Skip to main content Accessibility help
×
Hostname: page-component-5c6d5d7d68-wbk2r Total loading time: 0 Render date: 2024-08-15T07:40:29.297Z Has data issue: false hasContentIssue false

Chapter 9 - Piecewise-Polynomial Reconstruction

Published online by Cambridge University Press:  07 December 2009

Culbert B. Laney
Affiliation:
University of Colorado, Denver
Get access

Summary

Introduction

The last two chapters dramatically demonstrate the folly in attempting to represent a discontinuous function by a single polynomial. In the best case, with the entire true function available, the single polynomial representation will suffer from narrow width but large-amplitude Gibbs oscillations near the jump discontinuities, at least when minimizing the error in ordinary norms, as seen in Chapter 7. In more typical cases, with only limited information about the true function available or, more specifically, with only samples of the function available, the single polynomial will suffer from the Runge phenomenon, a relatively severe form of spurious oscillation that can increase rapidly as the number of samples increases, as seen in Chapter 8.

To overcome the problems associated with single-polynomial reconstructions, this chapter will consider piecewise-polynomial reconstructions, which were introduced earlier in Section 6.3, especially in Example 6.8. In piecewise-polynomial reconstructions, instead of representing the entire function by a single polynomial, we represent different local regions or cells by different polynomials. Figure 9.1 illustrates a typical piecewise-polynomial representation. By using separate and independent polynomials for each cell, only the cells containing jump discontinuities need suffer from large spurious oscillations, rather than the entire representation. Furthermore, piecewise-polynomial representations naturally allow jump discontinuities: the simplest reconstructions allow jump discontinuities only at cell edges, whereas the subcell resolution techniques discussed in Section 9.4 allow jump discontinuities to occur anywhere, including the insides of cells. Of course, piecewise-polynomial reconstructions cost more to build and evaluate and require more storage space than a single polynomial reconstruction; however, for discontinuous functions, the accuracy improvements easily justify the additional costs.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×