Skip to main content Accessibility help
×
  • Cited by 48
Publisher:
Cambridge University Press
Online publication date:
October 2014
Print publication year:
2014
Online ISBN:
9781139175852

Book description

Cox rings are significant global invariants of algebraic varieties, naturally generalizing homogeneous coordinate rings of projective spaces. This book provides a largely self-contained introduction to Cox rings, with a particular focus on concrete aspects of the theory. Besides the rigorous presentation of the basic concepts, other central topics include the case of finitely generated Cox rings and its relation to toric geometry; various classes of varieties with group actions; the surface case; and applications in arithmetic problems, in particular Manin's conjecture. The introductory chapters require only basic knowledge in algebraic geometry. The more advanced chapters also touch on algebraic groups, surface theory, and arithmetic geometry. Each chapter ends with exercises and problems. These comprise mini-tutorials and examples complementing the text, guided exercises for topics not discussed in the text, and, finally, several open problems of varying difficulty.

Reviews

‘An excellent introduction to the subject, featuring a wide selection of topics, careful exposition, and many examples and exercises.'

David Cox - University of Massachusetts, Amherst

‘This book is a detailed account of virtually every aspect of the general theory of the Cox ring of an algebraic variety. After a thorough introduction it takes the reader on an impressive tour through toric geometry, geometric invariant theory, Mori dream spaces, and universal torsors, culminating with applications to the Manin conjecture on rational points. The many worked examples and exercises make it not just a comprehensive reference, but also an excellent introduction for graduate students.'

Alexei Skorobogatov - Imperial College London

‘This book provides the first comprehensive treatment of Cox rings. Firstly, its broad and complete exposition of the fundamentals of the general theory will be appreciated by both those who want to learn the subject and specialists seeking an ultimate reference on many subtle aspects of the theory. Secondly, it introduces readers to the most important applications that have developed in the past decade and will define the direction of research in the years to come.'

Jarosław Wiśniewski - Institute of Mathematics, University of Warsaw

'Cox rings are very important in modern algebraic and arithmetic geometry. This book, providing a comprehensive introduction to the theory and applications of Cox rings from the basics up to, and including, very complicated technical points and particular problems, aims at a wide readership of more or less everyone working in the areas where Cox rings are used … This book is very useful for everyone working with Cox rings, and especially useful for postgraduate students learning the subject.'

Alexandr V. Pukhlikov Source: Mathematical Reviews

Refine List

Actions for selected content:

Select all | Deselect all
  • View selected items
  • Export citations
  • Download PDF (zip)
  • Save to Kindle
  • Save to Dropbox
  • Save to Google Drive

Save Search

You can save your searches here and later view and run them again in "My saved searches".

Please provide a title, maximum of 40 characters.
×

Contents

References
[1] A., A'Campo-Neuen. Note on a counterexample to Hilbert's fourteenth problem given by P. Roberts. Indag. Math. (N.S.), 5(3):253–257, 1994 Google Scholar.
[2] A., A'Campo-Neuen and J., Hausen. Examples and counterexamples for existence of categorical quotients. J. Algebra, 231(1):67–85, 2000 Google Scholar.
[3] A., A'Campo-Neuen and J., Hausen. Toric prevarieties and subtorus actions. Geom. Dedicata, 87(1–3):35–64, 2001 Google Scholar.
[4] A. G., Aleksandrov and B. Z., Moroz. Complete intersections in relation to a paper of B. J. Birch. Bull. London Math. Soc., 34(2):149–154, 2002 Google Scholar.
[5] V., Alexeev and V. V., Nikulin. Del Pezzo and K3 surfaces. MSJ Memoirs, Vol. 15. Mathematical Society of Japan, Tokyo, 2006 Google Scholar.
[6] D. F., Anderson. Graded Krull domains. Comm. Algebra, 7(1):79–106, 1979 Google Scholar.
[7] E., Arbarello, M., Cornalba, P. A., Griffiths, and J., Harris. Geometry of algebraic curves. Vol. I, Grundlehren der Mathematischen Wissenschaften, Vol. 267. Springer-Verlag, New York, 1985 Google Scholar.
[8] M., Artebani, A., Garbagnati, and A., Laface. Cox rings of extremal rational elliptic surfaces. arXiv:1302.4361, 2013 Google Scholar.
[9] M., Artebani, J., Hausen, and A., Laface. On Cox rings of K3 surfaces. Compos. Math., 146(4):964–998, 2010 Google Scholar.
[10] M., Artebani and A., Laface. Cox rings of surfaces and the anticanonical Iitaka dimension. Adv. Math., 226(6):5252–5267, 2011 Google Scholar.
[11] M., Artebani and A., Laface. Hypersurfaces in Mori dream spaces. J. Algebra, 371:26–37, 2012 Google Scholar.
[12] M., Artin. Some numerical criteria for contractability of curves on algebraic surfaces. Amer. J. Math., 84:485–496, 1962 Google Scholar.
[13] I. V., Arzhantsev. On the factoriality of Cox rings. Mat. Zametki, 85(5):643–651, 2009 Google Scholar.
[14] I. V., Arzhantsev. Projective embeddings with a small boundary for homogeneous spaces. Izv. Ross. Akad. Nauk Ser. Mat., 73(3):5–22, 2009 Google Scholar.
[15] I. V., Arzhantsev, D., Celik, and J., Hausen. Factorial algebraic group actions and categorical quotients. J. Algebra, 387:87–98, 2013 Google Scholar.
[16] I. V., Arzhantsev and S. A., Gaĭfullin. Cox rings, semigroups, and automorphisms of affine varieties. Mat. Sb., 201(1):3–24, 2010 Google Scholar.
[17] I. V., Arzhantsev and S. A., Gaĭfullin. Homogeneous toric varieties. J. Lie Theory, 20(2):283–293, 2010 Google Scholar.
[18] I. V., Arzhantsev and J., Hausen. On embeddings of homogeneous spaces with small boundary. J. Algebra, 304(2):950–988, 2006 Google Scholar.
[19] I. V., Arzhantsev and J., Hausen. On the multiplication map of a multigraded algebra. Math. Res. Lett., 14(1):129–136, 2007 Google Scholar.
[20] I. V., Arzhantsev and J., Hausen. Geometric invariant theory via Cox rings. J. Pure Appl. Algebra, 213(1):154–172, 2009 Google Scholar.
[21] I. V., Arzhantsev, J., Hausen, E., Herppich, and A., Liendo. The automorphism group of a variety with torus action of complexity one. Mosc. Math. J., 14(3):429–471, 2014 Google Scholar.
[22] M. F., Atiyah and I. G., Macdonald. Introduction to commutative algebra. Addison-Wesley, Reading, MA-London-Don Mills, Ont., 1969 Google Scholar.
[23] M., Audin. The topology of torus actions on symplectic manifolds. Progress in Mathematics, Vol. 93. Birkhäuser Verlag, Basel, 1991 Google Scholar.
[24] R., Avdeev. An epimorphic subgroup arising from Roberts' counterexample. Indag. Math. (N.S.), 23(1–2):10–18, 2012 Google Scholar.
[25] S., Baier and T. D., Browning. Inhomogeneous cubic congruences and rational points on del Pezzo surfaces. J. reine angew. Math., 680:69–151, 2013 Google Scholar.
[26] S., Baier and U., Derenthal. Quadratic congruences on average and rational points on cubic surfaces. arXiv:1205.0373, 2012 Google Scholar.
[27] H., Bäker. Good quotients of Mori dream spaces. Proc. Amer. Math. Soc., 139(9):3135–3139, 2011 Google Scholar.
[28] H., Bäker, J., Hausen, and S., Keicher. On Chow quotients of torus actions. arXiv:1203.3759, 2012 Google Scholar.
[29] W. P., Barth, K., Hulek, C. A. M., Peters, and A., Van de Ven. Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 4, 2nd ed. Springer-Verlag, Berlin, 2004 Google Scholar.
[30] V. V., Batyrev. Quantum cohomology rings of toric manifolds. Astérisque, (218):9–34, 1993 Google Scholar. Journeés de Géométrie Algébrique d'Orsay (Orsay, 1992).
[31] V. V., Batyrev and F., Haddad. On the geometry of SL(2)-equivariant flips. Mosc. Math. J., 8(4):621–646, 846, 2008 Google Scholar.
[32] V. V., Batyrev and Yu. I., Manin. Sur le nombre des points rationnels de hauteur borné des variétés algébriques. Math. Ann., 286(1–3):27–43, 1990 Google Scholar.
[33] V. V., Batyrev and O. N., Popov. The Cox ring of a del Pezzo surface. In Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002). Progress in Mathematics, Vol. 226 Google Scholar, pp. 85–103. Birkhäuser Boston, Boston, 2004.
[34] V. V., Batyrev and Yu., Tschinkel. Rational points of bounded height on compactifications of anisotropic tori. Int. Math. Res. Not. IMRN, (12):591–635, 1995 Google Scholar.
[35] V. V., Batyrev and Yu., Tschinkel. Rational points on some Fano cubic bundles. C. R. Acad. Sci. Paris Sér. I Math., 323(1):41–46, 1996 Google Scholar.
[36] V. V., Batyrev and Yu., Tschinkel. Manin's conjecture for toric varieties. J. Algebraic Geom., 7(1):15–53, 1998 Google Scholar.
[37] V. V., Batyrev and Yu., Tschinkel. Tamagawa numbers of polarized algebraic varieties. Astérisque, (251):299–340, 1998. Nombre et répartition de points de hauteur bornée (Paris, 1996 Google Scholar).
[38] S., Bauer. Die Manin-Vermutung für eine del-Pezzo-Fläche, Master's thesis, Universität München, 2013 Google Scholar.
[39] A., Beauville. Complex algebraic surfaces. London Mathematical Society Student Texts, Vol. 34, 2nd ed. Cambridge University Press, Cambridge, 1996 Google Scholar.
[40] B., Bechtold. Factorially graded rings and Cox rings. J. Algebra, 369:351–359, 2012 Google Scholar.
[41] O., Benoist. Quasi-projectivity of Normal Varieties. Int. Math. Res. Not. IMRN, (17):3878–3885, 2013 Google Scholar.
[42] F., Berchtold and J., Hausen. Homogeneous coordinates for algebraic varieties. J. Algebra, 266(2):636–670, 2003 Google Scholar.
[43] F., Berchtold and J., Hausen. Bunches of cones in the divisor class group—a new combinatorial language for toric varieties. Int. Math. Res. Not. IMRN, (6):261–302, 2004 Google Scholar.
[44] F., Berchtold and J., Hausen. Cox rings and combinatorics. Trans. Amer. Math. Soc., 359(3):1205–1252 (electronic), 2007 Google Scholar.
[45] A., Bialynicki-Birula. Finiteness of the number of maximal open subsets with good quotients. Transform. Groups, 3(4):301–319, 1998 Google Scholar.
[46] A., Bialynicki-Birula, J. B., Carrell, and W. M., McGovern. Algebraic quotients. Torus actions and cohomology. The adjoint representation and the adjoint action. Invariant Theory and Algebraic Transformation Groups, II. Encyclopaedia of Mathematical Sciences, Vol. 131. Springer-Verlag, Berlin, 2002 Google Scholar.
[47] A., Bialynicki-Birula and J., Święcicka. Three theorems on existence of good quotients. Math. Ann., 307(1):143–149, 1997 Google Scholar.
[48] A., Bialynicki-Birula and J., Święcicka. A recipe for finding open subsets of vector spaces with a good quotient. Colloq. Math., 77(1):97–114, 1998 Google Scholar.
[49] F., Bien and A., Borel. Sous-groupes epimorphiques de groupes linéaires algébriques. I. C. R. Acad. Sci. Paris Sér. I Math., 315(6):649–653, 1992 Google Scholar.
[50] F., Bien and A., Borel. Sous-groupes epimorphiques de groupes linéaires algébriques. II. C. R. Acad. Sci. Paris Sér. I Math., 315(13):1341–1346, 1992 Google Scholar.
[51] F., Bien, A., Borel, and J., Kollár. Rationally connected homogeneous spaces. Invent. Math., 124(1–3):103–127, 1996 Google Scholar.
[52] B. J., Birch. Forms in many variables. Proc. Roy. Soc. Ser. A, 265:245–263, 1961/1962 Google Scholar.
[53] C., Birkar, P., Cascini, C. D., Hacon, and J., McKernan. Existence of minimal models for varieties of log general type. J. Amer. Math. Soc., 23(2):405–468, 2010 Google Scholar.
[54] V., Blomer and J., Brüdern. The density of rational points on a certain threefold. In Contributions in analytic and algebraic number theory. Springer Proceedings in Mathematics, Vol. 9, pp. 1–15. Springer-Verlag, New York, 2012 Google Scholar.
[55] V., Blomer, J., Brüdern, and P., Salberger. On a senary cubic form. Proc. Lond. Math. Soc. (3), 108(4):911–964, 2014 Google Scholar.
[56] A., Borel. Linear algebraic groups. Graduate Texts in Mathematics, Vol. 126, 2nd ed. Springer-Verlag, New York, 1991 Google Scholar.
[57] M., Borovoi. The Brauer-Manin obstructions for homogeneous spaces with connected or abelian stabilizer. J. reine angew. Math., 473:181–194, 1996 Google Scholar.
[58] N., Bourbaki. Commutative algebra. Chapters 1–7. Elements of Mathematics (Berlin). Springer-Verlag, Berlin, 1998 Google Scholar.
[59] D., Bourqui. Fonction zêta des hauteurs des variétés toriques déployées dans le cas fonctionnel. J. reine angew. Math., 562:171–199, 2003 Google Scholar.
[60] D., Bourqui. Comptage de courbes sur le plan projectif éclaté en trois points alignés. Ann. Inst. Fourier (Grenoble), 59(5):1847–1895, 2009 Google Scholar.
[61] D., Bourqui. Fonction zêta des hauteurs des variétés toriques non déployées. Mem. Amer. Math. Soc., 211(994):viii+151, 2011 Google Scholar.
[62] D., Bourqui. La conjecture de Manin géométrique pour une famille de quadriques intrinsèques. Manuscripta Math., 135(1–2):1–41, 2011 Google Scholar.
[63] D., Bourqui. Exemples de comptage de courbes sur les surfaces. Math. Ann., 357(4):1291–1327, 2013 Google Scholar.
[64] J.-F., Boutot. Singularités rationnelles et quotients par les groupes réductifs. Invent. Math., 88(1):65–68, 1987 Google Scholar.
[65] H., Brenner and S., Schröer. Ample families, multihomogeneous spectra, and algebraization of formal schemes. Pacific J. Math., 208(2):209–230, 2003 Google Scholar.
[66] R., de la Bretèche. Compter des points d'une variété torique. J. Number Theory, 87(2):315–331, 2001 Google Scholar.
[67] R., de la Bretèche. Répartition des points rationnels sur la cubique de Segre. Proc. Lond. Math. Soc. (3), 95(1):69–155, 2007 Google Scholar.
[68] R., de la Bretèche and T. D., Browning. On Manin's conjecture for singular del Pezzo surfaces of degree 4. I. Michigan Math. J., 55(1):51–80, 2007 Google Scholar.
[69] R., de la Bretèche and T. D., Browning. On Manin's conjecture for singular del Pezzo surfaces of degree four. II. Math. Proc. Cambridge Philos. Soc., 143(3):579–605, 2007 Google Scholar.
[70] R., de la Bretèche and T. D., Browning. Manin's conjecture for quartic del Pezzo surfaces with a conic fibration. Duke Math. J., 160(1):1–69, 2011 Google Scholar.
[71] R., de la Bretèche and T. D., Browning. Binary forms as sums of two squares and Châtelet surfaces. Israel J. Math., 191(2):973–1012, 2012 Google Scholar.
[72] R., de la Bretèche, T. D., Browning, and U., Derenthal. On Manin's conjecture for a certain singular cubic surface. Ann. Sci. École Norm. Sup. (4), 40(1):1–50, 2007 Google Scholar.
[73] R., de la Bretèche, T. D., Browning, and E., Peyre. On Manin's conjecture for a family of Châtelet surfaces. Ann. of Math. (2), 175(1):297–343, 2012 Google Scholar.
[74] R., de la Bretèche and E., Fouvry. L'éclaté du plan projectif en quatre points dont deux conjugués. J. reine angew. Math., 576:63–122, 2004 Google Scholar.
[75] R., de la Bretèche and G., Tenenbaum. Sur la conjecture de Manin pour certaines surfaces de Châtelet. J. Inst. Math. Jussieu, 12(4):759–819, 2013 Google Scholar.
[76] M., Brion. The total coordinate ring of a wonderful variety. J. Algebra, 313(1):61–99, 2007 Google Scholar.
[77] M., Brion and S., Kumar. Frobenius splitting methods in geometry and representation theory. Progress in Mathematics, Vol. 231. Birkhäuser Boston, Boston, 2005 Google Scholar.
[78] T. D., Browning. Quantitative arithmetic of projective varieties. Progress in Mathematics, Vol. 277. Birkhäuser Verlag, Basel, 2009 Google Scholar.
[79] T. D., Browning and U., Derenthal. Manin's conjecture for a cubic surface with D5 singularity. Int. Math. Res. Not. IMRN, (14):2620–2647, 2009 Google Scholar.
[80] T. D., Browning and U., Derenthal. Manin's conjecture for a quartic del Pezzo surface with A4 singularity. Ann. Inst. Fourier (Grenoble), 59(3):1231–1265, 2009 Google Scholar.
[81] T. D., Browning and D. R., Heath-Brown. Quadratic polynomials represented by norm forms. Geom. Funct. Anal., 22(5):1124–1190, 2012 Google Scholar.
[82] T. D., Browning and L., Matthiesen. Norm forms for arbitrary number fields as products of linear polynomials. arXiv:1307.7641, 2013 Google Scholar.
[83] T. D., Browning, L., Matthiesen, and A. N., Skorobogatov. Rational points on pencils of conics and quadrics with many degenerate fibres. Ann. of Math. 180(1):381–402, 2014 Google Scholar.
[84] J. W., Bruce and C. T. C., Wall. On the classification of cubic surfaces. J. London Math. Soc. (2), 19(2):245–256, 1979 Google Scholar.
[85] W., Bruns and J., Gubeladze. Polytopal linear groups. J. Algebra, 218(2):715–737, 1999 Google Scholar.
[86] A.-M., Castravet and J., Tevelev. Hilbert's 14th problem and Cox rings. Compos. Math., 142(6):1479–1498, 2006 Google Scholar.
[87] D., Celik. A categorical quotient in the category of dense constructible subsets. Colloq. Math., 116(2):147–151, 2009 Google Scholar.
[88] A., Chambert-Loir and Yu., Tschinkel. On the distribution of points of bounded height on equivariant compactifications of vector groups. Invent. Math., 148(2):421–452, 2002 Google Scholar.
[89] R., Chirivì, P., Littelmann, and A., Maffei. Equations defining symmetric varieties and affine Grassmannians. Int. Math.Res.Not.IMRN, (2):291–347, 2009 Google Scholar.
[90] R., Chirivì and A., Maffei. The ring of sections of a complete symmetric variety. J. Algebra, 261(2):310–326, 2003 Google Scholar.
[91] J.-L., Colliot-Thélène. Points rationnels sur les fibrations. In Higher dimensional varieties and rational points (Budapest, 2001), Bolyai Society Mathematical Studies, Vol. 12 Google Scholar, pp. 171–221. Springer-Verlag, Berlin, 2003.
[92] J.-L., Colliot-Thélène. Lectures on linear algebraic groups, Morning Side Centre, Beijing, http://www.math.u-psud.fr/~colliot, 2007 Google Scholar.
[93] J.-L., Colliot-Thélène, D., Harari, and A. N., Skorobogatov. Valeurs d'un polynôme a une variable représentées par une norme. In Number theory and algebraic geometry. London Mathematical Society Lecture Note Series, Vol. 303, pp. 69–89. Cambridge University Press, Cambridge, 2003 Google Scholar.
[94] J.-L., Colliot-Thélène, A., Pál, and A. N., Skorobogatov. Pathologies of the Brauer-Manin obstruction. arXiv:1310.5055, 2013 Google Scholar.
[95] J.-L., Colliot-Thélène and P., Salberger. Arithmetic on some singular cubic hyper-surfaces. Proc. London Math. Soc. (3), 58(3):519–549, 1989 Google Scholar.
[96] J.-L., Colliot-Thélène and J.-J., Sansuc. Torseurs sous des groupes de type multiplicatif; applications à l'étude des points rationnels de certaines variétés algebriques. C. R. Acad. Sci. Paris Sér. A-B, 282(18):Aii, A1113–A1116, 1976 Google Scholar.
[97] J.-L., Colliot-Thélène and J.-J., Sansuc. La descente sur une variété rationnelle définie sur un corps de nombres. C. R. Acad. Sci. Paris Sér. A-B, 284(19):A1215–A1218, 1977 Google Scholar.
[98] J.-L., Colliot-Thélène and J.-J., Sansuc. Variétés de première descente attachées aux variétés rationnelles. C. R. Acad. Sci. Paris Sér. A-B, 284(16):A967–A970, 1977 Google Scholar.
[99] J.-L., Colliot-Thélène and J.-J., Sansuc. La descente sur les variétés rationnelles. In Journées de géometrie algébrique d'Angers, Juillet 1979/Algebraic geometry, Angers, 1979, pp. 223–237. Sijthoff & Noordhoff, Alphen aan den Rijn, 1980 Google Scholar.
[100] J.-L., Colliot-Thélène and J.-J., Sansuc. La descente sur les variétés rationnelles. II. Duke Math. J., 54(2):375–492, 1987 Google Scholar.
[101] J.-L., Colliot-Thélène, J.-J., Sansuc, and P., Swinnerton-Dyer. Intersections of two quadrics and Châtelet surfaces. I. J. reine angew. Math., 373:37–107, 1987 Google Scholar.
[102] J.-L., Colliot-Thélène, J.-J., Sansuc, and P., Swinnerton-Dyer. Intersections of two quadrics and Châtelet surfaces. II. J. reine angew. Math., 374:72–168, 1987 Google Scholar.
[103] F. R., Cossec and I. V., Dolgachev. Enriques surfaces. I. Progress in Mathematics, Vol. 76. Birkhäuser Boston, Boston, 1989 Google Scholar.
[104] D. A., Cox. The homogeneous coordinate ring of a toric variety. J. Algebraic Geom., 4(1):17–50, 1995 Google Scholar.
[105] D. A., Cox, J. B., Little, and H. K., Schenck. Toric varieties. Graduate Studies in Mathematics, Vol. 124. American Mathematical Society, Providence, RI, 2011 Google Scholar.
[106] C., De Concini and C., Procesi. Complete symmetric varieties. In Invariant theory (Montecatini, 1982). Lecture Notes in Mathematics, Vol. 996 Google Scholar, pp. 1–44. Springer-Verlag, Berlin, 1983.
[107] J. A., De Loera, J., Rambau, and F., Santos. Triangulations. Algorithms and Computation in Mathematics, Vol. 25. Springer-Verlag, Berlin, 2010 Google Scholar. Structures for algorithms and applications.
[108] M., Demazure. Sous-groupes algébriques de rang maximum du groupe de Cremona. Ann. Sci. École Norm. Sup. (4), 3:507–588, 1970 Google Scholar.
[109] U., Derenthal. Geometry of universal torsors. PhD thesis, Universität Göttingen, 2006 Google Scholar.
[110] U., Derenthal. Universal torsors of del Pezzo surfaces and homogeneous spaces. Adv. Math., 213(2):849–864, 2007 Google Scholar.
[111] U., Derenthal. Counting integral points on universal torsors. Int. Math. Res. Not. IMRN, (14):2648–2699, 2009 Google Scholar.
[112] U., Derenthal. Manin's conjecture for a quintic del Pezzo surface with A2 singularity. arXiv:0710.1583, 2007 Google Scholar.
[113] U., Derenthal. Singular Del Pezzo surfaces whose universal torsors are hypersur-faces. Proc. Lond. Math. Soc. (3), 108(3):638–681, 2014 Google Scholar.
[114] U., Derenthal. Manin's conjecture for a certain singular cubic surface. arXiv:math.NT/0504016, 2005 Google Scholar.
[115] U., Derenthal, A.-S., Elsenhans, and J., Jahnel. On the factor alpha in Peyre's constant. Math. Comp., 83(286):965–977, 2014 Google Scholar.
[116] U., Derenthal and C., Frei. Counting imaginary quadratic points via universal torsors. Compositio Math., in press, arXiv:1302.6151, 2013 Google Scholar.
[117] U., Derenthal and C., Frei. Counting imaginary quadratic points via universal torsors, II. Math. Proc. Cambridge Philos. Soc., 156(3):383–407, 2014 Google Scholar.
[118] U., Derenthal and C., Frei. On Manin's conjecture for a certain singular cubic surface over imaginary quadratic fields. Int. Math. Res. Not. IMRN, in press, arXiv:1311.2809, 2013 Google Scholar.
[119] U., Derenthal, M., Joyce, and Z., Teitler. The nef cone volume of generalized del Pezzo surfaces. Algebra Number Theory, 2(2):157–182, 2008 Google Scholar.
[120] U., Derenthal and D., Loughran. Singular del Pezzo surfaces that are equivariant compactifications. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 377(Issledovaniya po Teorii Chisel. 10):26–43, 241, 2010 Google Scholar.
[121] U., Derenthal and M., Pieropan. Cox rings over nonclosed fields, preprint, 2014 Google Scholar.
[122] U., Derenthal, A., Smeets, and D., Wei. Universal torsors and values of quadratic polynomials represented by norms. Math. Ann., in press, arXiv:1202.3567, 2012 Google Scholar.
[123] U., Derenthal and Yu., Tschinkel. Universal torsors over del Pezzo surfaces and rational points. In Equidistribution in number theory, an introduction. NATO Science Series II: Mathematics, Physics and Chemistry, Vol. 237, pp. 169–196. Springer-Verlag, Dordrecht, 2007 Google Scholar.
[124] K., Destagnol. La conjecture de Manin sur les surfaces de Châtelet, Master's thesis, Université Paris 7 Diderot, 2013 Google Scholar.
[125] I. V., Dolgachev. Newton polyhedra and factorial rings. J. Pure Appl. Algebra, 18(3):253–258, 1980 Google Scholar.
[126] I. V., Dolgachev. On automorphisms of Enriques surfaces. Invent. Math., 76(1):163–177, 1984 Google Scholar.
[127] I. V., Dolgachev. Classical algebraic geometry. Cambridge University Press, Cambridge, 2012 Google Scholar. A modern view.
[128] I. V., Dolgachev and Yi, Hu. Variation of geometric invariant theory quotients. Inst. Hautes Études Sci. Publ. Math., (87):5–56, 1998 Google Scholar.
[129] I. V., Dolgachev and De-Qi, Zhang. Coble rational surfaces. Amer. J. Math., 123(1):79–114, 2001 Google Scholar.
[130] F., Donzelli. Algebraic density property of Danilov-Gizatullin surfaces. Math. Z., 272(3–4):1187–1194, 2012 Google Scholar.
[131] J. J., Duistermaat. Discrete integrable systems. Springer Monographs in Mathematics. Springer-Verlag, New York, 2010 Google Scholar. QRT maps and elliptic surfaces.
[132] D., Eisenbud. Commutative algebra. Graduate Texts in Mathematics, Vol. 150. Springer-Verlag, New York, 1995 Google Scholar.
[133] D., Eisenbud and S., Popescu. The projective geometry of the Gale transform. J. Algebra, 230(1):127–173, 2000 Google Scholar.
[134] E. J., Elizondo, K., Kurano, and K., Watanabe. The total coordinate ring of a normal projective variety. J. Algebra, 276(2):625–637, 2004 Google Scholar.
[135] A.-S., Elsenhans and J., Jahnel. Moduli spaces and the inverse Galois problem for cubic surfaces. Trans. Amer. Math. Soc., in press, arXiv:1209.5591, 2012 Google Scholar.
[136] G., Ewald. Polygons with hidden vertices. Beiträge Algebra Geom., 42(2):439–442, 2001 Google Scholar.
[137] H., Flenner, S., Kaliman, and M., Zaidenberg. On the Danilov-Gizatullin isomorphism theorem. Enseign. Math. (2), 55(3-4):275–283, 2009 Google Scholar.
[138] J., Franke, Yu. I., Manin, and Yu., Tschinkel. Rational points of bounded height on Fano varieties. Invent. Math., 95(2):421–435, 1989 Google Scholar.
[139] C., Frei. Counting rational points over number fields on a singular cubic surface. Algebra Number Theory, 7(6):1451–1479, 2013 Google Scholar.
[140] C., Frei and M., Pieropan. O-minimality on twisted universal torsors and Manin's conjecture over number fields. arXiv:1312.6603, 2013 Google Scholar.
[141] W., Fulton. Introduction to toric varieties. Annals of Mathematics Studies, Vol. 131. Princeton University Press, Princeton, NJ, 1993 Google Scholar.
[142] W., Fulton. Intersection theory. Ergebnisse der Mathematik und ihrer Grenzge-biete (3), Vol. 2, 2nd ed. Springer-Verlag, Berlin, 1998 Google Scholar.
[143] W., Fulton and J., Harris. Representation theory. Graduate Texts in Mathematics, Vol. 129. Springer-Verlag, New York, 1991 Google Scholar.
[144] G., Gagliardi. The Cox ring of a spherical embedding. J. Algebra, 397:548–569, 2014 Google Scholar.
[145] S. A., Gaĭfullin. Affine toric SL(2)-embeddings. Mat. Sb., 199(3):3–24, 2008 Google Scholar.
[146] C., Galindo and F., Monserrat. The total coordinate ring of a smooth projective surface. J. Algebra, 284(1):91–101, 2005 Google Scholar.
[147] M. H., Gizatullin and V. I., Danilov. Automorphisms of affine surfaces. II. Izv. Akad. Nauk SSSR Ser. Mat., 41(1):54–103, 231, 1977 Google Scholar.
[148] Y., Gongyo, S., Okawa, A., Sannai, and S., Takagi. Characterization of varieties of Fano type via singularities of Cox rings. J. Algebraic Geom., in press, arXiv:1201.1133, 2012 Google Scholar.
[149] B., Green and T., Tao. Linear equations in primes. Ann. Math. (2), 171(3):1753–1850, 2010 Google Scholar.
[150] F. D., Grosshans. Algebraic homogeneous spaces and invariant theory. Lecture Notes in Mathematics, Vol. 1673. Springer-Verlag, Berlin, 1997 Google Scholar.
[151] A., Grothendieck. Éléments de géométrie algébrique. II. Étude globale élémentaire de quelques classes de morphismes. Inst. Hautes Études Sci. Publ. Math., (8):222, 1961 Google Scholar.
[152] N., Guay. Embeddings of symmetric varieties. Transform. Groups, 6(4):333–352, 2001 Google Scholar.
[153] M., Hanselmann. Rational points on quartic hypersurfaces. PhD thesis, Ludwig-Maximilians-Universität München, 2012 Google Scholar.
[154] D., Harari. Obstructions de Manin transcendantes. In Number theory (Paris, 1993–1994), London Mathematical Society Lecture Note Series, Vol. 235 Google Scholar, pp. 75–87. Cambridge University Press, Cambridge, 1996.
[155] D., Harari. Groupes algébriques et points rationnels. Math. Ann., 322(4):811–826, 2002 Google Scholar.
[156] D., Harari. Weak approximation on algebraic varieties. In Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002 Google Scholar), Progress in Mathematics, Vol. 226, pp. 43–60. Birkhäuser Boston, Boston, 2004.
[157] D., Harari and A. N., Skorobogatov. Descent theory for open varieties. In Torsors, etale homotopy and applications to rational points. London Mathematical Society Lecture Note Series, Vol. 405, pp. 250–279. Cambridge University Press, Cambridge, 2013 Google Scholar.
[158] Y., Harpaz, A. N., Skorobogatov, and O., Wittenberg. The Hardy–Littlewood conjecture and rational points. Compositio Math., in press, arXiv:1304.3333, 2013 Google Scholar.
[159] R., Hartshorne. Ample subvarieties of algebraic varieties. Notes written in collaboration with C. Musili. Lecture Notes in Mathematics, Vol. 156. Springer-Verlag, Berlin, 1970 Google Scholar.
[160] R., Hartshorne. Algebraic geometry. Graduate Texts in Mathematics, Vol. 52. Springer-Verlag, New York, 1977 Google Scholar.
[161] H., Hasse. Die Normenresttheorie relativ-Abelscher Zahlkörper als Klassen-körpertheorie im Kleinen. J. reine angew. Math., 162:145–154, 1930 Google Scholar.
[162] B., Hassett and Yu., Tschinkel. Universal torsors and Cox rings. In Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002). Progress in Mathematics, Vol. 226 Google Scholar, pp. 149–173. Birkhäuser Boston, Boston, 2004.
[163] J., Hausen. Equivariant embeddings into smooth toric varieties. Canad. J. Math., 54(3):554–570, 2002 Google Scholar.
[164] J., Hausen. Geometric invariant theory based on Weil divisors. Compos. Math., 140(6):1518–1536, 2004 Google Scholar.
[165] J., Hausen. Cox rings and combinatorics. II. Mosc. Math. J., 8(4):711–757, 847, 2008 Google Scholar.
[166] J., Hausen and E., Herppich. Factorially graded rings of complexity one. In Torsors, etale homotopy and applications to rational points. London Mathematical Society Lecture Note Series, Vol. 405, pp. 414–428. Cambridge University Press, Cambridge, 2013 Google Scholar.
[167] J., Hausen, E., Herppich, and H., Süß. Multigraded factorial rings and Fano varieties with torus action. Doc. Math., 16:71–109, 2011 Google Scholar.
[168] J., Hausen, S., Keicher, and A., Laface. Computing Cox rings. arXiv:1305.4343, 2013 Google Scholar.
[169] J., Hausen and H., Sufi. The Cox ring of an algebraic variety with torus action. Adv. Math., 225(2):977–1012, 2010 Google Scholar.
[170] D. R., Heath-Brown. The density of rational points on Cayley's cubic surface. In Proceedings of the Session in Analytic Number Theory and Diophantine Equations. Bonner Mathematische Schriften, Vol. 360, pp. 33, Bonn, 2003 Google Scholar. Universität Bonn.
[171] D. R., Heath-Brown. Zeros of pairs of quadratic forms. arXiv:1304.3894, 2013 Google Scholar.
[172] D. R., Heath-Brown and A., Skorobogatov. Rational solutions of certain equations involving norms. Acta Math., 189(2):161–177, 2002 Google Scholar.
[173] H., Hironaka. Triangulations of algebraic sets. In Algebraic geometry (Humboldt State Univ., Arcata, Calif., 1974). Proc. Sympos. Pure Math., Vol. 29 Google Scholar, pp. 165–185. Amer. Math. Soc., Providence, RI, 1975.
[174] M., Hochster and J. L., Roberts. Rings of invariants of reductive groups acting on regular rings are Cohen-Macaulay. Adv. Math., 13:115–175, 1974 Google Scholar.
[175] C., Hooley. On nonary cubic forms. J. reine angew. Math., 386:32–98, 1988 Google Scholar.
[176] Y., Hu and S., Keel. Mori dream spaces and GIT. Michigan Math. J., 48:331–348, 2000 Google Scholar.
[177] E., Huggenberger. Fano varieties with a torus action of complexity one. PhD thesis, Universiät Tübingen, 2013 Google Scholar.
[178] J. E., Humphreys. Linear algebraic groups. Graduate Texts in Mathematics, Vol. 21. Springer-Verlag, New York, 1975 Google Scholar.
[179] D., Hwang and J., Park. Redundant blow-ups and Cox rings of rational surfaces. arXiv:1303.2274, 2013 Google Scholar.
[180] M.-N., Ishida. Graded factorial rings of dimension 3 of a restricted type. J. Math. Kyoto Univ., 17(3):441–456, 1977 Google Scholar.
[181] S.-Y., Jow. A Lefschetz hyperplane theorem for Mori dream spaces. Math. Z., 268(1-2):197–209, 2011 Google Scholar.
[182] T., Kajiwara. The functor of a toric variety with enough invariant effective Cartier divisors. Tohoku Math. J. (2), 50(1):139–157, 1998 Google Scholar.
[183] Y., Kawamata and S., Okawa. Mori dream spaces of Calabi-Yau type and the log canonicity of the Cox rings. J. reine angew. Math., in press, arXiv:1202.2696, 2012 Google Scholar.
[184] A. D., King. Moduli of representations of finite-dimensional algebras. Quart. J. Math. Oxford Ser. (2), 45(180):515–530, 1994 Google Scholar.
[185] S. L., Kleiman. Toward a numerical theory of ampleness. Ann. of Math. (2), 84:293–344, 1966 Google Scholar.
[186] P., Kleinschmidt. A classification of toric varieties with few generators. Aequationes Math., 35(2-3):254–266, 1988 Google Scholar.
[187] F., Knop. The Luna-Vust theory of spherical embeddings. In Proceedings of the Hyderabad Conference on Algebraic Groups (Hyderabad, 1989 Google Scholar), pp. 225–249, Madras, 1991. Manoj Prakashan.
[188] F., Knop. Über Hilberts vierzehntes Problem für Varietäten mit Kompliziertheit eins. Math. Z., 213(1):33–36, 1993 Google Scholar.
[189] F., Knop, H., Kraft, D., Luna, and T., Vust. Local properties of algebraic group actions. In Algebraische Transformationsgruppen und Invariantentheorie. DMV Seminar, Vol. 13, pp. 63–75. Birkhäuser, Basel, 1989 Google Scholar.
[190] F., Knop, H., Kraft, and T., Vust. The Picard group of a G-variety. In Algebraische Transformationsgruppen und Invariantentheorie. DMV Seminar, Vol. 13, pp. 77–87. Birkhäuser, Basel, 1989 Google Scholar.
[191] M., Koitabashi. Automorphism groups of generic rational surfaces. J. Algebra, 116(1):130–142, 1988 Google Scholar.
[192] J., Kollár and S., Mori. Birational geometry of algebraic varieties. Cambridge Tracts in Mathematics, Vol. 134. Cambridge University Press, Cambridge, 1998 Google Scholar. With the collaboration of C. H. Clemens and A. Corti.
[193] J., Kollár and E., Szabó. Fixed points of group actions and rational maps. arXiv:math/9905053, 1999 Google Scholar.
[194] S., Kondō. Enriques surfaces with finite automorphism groups. Jpn. J. Math., 12(2):191–282, 1986 Google Scholar.
[195] S., Kondō. Algebraic K3 surfaces with finite automorphism groups. Nagoya Math. J., 116:1–15, 1989 Google Scholar.
[196] M., Koras and P., Russell. Linearization problems. In Algebraic group actions and quotients, pp. 91–107. Hindawi, Cairo, 2004 Google Scholar.
[197] H., Kraft. Geometrische Methoden in der Invariantentheorie. Aspects of Mathematics, D1. Friedr. Vieweg & Sohn, Braunschweig, 1984 Google Scholar.
[198] A., Laface and D., Testa. Nef and semiample divisors on rational surfaces. In Torsors, étale homotopy and applications to rational points. London Mathematical Society Lecture Note Series, Vol. 405, pp. 429–446. Cambridge University Press, Cambridge, 2013 Google Scholar.
[199] A., Laface and M., Velasco. Picard-graded Betti numbers and the defining ideals of Cox rings. J. Algebra, 322(2):353–372, 2009 Google Scholar.
[200] A., Laface and M., Velasco. A survey on Cox rings. Geom. Dedicata, 139:269–287, 2009 Google Scholar.
[201] K. F., Lai and K. M., Yeung. Rational points in flag varieties over function fields. J. Number Theory, 95(2):142–149, 2002 Google Scholar.
[202] R., Lazarsfeld. Positivity in algebraic geometry. I. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 48. Springer-Verlag, Berlin, 2004 Google Scholar.
[203] P., Le Boudec. Manin's conjecture for a cubic surface with 2A2 + A1 singularity type. Math. Proc. Cambridge Philos. Soc., 153(3):419–455, 2012 Google Scholar.
[204] P., LeBoudec. Manin's conjecture for a quartic del Pezzo surface with A3 singularity and four lines. Monatsh. Math., 167(3-4):481–502, 2012 Google Scholar.
[205] P., Le Boudec. Manin's conjecture for two quartic del Pezzo surfaces with 3A1 and A1 + A2 singularity types. Acta Arith., 151(2):109–163, 2012 Google Scholar.
[206] P., Le Boudec. Affine congruences and rational points on a certain cubic surface. Algebra Number Theory, in press, arXiv:1207.2685, 2012 Google Scholar.
[207] J., Lipman. Rational singularities, with applications to algebraic surfaces and unique factorization. Inst. Hautes Études Sci. Publ. Math., (36):195–279, 1969 Google Scholar.
[208] D., Loughran. Manin's conjecture for a singular quartic del Pezzo surface. J. Lond. Math. Soc. (2), 86(2):558–584, 2012 Google Scholar.
[209] D., Loughran. Rational points of bounded height and the Weil restriction. Israel J. Math., in press, arXiv:1210.1792, 2012 Google Scholar.
[210] D., Luna. Slices étales. In Sur les groupes algébriques, pages 81–105. Bull. Soc. Math. France, Paris, Mémoire 33. Soc. Math. France, Paris, 1973 Google Scholar.
[211] D., Luna. Toute variéte magnifique est sphérique. Transform. Groups, 1(3):249–258, 1996 Google Scholar.
[212] D., Luna and T., Vust. Plongements d'espaces homogènes. Comment. Math. Helv., 58(2):186–245, 1983 Google Scholar.
[213] D., Maclagan and B., Sturmfels. Introduction to tropical geometry Google Scholar. In preparation.
[214] Yu. I., Manin. Cubic forms. North-Holland Mathematical Library, Vol. 4, 2nd ed. North-Holland Publishing Co., Amsterdam, 1986 Google Scholar.
[215] K., Matsuki. Introduction to the Mori program. Universitext. Springer-Verlag, New York, 2002 Google Scholar.
[216] H., Matsumura. Commutative ring theory. Cambridge Studies in Advanced Mathematics, Vol. 8, 2nd ed. Cambridge University Press, Cambridge, 1989 Google Scholar.
[217] J., McKernan. Mori dream spaces. Jpn. J. Math., 5(1):127–151, 2010 Google Scholar.
[218] E., Miller and B., Sturmfels. Combinatorial commutative algebra. Graduate Texts in Mathematics, Vol. 227. Springer-Verlag, New York, 2005 Google Scholar.
[219] J. S., Milne. Étale cohomology. Princeton Mathematical Series, Vol. 33. Princeton University Press, Princeton, NJ, 1980 Google Scholar.
[220] R., Miranda and U., Persson. On extremal rational elliptic surfaces. Math. Z., 193(4):537–558, 1986 Google Scholar.
[221] S., Mori. Graded factorial domains. Jpn. J. Math., 3(2):223–238, 1977 Google Scholar.
[222] D. R., Morrison. On K3 surfaces with large Picard number. Invent. Math., 75(1):105–121, 1984 Google Scholar.
[223] S., Mukai. Geometric realization of T -shaped root systems and counterexamples to Hilbert's fourteenth problem. In Algebraic transformation groups and algebraic varieties. Encyclopaedia Mathematical Sciences, Vol. 132, pp. 123–129. Springer-Verlag, Berlin, 2004 Google Scholar.
[224] D., Mumford. The red book of varieties and schemes. Lecture Notes in Mathematics, Vol. 1358, expanded edition. Springer-Verlag, Berlin, 1999 Google Scholar.
[225] D., Mumford, J., Fogarty, and F., Kirwan. Geometric invariant theory. Ergebnisse der Mathematik und ihrer Grenzgebiete (2), Vol. 34, 3rd ed. Springer-Verlag, Berlin, 1994 Google Scholar.
[226] I. M., Musson. Differential operators on toric varieties. J. Pure Appl. Algebra, 95(3):303–315, 1994 Google Scholar.
[227] M., Mustaţă. Vanishing theorems on toric varieties. Tohoku Math. J. (2), 54(3):451–470, 2002 Google Scholar.
[228] M., Nagata. On the 14-th problem of Hilbert. Amer. J. Math., 81:766–772, 1959 Google Scholar.
[229] N., Nakayama. Classification of log del Pezzo surfaces of index two. J. Math. Sci. Univ. Tokyo, 14(3):293–498, 2007 Google Scholar.
[230] V. V., Nikulin. Quotient-groups of groups of automorphisms of hyperbolic forms of subgroups generated by 2-reflections. Dokl. Akad. Nauk SSSR, 248(6):1307–1309, 1979 Google Scholar.
[231] V. V., Nikulin. K3 surfaces with a finite group of automorphisms and a Picard group of rank three. Trudy Mat. Inst. Steklov., 165:119–142, 1984 Google Scholar. Algebraic geometry and its applications.
[232] V. V., Nikulin. A remark on algebraic surfaces with polyhedral Mori cone. Nagoya Math. J., 157:73–92, 2000 Google Scholar.
[233] B., Nill. Complete toric varieties with reductive automorphism group. Math. Z., 252(4):767–786, 2006 Google Scholar.
[234] T., Oda. Convex bodies and algebraic geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete (3), Vol. 15. Springer-Verlag, Berlin, 1988 Google Scholar.
[235] T., Oda and H. S., Park. Linear Gale transforms and Gel'fand-Kapranov-Zelevinskij decompositions. Tohoku Math. J. (2), 43(3):375–399, 1991 Google Scholar.
[236] A. L., Onishchik and È. B., Vinberg. Lie groups and algebraic groups. Springer Series in Soviet Mathematics. Springer-Verlag, Berlin, 1990 Google Scholar.
[237] P., Orlik and P., Wagreich. Isolated singularities of algebraic surfaces with C* action. Ann. of Math. (2), 93:205–228, 1971 Google Scholar.
[238] P., Orlik and P., Wagreich. Algebraic surfaces with k*-action. Acta Math., 138(1–2):43–81, 1977 Google Scholar.
[239] J. C., Ottem. On the Cox ring of P2 blown up in points on a line. Math. Scand., 109(1):22–30, 2011 Google Scholar.
[240] J. C., Ottem. Cox rings of K3 surfaces with Picard number 2. J. Pure Appl. Algebra, 217(4):709–715, 2013 Google Scholar.
[241] T. E., Panov. Toric Kempf–Ness sets. Proc. Steklov Inst. Math., 263:159–172, 2008 Google Scholar.
[242] H. S., Park. The Chow rings and GKZ-decompositions for Q-factorial toric varieties. Tohoku Math. J. (2), 45(1):109–145, 1993 Google Scholar.
[243] E., Peyre. Hauteurs et mesures de Tamagawa sur les variétés de Fano. Duke Math. J., 79(1):101–218, 1995 Google Scholar.
[244] E., Peyre. Terme principal de la fonction zêta des hauteurs et torseurs universels. Astérisque, (251):259–298, 1998. Nombre et répartition de points de hauteur bornée (Paris Google Scholar, 1996).
[245] E., Peyre. Torseurs universels et méthode du cercle. In Rational points on algebraic varieties. Progress in Mathematics, Vol. 199, pp. 221–274. Birkhäuser, Basel, 2001 Google Scholar.
[246] E., Peyre. Points de hauteur bornée et géométrie des variétés (d'après Y. Manin et al.). Astérisque, (282):Exp. No. 891, ix, 323–344, 2002. Séminaire Bourbaki, Vol. 2000/2001 Google Scholar.
[247] E., Peyre. Points de hauteur bornée, topologie adélique et mesures de Tamagawa. J. Théor. Nombres Bordeaux, 15(1):319–349, 2003. Les XXIIèmes Journees Arithmetiques (Lille Google Scholar, 2001).
[248] E., Peyre. Counting points on varieties using universal torsors. In Arithmetic of higher-dimensional algebraic varieties (Palo Alto, CA, 2002). Progress in Mathematics, Vol. 226 Google Scholar, pp. 61–81. Birkhäuser Boston, Boston, 2004.
[249] E., Peyre. Obstructions au principe de Hasse et à l'approximation faible. Astérisque, (299):Exp. No. 931, viii, 165–193, 2005. Séminaire Bourbaki. Vol. 2003/2004 Google Scholar.
[250] E., Peyre. Points de hauteur bornée sur les variétés de drapeaux en caractéristique finie. Acta Arith., 152(2):185–216, 2012 Google Scholar.
[251] I. I., Pjatecking-Šapiro and I. R., Šafarevič. Torelli's theorem for algebraic surfaces of type K3. Izv. Akad. Nauk SSSR Ser. Mat., 35:530–572, 1971 Google Scholar.
[252] B., Poonen. Insufficiency of the Brauer-Manin obstruction applied to etale covers. Ann. of Math. (2), 171(3):2157–2169, 2010 Google Scholar.
[253] B., Poonen. Rational points on varieties, http://www-math.mit.edu/~poonen/papers/Qpoints.pdf, 2008 Google Scholar.
[254] O. N., Popov. The Cox ring of a Del Pezzo surface has rational singularities. arXiv:math.AG/0402154, 2004 Google Scholar.
[255] V. L., Popov. Quasihomogeneous affine algebraic varieties of the group SL(2). Izv. Akad. Nauk SSSR Ser. Mat, 37:792–832, 1973 Google Scholar.
[256] G. V., Ravindra and V., Srinivas. The Grothendieck-Lefschetz theorem for normal projective varieties. J. Algebraic Geom., 15(3):563–590, 2006 Google Scholar.
[257] G. V., Ravindra and V., Srinivas. The Noether-Lefschetz theorem for the divisor class group. J. Algebra, 322(9):3373–3391, 2009 Google Scholar.
[258] L., Renner. The cone of semi-simple monoids with the same factorial hull. arXiv:math.AG/0603222, 2006 Google Scholar.
[259] A., Rittatore. Algebraic monoids and group embeddings. Transform. Groups, 3(4):375–396, 1998 Google Scholar.
[260] A., Rittatore. Very flat reductive monoids. Publ. Mat. Urug., 9:93–121 (2002), 2001 Google Scholar.
[261] P., Roberts. An infinitely generated symbolic blow-up in a power series ring and a new counterexample to Hilbert's fourteenth problem. J. Algebra, 132(2):461–473, 1990 Google Scholar.
[262] B., Saint-Donat. Projective models of K – 3 surfaces. Amer. J. Math., 96:602–639, 1974 Google Scholar.
[263] P., Salberger. Tamagawa measures on universal torsors and points of bounded height on Fano varieties. Astérisque, (251):91–258, 1998. Nombre et répartition de points de hauteur bornée (Paris Google Scholar, 1996).
[264] P., Samuel. Lectures on unique factorization domains. Notes by M. Pavman Murthy. Tata Institute of Fundamental Research Lectures on Mathematics, No. 30. Tata Institute of Fundamental Research, Bombay, 1964 Google Scholar.
[265] S., Schanuel. Heights in number fields. Bull. Soc. Math. France, 107(4):433–449, 1979 Google Scholar.
[266] G., Scheja and U., Storch. Zur Konstruktion faktorieller graduierter Integritätsbereiche. Arch. Math. (Basel), 42(1):45–52, 1984 Google Scholar.
[267] V. V., Serganova. Torsors and representation theory of reductive groups. In Tor-sors, etale homotopy and applications to rational points. London Mathematical Society Lecture Note Series, Vol. 405, pp. 75–119. Cambridge University Press, Cambridge, 2013 Google Scholar.
[268] V. V., Serganova and A. N., Skorobogatov. Del Pezzo surfaces and representation theory. Algebra Number Theory, 1(4):393–419, 2007 Google Scholar.
[269] V. V., Serganova and A. N., Skorobogatov. On the equations for universal torsors over del Pezzo surfaces. J. Inst. Math. Jussieu, 9(1):203–223, 2010 Google Scholar.
[270] V. V., Serganova and A. N., Skorobogatov. Adjoint representation of E8 and del Pezzo surfaces of degree 1. Ann. Inst. Fourier (Grenoble), 61(6):2337–2360 (2012 Google Scholar), 2011.
[271] J.-P., Serre. Géométrie algébrique et géométrie analytique. Ann. Inst. Fourier, Grenoble, 6 Google Scholar:1–42, 1955–1956.
[272] J.-P., Serre. A course in arithmetic. Springer-Verlag, New York, 1973 Google Scholar.
[273] J.-P., Serre. Local fields. Graduate Texts in Mathematics, Vol. 67. Springer-Verlag, New York, 1979 Google Scholar.
[274] J.-P., Serre. Galois cohomology. Springer Monographs in Mathematics. Springer-Verlag, Berlin, English edition, 2002 Google Scholar.
[275] V. V., Shokurov. A nonvanishing theorem. Izv. Akad. Nauk SSSR Ser. Mat., 49(3):635–651, 1985 Google Scholar.
[276] C. M., Skinner. Forms over number fields and weak approximation. Compositio Math., 106(1):11–29, 1997 Google Scholar.
[277] A. N., Skorobogatov. On a theorem of Enriques-Swinnerton-Dyer. Ann. Fac. Sci. Toulouse Math. (6), 2(3):429–440, 1993 Google Scholar.
[278] A. N., Skorobogatov. Beyond the Manin obstruction. Invent. Math., 135(2):399–424, 1999 Google Scholar.
[279] A. N., Skorobogatov. Torsors and rational points. Cambridge Tracts in Mathematics, Vol. 144. Cambridge University Press, Cambridge, 2001 Google Scholar.
[280] T. A., Springer. Linear algebraic groups, 2nd ed. Modern Birkhäuser Classics. Birkhäuser Boston, Boston, 2009 Google Scholar.
[281] M., Stillman, D., Testa, and M., Velasco. Gröbner bases, monomial group actions, and the Cox rings of del Pezzo surfaces. J. Algebra, 316(2):777–801, 2007 Google Scholar.
[282] B., Sturmfels. Gröbner bases and convex polytopes. University Lecture Series, Vol. 8. American Mathematical Society, Providence, RI, 1996 Google Scholar.
[283] B., Sturmfels and M., Velasco. Blow-ups of & Popf;n – 3 at n points and spinor varieties. J. Commut. Algebra, 2(2):223–244, 2010 Google Scholar.
[284] B., Sturmfels and Z., Xu. Sagbi bases of Cox-Nagata rings. J. Eur. Math. Soc. (JEMS), 12(2):429–459, 2010 Google Scholar.
[285] H., Sumihiro. Equivariant completion. J. Math. Kyoto Univ., 14:1–28, 1974 Google Scholar.
[286] H., Süß. Canonical divisors on T-varieties. arXiv:0811.0626, 2008 Google Scholar.
[287] M., Swarbrick Jones. A Note On a Theorem of Heath-Brown and Skorobogatov. Q. J. Math. 64(4):1239–1251, 2013 Google Scholar.
[288] J., Święcicka. Quotients of toric varieties by actions of subtori. Colloq. Math., 82(1):105–116, 1999 Google Scholar.
[289] J., Święcicka. A combinatorial construction of sets with good quotients by an action of a reductive group. Colloq. Math., 87(1):85–102, 2001 Google Scholar.
[290] P., Swinnerton-Dyer. Two special cubic surfaces. Mathematika, 9:54–56, 1962 Google Scholar.
[291] P., Swinnerton-Dyer. The solubility of diagonal cubic surfaces. Ann. Sci. École Norm. Sup. (4), 34(6):891–912, 2001 Google Scholar.
[292] D., Testa, A., Várilly-Alvarado, and M., Velasco. Cox rings of degree one del Pezzo surfaces. Algebra Number Theory, 3(7):729–761, 2009 Google Scholar.
[293] D., Testa, A., Várilly-Alvarado, and M., Velasco. Big rational surfaces. Math. Ann., 351(1):95–107, 2011 Google Scholar.
[294] J., Tevelev. Compactifications of subvarieties of tori. Amer. J. Math., 129(4):1087–1104, 2007 Google Scholar.
[295] M., Thaddeus. Geometric invariant theory and flips. J. Amer. Math. Soc., 9(3):691–723, 1996 Google Scholar.
[296] D. A., Timashev. Homogeneous spaces and equivariant embeddings. Invariant Theory and Algebraic Transformation Groups, 8. Encyclopaedia of Mathematical Sciences, Vol. 138. Springer-Verlag, Heidelberg, 2011 Google Scholar.
[297] B., Totaro. The cone conjecture for Calabi-Yau pairs in dimension 2. Duke Math. J., 154(2):241–263, 2010 Google Scholar.
[298] É. B., Vinberg. Complexity of actions of reductive groups. Funktsional. Anal. i Prilozhen., 20(1):1–13, 96, 1986 Google Scholar.
[299] É. B., Vinberg. On reductive algebraic semigroups. In Lie groups and Lie algebras: E. B. Dynkin's Seminar. American Mathematical Society Translations Series 2, Vol. 169, pp. 145–182. American Mathematical Society, Providence, RI, 1995 Google Scholar.
[300] É. B., Vinberg. Classification of 2-reflective hyperbolic lattices of rank 4. Tr. Mosk. Mat. Obs., 68:44–76, 2007 Google Scholar.
[301] É. B., Vinberg and V. L., Popov. Invariant theory. In Algebraic Geometry, IV. Encyclopedia of Mathematical Sciences, Vol. 55, pp. 123–278. Springer-Verlag, Berlin, 1994 Google Scholar.
[302] V. E., Voskresenski. Algebraicheskie tory. Izdat. “Nauka,” Moscow, 1977 Google Scholar.
[303] V. E., Voskresenski. Algebraic groups and their birational invariants. Translations of Mathematical Monographs, Vol. 179. American Mathematical Society, Providence, RI, 1998 Google Scholar.
[304] W. C., Waterhouse. Introduction to affine group schemes. Graduate Texts in Mathematics, Vol. 66. Springer-Verlag, New York, 1979 Google Scholar.
[305] R., Wazir. Arithmetic on elliptic threefolds. Compos. Math., 140(3):567–580, 2004 Google Scholar.
[306] D., Wei. On the equation NK/k(Ξ) = P(t). Proc. London Math. Soc. (3), in press, arXiv:1202.4115, 2012 Google Scholar.
[307] O., Wittenberg. Intersections de deux quadriques et pinceaux de courbes de genre 1/Intersections of two quadrics and pencils of curves of genus 1. Lecture Notes in Mathematics, Vol. 1901. Springer-Verlag, Berlin, 2007 Google Scholar.
[308] J., Wlodarczyk. Embeddings in toric varieties and prevarieties. J. Algebraic Geom., 2(4):705–726, 1993 Google Scholar.
[309] J., Wlodarczyk. Maximal quasiprojective subsets and the Kleiman-Chevalley quasiprojectivity criterion. J. Math. Sci. Univ. Tokyo, 6(1):41–47, 1999 Google Scholar.
[310] D.-Q., Zhang. Quotients of K3 surfaces modulo involutions. Jpn. J. Math., 24(2):335–366, 1998 Google Scholar.
[311] V. S., Zhgun. On embeddings of universal torsors over del Pezzo surfaces into cones over flag varieties. Izv. Ross. Akad. Nauk Ser. Mat., 74(5):3–44, 2010 Google Scholar.

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 4121 *
Loading metrics...

Book summary page views

Total views: 9757 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 1st April 2025. This data will be updated every 24 hours.

Usage data cannot currently be displayed.