Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-13T14:42:03.409Z Has data issue: false hasContentIssue false

1 - WHY A TRAVERSE THROUGH EUROPE?

Published online by Cambridge University Press:  05 November 2009

Get access

Summary

TECTONIC EVOLUTION OF A CONTINENT

Piecing together the geological evolution of a continent is rather like a detective investigation. Various pieces of evidence provide clues as to what might have happened, but these can be assembled in a variety of ways. Various theories, based on certain geological mechanisms, are put forward to test the evidence. Europe has a history of geological activity and continental evolution spanning over 3500 million years (Ma) to the present day and is one of the best places in the world to discover how a continent evolves. The geology of Europe has been studied intensively for well over a century by examining outcrops of rocks at the surface, so that the surface geology is probably better known than anywhere else in the world. In contrast, knowledge of what the geology is like beneath the surface is limited to information from boreholes and indirect evidence, principally from geophysical measurements.

Since the theory of plate tectonics came to prominence in the mid 1960s, a mechanism has become understood which explains how global tectonic processes take place at the present day. It is known that, on a global scale, the outer region of the Earth called the lithosphere, which includes both crust and upper mantle, acts as a more rigid layer above a more plastic layer of the upper mantle, called the asthenosphere. The lithosphere is divided into a dozen or so major plates which move relative to each other, interacting and deforming, mostly around their perimeters. Direct evidence of plate movements has been recorded in oceanic crust for the past 200 Ma but beyond that time no oceanic crust exists intact to tell the tale.

Type
Chapter
Information
A Continent Revealed
The European Geotraverse, Structure and Dynamic Evolution
, pp. 1 - 10
Publisher: Cambridge University Press
Print publication year: 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×