Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-24T19:15:23.457Z Has data issue: false hasContentIssue false

6 - Advanced correlation filters

Published online by Cambridge University Press:  06 August 2009

B. V. K. Vijaya Kumar
Affiliation:
Carnegie Mellon University, Pennsylvania
Abhijit Mahalanobis
Affiliation:
Lockheed Martin Missiles & Fire Control, Orlando, Florida
Richard Juday
Affiliation:
Fellow SPIE
Get access

Summary

Ever since VanderLugt's pioneering work [5] on the implementation of matched filters (MFs) by coherent optical processing, there has been considerable interest in using correlators for recognizing patterns in images. The MF is of course optimal for finding a given pattern in the presence of additive white noise, and, as we have shown in Chapter 5, yields the highest output SNR. In radar signal processing and digital communications, matched filters have been very successful in many applications. For image processing, perhaps the greatest appeal of correlation filtering lies in its ability to produce shift-invariant peaks (because correlation filters are just a special class of LSI filter) and the resultant processing simplicity since we can avoid the need for image segmentation and registration. Unfortunately, MFs are not adequate for practical pattern recognition since their response degrades rapidly when the patterns deviate from the reference [57]. Such pattern variations can be induced by scale changes, rotations or signature differences, all of which are common phenomena associated with the general pattern recognition problem.

One straightforward approach to this problem would be to apply a large number of MFs, each tuned to a particular variation. However, the enormous storage and processing requirements of this approach make it impractical. The alternative is to design robust correlation filters that can overcome the limitations of the MFs.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×