Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-21T09:35:00.887Z Has data issue: false hasContentIssue false

10 - Energy efficiency in cooperative sensor networks

from Part II - Cooperative communications

Published online by Cambridge University Press:  06 July 2010

K. J. Ray Liu
Affiliation:
University of Maryland, College Park
Ahmed K. Sadek
Affiliation:
Qualcomm, San Diego, California
Weifeng Su
Affiliation:
State University of New York, Buffalo
Andres Kwasinski
Affiliation:
Texas Instruments, Germantown, Maryland
Get access

Summary

In the previous chapters, the gains of cooperative diversity were established under the ideal model of negligible listening and computing power. In sensor networks, and depending on the type of motes used, the power consumed in receiving and processing may constitute a significant portion of the total consumed power. Cooperative diversity can provide gains in terms of savings in the required transmit power in order to achieve a certain performance requirement because of the spatial diversity it adds to the system. However, if one takes into account the extra processing and receiving power consumption at the relay and destination nodes required for cooperation, then there is obviously a tradeoff between the gains in the transmit power and the losses due to the receive and processing powers when applying cooperation. Hence, there is a tradeoff between the gains promised by cooperation, and this extra overhead in terms of the energy efficiency of the system should be taken into consideration in the design of the network.

In this chapter the gains of cooperation under this extra overhead are studied. Moreover, some practical system parameters, such as the power amplifier loss, the quality of service (QoS) required, the relay location, and the optimal number of relays, are considered. Two communications architectures are considered, direct transmission and cooperative transmission. The performance metric for comparison between the two architectures is the energy efficiency of the communication scheme.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×