Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T18:16:50.346Z Has data issue: false hasContentIssue false

10 - Chronology of the Solar System from Radioactive Isotopes

Published online by Cambridge University Press:  10 February 2022

Harry McSween, Jr
Affiliation:
University of Tennessee, Knoxville
Gary Huss
Affiliation:
University of Hawaii, Manoa
Get access

Summary

Time constraints on the formation and early evolution of planetesimals and planets

Type
Chapter
Information
Cosmochemistry , pp. 238 - 270
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Suggestions for Further Reading

Huss, G. R., Meyer, B. S., Srinivasan, G., et al. (2009) Stellar sources of the short-lived radionuclides in the early solar system. Geochimica et Cosmochimica Acta, 73, 49224945. This paper gives an overview of galactic chemical evolution as it relates to short-lived nuclides and discusses the nucleosynthesis of these nuclides. It provides a good entry point into the literature.Google Scholar
Nyquist, L. E., Kleine, T., Shih, C.-Y., and Reese, Y. D. (2009) The distribution of short-lived radioisotopes in the early solar system and the chronology of asteroid accretion, differentiation, and secondary mineralization. Geochimica et Cosmochimica Acta, 73, 51155136. Presents an interesting discussion of using multiple radionuclides to extract chronological information about the solar system.Google Scholar
Kleine, T., and Walker, R. J. (2017) Tungsten isotopes in planets. Annual Reviews of Earth and Planetary Science, 45, 389417. A nice review of the 182Hf–182W data on meteorites and planets.Google Scholar
Bogard, D. D. (1995) Impact ages of meteorites: A synthesis. Meteoritics, 30, 244268. A nice summary of the impact ages of meteorites.Google Scholar
Eugster, O., Herzog, G. F., Marti, K., and Caffee, M. W. (2006) Irradiation records, cosmic-ray exposure ages, and transfer time of meteorites. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 829851, University of Arizona Press, Tucson. A good summary of what is known about cosmic-ray exposure ages and the transfer of meteorites from the asteroid belt to Earth.Google Scholar
Jull, A. J. T. (2006) Terrestrial ages of meteorites. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 889905, University of Arizona Press, Tucson. This chapter reviews what is known about the terrestrial ages of meteorites.Google Scholar
Allègre, C. J., Manhès, G., and Göpel, C. (1995) The age of the Earth. Geochimica et Cosmochimica Acta, 59, 14451456.Google Scholar
Anderson, F. S., Levine, J., and Whitacker, T. J. (2015) Dating the martian meteorite Zagami by the 87Rb-87Sr isochron method with a prototype in situ resonance ionization mass spectrometer. Rapid Communications in Mass Spectrometry, 29, 191204.CrossRefGoogle ScholarPubMed
Arnould, M., Goriely, S., and Meynet, G. (2006) The production of short-lived radionuclides by new non-rotating and rotating Wolf-Rayet model stars. Astronomy & Astrophysics, 453, 653659.Google Scholar
Avice, G., and Marty, B. (2014) The iodine-plutonium-xenon age of the Moon-Earth system revisited. Philosophical Transactions of the Royal Society A, 372, 20130260.CrossRefGoogle ScholarPubMed
Barboni, M., Boehnke, P., Keller, B., et al. (2017) Early formation of the Moon 4.51 billion years ago. Science Advances, 3, e1602365.Google Scholar
Bellucci, J. J., Nemchin, A. A., Whitehouse, M. J., et al. (2018) Pb evolution in the martian mantle. Earth & Planetary Science Letters, 485, 7987.Google Scholar
Bizzarro, M., Baker, J. A., Haack, H., and Lundgaard, K. L. (2005) Rapid timescales for accretion and melting of differentiated planetesimals inferred from 26Al-26Mg chronometry. Astrophysical Journal, 632, L41L44.CrossRefGoogle Scholar
Bollard, J., Connelly, J. N., and Bizzarro, M. (2015) Pb-Pb dating of individual chondrules from the CBa chondrite Gujba: Assessment of the impact plume formation model. Meteoritics & Planetary Science, 50, 11971216.Google Scholar
Bollard, J., Connelly, J. N., Whitehouse, M. J., et al. (2017) Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Science Advances, 3, e1700407.CrossRefGoogle ScholarPubMed
Borg, L. E., Gaffney, A. M., and Shearer, C. K. (2014) A review of lunar chronology revealing a preponderance of 4.34-4.37 Ga ages. Meteoritics & Planetary Science, 50, 715732.Google Scholar
Bottke, W. F., Nesvorny, D., Vokrouhlicky, D., and Borbidelli, A. (2009) The Gefion family as the probably source of the L chondrite meteorites. Lunar and Planetary Science, 60, abstract #1445, CDROM.Google Scholar
Bouvier, A., Blichert-Toft, J., Moynier, F., et al. (2007) Pb-Pb dating constraints on the accretion and cooling history of chondrites. Geochimica et Cosmochimica Acta, 71, 15831604.Google Scholar
Bouvier, A., Blichert-Toft, J., Vervoort, J. D., et al. (2008) The case for old basaltic shergottites. Earth & Planetary Science Letters, 266, 105124.CrossRefGoogle Scholar
Bouvier, L. C., Costa, M. M., Connelly, J. N., et al. (2018) Evidence for extremely rapid magma ocean crystallization and crust formation on Mars. Nature, 558, 586589.Google Scholar
Bowring, S. A., Schoene, B., Crowley, J. L., et al. (2006) High-precision U-Pb zircon geochronology and the stratigraphic record: Progress and promise. Paleontological Society Papers, 12, 2545.CrossRefGoogle Scholar
Brennecka, G. A., Weyer, S., Wadhwa, M., et al. (2010) 238U/235U variations in meteorites: Extant 247Cm and implications for Pb-Pb dating. Science, 237, 449451.CrossRefGoogle Scholar
Budde, G., Kleine, T., Kruijer, T. S., et al. (2016) Tungsten isotopic constraints on the age and origin of chondrules. Proceedings of the National Academy of Sciences, USA, 113, 26862691.CrossRefGoogle ScholarPubMed
Budde, G., Kruijer, T. S., and Kleine, T. (2018) Hf-W chronology of CR chondrites: Implications for the timescales of chondrule formation and the distribution of 26Al in the solar nebula. Geochimica et Cosmochimica Acta, 222, 284304.Google Scholar
Cameron, A. G. W., and Truran, J. W. (1977) The supernova trigger for formation of the solar system. Icarus, 30, 447461.Google Scholar
Cameron, A. G. W., Hoeflich, P., Myers, P. C., and Clayton, D. D. (1995) Massive supernovae, Orion gamma rays, and the formation of the solar system. Astrophysical Journal, 447, L53L57.Google Scholar
Clayton, D. D. (1988) Nuclear cosmochronology with analytic models of the chemical evolution of the solar neighborhood. Monthly Notices of the Royal Astronomical Society, 234, 136.Google Scholar
Cohen, B. A., Miller, J. S., Li, Z.-H., et al. (2014) The Potassium-Argon Laser Experiment (KArLE): In situ geochronology for planetary robotic missions. Geostandards and Geoanalytical Research, 38, 421439.CrossRefGoogle Scholar
Cohen, B. A., Malespin, C. A., Farley, K. A., et al. (2019) In situ geochronology on Mars and the development of future instrumentation. Astrobiology, 19, 13031314.Google Scholar
Connelly, J. N., and Bizzarro, M. (2016) Lead isotope evidence for a young formation age of the Earth-Moon system. Earth & Planetary Science Letters, 452, 3643.Google Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012) The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651655.Google Scholar
Connelly, J. N., Bollar, J., and Bizzarro, M. (2017) Pb-Pb chronometry and the early solar system. Geochimica et Cosmochimica Acta, 201, 345363.Google Scholar
Davis, A. M., and McKeegan, K. D. (2014) Short-lived radionuclides and early solar system chronology. In Treatise on Geochemistry, 2nd Edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 361395, Elsevier, Oxford.CrossRefGoogle Scholar
Day, J. M. D., Brandon, A. D., and Walker, R. J. (2016) Highly siderophile elements in Earth, Mars, the Moon, and asteroids. Reviews in Mineralogy & Geochemistry, 81, 161238.CrossRefGoogle Scholar
Diehl, R., Halloin, H., Kretschmer, K., et al. (2006) 26Al in the inner galaxy. Astronomy & Astrophysics, 449, 10251031.Google Scholar
Doyle, P. M., Jogo, K., Nagashima, K., et al. (2015) Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nature Communications, 6, 7444.Google Scholar
Eugster, O., Herzog, G. F., Marti, K, and Caffee, M. W. (2006) Irradiation records, cosmic-ray exposure ages, and transfer time of meteorites. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 829851, University of Arizona Press, Tucson.Google Scholar
Farley, K. A., Malespin, C., Mahaffy, P., et al. (2014) In situ radiometric and exposure age dating of the martian surface. Science, 343, doi:10.1126/science.1247166.CrossRefGoogle ScholarPubMed
Filiberto, J. (2017) Geochemistry of martian basalts with constraints on magma genesis. Chemical Geology, 466, 114.Google Scholar
Fujiya, W., Sugiura, N., Hotta, H., et al. (2012) Evidence for the late formation of hydrous asteroids from young meteoritic carbonates. Nature Communications, 3, 627.CrossRefGoogle ScholarPubMed
Gaffney, A. M., and Borg, L. E. (2014) A young solidification age for the lunar magma ocean. Geochimica et Cosmochimica Acta, 140, 227240.Google Scholar
Göpel, C., Manhès, G., and Allègre, C.-J. (1994) U-Pb systematics of phosphates from unequilibrated ordinary chondrites. Earth & Planetary Science Letters, 121, 153171,Google Scholar
Halliday, A. N. (2014) The origin and earliest history of the Earth. In Treatise on Geochemistry, 2nd Edition, Vol. 2: Planets, Asteroids, Comets and the Solar System, Davis, A. M., editor, pp. 149211, Elsevier, Oxford.CrossRefGoogle Scholar
Heisinger, H., Head, J. W., Wolf, U., et al. (2011) Ages and stratigraphy of lunar mare basalts: A synthesis. Geological Society of America Special Paper, 447, doi:10.1130/SPE447.Google Scholar
Hellmann, J. L., Kruijer, T. S., Van Orman, J. A., et al. (2019) Hf-W chronology of ordinary chondrites. Geochimica et Cosmochimica Acta, 258, 290309.Google Scholar
Herzog, G. F. (2004) Cosmic-ray exposure ages of meteorites. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 347380, Elsevier, Oxford.Google Scholar
Herzog, G. F., and Caffee, M. W. (2014) Cosmic-ray exposure ages of meteorites. In Treatise in Geochemistry, 2nd Edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 419454, Elsevier, Oxford.Google Scholar
Hohenberg, C. M., and Pravdivtseva, O. V. (2008) I-Xe dating: From adolescence to maturity. Chemie der Erde, 68, 339351.Google Scholar
Hsu, W., Wasserburg, G. J., and Huss, G. R. (2000) High time resolution using 26Al in the multistage formation of a CAI. Earth & Planetary Science Letters, 182, 1529.Google Scholar
Humayun, M., Nemchin, A., Zanda, B., et al. (2013) Origin and age of the earliest martian crust from meteorite NWA 7533. Nature, 503, 513516.Google Scholar
Jacobsen, B., Yin, Q.-Z, Moynier, F., et al. (2008) 26Al-26Mg and 207Pb-206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth & Planetary Science Letters, 272, 353364.Google Scholar
Jilly-Rehak, C. E., Huss, G. R., and Nagashima, K. (2017) 53Mn-53Cr radiometric dating of secondary carbonates in CR chondrites: Timescales for parent body aqueous alteration. Geochimica et Cosmochimica Acta, 201, 224244.Google Scholar
Kleine, T., Touboul, M., Van Orman, J. A., et al. (2008) Hf-W thermochronometry: Closure temperature and constraints on the accretion and cooling history of the H chondrite parent body. Earth & Planetary Science Letters, 270, 106118.Google Scholar
Kleine, T., Hans, U., Irving, A. J., and Bourdon, B. (2012) Chronology of the angrite parent body and implications for core formation in protoplanets. Geochimica et Cosmochimica Acta, 84, 186203.Google Scholar
Kleine, T., Budde, G., Hellmann, J. L., et al. (2018) Tungsten isotopes and the origin of chondrules and chondrites. In Chondrules, Records of Protoplanetary Disk Processes, Russell, S. S., Connolly, H. C., Jr, and Krot, A. N., editors, pp. 276299, Cambridge University Press, Cambridge.Google Scholar
Kööp, L., Davis, A. M., Nakashima, D., et al. (2016) A link between oxygen, calcium and titanium isotopes in 26Al-poor hibonite-rich CAIs from Murchison and implications for the heterogeneity of dust reservoirs in the solar nebula. Geochimica et Cosmochimica Acta, 189, 7095.CrossRefGoogle Scholar
Krot, A. N., Amelin, Y., Cassen, P., and Meibom, A. (2005) Young chondrules in CB chondrites from a giant impact in the early solar system. Nature, 436, 989992.Google Scholar
Krot, A. M., McKeegan, K. D., Huss, G. R., et al. (2006) Aluminum-magnesium and oxygen isotope study of relict Ca-Al-rich inclusions in chondrules. Astrophysical Journal, 639, 12271237.Google Scholar
Kruijer, T. S., Kleine, T., Fischer-Godde, M., et al. (2014a) Nucleosynthetic W isotope anomalies and the Hf-W chronometry of Ca-Al-rich inclusions. Earth & Planetary Science Letters, 403, 317327.CrossRefGoogle Scholar
Kruijer, T. S., Touboul, M., Fischer-Godde, M., et al. (2014b). Protracted core formation and rapid accretion of protoplanets. Science, 344, 11501154.Google Scholar
Kruijer, T. S., Kleine, T., Borg, L. E., et al. (2017) The early differentiation of Mars inferred from Hf-W chronometry. Earth & Planetary Science Letters, 474, 345354.Google Scholar
Lada, C. J., and Lada, E. A. (2003) Embedded clusters in molecular clouds. Annual Reviews of Astronomy & Astrophysics, 41, 57115.Google Scholar
Lapen, T. J., Righter, M., Brandon, A. D., et al. (2010) A younger age for ALH 84001 and its geochemical link to shergottite sources in Mars. Science, 328, 347351.Google Scholar
Larsen, K. K., Trinquier, A., Paton, C., et al. (2011) Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. Astrophysical Journal Letters, 735, L37.CrossRefGoogle Scholar
Larsen, K. K., Schiller, M., and Bizzarro, M. (2016) Accretion timescales and style of asteroidal differentiation in an 26Al-poor protoplanetary disk. Geochimica et Cosmochimica Acta, 176, 295315.Google Scholar
Larsen, K. K., Wielandt, D., Schiller, M., et al. (2020) Episodic formation of refractory inclusions in the Solar System and their presolar heritage. Earth & Planetary Science Letters, 535, 116088.Google Scholar
Lee, D. C., and Halliday, A. N. (1997) Core formation on Mars and differentiated asteroids. Nature, 388, 854857.Google Scholar
Lee, T., Papanastassiou, D. A., and Wasserburg, G. J. (1977) Aluminum-26 in the early solar system: Fossil or fuel? Astrophysical Journal Letters, 211, L107L110.Google Scholar
Lugmair, G. W., and Shukolyukov, A. (1998) Early solar system timescales according to the 53Mn-53Cr system. Geochimica et Cosmochimica Acta, 62, 28632886.CrossRefGoogle Scholar
MacPherson, G. J., Nagashima, K., Krot, A. N., et al. (2017) 52Mn-53Cr chronology of Ca-Fe silicates in CV3 chondrites. Geochimica et Cosmochimica Acta, 201, 260274.CrossRefGoogle Scholar
Makide, K., Nagashima, K., Krot, A. N., et al. (2011) Heterogeneous distribution of 26Al at the birth of the solar system. Astrophysical Journal Letters, 733, L31.Google Scholar
Maltese, A., and Mezger, K. (2020) The Pb isotope evolution of bulk silicate Earth: Constraints from its accretion and early differentiation history. Geochimica et Cosmochimica Acta, 271, 179193.Google Scholar
Marty, B., and Marti, K. (2002) Signatures of early differentiation of Mars. Earth & Planetary Science Letters, 196, 251263.Google Scholar
McKee, C. F., and Ostriker, J. P. (1977) A theory of the interstellar medium – three components regulated by supernova explosions in an inhomogeneous substrate. Astrophysical Journal, 218, 148169.CrossRefGoogle Scholar
Meyer, B. S. (2005) Synthesis of short-lived radioactivities in a massive star. In Chondrites and the Protoplanetary Disk, Krot, A. N., Scott, E. R. D., and Reipurth, B., editors, pp. 515526, Astronomical Society of the Pacific, San Francisco.Google Scholar
Nagashima, K, Kita, N. T., and Luu, T.-H. (2018) 26Al–27Al systematics of chondrules. In Chondrules, Records of Protoplanetary Disk Processes, Russell, S. S., Connolly, H. C., and Krot, A. N., editors, pp. 247275, Cambridge University Press, Cambridge.Google Scholar
Nagashima, K., Krot, A. N., and Huss, G. R. (2014) 26Al in chondrules from CR2 chondrites. Geochemical Journal, 48, 561570.CrossRefGoogle Scholar
Neukum, G., Ivanov, B. A., and Hartmann, W. K. (2001) Cratering records in the inner solar system in relation to the lunar reference system. Space Science Reviews, 96, 5586.CrossRefGoogle Scholar
Nyquist, L. E., Shih, C.-Y., McCubbin, F. M., et al. (2016) Rb-Sr and Sm-Nd isotopic and REE studies of igneous components in the bulk matrix domain of martian breccia Northwest Africa 7034. Meteoritics & Planetary Science, 51, 483498.Google Scholar
Park, C., Nagashima, K., Krot, A. N., et al. (2017) Calcium-aluminum-rich inclusion with fractionation and unidentified nuclear effects (FUN CAIs): II. Heterogeneities of magnesium isotopes and 26Al in the early solar system inferred from in situ high-precision magnesium-isotope measurements. Geochimica et Cosmochimica Acta, 201, 624.Google Scholar
Reynolds, J. H. (1960) Determination of the age of the elements. Physical Reviews Letters, 4, 810.Google Scholar
Schiller, M., Baker, J., Creech, J., et al. (2011) Rapid timescales for magma ocean crystallization on the howardite-eucrite-diogenite parent body. Astrophysical Journal Letters, 740, L22.Google Scholar
Schmitz, B. (2013). Extraterrestrial spinels and the astronomical perspective on Earth’s geological record and evolution of life. Chemie der Erde, 73, 117145.CrossRefGoogle Scholar
Schmitz, B., Tassinari, M., and Peucker-Ehrenbrink, B. (2001) A rain of ordinary chondritic meteorites in the early Ordovician. Earth & Planetary Science Letters, 194, 115.Google Scholar
Schmitz, B., Yin, Q.-Z., Sanborn, M. E., et al. (2016) A new type of solar-system material from Ordovician marine limestone. Nature Communications, 7, 11851.CrossRefGoogle ScholarPubMed
Shukolyukov, A., and Lugmair, G. W. (2007) The Mn-Cr isotope systematics of bulk angrites. Lunar and Planetary Science, 38, abstract #1423.Google Scholar
Smoliar, M. I. (1993) A survey of Rb-Sr systematics of eucrites. Meteoritics, 28, 105113.Google Scholar
Snape, J. F., Nemchin, A. A., Bellucci, J. J., et al. (2016) Lunar basalt chronology, mantle differentiation and implications for determining the age of the Moon. Earth & Planetary Science Letters, 451, 149158.Google Scholar
Spivak-Birndorf, L., Wadhwa, M., and Janney, P. (2009) 26Al/26Mg systematics in D’Orbigny and Sahara 99555 angrites: Implications for high-resolution chronology using extinct chronometers. Geochimica et Cosmochimica Acta, 73, 52025211.CrossRefGoogle Scholar
Takigawa, A., Miki, J., Tachibana, S., et al. (2008) Injection of short-lived radionuclides into the early solar system from a faint supernova with mixing fallback. Astrophysical Journal, 688, 13821387.Google Scholar
Tera, F. (1981) Aspects of isochronism in Pb isotope systematics – Application to planetary evolution. Geochimica et Cosmochimica Acta, 45, 14391448.Google Scholar
Telus, M., Huss, G. R., Nagashima, K., and Ogliore, R. C. (2014) Revisiting 26Al-26Mg systematics of plagioclase in H4 chondrites. Meteoritics & Planetary Science, 49, 929945.Google Scholar
Thiemens, M. M., Sprung, P., Ronseca, R. O. C., et al. (2019) Early Moon formation inferred from hafnium-tungsten systematics. Nature Geoscience, 12, 696700.CrossRefGoogle Scholar
Touboul, M., Sprung, P., Aciego, S. M., et al. (2015) Hf-W chronology of the eucrite parent body. Geochimica et Cosmochimica Acta, 156, 106121.Google Scholar
Trieloff, M., Jessberger, E. K., Herrwerth, I., et al. (2003) Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry. Nature, 422, 502506.Google Scholar
Udry, A., Howarth, G. H., Herd, C. D. K., Day, J. M. D., Lapen, T. J. D., & Filiberto, J. (2020) What martian meteorites reveal about the interior and surface of Mars. Journal of Geophysical Research: Planets, 125, e2020JE006523Google Scholar
Wadhwa, M., Srinivasan, G., and Carlson, R. W. (2006) Timescales of planetesimal differentiation in the early solar system. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 715731, University of Arizona Press, Tucson.Google Scholar
Wang, W., Harris, M. J., Diehl, R., et al. (2007) SPI observations of the diffuse 60Fe emission in the galaxy. Astronomy & Astrophysics, 469, 10051012.Google Scholar
Warren, P. H. (2004) The Moon. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 559599, Elsevier, Oxford.Google Scholar
Wasserburg, G. J., Busso, M., Gallino, R., and Nollett, K. M. (2006) Short-lived nuclei in the early solar system: Possible AGB source. Nuclear Physics A, 777, 569.Google Scholar
Wieler, R., Huber, L., Busemann, H., et al. (2016) Noble gases in 18 martian meteorites and angrite Northwest Africa 7812 – Exposure ages, trapped gases, and a re-evaluation of evidence for solar cosmic ray-produced neon in shergottites and other achondrites. Meteoritics & Planetary Science, 51, 407428.CrossRefGoogle Scholar
Wilde, S. A., Valley, J. A., Peck, W. H., and Graham, C. M. (2001) Evidence from detrital zircons for the existence of continental crust and oceans on Earth 4.4 Gyr ago. Nature, 409, 175178.Google Scholar
Wimpenny, J., Sanborn, M. E., Koefoed, P., et al. (2019) Reassessing the origin and chronology of the unique achondrite Asuka 881394: Implications for distribution of 26Al in the early solar system. Geochimica et Cosmochimica Acta, 244, 478501.CrossRefGoogle Scholar
Yin, Q. Z., Jacobsen, S. B., Yamashita, K., et al. (2002) A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature, 418, 949952.Google Scholar
Zhou, Q., Yin, Q.-Z., Young, E. D., et al. (2013) SIMS Pb-Pb and U-Pb age determination of eucrite zircons at <5 μm scale and the first 50 Ma of the thermal history of Vesta. Geochimica et Cosmochimica Acta, 110, 152175.Google Scholar
Allègre, C. J., Manhès, G., and Göpel, C. (1995) The age of the Earth. Geochimica et Cosmochimica Acta, 59, 14451456.Google Scholar
Anderson, F. S., Levine, J., and Whitacker, T. J. (2015) Dating the martian meteorite Zagami by the 87Rb-87Sr isochron method with a prototype in situ resonance ionization mass spectrometer. Rapid Communications in Mass Spectrometry, 29, 191204.CrossRefGoogle ScholarPubMed
Arnould, M., Goriely, S., and Meynet, G. (2006) The production of short-lived radionuclides by new non-rotating and rotating Wolf-Rayet model stars. Astronomy & Astrophysics, 453, 653659.Google Scholar
Avice, G., and Marty, B. (2014) The iodine-plutonium-xenon age of the Moon-Earth system revisited. Philosophical Transactions of the Royal Society A, 372, 20130260.CrossRefGoogle ScholarPubMed
Barboni, M., Boehnke, P., Keller, B., et al. (2017) Early formation of the Moon 4.51 billion years ago. Science Advances, 3, e1602365.Google Scholar
Bellucci, J. J., Nemchin, A. A., Whitehouse, M. J., et al. (2018) Pb evolution in the martian mantle. Earth & Planetary Science Letters, 485, 7987.Google Scholar
Bizzarro, M., Baker, J. A., Haack, H., and Lundgaard, K. L. (2005) Rapid timescales for accretion and melting of differentiated planetesimals inferred from 26Al-26Mg chronometry. Astrophysical Journal, 632, L41L44.CrossRefGoogle Scholar
Bollard, J., Connelly, J. N., and Bizzarro, M. (2015) Pb-Pb dating of individual chondrules from the CBa chondrite Gujba: Assessment of the impact plume formation model. Meteoritics & Planetary Science, 50, 11971216.Google Scholar
Bollard, J., Connelly, J. N., Whitehouse, M. J., et al. (2017) Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Science Advances, 3, e1700407.CrossRefGoogle ScholarPubMed
Borg, L. E., Gaffney, A. M., and Shearer, C. K. (2014) A review of lunar chronology revealing a preponderance of 4.34-4.37 Ga ages. Meteoritics & Planetary Science, 50, 715732.Google Scholar
Bottke, W. F., Nesvorny, D., Vokrouhlicky, D., and Borbidelli, A. (2009) The Gefion family as the probably source of the L chondrite meteorites. Lunar and Planetary Science, 60, abstract #1445, CDROM.Google Scholar
Bouvier, A., Blichert-Toft, J., Moynier, F., et al. (2007) Pb-Pb dating constraints on the accretion and cooling history of chondrites. Geochimica et Cosmochimica Acta, 71, 15831604.Google Scholar
Bouvier, A., Blichert-Toft, J., Vervoort, J. D., et al. (2008) The case for old basaltic shergottites. Earth & Planetary Science Letters, 266, 105124.CrossRefGoogle Scholar
Bouvier, L. C., Costa, M. M., Connelly, J. N., et al. (2018) Evidence for extremely rapid magma ocean crystallization and crust formation on Mars. Nature, 558, 586589.Google Scholar
Bowring, S. A., Schoene, B., Crowley, J. L., et al. (2006) High-precision U-Pb zircon geochronology and the stratigraphic record: Progress and promise. Paleontological Society Papers, 12, 2545.CrossRefGoogle Scholar
Brennecka, G. A., Weyer, S., Wadhwa, M., et al. (2010) 238U/235U variations in meteorites: Extant 247Cm and implications for Pb-Pb dating. Science, 237, 449451.CrossRefGoogle Scholar
Budde, G., Kleine, T., Kruijer, T. S., et al. (2016) Tungsten isotopic constraints on the age and origin of chondrules. Proceedings of the National Academy of Sciences, USA, 113, 26862691.CrossRefGoogle ScholarPubMed
Budde, G., Kruijer, T. S., and Kleine, T. (2018) Hf-W chronology of CR chondrites: Implications for the timescales of chondrule formation and the distribution of 26Al in the solar nebula. Geochimica et Cosmochimica Acta, 222, 284304.Google Scholar
Cameron, A. G. W., and Truran, J. W. (1977) The supernova trigger for formation of the solar system. Icarus, 30, 447461.Google Scholar
Cameron, A. G. W., Hoeflich, P., Myers, P. C., and Clayton, D. D. (1995) Massive supernovae, Orion gamma rays, and the formation of the solar system. Astrophysical Journal, 447, L53L57.Google Scholar
Clayton, D. D. (1988) Nuclear cosmochronology with analytic models of the chemical evolution of the solar neighborhood. Monthly Notices of the Royal Astronomical Society, 234, 136.Google Scholar
Cohen, B. A., Miller, J. S., Li, Z.-H., et al. (2014) The Potassium-Argon Laser Experiment (KArLE): In situ geochronology for planetary robotic missions. Geostandards and Geoanalytical Research, 38, 421439.CrossRefGoogle Scholar
Cohen, B. A., Malespin, C. A., Farley, K. A., et al. (2019) In situ geochronology on Mars and the development of future instrumentation. Astrobiology, 19, 13031314.Google Scholar
Connelly, J. N., and Bizzarro, M. (2016) Lead isotope evidence for a young formation age of the Earth-Moon system. Earth & Planetary Science Letters, 452, 3643.Google Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012) The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651655.Google Scholar
Connelly, J. N., Bollar, J., and Bizzarro, M. (2017) Pb-Pb chronometry and the early solar system. Geochimica et Cosmochimica Acta, 201, 345363.Google Scholar
Davis, A. M., and McKeegan, K. D. (2014) Short-lived radionuclides and early solar system chronology. In Treatise on Geochemistry, 2nd Edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 361395, Elsevier, Oxford.CrossRefGoogle Scholar
Day, J. M. D., Brandon, A. D., and Walker, R. J. (2016) Highly siderophile elements in Earth, Mars, the Moon, and asteroids. Reviews in Mineralogy & Geochemistry, 81, 161238.CrossRefGoogle Scholar
Diehl, R., Halloin, H., Kretschmer, K., et al. (2006) 26Al in the inner galaxy. Astronomy & Astrophysics, 449, 10251031.Google Scholar
Doyle, P. M., Jogo, K., Nagashima, K., et al. (2015) Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nature Communications, 6, 7444.Google Scholar
Eugster, O., Herzog, G. F., Marti, K, and Caffee, M. W. (2006) Irradiation records, cosmic-ray exposure ages, and transfer time of meteorites. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 829851, University of Arizona Press, Tucson.Google Scholar
Farley, K. A., Malespin, C., Mahaffy, P., et al. (2014) In situ radiometric and exposure age dating of the martian surface. Science, 343, doi:10.1126/science.1247166.CrossRefGoogle ScholarPubMed
Filiberto, J. (2017) Geochemistry of martian basalts with constraints on magma genesis. Chemical Geology, 466, 114.Google Scholar
Fujiya, W., Sugiura, N., Hotta, H., et al. (2012) Evidence for the late formation of hydrous asteroids from young meteoritic carbonates. Nature Communications, 3, 627.CrossRefGoogle ScholarPubMed
Gaffney, A. M., and Borg, L. E. (2014) A young solidification age for the lunar magma ocean. Geochimica et Cosmochimica Acta, 140, 227240.Google Scholar
Göpel, C., Manhès, G., and Allègre, C.-J. (1994) U-Pb systematics of phosphates from unequilibrated ordinary chondrites. Earth & Planetary Science Letters, 121, 153171,Google Scholar
Halliday, A. N. (2014) The origin and earliest history of the Earth. In Treatise on Geochemistry, 2nd Edition, Vol. 2: Planets, Asteroids, Comets and the Solar System, Davis, A. M., editor, pp. 149211, Elsevier, Oxford.CrossRefGoogle Scholar
Heisinger, H., Head, J. W., Wolf, U., et al. (2011) Ages and stratigraphy of lunar mare basalts: A synthesis. Geological Society of America Special Paper, 447, doi:10.1130/SPE447.Google Scholar
Hellmann, J. L., Kruijer, T. S., Van Orman, J. A., et al. (2019) Hf-W chronology of ordinary chondrites. Geochimica et Cosmochimica Acta, 258, 290309.Google Scholar
Herzog, G. F. (2004) Cosmic-ray exposure ages of meteorites. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 347380, Elsevier, Oxford.Google Scholar
Herzog, G. F., and Caffee, M. W. (2014) Cosmic-ray exposure ages of meteorites. In Treatise in Geochemistry, 2nd Edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 419454, Elsevier, Oxford.Google Scholar
Hohenberg, C. M., and Pravdivtseva, O. V. (2008) I-Xe dating: From adolescence to maturity. Chemie der Erde, 68, 339351.Google Scholar
Hsu, W., Wasserburg, G. J., and Huss, G. R. (2000) High time resolution using 26Al in the multistage formation of a CAI. Earth & Planetary Science Letters, 182, 1529.Google Scholar
Humayun, M., Nemchin, A., Zanda, B., et al. (2013) Origin and age of the earliest martian crust from meteorite NWA 7533. Nature, 503, 513516.Google Scholar
Jacobsen, B., Yin, Q.-Z, Moynier, F., et al. (2008) 26Al-26Mg and 207Pb-206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth & Planetary Science Letters, 272, 353364.Google Scholar
Jilly-Rehak, C. E., Huss, G. R., and Nagashima, K. (2017) 53Mn-53Cr radiometric dating of secondary carbonates in CR chondrites: Timescales for parent body aqueous alteration. Geochimica et Cosmochimica Acta, 201, 224244.Google Scholar
Kleine, T., Touboul, M., Van Orman, J. A., et al. (2008) Hf-W thermochronometry: Closure temperature and constraints on the accretion and cooling history of the H chondrite parent body. Earth & Planetary Science Letters, 270, 106118.Google Scholar
Kleine, T., Hans, U., Irving, A. J., and Bourdon, B. (2012) Chronology of the angrite parent body and implications for core formation in protoplanets. Geochimica et Cosmochimica Acta, 84, 186203.Google Scholar
Kleine, T., Budde, G., Hellmann, J. L., et al. (2018) Tungsten isotopes and the origin of chondrules and chondrites. In Chondrules, Records of Protoplanetary Disk Processes, Russell, S. S., Connolly, H. C., Jr, and Krot, A. N., editors, pp. 276299, Cambridge University Press, Cambridge.Google Scholar
Kööp, L., Davis, A. M., Nakashima, D., et al. (2016) A link between oxygen, calcium and titanium isotopes in 26Al-poor hibonite-rich CAIs from Murchison and implications for the heterogeneity of dust reservoirs in the solar nebula. Geochimica et Cosmochimica Acta, 189, 7095.CrossRefGoogle Scholar
Krot, A. N., Amelin, Y., Cassen, P., and Meibom, A. (2005) Young chondrules in CB chondrites from a giant impact in the early solar system. Nature, 436, 989992.Google Scholar
Krot, A. M., McKeegan, K. D., Huss, G. R., et al. (2006) Aluminum-magnesium and oxygen isotope study of relict Ca-Al-rich inclusions in chondrules. Astrophysical Journal, 639, 12271237.Google Scholar
Kruijer, T. S., Kleine, T., Fischer-Godde, M., et al. (2014a) Nucleosynthetic W isotope anomalies and the Hf-W chronometry of Ca-Al-rich inclusions. Earth & Planetary Science Letters, 403, 317327.CrossRefGoogle Scholar
Kruijer, T. S., Touboul, M., Fischer-Godde, M., et al. (2014b). Protracted core formation and rapid accretion of protoplanets. Science, 344, 11501154.Google Scholar
Kruijer, T. S., Kleine, T., Borg, L. E., et al. (2017) The early differentiation of Mars inferred from Hf-W chronometry. Earth & Planetary Science Letters, 474, 345354.Google Scholar
Lada, C. J., and Lada, E. A. (2003) Embedded clusters in molecular clouds. Annual Reviews of Astronomy & Astrophysics, 41, 57115.Google Scholar
Lapen, T. J., Righter, M., Brandon, A. D., et al. (2010) A younger age for ALH 84001 and its geochemical link to shergottite sources in Mars. Science, 328, 347351.Google Scholar
Larsen, K. K., Trinquier, A., Paton, C., et al. (2011) Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. Astrophysical Journal Letters, 735, L37.CrossRefGoogle Scholar
Larsen, K. K., Schiller, M., and Bizzarro, M. (2016) Accretion timescales and style of asteroidal differentiation in an 26Al-poor protoplanetary disk. Geochimica et Cosmochimica Acta, 176, 295315.Google Scholar
Larsen, K. K., Wielandt, D., Schiller, M., et al. (2020) Episodic formation of refractory inclusions in the Solar System and their presolar heritage. Earth & Planetary Science Letters, 535, 116088.Google Scholar
Lee, D. C., and Halliday, A. N. (1997) Core formation on Mars and differentiated asteroids. Nature, 388, 854857.Google Scholar
Lee, T., Papanastassiou, D. A., and Wasserburg, G. J. (1977) Aluminum-26 in the early solar system: Fossil or fuel? Astrophysical Journal Letters, 211, L107L110.Google Scholar
Lugmair, G. W., and Shukolyukov, A. (1998) Early solar system timescales according to the 53Mn-53Cr system. Geochimica et Cosmochimica Acta, 62, 28632886.CrossRefGoogle Scholar
MacPherson, G. J., Nagashima, K., Krot, A. N., et al. (2017) 52Mn-53Cr chronology of Ca-Fe silicates in CV3 chondrites. Geochimica et Cosmochimica Acta, 201, 260274.CrossRefGoogle Scholar
Makide, K., Nagashima, K., Krot, A. N., et al. (2011) Heterogeneous distribution of 26Al at the birth of the solar system. Astrophysical Journal Letters, 733, L31.Google Scholar
Maltese, A., and Mezger, K. (2020) The Pb isotope evolution of bulk silicate Earth: Constraints from its accretion and early differentiation history. Geochimica et Cosmochimica Acta, 271, 179193.Google Scholar
Marty, B., and Marti, K. (2002) Signatures of early differentiation of Mars. Earth & Planetary Science Letters, 196, 251263.Google Scholar
McKee, C. F., and Ostriker, J. P. (1977) A theory of the interstellar medium – three components regulated by supernova explosions in an inhomogeneous substrate. Astrophysical Journal, 218, 148169.CrossRefGoogle Scholar
Meyer, B. S. (2005) Synthesis of short-lived radioactivities in a massive star. In Chondrites and the Protoplanetary Disk, Krot, A. N., Scott, E. R. D., and Reipurth, B., editors, pp. 515526, Astronomical Society of the Pacific, San Francisco.Google Scholar
Nagashima, K, Kita, N. T., and Luu, T.-H. (2018) 26Al–27Al systematics of chondrules. In Chondrules, Records of Protoplanetary Disk Processes, Russell, S. S., Connolly, H. C., and Krot, A. N., editors, pp. 247275, Cambridge University Press, Cambridge.Google Scholar
Nagashima, K., Krot, A. N., and Huss, G. R. (2014) 26Al in chondrules from CR2 chondrites. Geochemical Journal, 48, 561570.CrossRefGoogle Scholar
Neukum, G., Ivanov, B. A., and Hartmann, W. K. (2001) Cratering records in the inner solar system in relation to the lunar reference system. Space Science Reviews, 96, 5586.CrossRefGoogle Scholar
Nyquist, L. E., Shih, C.-Y., McCubbin, F. M., et al. (2016) Rb-Sr and Sm-Nd isotopic and REE studies of igneous components in the bulk matrix domain of martian breccia Northwest Africa 7034. Meteoritics & Planetary Science, 51, 483498.Google Scholar
Park, C., Nagashima, K., Krot, A. N., et al. (2017) Calcium-aluminum-rich inclusion with fractionation and unidentified nuclear effects (FUN CAIs): II. Heterogeneities of magnesium isotopes and 26Al in the early solar system inferred from in situ high-precision magnesium-isotope measurements. Geochimica et Cosmochimica Acta, 201, 624.Google Scholar
Reynolds, J. H. (1960) Determination of the age of the elements. Physical Reviews Letters, 4, 810.Google Scholar
Schiller, M., Baker, J., Creech, J., et al. (2011) Rapid timescales for magma ocean crystallization on the howardite-eucrite-diogenite parent body. Astrophysical Journal Letters, 740, L22.Google Scholar
Schmitz, B. (2013). Extraterrestrial spinels and the astronomical perspective on Earth’s geological record and evolution of life. Chemie der Erde, 73, 117145.CrossRefGoogle Scholar
Schmitz, B., Tassinari, M., and Peucker-Ehrenbrink, B. (2001) A rain of ordinary chondritic meteorites in the early Ordovician. Earth & Planetary Science Letters, 194, 115.Google Scholar
Schmitz, B., Yin, Q.-Z., Sanborn, M. E., et al. (2016) A new type of solar-system material from Ordovician marine limestone. Nature Communications, 7, 11851.CrossRefGoogle ScholarPubMed
Shukolyukov, A., and Lugmair, G. W. (2007) The Mn-Cr isotope systematics of bulk angrites. Lunar and Planetary Science, 38, abstract #1423.Google Scholar
Smoliar, M. I. (1993) A survey of Rb-Sr systematics of eucrites. Meteoritics, 28, 105113.Google Scholar
Snape, J. F., Nemchin, A. A., Bellucci, J. J., et al. (2016) Lunar basalt chronology, mantle differentiation and implications for determining the age of the Moon. Earth & Planetary Science Letters, 451, 149158.Google Scholar
Spivak-Birndorf, L., Wadhwa, M., and Janney, P. (2009) 26Al/26Mg systematics in D’Orbigny and Sahara 99555 angrites: Implications for high-resolution chronology using extinct chronometers. Geochimica et Cosmochimica Acta, 73, 52025211.CrossRefGoogle Scholar
Takigawa, A., Miki, J., Tachibana, S., et al. (2008) Injection of short-lived radionuclides into the early solar system from a faint supernova with mixing fallback. Astrophysical Journal, 688, 13821387.Google Scholar
Tera, F. (1981) Aspects of isochronism in Pb isotope systematics – Application to planetary evolution. Geochimica et Cosmochimica Acta, 45, 14391448.Google Scholar
Telus, M., Huss, G. R., Nagashima, K., and Ogliore, R. C. (2014) Revisiting 26Al-26Mg systematics of plagioclase in H4 chondrites. Meteoritics & Planetary Science, 49, 929945.Google Scholar
Thiemens, M. M., Sprung, P., Ronseca, R. O. C., et al. (2019) Early Moon formation inferred from hafnium-tungsten systematics. Nature Geoscience, 12, 696700.CrossRefGoogle Scholar
Touboul, M., Sprung, P., Aciego, S. M., et al. (2015) Hf-W chronology of the eucrite parent body. Geochimica et Cosmochimica Acta, 156, 106121.Google Scholar
Trieloff, M., Jessberger, E. K., Herrwerth, I., et al. (2003) Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry. Nature, 422, 502506.Google Scholar
Udry, A., Howarth, G. H., Herd, C. D. K., Day, J. M. D., Lapen, T. J. D., & Filiberto, J. (2020) What martian meteorites reveal about the interior and surface of Mars. Journal of Geophysical Research: Planets, 125, e2020JE006523Google Scholar
Wadhwa, M., Srinivasan, G., and Carlson, R. W. (2006) Timescales of planetesimal differentiation in the early solar system. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 715731, University of Arizona Press, Tucson.Google Scholar
Wang, W., Harris, M. J., Diehl, R., et al. (2007) SPI observations of the diffuse 60Fe emission in the galaxy. Astronomy & Astrophysics, 469, 10051012.Google Scholar
Warren, P. H. (2004) The Moon. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 559599, Elsevier, Oxford.Google Scholar
Wasserburg, G. J., Busso, M., Gallino, R., and Nollett, K. M. (2006) Short-lived nuclei in the early solar system: Possible AGB source. Nuclear Physics A, 777, 569.Google Scholar
Wieler, R., Huber, L., Busemann, H., et al. (2016) Noble gases in 18 martian meteorites and angrite Northwest Africa 7812 – Exposure ages, trapped gases, and a re-evaluation of evidence for solar cosmic ray-produced neon in shergottites and other achondrites. Meteoritics & Planetary Science, 51, 407428.CrossRefGoogle Scholar
Wilde, S. A., Valley, J. A., Peck, W. H., and Graham, C. M. (2001) Evidence from detrital zircons for the existence of continental crust and oceans on Earth 4.4 Gyr ago. Nature, 409, 175178.Google Scholar
Wimpenny, J., Sanborn, M. E., Koefoed, P., et al. (2019) Reassessing the origin and chronology of the unique achondrite Asuka 881394: Implications for distribution of 26Al in the early solar system. Geochimica et Cosmochimica Acta, 244, 478501.CrossRefGoogle Scholar
Yin, Q. Z., Jacobsen, S. B., Yamashita, K., et al. (2002) A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature, 418, 949952.Google Scholar
Zhou, Q., Yin, Q.-Z., Young, E. D., et al. (2013) SIMS Pb-Pb and U-Pb age determination of eucrite zircons at <5 μm scale and the first 50 Ma of the thermal history of Vesta. Geochimica et Cosmochimica Acta, 110, 152175.Google Scholar

Other References

Allègre, C. J., Manhès, G., and Göpel, C. (1995) The age of the Earth. Geochimica et Cosmochimica Acta, 59, 14451456.Google Scholar
Anderson, F. S., Levine, J., and Whitacker, T. J. (2015) Dating the martian meteorite Zagami by the 87Rb-87Sr isochron method with a prototype in situ resonance ionization mass spectrometer. Rapid Communications in Mass Spectrometry, 29, 191204.CrossRefGoogle ScholarPubMed
Arnould, M., Goriely, S., and Meynet, G. (2006) The production of short-lived radionuclides by new non-rotating and rotating Wolf-Rayet model stars. Astronomy & Astrophysics, 453, 653659.Google Scholar
Avice, G., and Marty, B. (2014) The iodine-plutonium-xenon age of the Moon-Earth system revisited. Philosophical Transactions of the Royal Society A, 372, 20130260.CrossRefGoogle ScholarPubMed
Barboni, M., Boehnke, P., Keller, B., et al. (2017) Early formation of the Moon 4.51 billion years ago. Science Advances, 3, e1602365.Google Scholar
Bellucci, J. J., Nemchin, A. A., Whitehouse, M. J., et al. (2018) Pb evolution in the martian mantle. Earth & Planetary Science Letters, 485, 7987.Google Scholar
Bizzarro, M., Baker, J. A., Haack, H., and Lundgaard, K. L. (2005) Rapid timescales for accretion and melting of differentiated planetesimals inferred from 26Al-26Mg chronometry. Astrophysical Journal, 632, L41L44.CrossRefGoogle Scholar
Bollard, J., Connelly, J. N., and Bizzarro, M. (2015) Pb-Pb dating of individual chondrules from the CBa chondrite Gujba: Assessment of the impact plume formation model. Meteoritics & Planetary Science, 50, 11971216.Google Scholar
Bollard, J., Connelly, J. N., Whitehouse, M. J., et al. (2017) Early formation of planetary building blocks inferred from Pb isotopic ages of chondrules. Science Advances, 3, e1700407.CrossRefGoogle ScholarPubMed
Borg, L. E., Gaffney, A. M., and Shearer, C. K. (2014) A review of lunar chronology revealing a preponderance of 4.34-4.37 Ga ages. Meteoritics & Planetary Science, 50, 715732.Google Scholar
Bottke, W. F., Nesvorny, D., Vokrouhlicky, D., and Borbidelli, A. (2009) The Gefion family as the probably source of the L chondrite meteorites. Lunar and Planetary Science, 60, abstract #1445, CDROM.Google Scholar
Bouvier, A., Blichert-Toft, J., Moynier, F., et al. (2007) Pb-Pb dating constraints on the accretion and cooling history of chondrites. Geochimica et Cosmochimica Acta, 71, 15831604.Google Scholar
Bouvier, A., Blichert-Toft, J., Vervoort, J. D., et al. (2008) The case for old basaltic shergottites. Earth & Planetary Science Letters, 266, 105124.CrossRefGoogle Scholar
Bouvier, L. C., Costa, M. M., Connelly, J. N., et al. (2018) Evidence for extremely rapid magma ocean crystallization and crust formation on Mars. Nature, 558, 586589.Google Scholar
Bowring, S. A., Schoene, B., Crowley, J. L., et al. (2006) High-precision U-Pb zircon geochronology and the stratigraphic record: Progress and promise. Paleontological Society Papers, 12, 2545.CrossRefGoogle Scholar
Brennecka, G. A., Weyer, S., Wadhwa, M., et al. (2010) 238U/235U variations in meteorites: Extant 247Cm and implications for Pb-Pb dating. Science, 237, 449451.CrossRefGoogle Scholar
Budde, G., Kleine, T., Kruijer, T. S., et al. (2016) Tungsten isotopic constraints on the age and origin of chondrules. Proceedings of the National Academy of Sciences, USA, 113, 26862691.CrossRefGoogle ScholarPubMed
Budde, G., Kruijer, T. S., and Kleine, T. (2018) Hf-W chronology of CR chondrites: Implications for the timescales of chondrule formation and the distribution of 26Al in the solar nebula. Geochimica et Cosmochimica Acta, 222, 284304.Google Scholar
Cameron, A. G. W., and Truran, J. W. (1977) The supernova trigger for formation of the solar system. Icarus, 30, 447461.Google Scholar
Cameron, A. G. W., Hoeflich, P., Myers, P. C., and Clayton, D. D. (1995) Massive supernovae, Orion gamma rays, and the formation of the solar system. Astrophysical Journal, 447, L53L57.Google Scholar
Clayton, D. D. (1988) Nuclear cosmochronology with analytic models of the chemical evolution of the solar neighborhood. Monthly Notices of the Royal Astronomical Society, 234, 136.Google Scholar
Cohen, B. A., Miller, J. S., Li, Z.-H., et al. (2014) The Potassium-Argon Laser Experiment (KArLE): In situ geochronology for planetary robotic missions. Geostandards and Geoanalytical Research, 38, 421439.CrossRefGoogle Scholar
Cohen, B. A., Malespin, C. A., Farley, K. A., et al. (2019) In situ geochronology on Mars and the development of future instrumentation. Astrobiology, 19, 13031314.Google Scholar
Connelly, J. N., and Bizzarro, M. (2016) Lead isotope evidence for a young formation age of the Earth-Moon system. Earth & Planetary Science Letters, 452, 3643.Google Scholar
Connelly, J. N., Bizzarro, M., Krot, A. N., et al. (2012) The absolute chronology and thermal processing of solids in the solar protoplanetary disk. Science, 338, 651655.Google Scholar
Connelly, J. N., Bollar, J., and Bizzarro, M. (2017) Pb-Pb chronometry and the early solar system. Geochimica et Cosmochimica Acta, 201, 345363.Google Scholar
Davis, A. M., and McKeegan, K. D. (2014) Short-lived radionuclides and early solar system chronology. In Treatise on Geochemistry, 2nd Edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 361395, Elsevier, Oxford.CrossRefGoogle Scholar
Day, J. M. D., Brandon, A. D., and Walker, R. J. (2016) Highly siderophile elements in Earth, Mars, the Moon, and asteroids. Reviews in Mineralogy & Geochemistry, 81, 161238.CrossRefGoogle Scholar
Diehl, R., Halloin, H., Kretschmer, K., et al. (2006) 26Al in the inner galaxy. Astronomy & Astrophysics, 449, 10251031.Google Scholar
Doyle, P. M., Jogo, K., Nagashima, K., et al. (2015) Early aqueous activity on the ordinary and carbonaceous chondrite parent bodies recorded by fayalite. Nature Communications, 6, 7444.Google Scholar
Eugster, O., Herzog, G. F., Marti, K, and Caffee, M. W. (2006) Irradiation records, cosmic-ray exposure ages, and transfer time of meteorites. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 829851, University of Arizona Press, Tucson.Google Scholar
Farley, K. A., Malespin, C., Mahaffy, P., et al. (2014) In situ radiometric and exposure age dating of the martian surface. Science, 343, doi:10.1126/science.1247166.CrossRefGoogle ScholarPubMed
Filiberto, J. (2017) Geochemistry of martian basalts with constraints on magma genesis. Chemical Geology, 466, 114.Google Scholar
Fujiya, W., Sugiura, N., Hotta, H., et al. (2012) Evidence for the late formation of hydrous asteroids from young meteoritic carbonates. Nature Communications, 3, 627.CrossRefGoogle ScholarPubMed
Gaffney, A. M., and Borg, L. E. (2014) A young solidification age for the lunar magma ocean. Geochimica et Cosmochimica Acta, 140, 227240.Google Scholar
Göpel, C., Manhès, G., and Allègre, C.-J. (1994) U-Pb systematics of phosphates from unequilibrated ordinary chondrites. Earth & Planetary Science Letters, 121, 153171,Google Scholar
Halliday, A. N. (2014) The origin and earliest history of the Earth. In Treatise on Geochemistry, 2nd Edition, Vol. 2: Planets, Asteroids, Comets and the Solar System, Davis, A. M., editor, pp. 149211, Elsevier, Oxford.CrossRefGoogle Scholar
Heisinger, H., Head, J. W., Wolf, U., et al. (2011) Ages and stratigraphy of lunar mare basalts: A synthesis. Geological Society of America Special Paper, 447, doi:10.1130/SPE447.Google Scholar
Hellmann, J. L., Kruijer, T. S., Van Orman, J. A., et al. (2019) Hf-W chronology of ordinary chondrites. Geochimica et Cosmochimica Acta, 258, 290309.Google Scholar
Herzog, G. F. (2004) Cosmic-ray exposure ages of meteorites. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 347380, Elsevier, Oxford.Google Scholar
Herzog, G. F., and Caffee, M. W. (2014) Cosmic-ray exposure ages of meteorites. In Treatise in Geochemistry, 2nd Edition, Vol. 1: Meteorites and Cosmochemical Processes, Davis, A. M., editor, pp. 419454, Elsevier, Oxford.Google Scholar
Hohenberg, C. M., and Pravdivtseva, O. V. (2008) I-Xe dating: From adolescence to maturity. Chemie der Erde, 68, 339351.Google Scholar
Hsu, W., Wasserburg, G. J., and Huss, G. R. (2000) High time resolution using 26Al in the multistage formation of a CAI. Earth & Planetary Science Letters, 182, 1529.Google Scholar
Humayun, M., Nemchin, A., Zanda, B., et al. (2013) Origin and age of the earliest martian crust from meteorite NWA 7533. Nature, 503, 513516.Google Scholar
Jacobsen, B., Yin, Q.-Z, Moynier, F., et al. (2008) 26Al-26Mg and 207Pb-206Pb systematics of Allende CAIs: Canonical solar initial 26Al/27Al ratio reinstated. Earth & Planetary Science Letters, 272, 353364.Google Scholar
Jilly-Rehak, C. E., Huss, G. R., and Nagashima, K. (2017) 53Mn-53Cr radiometric dating of secondary carbonates in CR chondrites: Timescales for parent body aqueous alteration. Geochimica et Cosmochimica Acta, 201, 224244.Google Scholar
Kleine, T., Touboul, M., Van Orman, J. A., et al. (2008) Hf-W thermochronometry: Closure temperature and constraints on the accretion and cooling history of the H chondrite parent body. Earth & Planetary Science Letters, 270, 106118.Google Scholar
Kleine, T., Hans, U., Irving, A. J., and Bourdon, B. (2012) Chronology of the angrite parent body and implications for core formation in protoplanets. Geochimica et Cosmochimica Acta, 84, 186203.Google Scholar
Kleine, T., Budde, G., Hellmann, J. L., et al. (2018) Tungsten isotopes and the origin of chondrules and chondrites. In Chondrules, Records of Protoplanetary Disk Processes, Russell, S. S., Connolly, H. C., Jr, and Krot, A. N., editors, pp. 276299, Cambridge University Press, Cambridge.Google Scholar
Kööp, L., Davis, A. M., Nakashima, D., et al. (2016) A link between oxygen, calcium and titanium isotopes in 26Al-poor hibonite-rich CAIs from Murchison and implications for the heterogeneity of dust reservoirs in the solar nebula. Geochimica et Cosmochimica Acta, 189, 7095.CrossRefGoogle Scholar
Krot, A. N., Amelin, Y., Cassen, P., and Meibom, A. (2005) Young chondrules in CB chondrites from a giant impact in the early solar system. Nature, 436, 989992.Google Scholar
Krot, A. M., McKeegan, K. D., Huss, G. R., et al. (2006) Aluminum-magnesium and oxygen isotope study of relict Ca-Al-rich inclusions in chondrules. Astrophysical Journal, 639, 12271237.Google Scholar
Kruijer, T. S., Kleine, T., Fischer-Godde, M., et al. (2014a) Nucleosynthetic W isotope anomalies and the Hf-W chronometry of Ca-Al-rich inclusions. Earth & Planetary Science Letters, 403, 317327.CrossRefGoogle Scholar
Kruijer, T. S., Touboul, M., Fischer-Godde, M., et al. (2014b). Protracted core formation and rapid accretion of protoplanets. Science, 344, 11501154.Google Scholar
Kruijer, T. S., Kleine, T., Borg, L. E., et al. (2017) The early differentiation of Mars inferred from Hf-W chronometry. Earth & Planetary Science Letters, 474, 345354.Google Scholar
Lada, C. J., and Lada, E. A. (2003) Embedded clusters in molecular clouds. Annual Reviews of Astronomy & Astrophysics, 41, 57115.Google Scholar
Lapen, T. J., Righter, M., Brandon, A. D., et al. (2010) A younger age for ALH 84001 and its geochemical link to shergottite sources in Mars. Science, 328, 347351.Google Scholar
Larsen, K. K., Trinquier, A., Paton, C., et al. (2011) Evidence for magnesium isotope heterogeneity in the solar protoplanetary disk. Astrophysical Journal Letters, 735, L37.CrossRefGoogle Scholar
Larsen, K. K., Schiller, M., and Bizzarro, M. (2016) Accretion timescales and style of asteroidal differentiation in an 26Al-poor protoplanetary disk. Geochimica et Cosmochimica Acta, 176, 295315.Google Scholar
Larsen, K. K., Wielandt, D., Schiller, M., et al. (2020) Episodic formation of refractory inclusions in the Solar System and their presolar heritage. Earth & Planetary Science Letters, 535, 116088.Google Scholar
Lee, D. C., and Halliday, A. N. (1997) Core formation on Mars and differentiated asteroids. Nature, 388, 854857.Google Scholar
Lee, T., Papanastassiou, D. A., and Wasserburg, G. J. (1977) Aluminum-26 in the early solar system: Fossil or fuel? Astrophysical Journal Letters, 211, L107L110.Google Scholar
Lugmair, G. W., and Shukolyukov, A. (1998) Early solar system timescales according to the 53Mn-53Cr system. Geochimica et Cosmochimica Acta, 62, 28632886.CrossRefGoogle Scholar
MacPherson, G. J., Nagashima, K., Krot, A. N., et al. (2017) 52Mn-53Cr chronology of Ca-Fe silicates in CV3 chondrites. Geochimica et Cosmochimica Acta, 201, 260274.CrossRefGoogle Scholar
Makide, K., Nagashima, K., Krot, A. N., et al. (2011) Heterogeneous distribution of 26Al at the birth of the solar system. Astrophysical Journal Letters, 733, L31.Google Scholar
Maltese, A., and Mezger, K. (2020) The Pb isotope evolution of bulk silicate Earth: Constraints from its accretion and early differentiation history. Geochimica et Cosmochimica Acta, 271, 179193.Google Scholar
Marty, B., and Marti, K. (2002) Signatures of early differentiation of Mars. Earth & Planetary Science Letters, 196, 251263.Google Scholar
McKee, C. F., and Ostriker, J. P. (1977) A theory of the interstellar medium – three components regulated by supernova explosions in an inhomogeneous substrate. Astrophysical Journal, 218, 148169.CrossRefGoogle Scholar
Meyer, B. S. (2005) Synthesis of short-lived radioactivities in a massive star. In Chondrites and the Protoplanetary Disk, Krot, A. N., Scott, E. R. D., and Reipurth, B., editors, pp. 515526, Astronomical Society of the Pacific, San Francisco.Google Scholar
Nagashima, K, Kita, N. T., and Luu, T.-H. (2018) 26Al–27Al systematics of chondrules. In Chondrules, Records of Protoplanetary Disk Processes, Russell, S. S., Connolly, H. C., and Krot, A. N., editors, pp. 247275, Cambridge University Press, Cambridge.Google Scholar
Nagashima, K., Krot, A. N., and Huss, G. R. (2014) 26Al in chondrules from CR2 chondrites. Geochemical Journal, 48, 561570.CrossRefGoogle Scholar
Neukum, G., Ivanov, B. A., and Hartmann, W. K. (2001) Cratering records in the inner solar system in relation to the lunar reference system. Space Science Reviews, 96, 5586.CrossRefGoogle Scholar
Nyquist, L. E., Shih, C.-Y., McCubbin, F. M., et al. (2016) Rb-Sr and Sm-Nd isotopic and REE studies of igneous components in the bulk matrix domain of martian breccia Northwest Africa 7034. Meteoritics & Planetary Science, 51, 483498.Google Scholar
Park, C., Nagashima, K., Krot, A. N., et al. (2017) Calcium-aluminum-rich inclusion with fractionation and unidentified nuclear effects (FUN CAIs): II. Heterogeneities of magnesium isotopes and 26Al in the early solar system inferred from in situ high-precision magnesium-isotope measurements. Geochimica et Cosmochimica Acta, 201, 624.Google Scholar
Reynolds, J. H. (1960) Determination of the age of the elements. Physical Reviews Letters, 4, 810.Google Scholar
Schiller, M., Baker, J., Creech, J., et al. (2011) Rapid timescales for magma ocean crystallization on the howardite-eucrite-diogenite parent body. Astrophysical Journal Letters, 740, L22.Google Scholar
Schmitz, B. (2013). Extraterrestrial spinels and the astronomical perspective on Earth’s geological record and evolution of life. Chemie der Erde, 73, 117145.CrossRefGoogle Scholar
Schmitz, B., Tassinari, M., and Peucker-Ehrenbrink, B. (2001) A rain of ordinary chondritic meteorites in the early Ordovician. Earth & Planetary Science Letters, 194, 115.Google Scholar
Schmitz, B., Yin, Q.-Z., Sanborn, M. E., et al. (2016) A new type of solar-system material from Ordovician marine limestone. Nature Communications, 7, 11851.CrossRefGoogle ScholarPubMed
Shukolyukov, A., and Lugmair, G. W. (2007) The Mn-Cr isotope systematics of bulk angrites. Lunar and Planetary Science, 38, abstract #1423.Google Scholar
Smoliar, M. I. (1993) A survey of Rb-Sr systematics of eucrites. Meteoritics, 28, 105113.Google Scholar
Snape, J. F., Nemchin, A. A., Bellucci, J. J., et al. (2016) Lunar basalt chronology, mantle differentiation and implications for determining the age of the Moon. Earth & Planetary Science Letters, 451, 149158.Google Scholar
Spivak-Birndorf, L., Wadhwa, M., and Janney, P. (2009) 26Al/26Mg systematics in D’Orbigny and Sahara 99555 angrites: Implications for high-resolution chronology using extinct chronometers. Geochimica et Cosmochimica Acta, 73, 52025211.CrossRefGoogle Scholar
Takigawa, A., Miki, J., Tachibana, S., et al. (2008) Injection of short-lived radionuclides into the early solar system from a faint supernova with mixing fallback. Astrophysical Journal, 688, 13821387.Google Scholar
Tera, F. (1981) Aspects of isochronism in Pb isotope systematics – Application to planetary evolution. Geochimica et Cosmochimica Acta, 45, 14391448.Google Scholar
Telus, M., Huss, G. R., Nagashima, K., and Ogliore, R. C. (2014) Revisiting 26Al-26Mg systematics of plagioclase in H4 chondrites. Meteoritics & Planetary Science, 49, 929945.Google Scholar
Thiemens, M. M., Sprung, P., Ronseca, R. O. C., et al. (2019) Early Moon formation inferred from hafnium-tungsten systematics. Nature Geoscience, 12, 696700.CrossRefGoogle Scholar
Touboul, M., Sprung, P., Aciego, S. M., et al. (2015) Hf-W chronology of the eucrite parent body. Geochimica et Cosmochimica Acta, 156, 106121.Google Scholar
Trieloff, M., Jessberger, E. K., Herrwerth, I., et al. (2003) Structure and thermal history of the H-chondrite parent asteroid revealed by thermochronometry. Nature, 422, 502506.Google Scholar
Udry, A., Howarth, G. H., Herd, C. D. K., Day, J. M. D., Lapen, T. J. D., & Filiberto, J. (2020) What martian meteorites reveal about the interior and surface of Mars. Journal of Geophysical Research: Planets, 125, e2020JE006523Google Scholar
Wadhwa, M., Srinivasan, G., and Carlson, R. W. (2006) Timescales of planetesimal differentiation in the early solar system. In Meteorites and the Early Solar System II, Lauretta, D. S., and McSween, H. Y., editors, pp. 715731, University of Arizona Press, Tucson.Google Scholar
Wang, W., Harris, M. J., Diehl, R., et al. (2007) SPI observations of the diffuse 60Fe emission in the galaxy. Astronomy & Astrophysics, 469, 10051012.Google Scholar
Warren, P. H. (2004) The Moon. In Treatise on Geochemistry, Vol. 1: Meteorites, Comets, and Planets, Davis, A. M., editor, pp. 559599, Elsevier, Oxford.Google Scholar
Wasserburg, G. J., Busso, M., Gallino, R., and Nollett, K. M. (2006) Short-lived nuclei in the early solar system: Possible AGB source. Nuclear Physics A, 777, 569.Google Scholar
Wieler, R., Huber, L., Busemann, H., et al. (2016) Noble gases in 18 martian meteorites and angrite Northwest Africa 7812 – Exposure ages, trapped gases, and a re-evaluation of evidence for solar cosmic ray-produced neon in shergottites and other achondrites. Meteoritics & Planetary Science, 51, 407428.CrossRefGoogle Scholar
Wilde, S. A., Valley, J. A., Peck, W. H., and Graham, C. M. (2001) Evidence from detrital zircons for the existence of continental crust and oceans on Earth 4.4 Gyr ago. Nature, 409, 175178.Google Scholar
Wimpenny, J., Sanborn, M. E., Koefoed, P., et al. (2019) Reassessing the origin and chronology of the unique achondrite Asuka 881394: Implications for distribution of 26Al in the early solar system. Geochimica et Cosmochimica Acta, 244, 478501.CrossRefGoogle Scholar
Yin, Q. Z., Jacobsen, S. B., Yamashita, K., et al. (2002) A short timescale for terrestrial planet formation from Hf-W chronometry of meteorites. Nature, 418, 949952.Google Scholar
Zhou, Q., Yin, Q.-Z., Young, E. D., et al. (2013) SIMS Pb-Pb and U-Pb age determination of eucrite zircons at <5 μm scale and the first 50 Ma of the thermal history of Vesta. Geochimica et Cosmochimica Acta, 110, 152175.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×