggelkow, I. (1982) Cytoarchitectonic sexual dimorphisms of the medial preoptic and anterior hypothalamic areas in guinea pig, rat, hamster, and mouse. Journal of Comparative Neuroogyl 212:118130.Google Scholar
Ciofi, P., Leroy, D., Tramu, G. (2006) Sexual dimorphism in the organization of the rat hypothalamic infundibular area. Neuroscience 141:17311745.Google Scholar
Connor, C. M., & Akbarian, S. (2008) DNA methylation changes in schizophrenia and bipolar disorder. Epigenetics 3:5558.Google Scholar
De Vries, G. J., Rissman, E. F., Simerly, R. B., Yang, L. Y., Scordalakes, E. M., Auger, C. J., Swain, A., Lovell-Badge, R., Burgoyne, P. S., Arnold, A. P. (2002) A model system for study of sex chromosome effects on sexually dimorphic neural and behavioral traits. Journal of Neuroscience 22:90059014.Google Scholar
De Vries, G. J., & Simerly, R. B. (2002) Anatomy, development, and function of sexually dimorphic neural circuits in the mammalian brain. In: Hormones, brain and behavior (Pfaff, D. W., Arnold, A. P., Etgen, A. M., Fahrbach, S. E., & Rubin, R. T., eds.), pp. 137191. San Diego: Academic Press.Google Scholar
Dewing, P., Chiang, C. W., Sinchak, K., Sim, H., Fernagut, P. O., Kelly, S., Chesselet, M. F., Micevych, P. E., Albrecht, K. H., Harley, V. R., & Vilain, E. (2006) Direct regulation of adult brain function by the male-specific factor SRY. Current Biology 16:415420.Google Scholar
Forbes-Lorman, R. M., Rautio, J. J., Kurian, J. R., Auger, A. P., & Auger, C. J. (2012) Neonatal MeCP2 is important for the organization of sex differences in vasopressin expression. Epigenetics 7:230238.Google Scholar
Ghahramani, N. M., Ngun, T. C., Chen, P. Y., Tian, Y., Krishnan, S., Muir, S., Rubbi, L., Arnold, A. P., De Vries, G. J., Forger, N. G., Pellegrini, M., & Vilain, E. (2014) The effects of perinatal testosterone exposure on the DNA methylome of the mouse brain are late-emerging. Biology of Sex Differences 5:8.Google Scholar
Gorski, R. A., Gordon, J. H., Shryne, J. E., & Southam, A. M. (1978) Evidence for a morphological sex difference within the medial preoptic area of the rat brain. Brain Research 148:333346.CrossRefGoogle ScholarPubMed
Hines, M., Allen, L. S., & Gorski, R. A. (1992) Sex differences in subregions of the medial nucleus of the amygdala and the bed nucleus of the stria terminalis of the rat. Brain Research 579:321326.CrossRefGoogle ScholarPubMed
Jessen, H. M., & Auger, A. P. (2011) Sex differences in epigenetic mechanisms may underlie risk and resilience for mental health disorders. Epigenetics 6:857861.Google Scholar
Jessen, H. M., Kolodkin, M. H., Bychowski, M. E., Auger, C. J., & Auger, A. P. (2010) The nuclear receptor corepressor has organizational effects within the developing amygdala on juvenile social play and anxiety-like behavior. Endocrinology 151:12121220.Google Scholar
Kigar, S. L., & Auger, A. P. (2013) Epigenetic mechanisms may underlie the aetiology of sex differences in mental health risk and resilience. Journal of Neuroendocrinology 25:11411150.Google Scholar
Kolodkin, M. H., & Auger, A. P. (2011) Sex difference in the expression of DNA methyltransferase 3a (DNMT3a) in the rat amygdala during development. Journal of Neuroendocrinology 7:577583.Google Scholar
Kurian, J. R., Bychowski, M. E., Forbes-Lorman, R. M., Auger, C. J., & Auger, A. P. (2008) Mecp2 organizes juvenile social behavior in a sex-specific manner. Journal of Neuroscience 28:71377142.Google Scholar
Kurian, J. R., Forbes-Lorman, R. M., & Auger, A. P. (2007) Sex difference in mecp2 expression during a critical period of rat brain development. Epigenetics 2:173178.Google Scholar
Kurian, J. R., Olesen, K. M., & Auger, A. P. (2010) Sex differences in epigenetic regulation of the estrogen receptor-alpha promoter within the developing preoptic area. Endocrinology 151:22972305.CrossRefGoogle ScholarPubMed
Liu, Y., Chen, P. L., McGrath, J., Wolyniec, P., Fallin, D., Nestadt, G., Liang, K. Y., Pulver, A., Valle, D., & Avramopoulos, D. (2010) Replication of an association of a common variant in the Reelin gene (RELN) with schizophrenia in Ashkenazi Jewish women. Psychiatry Genetics 20:184186.Google Scholar
Lonstein, J. S., & Auger, A. P. (2009) Perinatal gonadal hormone influences on neurobehavioral development. In: Handbook of behavioral and comparative neuroscience (Blumberg, M., Freeman, J., & Robinson, S., eds.), pp. 424453. New York: Oxford University Press.Google Scholar
Lucas-Thompson, R. G., & Holman, E. A. (2013) Environmental stress, oxytocin receptor gene (OXTR) polymorphism, and mental health following collective stress. Hormones and Behavior 63:615624.Google Scholar
Matsumoto, A., & Arai, Y. (1986) Male-female difference in synaptic organization of the ventromedial nucleus of the hypothalamus in the rat. Neuroendocrinology 42:232236.Google Scholar
McCarthy, M. M., & Arnold, A. P. (2011) Reframing sexual differentiation of the brain. Nature Neuroscience 14:677683.Google Scholar
McCarthy, M. M., Auger, A. P., Bale, T. L., De Vries, G. J., Dunn, G. A., Forger, N. G., Murray, E. K., Nugent, B. M., Schwarz, J. M., Wilson, M. E. (2009) The epigenetics of sex differences in the brain. Journal of Neuroscience 29:1281512823.Google Scholar
McCarthy, M. M., Schlenker, E. H., Pfaff, D. W. (1993) Enduring consequences of neonatal treatment with antisense oligodeoxynucleotides to estrogen receptor messenger ribonucleic acid on sexual differentiation of rat brain. Endocrinology 133:433439.Google Scholar
Mill, J., Tang, T., Kaminsky, Z., Khare, T., Yazdanpanah, S., Bouchard, L., Jia, P., Assadzadeh, A., Flanagan, J., Schumacher, A., Wang, S. C., & Petronis, A. (2008) Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. American Journal of Human Genetics 82:696711.Google Scholar
Min, J. A., Lee, H. J., Lee, S. H., Park, Y. M., Kang, S. G., Chae, J. H. (2013) Gender-specific effects of brain-derived neurotrophic factor Val66Met polymorphism and childhood maltreatment on anxiety. Neuropsychobiology 67:613.Google Scholar
Mong, J. A., Glaser, E., & McCarthy, M. M. (1999) Gonadal steroids promote glial differentiation and alter neuronal morphology in the developing hypothalamus in a regionally specific manner. Journal of Neuroscience 19:14641472.Google Scholar
Perry, B. L., Pescosolido, B. A., Bucholz, K., Edenberg, H., Kramer, J., Kuperman, S., Schuckit, M. A., & Nurnberger, J. I. Jr. (2013) Gender-specific gene-environment interaction in alcohol dependence: the impact of daily life events and GABRA2. Behavior Genetics 43:402414.Google Scholar
Shifman, S., Johannesson, M., Bronstein, M., Chen, S. X., Collier, D. A., Craddock., N. J., Kendler, K. S., Li, T., O‘Donovan, M., O’Neill, F. A., Owen, M. J., Walsh, D., Weinberger, D. R., Sun, C., Flint, J., & Darvasi, A. (2008) Genome-wide association identifies a common variant in the reelin gene that increases the risk of schizophrenia only in women. PLoS Genetics 4:e28.Google Scholar
Tetel, M. J., Auger, A. P., & Charlier, T. D. (2009) Who’s in charge? Nuclear receptor coactivator and corepressor function in brain and behavior. Front Neuroendocrinology 30:328342.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×