Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-c654p Total loading time: 0 Render date: 2024-07-25T12:51:28.733Z Has data issue: false hasContentIssue false

Dictionary

Published online by Cambridge University Press:  05 May 2023

J. F. Cade
Affiliation:
University of Melbourne
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Critical Care Compendium
1001 Topics in Intensive Care & Acute Medicine
, pp. 1 - xx
Publisher: Cambridge University Press
Print publication year: 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bibliography

Levens, ED, DeCherney, AH. Ectopic pregnancy and spontaneous abortion. In: Scientific American Medicine. Women’s Health. Hamilton: Dekker Medicine. 2020.Google Scholar

Bibliography

Wolfe, MM, Jensen, RT. Zollinger–Ellison syndrome: current concepts in diagnosis and management. N Engl J Med 1987; 317: 1200.Google Scholar

Bibliography

Barbier, F, Mer, M, Szychowiak, P, et al. Management of HIV-infected patients in the intensive care unit. Intens Care Med 2020; 46: 329.CrossRefGoogle ScholarPubMed
Brookmeyer, R. Reconstruction and future trends of the AIDS epidemic in the United States. Science 1991; 253: 37.CrossRefGoogle ScholarPubMed
Cheruvu, S, Holloway, CJ. Cardiovascular disease in human immunodeficiency virus. Intern Med J 2014; 44: 315.CrossRefGoogle ScholarPubMed
Dickson, D. Tests fail to support claims for origin of AIDS in polio vaccine. Nature 2000; 407: 117.Google Scholar
Karpatkin, S, Nardi, M, Green, D. Platelet and coagulation defects associated with HIV-1 infection. Thromb Haemost 2002; 88: 389.Google Scholar
Korber, B, Muldoon, M, Theiler, J, et al. Timing the ancestor of the HIV-1 pandemic strains. Science 2000; 288: 1789.Google Scholar
Levine, SJ, White, DA. Pneumocystis carinii. Clin Chest Med 1988; 9: 395.Google Scholar
Mann, JM. AIDS – the second decade: a global perspective. J Infect Dis 1992; 165: 245.CrossRefGoogle ScholarPubMed
Miller, R. HIV-associated respiratory diseases. Lancet 1996; 348: 307.CrossRefGoogle ScholarPubMed
Panlilo, AL, Cardo, DM, Grohskopf, LA, et al. Updated U.S. public health service guidelines for the management of occupational exposures to HIV and recommendations for postexposure prophylaxis. MMWR 2005; 54: 1.Google Scholar
Pitman, MC, Lewin, SR. Towards a cure for human immunodeficiency virus. Intern Med J 2018; 48: 12.Google Scholar
Rosen, MJ. Pulmonary complications of HIV infection: a review. Respirology 2008; 13: 181.Google Scholar
Suffredini, DA, George, JM, Masur, H. Management of antiretrovirals in critically ill patients: great progress but potential pitfalls. Crit Care Med 2018; 46: 663.Google Scholar
Thompson, MA, Aberg, JA, Cahn, P, et al. Antiretroviral treatment of adult HIV infection: 2010 recommendations of the International AIDS Society-USA panel. JAMA 2010; 304: 321.CrossRefGoogle ScholarPubMed
Yarwood, T, Russell, DB. HIV: almost gone, but still forgotten. Intern Med J 2020; 50: 269.Google Scholar

Bibliography

Bach, LA. The insulin-like growth factor system: basic and clinical aspects. Aust NZ J Med 1999; 29: 355.CrossRefGoogle ScholarPubMed
Burt, MG, Ho, KKY. Newer options in the management of acromegaly. Intern Med J 2006; 36: 437.Google Scholar
Bills, DC, Meyer, FB, Laws, ER, et al. A retrospective analysis of pituitary apoplexy. Neurosurgery 1993; 33: 602.Google ScholarPubMed
Colao, A, Ferone, D, Marzullo, P, et al. Systemic complications of acromegaly: epidemiology, pathogenesis, and management. Endocr Rev 2004; 25: 102.Google Scholar
Cheung, NW, Taylor, L, Boyages, SC. An audit of long-term octreotide therapy for acromegaly. Aust NZ J Med 1997; 27: 12.CrossRefGoogle ScholarPubMed
Lamberts, S, van der Lely, AJ, de Herder, WW, et al. Octreotide. N Engl J Med 1996; 334: 246.CrossRefGoogle ScholarPubMed
Melmed, S. Medical progress: acromegaly. N Engl J Med 2006; 355: 2558.Google Scholar
Randeva, H, Schoebel, J, Byrne, J, et al. Classical pituitary apoplexy: clinical features, management and outcome. Clin Endo 1999; 51: 181.CrossRefGoogle ScholarPubMed

Bibliography

Weese, WC, Smith, IM. A study of 57 cases of actinomycosis over a 36-year period. Arch Intern Med 1975; 135: 1562.Google Scholar

Bibliography

Chang, MS, Rutherford, AE. Liver disease in pregnancy. In: Scientific American Medicine. Hepatology. Hamilton: Dekker Medicine. 2020.Google Scholar

Bibliography

Dennekamp, M, Abramson, MJ. The effects of bushfire smoke on respiratory health. Respirology 2011; 16: 198.Google Scholar
Kales, SN, Christiani, DC. Acute chemical emergencies. New Engl J Med 2004; 350: 800.CrossRefGoogle ScholarPubMed
Schwartz, DA. Acute inhalational injury. Occup Med 1987; 2: 297.Google Scholar

Bibliography

Adir, Y, Shupak, A, Gil, A, et al. Swimming-induced pulmonary edema: clinical presentation and serial lung function. Chest 2004; 126: 394.CrossRefGoogle ScholarPubMed
Albertson, TE, Walby, WF, Derlet, RW. Stimulant-induced pulmonary toxicity. Chest 1995; 108: 1140.Google Scholar
Bhattacharya, M, Kallet, RH, Ware, LB, et al. Negative-pressure pulmonary edema. Chest 2016; 150: 927.Google Scholar
Busl, KM, Bleck, TP. Neurogenic pulmonary edema. Crit Care Med 2015; 43: 1710.Google Scholar
Colice, GL. Neurogenic pulmonary edema. Clin Chest Med 1985; 6: 473.CrossRefGoogle ScholarPubMed
Esper, A, Martin, GS, Staton, GW. Pulmonary edema. In: Scientific American Medicine. Pulmonary & Critical Care Medicine – Pulmonary. Hamilton: Dekker Medicine. 2020.Google Scholar
Gehlbach, BK, Geppert, E. The pulmonary manifestations of left heart failure. Chest 2004; 125: 669.Google Scholar
Harms, BA, Kramer, GC, Bodai, BI, et al. Effect of hypoproteinemia on pulmonary and soft tissue edema formation. Crit Care Med 1981; 9: 503.Google Scholar
Kollef, MH, Pluss, J. Noncardiogenic pulmonary edema following upper airway obstruction. Medicine 1991; 70: 91.Google Scholar
McConkey, PP. Postobstructive pulmonary oedema. Anaesth Intens Care 2000; 28: 72.Google Scholar
Richalet, JP. High altitude pulmonary oedema: still a place for controversy? Thorax 1995; 50: 923.Google Scholar
Scherrer, U, Vollenweider, L, Delabays, A, et al. Inhaled nitric oxide for high-altitude pulmonary edema. N Engl J Med 1996; 334: 624.Google Scholar
Schoene, RB. Pulmonary edema at high altitude: review, pathophysiology, and update. Clin Chest Med 1985; 6: 491.Google Scholar
Schwarz, MI, Albert, RK. ‘Imitators’ of the ARDS: implications for diagnosis and treatment. Chest 2004; 125: 1530.CrossRefGoogle ScholarPubMed
Sibbald, WJ, Cunningham, DR, Chin, DN. Non-cardiac or cardiac pulmonary edema? Chest 1983; 84: 452.Google Scholar
Simon, RP. Neurogenic pulmonary edema. Neurol Clin 1993; 11: 309.Google Scholar
Sporer, KA, Dorn, E. Heroin-related noncardiogenic pulmonary edema. Chest 2001; 120: 1628.Google Scholar
Steinberg, KP, Hudson, LD. Acute lung injury and acute respiratory distress syndrome: the clinical syndrome. Clin Chest Med 2000; 21: 401.Google Scholar
Taylor, JR, Ryu, J, Colby, TV, et al. Lymphangioleiomyomatosis. N Engl J Med 1990; 323: 1254.Google Scholar
Timby, J, Reed, C, Zeilender, S, et al. Mechanical causes of pulmonary edema. Chest 1990; 98: 973.Google Scholar

Bibliography

Beitler, JR, Schoenfeld, DA, Thompson, BT. Preventing ARDS: progress, promise, and pitfalls. Chest 2014; 146: 1102.Google Scholar
Esper, A, Martin, GS, Staton, GW. Pulmonary edema. In: Scientific American Medicine. Pulmonary & Critical Care Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Guerin, C, Thompson, T, Brower, R. The ten diseases that look like ARDS. Intens Care Med 2015; 41: 1099.Google Scholar
Jaber, S, Slutsky, AS, eds. Mechanical ventilation in intensive care. Intens Care Med 2020; 46: Special Issue.Google Scholar
Rittayamai, N, Brochard, L. What’s new in ADRS (clinical studies). Intens Care Med 2014; 40: 1731.CrossRefGoogle Scholar
Thompson, BT, Chambers, RC, Liu, KD. Acute respiratory distress syndrome. N Engl J Med 2017; 377: 562.Google Scholar
Various. ARDS birthday issue. Intens Care Med 2016; 42: 637.Google Scholar

Bibliography

Dwyer, DE, Cunningham, AL. Herpes simplex and varicella-zoster virus infections. Med J Aust 2002; 177: 267.Google Scholar
Ernest, ME, Franey, RJ. Acyclovir and ganciclovir-induced neurotoxicity. Ann Pharmacother 1998; 32: 111.Google Scholar
Hirsch, MS. Herpesvirus infections. In: Scientific American Medicine. Infectious Diseases. Hamilton: Dekker Medicine. 2020.Google Scholar
Jackson, JL, Gibbons, R, Meyer, G, et al. The effect of treating herpes zoster with oral acyclovir in preventing postherpetic neuralgia: a meta-analysis. Arch Intern Med 1997; 157: 909.Google Scholar
Jacobson, M. Treatment of cytomegalovirus retinitis in patients with the acquired immunodeficiency syndrome. N Engl J Med 1997; 337: 105.Google Scholar
Laskin, OL. Acyclovir: pharmacology and clinical experience. Arch Intern Med 1984; 144: 1241.Google Scholar
Prentice, HG, Gluckman, E, Powles, RL, et al. Impact of long-term acyclovir on cytomegalovirus infection and survival after allogenic bone marrow transplantation: European Acyclovir for CMV Prophylaxis Study Group. Lancet 1994; 343: 749.Google Scholar

Bibliography

Belardinelli, L, Linden, J, Berne, RM. The cardiac effects of adenosine. Prog Cardiovasc Dis 1989; 167: 1186.Google Scholar
Cronstein, BN. Adenosine, an endogenous anti-inflammatory agent. J Appl Physiol 1994; 76: 5.Google Scholar
McCallion, K, Harkin, DW, Gardiner, KR. Role of adenosine in immunomodulation: review of the literature. Crit Care Med 2004; 32: 273.Google Scholar

Bibliography

Al-Kurd, A, Mazeh, H. The endocrine system: adrenal glands. In: Scientific American Medicine. Organ Systems: Anatomy & Physiology. Hamilton: Dekker Medicine. 2020.Google Scholar
Amrein, K, Martucci, G, Hahner, S. Understanding adrenal crisis. Intens Care Med 2018; 44: 652.Google Scholar
Annane, D, Pastores, SM, Rochwerg, B, et al. Guidelines for the diagnosis and management of critical illness-related corticosteroid insufficiency (CIRCI) in critically ill patients (Part 1): Society of Critical Care Medicine (SCCM) and European Society of Intensive Care Medicine (ESICM) 2017. Crit Care Med 2017; 45: 2078 and Intens Care Med 2017; 43: 1751.Google Scholar
Annane, D, Pastores, SM, Arlt, W, et al. Critical illness-related corticosteroid insufficiency (CIRCI): a narrative review from a Multispecialty Task Force of the Society of Critical Care Medicine (SCCM) and the European Society of Intensive Care Medicine (ESICM). Crit Care Med 2017; 45: 2089 and Intens Care Med 2017; 43: 1781.Google Scholar
Annane, D, Sebille, V, Charpentier, C, et al. Effect of treatment with low doses of hydrocortisone and fludrocortisone on mortality in patients with septic shock. JAMA 2002; 288: 862.Google Scholar
Claussen, MS, Landercasper, J, Cogbill, TH. Acute adrenal insufficiency presenting as shock after trauma and surgery: three cases and review of the literature. J Trauma 1992; 32: 94.Google Scholar
Cohen, J, Venkatesh, B. Relative adrenal insufficiency in the intensive care population; background and critical appraisal of the evidence. Anaesth Intens Care 2010; 38: 425.Google Scholar
Editorial. Corticosteroids and hypothalamic-pituitary-adrenocortical function. BMJ 1980; 280: 813.Google Scholar
Hamrahian, AH, Oseni, TS, Arafah, BM. Measurement of serum free cortisol in critically ill patients. N Engl J Med 2004; 350: 1629.CrossRefGoogle ScholarPubMed
Jung, C, Inder, WJ. Management of adrenal insufficiency during the stress of medical illness and surgery. Med J Aust 2008; 188: 409.Google Scholar
Keller-Wood, M. Hypothalamic-piuitary-adrenal axis-feedback control. Compr Physiol 2015; 5: 1161.Google Scholar
Ligtenberg, JJM, Zilstra, JG. The relative adrenal insufficiency syndrome revisited: which patients will benefit from low-dose steroids? Curr Opin Crit Care 2004; 10: 456.Google Scholar
Lipiner-Friedman, D, Sprung, CL, Laterre, PF, et al. Adrenal function in sepsis: the retrospective Corticus cohort study. Crit Care Med 2007; 35: 1012.Google Scholar
Loriaux, DL. The polyendocrine deficiency syndromes. N Engl J Med 1985; 312: 1568.Google Scholar
Loriaux, DL. Adrenal insufficiency. In: Scientific American Medicine. Endocrinology & Metabolism. Hamilton: Dekker Medicine. 2020.Google Scholar
Malerba, G, Romano-Girard, F, Cravoisy, A, et al. Risk factors of relative adrenocortical deficiency in intensive care patients needing mechanical ventilation. Intens Care Med 2005; 31: 388.Google Scholar
Marik, PE. Unravelling the mystery of adrenal failure in the critically ill. Crit Care Med 2004; 32: 569.Google Scholar
Marik, PE, Pastores, SM, Annane, D, et al. Recommendations for the diagnosis and management of corticosteroid insufficiency in critically ill adult patients: consensus statements from an international task force by the American College of Critical Care Medicine. Crit Care Med 2008; 36: 1937.Google Scholar
Marik, PE, Zaloga, GP. Adrenal insufficiency in the critically ill: a new look at an old problem. Chest 2002; 122: 1784.Google Scholar
Marik, PE, Zaloga, GP. Adrenal insufficiency during septic shock. Crit Care Med 2003; 31: 141.Google Scholar
Pastores, SM, Annane, D, Rochwerg, B, et al. Guidelines for the diagnosis and management of critical illness-related corticosteroid insufficiency (CIRCI) in critically ill patients (Part 2): Society of Critical Care Medicine (SCCM) and European Society of Intensive Care Medicine (ESICM) 2017. Crit Care Med 2018; 46: 146 and Intens Care Med 2017; 43: 1751.CrossRefGoogle Scholar
Peeters, B, Meersseman, P, Perre, SV, et al. Adrenocortical function during prolonged critical illness and beyond: a prospective observational study. Intens Care Med 2018; 44: 1720.Google Scholar
Puar, TH, Stikkelbroeck, NM, Smans, LC, et al. Adrenal crisis: still a deadly event in the 21st century. Am J Med 2016; 129: 339.Google Scholar
Rai, R, Cohen, J, Venkateash, B. Assessment of adrenocortical function in the critically ill. Crit Care Resusc 2004; 6: 123.Google Scholar
Rygard, SL, Butler, E, Granholm, A, et al. Low-dose corticosteroids for adult patients with septic shock: a systematic review with meta-analysis and trial sequential review. Intens Care Med 2018; 44: 1003.Google Scholar
Salem, M, Tainsh, RE, Bromberg, J, et al. Perioperative glucocorticoid coverage: a reassessment 42 years after emergence of a problem. Ann Surg 1994; 219: 416.Google Scholar
Szalados, JE, Vukmir, RB. Acute adrenal insufficiency resulting from adrenal hemorrhage as indicated by post-operative hypotension. Intens Care Med 1994; 20: 216.Google Scholar
Vance, ML. Hypopituitarism. N Engl J Med 1994; 330: 1651.Google Scholar
Vella, A, Nippoldt, TB, Morris, JC. Adrenal hemorrhage: a 25-year experience at the Mayo Clinic. Mayo Clin Proc 2001; 76: 161.Google Scholar
Venkatesh, B, Finfer, S, Cohen, J, et al. Adjunctive glucocorticoid therapy in patients with septic shock. N Engl J Med 2018; 378: 797.Google Scholar
Venkatesh, B, Prins, J, Torpy, D, et al. Relative adrenal insufficiency: match point or deuce? Crit Care Resusc 2006; 8: 376.Google Scholar
Vita, JA, Silverberg, SJ, Goland, RS, et al. Clinical clues to the cause of Addison’s disease. Am J Med 1985; 78: 461.Google Scholar
Volbeda, M, Wetterslev, J, Gluud, C, et al. Glucocorticoids for sepsis: systematic review with meta-analysis and trial sequential analysis. Intens Care Med 2015; 41: 1220.Google Scholar
Webb, SAR. Relative adrenal insufficiency exists and should be treated. Crit Care Resusc 2006; 8: 371.Google Scholar
Zaloga, GP, Marik, P. Hypothalamic-pituitary-adrenal insufficiency. Crit Care Clin 2001; 17: 25.Google Scholar

Bibliography

Editorial. Corticosteroids and hypothalamic-pituitary-adrenocortical function. BMJ 1980; 280: 813.Google Scholar
Imura, H. Control of biosynthesis and secretion of ACTH: a review. Horm Metab Res 1987; 16 (suppl.): 1.Google Scholar
Orth, DN. Corticotropin-releasing hormone in humans. Endocr Rev 1992; 13: 164.Google Scholar

Bibliography

Buckley, RH, Schiff, RI. The use of intravenous immune globulin in immunodeficiency diseases. N Engl J Med 1991; 325: 110.Google Scholar
Van der Meer, JWM, Kullberg, BJ. Defects in host-defense mechanisms. In: Rubin, RH, Young, LS, eds. Clinical Approach to Infection in the Compromised Host. 4th edition. New York: Plenum. 2002; p 5.Google Scholar

Bibliography

Vincent, PC Drug-induced aplastic anemia and agranulocytosis. Drugs 1986; 31: 52.Google Scholar

Bibliography

Melby, JC. Diagnosis of hyperaldosteronism. Endocrinol Metab Clin North Am 1991; 20: 247.Google Scholar
Quinn, SJ, Williams, GH. Regulation of aldosterone secretion. Ann Rev Physiol 1988; 50: 409.Google Scholar
White, PC. Disorders of aldosterone biosynthesis and action. N Engl J Med 1994; 331: 250.Google ScholarPubMed

Bibliography

Del Rosso, JQ. Disorders of hair. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Kaufman, KD. Long-term (5-year) multinational experience with finasteride 1 mg in the treatment of men with androgenetic alopecia. Eur J Dermatol 2002; 12: 38.Google Scholar
Paus, R, Cotsarelis, G. The biology of hair follicles. N Engl J Med 1999; 341: 491.Google Scholar
Rusting, RL. Hair: why it grows, why it stops. In: The Frontiers of Biotechnology. New York: Scientific American. 2002; p 66.Google Scholar
Shapiro, J, Price, VH. Hair regrowth: therapeutic options. Dermatol Clin 1998; 16: 341.Google Scholar
Tosti, A, Piraccini, BM. Androgenetic alopecia. Int J Dermatol 1999; 38 (suppl. 1): 1.Google Scholar
Wolff, K, Goldsmith, L, Katz, S, et al., eds. Fitzpatrick’s Dermatology in General Medicine. 7th edition. New York: McGraw-Hill. 2007.Google Scholar

Bibliography

Locker, GY, Hamilton, S, Harrus, J, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol 2006; 24: 5313.Google Scholar
McIntire, KR, Waldmann, TA, Moertel, CG, et al. Serum alpha-fetoprotein in patients with neoplasms of the gastrointestinal tract. Cancer Res 1975; 35: 991.Google Scholar

Bibliography

Alkins, SA, O’Malley, P. Should health-care systems pay for replacement therapy in patients with α1-antitrypsin deficiency? Chest 2000; 117: 875.Google Scholar
Burdon, JGW, Knight, KR, Brenton, S, et al. Antiproteinase deficiency, emphysema and replacement therapy. Aust NZ J Med 1996; 26: 769.Google Scholar
Carrell, RW, Whisstock, J, Lomas, DA. Conformational changes in serpins and the mechanism of alpha1-antitrypsin deficiency. Am J Respir Crit Care Med 1994; 150: S171.Google Scholar
Eden, E, Mitchell, D, Mehlman, B, et al. Atopy, asthma, and emphysema in patients with severe α-1-antitrypsin deficiency. Am J Repir Crit Care Med 1997; 156: 68.Google Scholar
Gadek, JE, ed. Alpha1-antitrypsin: A world view. Chest 1997; 110 (suppl.).Google Scholar
Hogarth, DK, Rachelefsky, G. Screening and familial testing of patients for α1-antitrypsin deficiency. Chest 2008; 133: 981.Google Scholar
Hutchison, DCS, Hughes, MD. Alpha-1-antitrypsin replacement therapy: will its efficacy ever be proved? Eur Respir J 1997; 10: 2191.Google Scholar
Larsson, C. Natural history and life expectancy in severe α1-antitrypsin PiZ. Acta Med Scand 1978; 204: 345.Google Scholar
Laurell, C-B, Erikson, S. The electrophoretic α1-globin pattern of serum in α1-antitrypsin deficiency. Scand J Clin Lab Invest 1963; 15: 132.Google Scholar
Stoller, JK. Clinical features and natural history of severe α1-antitrypsin deficiency. Chest 1997; 111: 123S.Google Scholar

Bibliography

Alfrey, AC. Aluminum intoxication. N Engl J Med 1984; 310: 1113.Google Scholar
Ciba Foundation. Aluminium in Biology and Medicine. London. 1992.Google Scholar
Cooke, K, Gould, MH. The health effects of aluminium – a review. J R Soc Health 1991; 111: 163.Google Scholar
Kaiser, L, Schwartz, KA. Aluminum-induced anemia. Am J Kidney Dis 1985; 6: 348.Google Scholar
McCarthy, DM. Drug therapy (sucralfate). N Engl J Med 1991; 325: 1017.Google Scholar
Mulla, H, Peek, G, Upton, D, et al. Plasma aluminum levels during sucralfate prophylaxis for stress ulceration in critically ill patients on continuous venovenous hemofiltration: a randomized controlled trial. Crit Care Med 2001; 29: 267.Google Scholar
Wills, MR, Savory, J. Aluminium poisoning: dialysis encephalopathy, osteomalacia, and anaemia. Lancet 1983; 2: 29.Google Scholar

Bibliography

Hall, JE. Normal and abnormal menstruation. In: Scientific American Medicine. Women’s Health. Hamilton: Dekker Medicine. 2020.Google Scholar
Nattiv, A, Agostini, R, Drinkwater, B, et al. The female athlete triad: the inter-relatedness of disordered eating, amenorrhea, and osteoporosis. Clin Sports Med 1994; 13: 405.Google Scholar
Ng, E, Sztal-Mazer, S, Davis, SR. Functional hypothalamic amenorrhoea: a diagnosis of exclusion. Med J Aust 2022; 216: 73.Google Scholar
Tan, SL, Jacobs, HS. Recent advances in the management of patients with amenorrhoea. Clin Obstet Gynaecol 1985; 12: 725.Google Scholar

Bibliography

Choi, DMA, Duffy, BL. Amniotic fluid embolism. Anaesth Intens Care 1995; 23: 741.Google Scholar
Clark, SL. Amniotic fluid embolism. Obstet Gynecol 2014; 123: 337.Google Scholar
Clark, SL, Hankins, GDV, Dudley, DA, et al. Amniotic fluid embolism: analysis of the national registry. Am J Obstet Gynecol 1995; 172; 1158.Google Scholar
Clark, SL, Romero, R, Dildy, GA, et al. Proposed diagnostic criteria for the case definition of amniotic fluid embolism in research studies. Am J Obstet Gynecol 2016; 215: 408.Google Scholar
Gist, RS, Stafford, IP, Leibowitz, AB, et al. Amniotic fluid embolism. Anesth Analg 2009; 108: 1599.Google Scholar
Locksmith, GJ. Amniotic fluid embolism. Obstet Gynecol Clin North Am 1999; 26: 435.Google Scholar
McDougall, RJ, Duke, GJ. Amniotic fluid embolism syndrome: case report and review. Anaesth Intens Care 1995; 23: 735.Google Scholar
Monga, M. Amniotic fluid embolism: a diagnostic dilemma. Crit Care Med 2012; 40: 2236.Google Scholar
Moore, J, Baldisseri, MR. Amniotic fluid embolism. Crit Care Med 2005; 33 (suppl.): S279.Google Scholar
Morgan, M. Amniotic fluid embolism. Anaesthesia 1979; 34: 20.Google Scholar
Oi, H, Kobayashi, H, Hirashima, Y, et al. Serological and immunohistochemical diagnosis of amniotic fluid embolism. Semin Thromb Hemost 1998; 24: 479.Google Scholar
Tuffnell, DJ. Amniotic fluid embolism. Curr Opinion Obstet Gynecol 2003; 15: 119.Google Scholar

Bibliography

Adams, EB, Macleod, IN. Invasive amebiasis. Medicine 1977; 56: 315 & 325.Google Scholar
Van Hal, SJ, Stark, DJ, Fotedar, R, et al. Amoebiaisis: current status in Australia. Med J Aust 2007; 186: 412.Google Scholar

Bibliography

Byard, RW, Rodgers, NG, James, RA, et al. Death and paramethoxyamphetamine – an evolving problem. Med J Aust 2002; 176: 496.Google Scholar
Chin, KM, Channick, RN, Rubin, LJ. Is methamphetamine use associated with idiopathic pulmonary arterial hypertension? Chest 2006; 130: 1657.Google Scholar
Connolly, HM, Crary, JL, McGoon, MD, et al. Valvular heart disease associated with fenfluramine-phentermine. N Engl J Med 1997; 337: 581.Google Scholar
Fishman, AP. Aminorex to fen/phen: an epidemic foretold. Circulation 1999; 99: 156.Google Scholar
Henry, JA, Jeffreys, KJ, Dawling, S. Toxicity and deaths from 3, 4-methylenedioxy methamphetamine (‘ecstasy’). Lancet 1992; 340: 384.Google Scholar
Milroy, CM. Ten years of ‘ecstasy’. J R Soc Med 1999; 92: 68.Google Scholar
Mokhlesi, B, Garinella, PS, Joffe, A, et al. Street drug abuse leading to critical illness. Intens Care Med 2004; 30: 1526.Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Parrott, AC, ed. MDMA (Methylenedioxy-methamphetamine). Basel: Karger. 2000.Google Scholar
Screaton, GR, Cairns, HS, Sarner, M, et al. Hyperpyrexia and rhabdomyolysis after MDMA (‘ecstasy’) abuse. Lancet 1992; 339: 677.Google Scholar

Bibliography

Anderson, KC, Weinstein, HJ. Transfusion-associated graft-versus-host disease. N Engl J Med 1990; 323: 315.Google Scholar
Barrett-Connor, E. Anemia and infection. Am J Med 1972; 52: 242.Google Scholar
Berliner, N, Gasner, JM. Anemia: production defects. In: Scientific American Medicine. Hematology. Hamilton: Dekker Medicine. 2020.Google Scholar
Boutboul, D, Touzot, F, Szalat, R. Understanding therapeutic emergencies in acute hemolysis. Intens Care Med 2018; 44: 482.Google Scholar
Clucas, DB, Fox, LC, Wood, EM, et al. Revisiting acquired aplastic anaemia: current concepts in diagnosis and management. Intern Med J 2019; 49: 152.Google Scholar
Corwin, HL, Gettinger, A, Pearl, RG, et al. The CRIT study: anemia and blood transfusion in the critically ill – current clinical practice in the United States. Crit Care Med 2004; 32: 39.Google Scholar
Editorial. Paroxysmal nocturnal haemoglobinuria. Lancet 1992; 339: 395.Google Scholar
Eichner, ER. Fatigue of anemia. Nutr Rev 2001; 59: S17.Google Scholar
Engelfriet, CP, Overbeeke, MAM, von dem Borne, AEGK. Autoimmune hemolytic anemia. Semin Hematol 1992; 29: 3.Google Scholar
Fazio, D, Gropper, MA. Anemia and transfusion in critical care. Pulmonary Perspect 2003; 20: 4.Google Scholar
Finch, CA. Erythropoiesis, erythropoietin, and iron. Blood 1982; 60: 1241.Google Scholar
Henry, DH, Spivak, JL. Clinical use of erythropoietin. Curr Opinion Hematol 1995; 2: 118.Google Scholar
Hillmen, P, Lewis, SM, Bessler, M, et al. Natural history of paroxysmal nocturnal hemoglobinuria. N Engl J Med 1995; 333: 1253.Google Scholar
Krantz, SB. Erythropoietin. Blood 1991; 77: 419.Google Scholar
Lopez, A, Cacoub, P, Macdougall, IC, et al. Iron deficiency anaemia. Lancet 2016; 387: 907.Google Scholar
Low, MSY, Grigoriadis, G. Iron deficiency and new insights into therapy. Med J Aust 2017; 207: 81.Google Scholar
Marmont, AM. Therapy of pure red cell aplasia. Semin Hematol 1991; 28: 285.Google Scholar
Marsh, JCW, Socie, G, Schrezenmeier, H, et al. Haemopoietic growth factors in aplastic anaemia: a cautionary note. Lancet 1994; 344: 172.Google Scholar
Means, RT. Advances in the anemia of chronic disease. Int J Hematol 1999; 70: 7.Google Scholar
Means, RT. Red blood cell function and disorders of iron metabolism. In: Scientific American Medicine. Hematology. Hamilton: Dekker Medicine. 2020.Google Scholar
Means, RT, Krantz, SB. Progress in understanding the pathogenesis of the anemia of chronic disease. Blood 1992; 80: 1639.Google Scholar
Mueller, MM, Van Remoortel, H, Meybohm, P, et al. Patient blood management: recommendations from the 2018 Frankfurt consensus conference. JAMA 2019; 321: 983.Google Scholar
Nacui, FE, Della Torre, V, Bhowmick, K. Anaemia in the critically ill. ICU Management & Practice 2021; 21: 262.Google Scholar
Otis, S, Price, EA. Hemoglobinopathies and hemolytic anemias. In: Scientific American Medicine. Hematology. Hamilton: Dekker Medicine. 2020.Google Scholar
Pasricha, SR, Flecknoe-Brown, SC, Allen, KJ, et al. Diagnosis and management of iron deficiency anaemia: a clinical update. Med J Aust 2010; 193: 525.Google Scholar
Pearl, RG, Sibbald, WJ, eds. Anaemia and blood management in critical care. Crit Care Med 2003; 31: S649.Google Scholar
Pieracci, FM, Barie, PS. Diagnosis and management of iron-related anemias in critical illness. Crit Care Med 2006; 34: 1898.Google Scholar
Vincent, PC. Drug-induced aplastic anemia and agranulocytosis. Drugs 1986; 31: 52.Google Scholar
Vlaar, AP, Oczkowski, S, de Bruin, S, et al. Transfusion strategies in non-bleeding critically ill patients: a clinical practice guideline from the European Society of Intensive Care Medicine. Intens Care Med 2020; 46: 673.Google Scholar
Young, NS. The problem of clonality in aplastic anaemia: Dr. Damashek’s riddle, restated. Blood 1992; 79: 1385.Google Scholar
Young, NS, Meyers, G, Schrezenmeier, H, et al. The management of paroxysmal nocturnal hemoglobinuria: recent advances in diagnosis and treatment and new hope for patients. Semin Hematol 2009; 46: S1.Google Scholar

Bibliography

Boey, JP, Hahn, U, Sagheer, S, et al. Thalidomide in angiodysplasia-related bleeding. Intern Med J 2016; 45: 972.Google Scholar
Franchini, M, Mannucci, PM. Gastrointestinal angiodysplasia and bleeding in von Willebrand disease. J Thromb Haemost 2014: 112: 427.Google Scholar
Heyde, EC. Gastrointestinal bleeding in aortic stenosis. N Engl J Med 1958; 259: 196.Google Scholar
Hochter, W, Weingart, J, Kuhner, W, et al. Angiodysplasia in the colon and rectum: endoscopic morphology, localisation and frequency. Endoscopy 1985; 17: 182.Google Scholar
Hodgson, H. Hormonal therapy for gastrointestinal angiodysplasia. Lancet 2002; 359: 1630.Google Scholar
Jackson, CS, Gerson, LB. Management of gastrointestinal angiodysplastic lesions (GIADs): a systematic review and meta-analysis. Am J Gastroenterol 2014; 109: 474.Google Scholar
Randi, AM, Smith, KE, Castaman, C. Von Willebrand factor regulation of blood vessel formation. Blood 2018; 132: 132.Google Scholar
Warkentin, TE, Moore, JC, Morgan, DG. Aortic stenosis and bleeding gastrointestinal angiodysplasia: is acquired von Willebrand’s disease the link? Lancet 1992; 340: 35.Google Scholar

Bibliography

Agah, R, Bandi, V, Guntupalli, KK. Angioedema: the role of ACE inhibitors and factors associated with poor clinical outcome. Intens Care Med 1997; 23: 793.Google Scholar
Banerji, A, Busse, P, Shennak, M, et al. Inhibiting plasma kallikrein for hereditary angioedema prophylaxis. N Engl J Med 2017; 376: 717.Google Scholar
Bas, M, Greve, J, Stelter, K, et al. A randomized trial of icatibant in ACE-inhibitor-induced angioedema. N Engl J Med 2015; 372: 418.Google Scholar
Chen, JR, Khan, DA. Urticaria and angioedema. In: Scientific American Medicine. Allergy & Immunology. Hamilton: Dekker Medicine. 2020.Google Scholar
Colten, HR. Hereditary angioneurotic edema, 1887 to 1987. N Engl J Med 1987; 317: 43.Google Scholar
Craig, TJ, Levy, RJ, Wasserman, RL, et al. Efficacy of human C1 esterase inhibitor concentrate compared with placebo in acute hereditary angioedema attacks. J Allergy Clin Immunol 2009; 124: 801.Google Scholar
De Maat, S, Hofman, ZLM, Maas, C. Hereditary angioedema: the plasma contact system out of control. J Thromb Haemost 2018; 16: 1674.Google Scholar
Donaldson, VH, Evans, RR. A biochemical abnormality in hereditary angioneurotic edema: absence of serum inhibitor of C1-esterase. Am J Med 1963; 35: 37.Google Scholar
Frigas, E. Angioedema with acquired deficiency of the C1 inhibitor: a constellation of syndromes. Mayo Clin Proc 1989; 64: 1269.Google Scholar
Fronhoffs, S, Luyken, J, Steuer, K, et al. The effect of C1-esterase inhibitor in definite and suspected streptococcal toxic shock syndrome. Intens Care Med 2000; 26: 1566.Google Scholar
Gabb, GM, Ryan, P, Wing, LMH, et al. Epidemiological study of angioedema and ACE inhibitors. Aust NZ J Med 1996; 26: 777.Google Scholar
Javaud, N, Floccard, B, Gontier, F, et al. Bradykinin-mediated angioedema: factors associated with admission to an intensive care unit, a multicenter study. Eur J Emerg Med 2016; 23: 219.Google Scholar
LoVerde, D, Files, DC, Krishnaswamy, G. Angioedema. Crit Care Med 2017; 45: 725.Google Scholar
Nzeako, UC, Frigas, E, Tremaine, WJ. Hereditary angioedema. Arch Intern Med 2001; 161: 2417.Google Scholar
Osler, W. Hereditary angioedema. Am J Med Sci 1888; 95: 362.Google Scholar
Schmaier, AH. The contact system and kallikrein/kinin systems: pathophysiologic and physiologic activities. J Thromb Haemost 2016; 14: 28.Google Scholar
Waytes, AT, Rosen, FS, Frank, MM. Treatment of hereditary angioedema with a vapor-heated C1 inhibitor concentrate. N Engl J Med 1996; 334: 1630.Google Scholar

Bibliography

Curry, SC, Arnold-Capell, P. Nitroprusside, nitroglycerin, and angiotensin-converting enzyme inhibitors. Crit Care Clin 1991; 7: 555.Google Scholar
Editorial. Are ACE inhibitors safe in pregnancy? Lancet 1989; 2: 482.Google Scholar
Franzosi, MG, Santoro, E, Zuanetti, G, et al. Indications for ACE inhibitors in the early treatment of acute myocardial infarction: systematic overview of individual data from 100,000 patients in randomized trials. Circulation 1998; 97: 2202.Google Scholar
ISIS-4 (Fourth International Study of Infarct Survival) Collaborative Group. ISIS-4: A randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58 050 patients with suspected acute myocardial infarction. Lancet 1995; 345: 669.Google Scholar
Lewis, EJ, Hunsicker, LG, Bain, RP, et al. The effect of angiotensin-converting-enzyme inhibition on diabetic nephropathy. N Engl J Med 1993; 329: 1456.Google Scholar
Luiz, W, Wiemer, G, Gohlke, P, et al. Contributions of kinins to the cardiovascular actions of angiotensin-converting enzyme inhibitors. Pharmacol Rev 1995; 47: 25.Google Scholar
Palmer, B. Managing hyperkalemia caused by inhibitors of the renin-angiotensin-aldosterone system. New Engl J Med 2004; 351: 585.Google Scholar
Pfeffer, MA, Lamas, GA, Vaughan, DE, et al. Effect of captopril on progressive ventricular dilatation after anterior myocardial infarction. N Engl J Med 1988; 319: 80.Google Scholar
Pitt, B, Segal, R, Martinez, FA, et al. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet 1997; 349: 747.Google Scholar
Quinn, SJ, Williams, GH. Regulation of aldosterone secretion. Ann Rev Physiol 1988; 50: 409.Google Scholar
Sharpe, N, Smith, H, Murphy, J, et al. Early prevention of left ventricular dysfunction after myocardial infarction with angiotensin-converting-enzyme inhibition. Lancet 1991; 337: 872.Google Scholar
Vaughn, DE, Pfeffer, MA. Angiotensin converting enzyme inhibitors and cardiovascular remodelling. Cardiovasc Res 1994; 28: 159.Google Scholar

Bibliography

Brown, M, Bradbury, LA. New approaches in ankylosing spondylitis. Med J Aust 2017; 206: 192.Google Scholar
Callin, A, Ellswood, J, Riggs, S, et al. Ankylosing spondylitis – an analytical review of 1500 patients: the changing pattern of disease. J Rheumatol 1988; 15: 1234.Google Scholar
Davies, D. Ankylosing spondylitis and lung fibrosis. Q J Med 1972; 41: 395.Google Scholar
Kapasi, K, Chui, B, Inman, RD. HLA-B27/microbial mimicry: an in vivo analysis. Immunology 1992; 77: 456.Google Scholar
Khan, MA. Update on spondyloarthropathies. Ann Intern Med 2002; 136: 896.Google Scholar
McEwen, C, DiTata, D, Lingg, C, et al. Ankylosing spondylitis and spondylitis accompanying ulcerative colitis, regional enteritis, psoriasis and Reiter’s disease. Arthritis Rheum 1971; 14: 291.Google Scholar
Robinson, PC, Benham, H. Advances in classification, basic mechanisms and clinical science in ankylosing spondylitis and axial spondyloarthritis. Intern Med J 2015; 45: 127.Google Scholar
Schachna, L. Dispelling the myths about ankylosing spondylitis. Intern Med J 2004; 34: 591.Google Scholar
Sheehan, NJ. The ramifications of HLA-B27. J R Soc Med 2004; 97: 10.Google Scholar
van der Linden, S, van der Heijde, D. Ankylosing spondylitis: clinical features. Rheum Dis Clin North Am 1998; 24: 663.Google Scholar

Bibliography

Gardenghi, GG, Boni, E, Todisco, P, et al. Respiratory function in patients with stable anorexia nervosa. Chest 2009; 136: 1356.Google Scholar
Gilchrist, PN, Ben-Tovim, DI, Hay, PJ, et al. Eating disorders revisited. 1: anorexia nervosa. Med J Aust 1998; 169: 438.Google Scholar
Hay, P. Current approach to eating disorders: a clinical update. Intern Med J 2020; 50: 24.Google Scholar
Herzog, DB, Greenwood, DN, Dorer, DJ, et al. Mortality in eating disorders. Int J Eat Disord 2000; 28: 20.Google Scholar
Hilbert, A, Hoeck, HW, Schmidt, R. Evidence-based clinical guidelines for eating disorders: international comparison. Curr Opin Psychiatry 2017; 30: 423.Google Scholar
Powers, PS, Santana, C. Available pharmacologic treatment for anorexia nervosa. Expert Opin Pharmacother 2004; 5: 2287.Google Scholar
Striegel-Moore, RH, Leslie, D, Petrill, SA, et al. One-year use and cost of inpatient and outpatient services among female and male patients with an eating disorder. Int J Eat Disord 2000; 27: 381.Google Scholar
Strober, M, Freeman, R, Lampert, C, et al. Controlled family study of anorexia nervosa and bulimia nervosa: evidence of shared liability and transmission of partial syndromes. Am J Psychiatry 2000; 157: 393.Google Scholar

Bibliography

Dixon, TC, Meselson, M, Guillemin, J, et al. Anthrax. New Engl J Med 1999; 341: 815.Google Scholar
Guarner, J, Jernigan, JA, Sheih, W, et al. Pathology and pathogenesis of bioterrorism-related inhalational anthrax. Am J Pathol 2003; 163: 701.Google Scholar
Hicks, CW, Sweeney, DA, Cui, X, et al. An overview of anthrax infection including the recently identified form of disease in injection drug users. Intens Care Med 2012; 38: 1092.Google Scholar
Inglesby, TV, O’Toole, T, Henderson, DA, et al. Anthrax as a biological weapon, 2002: updated recommendations for management. JAMA 2002; 287: 2236.Google Scholar
Keim, PS, Walker, DH, Zilinskas, RA. Time to worry about anthrax again. Sci Am 2017; 316: 61.Google Scholar
LaForce, FM. Anthrax. Clin Infect Dis 1994; 19: 1009.Google Scholar
Penn, CC, Klotz, SA. Anthrax pneumonia. Semin Respir Infect 1997; 12: 28.Google Scholar
Pile, JC, Malone, JD, Eitzen, EM, et al. Anthrax as a potential biological warfare agent. Arch Intern Med 1998; 158: 429.Google Scholar
Shafazand, S, Doyle, R, Ruoss, S, et al. Inhalational anthrax: epidemiology, diagnosis, and management. Chest 1999; 116: 1369.Google Scholar
Swartz, MN. Recognition and management of anthrax – an update. N Engl J Med 2001; 345: 1621.Google Scholar
Whitby, M, Ruff, TA, Street, AC, et al. Biological agents as weapons 2: anthrax and plague. Med J Aust 2002; 176: 605.Google Scholar

Bibliography

Eddleston, M, Szinicz, L, Eyer, P, et al. Oximes in acute organophosphorus pesticide poisoning: a systematic review of clinical trials. Quart J Med 2002; 95: 275.Google Scholar
Goldfrank, L, Flomenbaum, N, Levin, N, et al. Anticholinergic poisoning. J Toxicol Clin Toxicol 1982; 19: 17.Google Scholar

Bibliography

Cladwell, JE. Reversal of residual neuromuscular block with neostigmine at one to four hours after a single intubating dose of vecuronium. Anesth Analg 1995; 80: 1168.Google Scholar
Davis, KL, Powchik, P. Tacrine. Lancet 1995; 345: 625.Google Scholar
Mayeux, R, Sano, M. Drug therapy: treatment of Alzheimer’s disease. N Engl J Med 1999; 341: 1670.Google Scholar
Peter, JV, Cherian, AM. Organic insecticides. Anaesth Intens Care 2000; 28: 11.Google Scholar

Bibliography

Allingstrup, M, Wetterslev, J, Ravn, FB, et al. Antithrombin III for critically ill patients: a systematic review with meta-analysis and trial sequential analysis. Intens Care Med 2016; 42: 505.Google Scholar
Fredenburgh, JC, Weitz, JI. New anticoagulants: moving beyond the direct oral anticoagulants. J Thromb Haemost 2021; 19: 20.Google Scholar
Frontera, JA, Lewin, JL, Rabinstein, AA, et al. Guideline for reversal of antithrombotics in intracranial hemorrhage: Executive summary. A statement for health care professionals from the Neurocritical Care Society and the Society of Critical Care Medicine. Crit Care Med 2016; 44: 2251.Google Scholar
Guyatt, G, Akl, EA, Crowther, M, et al., eds. Antithrombotic therapy and prevention of thrombosis, 9th ed: ACCP evidence-based clinical practice guidelines. Chest 2012; 141: no. 2 (suppl.).Google Scholar
Hirsh, J, Bauer, KA, Donati, MB, et al. Parenteral anticoagulants. Chest 2008; 133 (suppl.): 141S.Google Scholar
Marder, VJ, Aird, WC, Bennett, JS, et al., eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. 6th edition. Philadelphia: Lippincott Williams & Wilkins. 2012.Google Scholar
McKenzie, J-L, Douglas, G, Bazargan, A. Perioperative management of anticoagulation in elective surgery. ANZ J Surg 2013; 83: 814.Google Scholar
Oakley, CM. Anticoagulants in pregnancy. Br Heart J 1995; 74: 107.Google Scholar
Rali, P, Gangemi, A, Moores, A, et al. Direct-acting oral anticoagulants in critically ill patients. Chest 2019; 156: 604.Google Scholar
Schaden, E, Kozek-Langenecker, SA. Direct thrombin inhibitors: pharmacology and application in intensive care medicine. Intens Care Med 2010; 36: 1127.Google Scholar
Schulman, S, Beyth, RJ, Kearon, C, et al. Hemorrhagic complications of anticoagulant and thrombolytic treatment. Chest 2008; 133 (suppl.): S257.Google Scholar
Tran, H, Joseph, J, Young, L, et al. New oral anticoagulants: a practical guide on prescription, laboratory testing and peri-procedural/bleeding management. Intern Med J 2014; 44: 525.Google Scholar
Weitz, JI, Hirsh, J, Samama, MM. New antithrombotic drugs. Chest 2008; 133 (suppl.): 234S.Google Scholar
Willcox, A, Ho, L, Jones, D. Implications of direct oral anticoagulation and antiplatelet therapy in intensive care. Crit Care Resusc 2020; 22: 181.Google Scholar
Zarychanski, R, Abou-Setta, AM, Kanji, S, et al. The efficacy and safety of heparin in patients with sepsis: a systematic review and metaanalysis. Crit Care Med 2015; 43: 511.Google Scholar

Bibliography

Arnout, J, Vermylen, J. Current status and implications of autoimmune antiphospholipid antibodies in relation to thrombotic disease. J Thromb Haemost 2003; 1: 931.Google Scholar
Asherson, RA, Cervera, R, Piette, J-C, et al. Catastrophic antiphospholipid syndrome: clinical and laboratory features of 50 patients. Medicine 1998; 77: 195.Google Scholar
Asherson, RA, Cervera, R, Piette, J-C, et al., eds. The Antiphospholipid Syndrome II: Autoimmune Thrombosis. Amsterdam: Elsevier. 2002.Google Scholar
Bick, RL. Antiphospholipid thrombosis syndromes. Clin Appl Thromb Hemost 2001; 7: 241.Google Scholar
Brey, RL. New treatment options for the antiphospholipid antibody syndrome? More pleiotropic effects of the statin drugs. J Thromb Haemost 2004; 2: 1556.Google Scholar
Brighton, TA, Chesterman, CN. The clinical significance of antiphospholipid antibodies in patients without autoimmune disease. Aust NZ J Med 2000; 30: 693.Google Scholar
Briley, DP, Coull, BM, Goodnight, SH. Neurological disease associated with antiphospholipid antibodies. Ann Neurol 1989; 25: 221.Google Scholar
Cohen, H, Efthymiou, M, Devreese, KMJ. Monitoring of anticoagulation in thrombotic antiphospholipid syndrome. J Thromb Haemost 2021; 19: 892.Google Scholar
Cowchock, FS, Reece, EA, Balaban, D, et al. Repeated fetal losses associated with antiphospholipid antibodies: a collaborative randomised trial comparing prednisolone with low dose heparin treatment. Am J Obstet Gynecol 1992; 166: 1318.Google Scholar
de Groot, PG, Derksen, RHWM. Specificity and clinical relevance of lupus anticoagulant. Vessels 1995; 1: 22.Google Scholar
de Groot, PG, Meijers, JCM. β2-Glycoprotein 1: evolution, structure and function. J Thromb Haemost 2011; 9: 1275.Google Scholar
Galli, M. The antiphospholipid triangle. J Thromb Haemost 2009; 8: 234.Google Scholar
Galve, E, Ordi, J, Barquinero, J, et al. Valvular heart disease in the primary antiphospholipid syndrome. Ann Intern Med 1992; 116: 293.Google Scholar
Giannakopoulos, B, Krilis, SA. The pathogenesis of the antiphospholipid syndrome. N Engl J Med 2013; 368: 1033.Google Scholar
Ginsberg, JS, Brill-Edwards, P, Johnston, M, et al. Relationship of antiphospholipid antibodies to pregnancy loss in patients with systemic lupus erythematosus. Blood 1992; 80: 975.Google Scholar
Hoi, AY, Ross, L, Day, J, et al. Immunotherapeutic strategies in antiphospholipid syndrome. Intern Med J 2017; 47: 250.Google Scholar
Hughes, GR. The antiphospholipid syndrome: ten years on. Lancet 1993; 342: 341.Google Scholar
Khamashta, MA, Cuadrado, MJ, Mujic, F, et al. The management of thrombosis in the antiphospholipid-antibody syndrome. N Engl J Med 1995; 332: 993.Google Scholar
Laskin, CA, Bombardier, C, Hannah, ME. Prednisolone and aspirin in women with autoantibodies and unexplained recurrent fetal loss. N Engl J Med 1997; 337: 148.Google Scholar
Levine, JS, Branch, W, Rauch, J. The antiphospholipid syndrome. N Engl J Med 2002; 346: 752.Google Scholar
Mezhov, V, Segan, JD, Tran, H, et al. Antiphospholipid syndrome: a clinical review. Med J Aust 2019; 211: 184.Google Scholar
Miyakis, S, Lockshin, MD, Atsumi, T, et al. International consensus statement on an update of the classification criteria for definite antiphospholipid syndrome (APS). J Thromb Haemost 2006; 4: 295.Google Scholar
Rand, JH, Wu, X-X, Andree, HAM, et al. Pregnancy loss in the antiphospholipid-antibody-syndrome – a possible thrombogenic mechanism. N Engl J Med 1997; 337: 154.Google Scholar
Roubey, RAS. Autoantibodies to phospholipid-binding plasma proteins: a new view of lupus anticoagulants and other ‘antiphospholipid’ autoantibodies. Blood 1994; 84: 2864.Google Scholar
Ryan, P, Street, A. Thrombosis and antiphospholipid antibodies – an evolving story. Aust NZ J Med 1993; 23: 148.Google Scholar
Wenzel, C, Stoiser, B, Locker, GJ. Frequent development of lupus anticoagulants in critically ill patients treated under intensive care conditions. Crit Care Med 2002; 30: 763.Google Scholar

Bibliography

Adgey, AA. An overview of the results of clinical trials with glycoprotein IIb/IIIa inhibitors. Am Heart J 1998; 135: S43.Google Scholar
Capodanno, D, Ferreiro, JL, Angiolillo, DJ. Antiplatelet therapy: new pharmacological agents and changing paradigms. J Thromb Haemost 2013; 11 (suppl. 1): 316.Google Scholar
Cattaneo, M. Response variability to clopidogrel: is tailored treatment, based on laboratory testing, the right solution? J Thromb Haemost 2012; 10: 327.Google Scholar
Chew, DP, Bhatt, DL. Optimizing glycoprotein IIb/IIIa inhibition: lessons from recent randomized controlled trials. Intern Med J 2002; 32: 338.Google Scholar
Coller, BS. Anti-GPIIb/IIIa drugs: current strategies and future directions. Thromb Haemost 2001; 86: 427.Google Scholar
Coller, BS, Anderson, KM, Weisman, HE. The anti-GPIIb/IIIa agents: fundamental and clinical aspects. Haemostasis 1996; 26: 285.Google Scholar
Davi, G, Patrono, C. Platelet activation and atherothrombosis. N Engl J Med 2007; 357: 2482.Google Scholar
Gachet, C. Antiplatelet drugs: which targets for which treatments? J Thromb Haemost 2015; 13: S313.Google Scholar
Guyatt, G, Akl, EA, Crowther, M, et al., eds. Antithrombotic therapy and prevention of thrombosis, 9th ed: ACCP evidence-based clinical practice guidelines. Chest 2012; 141: no. 2 (suppl.).Google Scholar
Huxtable, LM, Tafreshi, MJ, Rakkar, AN. Frequency and management of thrombocytopenia with the glycoprotein Iib/IIIa receptor antagonists. Am J Cardiol 2006; 97: 426.Google Scholar
Marder, VJ, Aird, WC, Bennett, JS, et al., eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. 6th edition. Philadelphia: Lippincott Williams & Wilkins. 2012.Google Scholar
McKenzie, J-L, Douglas, G, Bazargan, A. Perioperative management of anticoagulation in elective surgery. ANZ J Surg 2013; 83: 814.Google Scholar
Patrono, C. Aspirin resistance: definition, mechanisms and clinical read-outs. J Thromb Haemost 2003; 1: 1710.Google Scholar
Patrono, C, Baigent, C, Hirsh, J, et al. Antiplatelet drugs. Chest 2008; 133 (suppl.): 199S.Google Scholar
The EPIC investigation. Use of a monoclonal antibody directed against the platelet glycoprotein IIb/IIIa receptor in high-risk coronary angioplasty. N Engl J Med 1994; 330: 956.Google Scholar
Weitz, JI, Hirsh, J, Samama, MM. New antithrombotic drugs. Chest 2008; 133 (suppl.): 234S.Google Scholar
Willcox, A, Ho, L, Jones, D. Implications of direct oral anticoagulation and antiplatelet therapy in intensive care. Crit Care Resusc 2020; 22: 181.Google Scholar

Bibliography

Eisele, B, Lamy, M, Thijs, LG, et al. Antithrombin III in patients with severe sepsis. Intens Care Med 1998; 24: 663.Google Scholar
Levi, M, ten Cate, H. Disseminated intravascular coagulation. N Engl J Med 1999; 341: 586.Google Scholar
Levy, JH, Weisinger, A, Ziomek, CA, et al. Recombinant antithrombin: production and role in cardiovascular disorder. Semin Thromb Hemost 2001; 27: 405.Google Scholar
Rezale, AR, Giri, H. Antithrombin: an anticoagulant, anti-inflammatory and antibacterial serpin. J Thromb Haemost 2020; 18: 528.Google Scholar
Vinazzer, H. Antithrombin concentrates: clinical indications. Clin Appl Thromb Hemost 1998; 4: 7.Google Scholar
Wheeler, AP, Bernard, GR. Treating patients with severe sepsis. N Engl J Med 1999; 340: 207.Google Scholar

Bibliography

Arend, WP, Michel, BA, Bloch, DA, et al. The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis. Arthritis Rheum 1990; 33: 1129.Google Scholar
Booher, AM, Eagle, KA. Diseases of the aorta. In: Scientific American Medicine. Cardiovascular Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Calhoun, DA, Oparil, S. Treatment of hypertensive crisis. N Engl J Med 1990; 323: 1177.Google Scholar
Harrison, DA, McLaughlin, PR, Lazzam, C, et al. Endovascular stents in the management of coarctation of the aorta in the adolescent and adult: one year follow up. Heart 2001; 85: 561.Google Scholar
Hijazi, ZM, Geggel, R. Balloon angioplasty for postoperative recurrent coarctation of the aorta. J Interv Cardiol 1995; 8: 509.Google Scholar
Kerr, GS, Hallahan, CW, Giordano, J, et al. Takayasu arteritis. Ann Intern Med 1994; 120: 919.Google Scholar
Rothman, A. Coarctation of the aorta: an update. Curr Probl Pediatr 1998; 28: 33.Google Scholar

Bibliography

Armstrong, WE, Bach, DS, Carey, LM, et al. Clinical and echocardiographic findings in patients with suspected acute aortic dissection. Am Heart J 1998; 136: 1051.Google Scholar
Booher, AM, Eagle, KA. Diseases of the aorta. In: Scientific American Medicine. Cardiovascular Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Crawford, ES. The diagnosis and management of aortic dissection. JAMA 1990; 264: 2537.Google Scholar
DeSanctis, RW, Doroghazi, RM, Austen, WG, et al. Aortic dissection. N Engl J Med 1987; 317: 1060.Google Scholar
Hagan, PG, Nienaber, CA, Isselbacher, EM, et al. The international registry of aortic dissection (IRAD): new insights into an old disease. JAMA 2000; 283: 897.Google Scholar
Hayter, RG, Rhea, JT, Small, A, et al. Suspected aortic dissection and other aortic disorders: multidetector row CT in 373 cases in the emergency setting. Radiology 2006; 238: 841.Google Scholar
Khan, IA, Nair, CK. Clinical, diagnostic and management perspectives of aortic dissection. Chest 2002; 122: 311.Google Scholar
Mehta, RH, Suzuki, T, Hagan, PG, et al. Predicting death in patients with acute type A aortic dissection. Circulation 2002; 105: 200.Google Scholar
Treasure, T, Raphael, MJ. Investigation of suspected dissection of the thoracic aorta. Lancet 1991; 338: 490.Google Scholar
Trimarchi, S, Nienaber, CA, Rampoldi, V, et al. Contemporary results of surgery in acute type A aortic dissection: the international registry of aortic dissection experience. J Thorac Cardiovasc Surg 2005; 129: 112.Google Scholar

Bibliography

Booher, AM, Eagle, KA. Diseases of the aorta. In: Scientific American Medicine. Cardiovascular Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar

Bibliography

Lemire, RJ. Neural tube defects. JAMA 1988; 259: 558.Google Scholar
Milunsky, A, Ulcickas, M, Rothman, K, et al. Maternal heat exposure and neural tube defects. JAMA 1992; 268: 882.Google Scholar
Paul, KS, Lye, RH, Strang, FA, et al. Arnold-Chiari malformation. J Neurosurg 1983; 58: 183.Google Scholar
Wald, NJ, Bower, C. Folic acid, pernicious anaemia, and prevention of neural tube defects. Lancet 1994; 343: 307.Google Scholar

Bibliography

Duenas-Laita, A, Perez-Miranda, M, Gozalez-Lopez, M, et al. Acute arsenic poisoning. Lancet 2005; 365: 1982.Google Scholar
Kyle, RA, Pease, GL. Hematologic aspects of arsenic intoxication. N Engl J Med 1965; 273: 18.Google Scholar

Bibliography

Begbie, ME, Wallace, GM, Shovlin, CL. Hereditary hemorrhagic telangiectasia (Osler–Weber–Rendu syndrome): a view from the 21st century. Postgrad Med J 2003; 79: 18.Google Scholar
Bose, P, Holter, JL, Selby, GB. Bevacizumab in hereditary hemorrhagic telangiectasia. N Engl J Med 2009; 360: 2143.Google Scholar
Brier, G. Propanolol and angiogenesis inhibition in hereditary haemorrhagic telangiectasia. Thromb Haemost 2012; 108: 1.Google Scholar
Cartin-Ceba, R, Swanson, KL, Krowka, MJ. Pulmonary arteriovenous malformations. Chest 2013; 144: 1033.Google Scholar
Dines, DE, Arms, RA, Bernatz, PE, et al. Pulmonary arteriovenous fistulas. Mayo Clin Proc 1974; 48: 460.Google Scholar
Dupuis-Girod, S, Bailly, S, Plauchu, H. Hereditary hemorrhagic telangiectasia: from molecular biology to patient care. J Thromb Haemost 2010; 8: 1447.Google Scholar
Gossage, JR, Kanj, G. Pulmonary arteriovenous malformations. Am J Respir Crit Care Med 1998; 158: 643.Google Scholar
Gupta, S, Faughnan, ME, Bayoumi, AM. Embolization for pulmonary arteriovenous malformation in hereditary hemorrhagic telangiectasia. Chest 2009; 136: 849.Google Scholar
Guttmacher, AE, Marchuk, DA, White, RI. Hereditary hemorrhagic telangiectasia. N Engl J Med 1995; 333: 918.Google Scholar
Lacombe, P, Lagrange, C, Beauchet, A, et al. Diffuse pulmonary arteriovenous malformations in hereditary hemorrhagic telangiectasia: long-term results of embolization according to the extent of lung involvement. Chest 2009; 135: 1031.Google Scholar
Ondra, SL, Troupp, H, George, ED, et al. The natural history of symptomatic arteriovenous malformations of the brain. J Neurosurg 1990; 73: 387.Google Scholar
Sabba, C. A rare and misdiagnosed bleeding disorder: hereditary hemorrhagic telangiectasia. J Thromb Haemost 2005; 3: 2201.Google Scholar
Salaria, M, Taylor, J, Bogwitz, M, et al. Hereditary haemorrhagic telangiectasia, an Australian cohort: clinical and investigative features. Intern Med J 2014; 44: 639.Google Scholar
Shovlin, CL. Hereditary haemorrhagic telangiectasia: pathophysiology, diagnosis and treatment. Blood Rev 2010; 24: 203.Google Scholar
Shovlin, CL, Condliffe, R, Donaldson, JW, et al. British Thoracic Society clinical statement on pulmonary arteriovenous malformations. Thorax 2017; 72: 1154.Google Scholar
Terry, PB, Barth, KH, Kaufman, SL, et al. Balloon embolization for the treatment of pulmonary arteriovenous fistulas. N Engl J Med 1980; 302: 1189.Google Scholar
White, RJ, Lynch-Nyhan, A, Terry, P, et al. Pulmonary arteriovenous malformation: techniques and long-term outcome of embolotherapy. Radiology 1988; 169: 663.Google Scholar

Bibliography

Bahlas, S, Ramos-Remus, C, Davis, P. Clinical outcome of 149 patients with polymyalgia rheumatica and giant cell arteritis. J Rheumatol 1998; 25: 99.Google Scholar
Booher, AM, Eagle, KA. Diseases of the aorta. In: Scientific American Medicine. Cardiovascular Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Calabrese, L, Dune, G, Lie, J. Vasculitis in the central nervous system. Arthritis Rheum 1997; 40: 1189.Google Scholar
Denny, KJ, Kumar, A, Timsit, J-F, et al. Extra-cardiac endovascular infections in the critically ill. Intens Care Med 2020; 46: 173.Google Scholar
Deipolyi, AR, Czaplicki, CD, Oklu, R. Inflammatory and infectious aortic diseases. Cardiovasc Diagn Ther 2018; 8: 561.Google Scholar
Hamilton, CR, Shelley, WM, Tumulty, PA. Giant cell arteritis: including temporal arteritis and polymyalgia rheumatica. Medicine 1971; 50: 1.Google Scholar
Hunder, GG, Bloch, DA, Michel, BA, et al. The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum 1990; 33: 1122.Google Scholar
Moore, PM. Diagnosis and management of isolated angiitis of the central nervous system. Neurology 1989; 39: 167.Google Scholar
Ninan, JV, Lester, S, Hill, CL. Giant cell arteritis: beyond temporal artery biopsy and steroids. Intern Med J 2017; 47: 1228.Google Scholar
Oz, MC, Brener, BJ, Buda, JA, et al. A ten-year experience with bacterial aortitis. J Vasc Surg 1989; 10: 439.Google Scholar
Zilko, PJ. Polymyalgia rheumatica and giant cell arteritis. Med J Aust 1996; 165: 438.Google Scholar

Bibliography

Ashbaugh, C. Septic arthritis, septic bursitis, and osteomyelitis. In: Scientific American Medicine. Infectious Diseases or Rheumatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Editorial. Reactive arthritis. BMJ 1980; 281: 311.Google Scholar
Gibofsky, A, Zabriskie, JB. Rheumatic fever and poststreptococcal reactive arthritis. Curr Opin Rheumatol 1995; 7: 299.Google Scholar
Gupta, MN, Sturrock, RD, Field, M. Prospective comparative study of patients with culture proven and high suspicion of adult onset septic arthritis. Ann Rheum Dis 2003; 62: 327.Google Scholar
Hamerman, D. The biology of osteoarthritis. N Engl J Med 1989; 320: 1322.Google Scholar
Lidgren, L, Knutson, K, Stefansdottir, A. Infection and arthritis: infection of prosthetic joints. Best Practice Res Clin Rheumatol 2003; 17: 209.Google Scholar
Smith, JW. Infectious arthritis. Infect Dis Clin North Am 1990; 4: 523.Google Scholar
Weston, VC, Jones, AC, Bradbury, N, et al. Clinical features and outcome of septic arthritis in a single UK health district 1982–1991. Ann Rheum Dis 1999; 58: 214.Google Scholar
Winblad, S. Arthritis associated with Yersinia enterocolitica infections. Scand J Infect Dis 1975; 7: 191.Google Scholar

Bibliography

Banks, DE, Shi, R, McLarty, J, et al. American College of Chest Physicians consensus statement on the respiratory health effects of asbestos. Chest 2009; 135: 1619.Google Scholar
Berry, G. Environmental mesothelioma incidence, time since exposure to asbestos and level of exposure. Environmetrics 1995; 6: 221.Google Scholar
Bowman, R, Relan, V, Hughes, B. Medical management of mesothelioma. Aust Prescriber 2011; 34: 144.Google Scholar
Cagle, PT, Allen, TC. Pathology of the pleura: what the pulmonologists need to know. Respirology 2011; 16: 430.Google Scholar
Creaney, J, Robinson, BWS. Malignant mesothelioma biomarkers: from discovery to use in clinical practice for diagnosis, monitoring, screening, and treatment. Chest 2017; 152; 143.Google Scholar
Cugell, DW, Kamp, DW. Asbestos and the pleura. Chest 2004; 125: 1103.Google Scholar
Jamrozik, E, de Klerk, N, Musk, AW. Asbestos-related disease. Intern Med J 2011; 41: 372.Google Scholar
Kao, SC-H, Reid, G, Lee, K, et al. Malignant mesothelioma. Intern Med J 2010; 40: 742.Google Scholar
Mossman, BT, Bignon, J, Corn, M, et al. Asbestos: scientific developments and implications for public policy. Science 1990; 247: 294.Google Scholar
Musk, AW, de Klerk, N, Brims, FJ. Mesothelioma in Australia: a review. Med J Aust 2017; 207: 449.Google Scholar
Ohar, J, Sterling, DA, Bleecker, E, et al. Changing patterns in asbestos-induced lung disease. Chest 2004; 125: 744.Google Scholar
Olsen, NJ, Franklin, PJ, Reid, A, et al. Increasing incidence of malignant mesothelioma after exposure to asbestos during home maintenance and renovation. Med J Aust 2011; 195: 271.Google Scholar
Peto, J, Decarli, A, La Vecchia, C, et al. The European mesothelioma epidemic. Br J Cancer 1999; 79: 566.Google Scholar
Park, EK, Sandrini, A, Yates, DH, et al. Soluble mesothelin-related protein in an asbestos-exposed population: the dust diseases board cohort study. Am J Respir Crit Care Med 2008; 178: 832.Google Scholar
Pistolesi, M, Rusthoven, J. Malignant pleural mesothelioma: update, current management, and newer treatment strategies. Chest 2004; 126: 1318.Google Scholar
Ray, M, Kindler, HL. Malignant pleural mesothelioma: an update on biomarkers and treatment. Chest 2009; 136: 888.Google Scholar
Robinson, BW, Creaney, J, Lake, R, et al. Soluble mesothelin-related protein – a blood test for mesothelioma. Lung Cancer 2005; 49 (suppl. 1): S109.Google Scholar
Robinson, BW, Musk, AW, Lake, RA. Malignant mesothelioma. Lancet 2005; 366: 397.Google Scholar
Singhal, S, Kaiser, LR. Malignant mesothelioma: options for management. Surg Clin North Am 2002; 82: 797.Google Scholar
Sterman, DH, Kaiser, LR, Albelda, SM. Advances in the treatment of malignant pleural mesothelioma. Chest 1999; 116: 504.Google Scholar
Teirstein, AS. Diagnosing malignant pleural mesothelioma. Chest 1998; 114: 666.Google Scholar
van Ruth, S, Baas, P, Zoetmulder, FA. Surgical treatment of malignant pleural mesothelioma: a review. Chest 2003; 123: 551.Google Scholar
Zellos, LS, Sugarbaker, DJ. Multimodality treatment of diffuse malignant pleural mesothelioma. Semin Oncol 2002; 29: 41.Google Scholar

Bibliography

Agarwal, R. Allergic bronchopulmonary aspergillosis. Chest 2009; 135: 805.Google Scholar
Chatzimichalis, A, Massard, G, Kessler, R, et al. Bronchopulmonary aspergilloma: a reappraisal. Ann Thorac Surg 1998; 65: 927.Google Scholar
Douglas, AP, Smibert, OC, Bajel, A, et al. Consensus guidelines for the diagnosis and management of invasive aspergillosis, 2021. Intern Med J 2021; 51: 143.Google Scholar
Janssen, JJWM, Strack van Schijndel, RJM, van der Poest Clement, EH, et al. Outcome of ICU treatment in invasive aspergillosis. Intens Care Med 1996; 22: 1315.Google Scholar
Koulenti, D, Vogelaers, D, Blot, S. What’s new in invasive pulmonary aspergillosis in the critically ill. Intens Care Med 2014; 40: 723.Google Scholar
Levitz, SM. Aspergillosis. Infect Dis Clin North Am 1989; 3: 1.Google Scholar
Oakley, EJ, Petrou, M, Goldstraw, P. Indications and outcome of surgery for pulmonary aspergilloma. Thorax 1997; 52: 813.Google Scholar
Patterson, KC, Strek, ME. Diagnosis and treatment of pulmonary aspergillosis syndromes. Chest 2014; 146: 1358.Google Scholar
Ricketti, AJ, Greenberger, PA, Mintzer, RA, et al. Allergic bronchopulmonary aspergillosis. Arch Intern Med 1983; 143: 1553.Google Scholar
Schuyler, MR. Allergic bronchopulmonary aspergillosis. Clin Chest Med 1983; 4: 15.Google Scholar
Soubani, AO, Chandrasekar, PH. The clinical spectrum of pulmonary aspergillosis. Chest 2002; 121: 1988.Google Scholar
Stevens, DA, Schwartz, HJ, Lee, JY, et al. A randomized trial of itraconazole in allergic bronchopulmonary aspergillosis. N Engl J Med 2000; 342: 756.Google Scholar

Bibliography

Baron, SE, Haramati, LB, Rivera, VT. Radiological and clinical findings in acute and chronic exogenous lipoid pneumonia. J Thorac Imaging 2003; 18: 217.Google Scholar
DiBardino, DM, Wunderink, RG. Aspiration pneumonia: a review of modern trends. J Crit Care 2015; 30: 40.Google Scholar
Hu, X, Lee, JS, Pianosi, PT, et al. Aspiration-related pulmonary syndromes. Chest 2015; 147: 815.Google Scholar
Lee, A, Festic, E, Park, PK, et al. Characteristics and outcomes of patients hospitalized following pulmonary aspiration. Chest 2014; 146: 899.Google Scholar
Marik, PE. Aspiration pneumonitis and aspiration pneumonia. N Engl J Med 2001; 344: 665.Google Scholar
Rimawi, RH. Distinguishing pneumonia from pneumonitis to safely discontinue antibiotics. Crit Care Med 2017; 45: 1408.Google Scholar
Samhouri, BF, Tandon, YK, Hartman, TE, et al. Presenting clinicoradiologic features, causes, and clinical course of exogenous lipoid pneumonia in adults. Chest 2021; 160: 624.Google Scholar
Wright, BA, Jeffrey, PH. Lipoid pneumonia. Semin Respir Infect 1990; 5: 314.Google Scholar

Bibliography

Casey, JD, Semler, MW, Bastarache, JA. Aspirin for sepsis prevention: an ounce of prevention? Crit Care Med 2017; 45: 1959.Google Scholar
Chen, W, Janz, DR, Bastarache, JA, et al. Prehospital aspirin use is associated with reduced risk of acute respiratory distress syndrome in critically ill patients: a propensity-adjusted analysis. Crit Care Med 2015; 43: 801.Google Scholar
Eisen, DP. Manifold beneficial effects of acetyl salicylic acid and nonsteroidal anti-inflammatory drugs on sepsis. Intens Care Med 2012; 38: 1249.Google Scholar
Gabow, P, Anderson, RJ, Potts, DE, et al. Acid-base disturbances in the salicylate-intoxicated adult. Arch Intern Med 1978; 138: 1481.Google Scholar
Heffner, JE, Sahn, SA. Salicylate-induced pulmonary edema. Ann Intern Med 1981; 95: 405.Google Scholar
Heptinstall, S. How important is it to keep taking the aspirin? Thromb Haemost 2013; 110: 1298.Google Scholar
Hill, JB. Salicylate intoxication. N Engl J Med 1973; 288: 1110.Google Scholar
Leatherman, JW, Schmitz, PG. Fever, hyperdynamic shock, and multiple-system organ failure: a pseudo-sepsis syndrome associated with chronic salicylate intoxication. Chest 1991; 100: 1391.Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Namazy, JA, Simon, RA. Sensitivity to nonsteroidal anti-inflammatory drugs. Ann Allergy Asthma Immunol 2002; 89: 542.Google Scholar
Prescott, LF, Balali-Mood, M, Critchley, JA, et al. Diuresis or urinary alkalinisation for salicylate poisoning? BMJ 1982; 285: 1383.Google Scholar
Temple, AR. Acute and chronic effects of aspirin toxicity and their treatment. Arch Intern Med 1981; 141: 364.Google Scholar
Zimmerman, JL. Poisonings and overdoses in the intensive care unit: general and specific management issues. Crit Care Med 2003; 31: 2794.Google Scholar

Bibliography

Asthma Management Handbook. Melbourne: National Asthma Council Australia. 2006.Google Scholar
Barrett, GE, Koopman, CF, Coulthard, SW. Retropharyngeal abscess. Laryngoscope 1984; 94: 455.Google Scholar
Bush, A, Pavord, JD. The Lancet Asthma Commission: towards the abolition of asthma? Eur Med J 2018; 3: 10.Google Scholar
Clayton-Chubb, D. Hidden risk population for thunderstorm asthma. Med J Aust 2017; 206: 280.Google Scholar
Draikiwicz, S, Oppenheimer, J. Use of biological agents in asthma: pharmacoeconomic lessons learned from omalizumab. Chest 2017; 151: 249.Google Scholar
Editorial. Cardiac asthma. Lancet 1990; 335: 693.Google Scholar
Ernst, A, Rafeq, S, Boiselle, P, et al. Relapsing polychondritis and airway involvement. Chest 2009; 135: 1024.Google Scholar
Gibson, PG, McDonald, VM. Management of severe asthma: targeting the airways, comorbidities and risk factors. Intern Med J 2017; 47: 623.Google Scholar
Hew, M, Sutherland, M, Thien, F, et al. The Melbourne thunderstorm asthma event: can we avert another strike? Intern Med J 2017; 47: 485.Google Scholar
Kryger, M, Bode, F, Antic, R, et al. Diagnosis of obstruction of the upper and central airways. Am J Med 1976; 61: 85.Google Scholar
Lindstrom, SJ, Silver, JD, Sutherland, MF, et al. Thunderstorm asthma outbreak of November 2016: a natural disaster requiring planning. Med J Aust 2017; 207: 235.Google Scholar
Maciag, MC, Phipatanakul, W. Prevention of asthma: targets for intervention. Chest 2020; 158: 913.Google Scholar
Martin, RJ, Kraft, M, eds. Asthma in the new millennium. Chest 2002; 123 (suppl.): 339S.Google Scholar
Mayo-Smith, M, Hirsch, PJ, Wodzinski, SF, et al. Acute epiglottitis in adults. N Engl J Med 1986; 314: 1133.Google Scholar
McCaughan, BC, Martini, N, Bains, MS. Bronchial carcinoids. J Thorac Cardiovasc Surg 1985; 89: 8.Google Scholar
Murray, DM, Lawler, PG. All that wheezes is not asthma: paradoxical vocal cord movement presenting as severe acute asthma requiring ventilatory support. Anaesthesia 1998; 53: 1006.Google Scholar
Papi, A, Brightling, C, Pedersen, SE, et al. Asthma. Lancet 2018; 391: 783.Google Scholar
Pavord, JD, Beasley, R, Agusti, A, et al. After asthma: redefining airways disease. Lancet 2018; 391: 350.Google Scholar
Randall, KW, Spiering, BA. Inspiratory stridor in elite athletes. Chest 2003; 123: 468.Google Scholar
Reddel, HK. Common conditions that mimic asthma. Med J Aust 2022; 216: 337.Google Scholar
Shapiro, J, Eavey, RD, Baker, AS. Adult supraglottitis: a prospective analysis. JAMA 1988; 259: 563.Google Scholar
Schoettler, N, Strek, ME. Recent advances in severe asthma: from phenotypes to personalized medicine. Chest 2020; 157: 516.Google Scholar
Upham, J, Gibson, P, Silverstone, Z, eds. Severe asthma in Australia. Med J Aust 2018; 209: Suppl.Google Scholar
Wenzel, SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med 2012; 18: 716.Google Scholar

Bibliography

Cavallazzi, R, Nair, A, Vasu, T, et al. Natriuretic peptides in acute pulmonary embolism: a systematic review. Intens Care Med 2008; 34: 2147.Google Scholar
Davidson, NC, Naas, AA, Hanson, JK, et al. Comparison of atrial natriuretic peptide, B-type natriuretic peptide, and N-terminal proatrial natriuretic peptide as indicators of left ventricular dysfunction. Am J Cardiol 1996; 77: 828.Google Scholar
de Denus, S, Pharand, C, Williamson, DR. Brain natriuretic peptide in the management of heart failure: the versatile neurohormone. Chest 2004; 125: 652.Google Scholar
Diringer, M, Ladenson, PW, Stern, BJ, et al. Plasma atrial natriuretic factor and subarachnoid hemorrhage. Stroke 1988; 19: 1119.Google Scholar
Jason, P, Keang, LT, Hoe, LK. B-type natriuretic peptide: issues for the intensivist and pulmonologist. Crit Care Med 2005; 33: 2094.Google Scholar
Levin, ER, Gardner, DG, Samson, WK. Natriuretic peptides. N Engl J Med 1998; 339: 321.Google Scholar
Moores, LK. CHF or COPD: can BNP decide? Pulmonary Perspect 2004; 21: 1: 4.Google Scholar
Mueller, C, Scholer, A, Laule-Kilian, K, et al. Use of B-type natriuretic peptide in the evaluation and management of acute dyspnoea. N Engl J Med 2004; 350: 647.Google Scholar
Needleman, P, Greenwald, JE. Atriopeptin: a cardiac hormone intimately involved in fluid, electrolyte, and blood-pressure homeostasis. N Engl J Med 1986; 314: 828.Google Scholar
Phua, J, Jason, P, Lim, TK, et al. B-type natriuretic peptide: issues for the intensivist and pulmonologist. Crit Care Med 2005; 33: 2094.Google Scholar
Stein, BC, Levin, RI. Natriuretic peptides: physiology, therapeutic potential, and risk stratification in ischemic heart disease. Am Heart J 1998; 135: 914.Google Scholar
Sudoh, T, Kangawa, K, Minamino, N, et al. A new natriuretic peptide in porcine brain. Nature 1988; 332: 78.Google Scholar
Suttner, SW, Boldt, J. Natriuretic peptide system: physiology and clinical utility. Curr Opin Crit Care 2004; 10: 336.Google Scholar
Sward, K, Valsson, F, Odencrants, P, et al. Recombinant human atrial natriuretic peptide in ischaemic acute renal failure. Crit Care Med 2004; 32: 1310.Google Scholar
Wei, C-M, Heublein, DM, Perrella, MA, et al. Natriuretic peptide system in human heart failure. Circulation 1993; 88: 1004.Google Scholar
Yap, LB, Mukerjee, D, Timms, PM, et al. Natriuretic peptides, respiratory disease, and the right heart. Chest 2004; 126: 1330.Google Scholar

Bibliography

Abbas, AK, Lichtman, AHH, Pillai, S. Cellular and Molecular Immunology. 9th edition. Amsterdam: Elsevier. 2017.Google Scholar
Austen, KF, Burakoff, SJ, Rosen, FS, et al., eds. Therapeutic Immunology. 2nd edition. Cambridge: Blackwell. 2001.Google Scholar
Davies, PJ, Martin, SJ, Burton, DR, et al. Roitt’s Essential Immunology. 13th edition. Hoboken: Wiley 2018.Google Scholar
Dwyer, JM. Manipulating the immune system with immune globulin. N Engl J Med 1992; 326: 107.Google Scholar
Loriaux, DL. The polyendocrine deficiency syndromes. N Engl J Med 1985; 312: 1568.Google Scholar
Lundy, SK, Gizinski, A, Fox, DA. Introduction to clinical immunology: overview of immune response, autoimmune conditions, and immunosuppressive therapeutics for rheumatic diseases. In: Scientific American Medicine. Allergy & Immunology. Hamilton: Dekker Medicine. 2020.Google Scholar
Naparstek, Y, Plotz, PH. The role of autoantibodies in autoimmune disease. Annu Rev Immunol 1993; 11: 79.Google Scholar
Nossal, GJV. Immunologic tolerance: collaboration between antigen and lymphokines. Science 1989; 245: 147.Google Scholar
Reimann, PM, Mason, PD. Plasmapheresis: technique and complications. Intens Care Med 1990; 16: 3.Google Scholar
Shoenfeld, Y, Meroni, PI, Gershwin, M, eds. Autoantibodies. 3rd edition. Amsterdam: Elsevier. 2013.Google Scholar
Tan, EM. Autoantibodies in pathology and cell biology. Cell 1991; 67: 841.Google Scholar
Various. The body against itself. Sci Am 2021; 325: 22.Google Scholar
Yu, Z, Lennon, VA. Mechanism of intravenous immune globulin therapy in antibody-mediated autoimmune diseases. N Engl J Med 1999; 340: 227.Google Scholar

Bibliography

Naftchi, NE, Richardson, JS. Autonomic dysreflexia: pharmacological management of hypertensive crises in spinal cord injured patients. J Spinal Cord Med 1997; 20: 355.Google Scholar
Showkathali, R, Antionios, TFT. Autonomic dysreflexia: a medical emergency. J R Soc Med 2007; 100: 382.Google Scholar

Bibliography

Cooper, DJ, Bergman, J. Massive baclofen overdose. Crit Care Resusc 2000; 2: 195.Google Scholar
Cunningham, JA, Jelic, S. Baclofen withdrawal: a cause of prolonged fever in the intensive care unit. Anaesth Intens Care 2005; 33: 534.Google Scholar
Leo, RJ, Baer, D. Delirium associated with baclofen withdrawal: a review of common presentations and management strategies. Psychosomatics 2005; 46: 503.Google Scholar
Leung, NY, Whyte, IM, Isbister, GK. Baclofen overdose: defining the spectrum of severity. Emerg Med Australasia 2006; 18: 77.Google Scholar

Bibliography

Abolnik, I, Lossos, IS, Breuer, R. Spontaneous pneumomediastinum. Chest 1991; 100: 93.Google Scholar
Grotberg, JC, Hyzy, RC, De Cardenas, J, et al. Bronchopleural fistula in the mechanically ventilated patient: a concise review. Crit Care Med 2021; 49: 292.Google Scholar
Maunder, RJ, Pierson, DJ, Hudson, LD. Subcutaneous and mediastinal emphysema: pathophysiology, diagnosis, and management. Arch Intern Med 1984; 144: 1447.Google Scholar

Bibliography

Denburg, JA. Basophil and mast cell lineage in vitro and in vivo. Blood 1992; 79: 846.Google Scholar
Echtenacher, B, Mannel, DN, Hultner, L. Critical protective role of mast cells in a model of acute septic peritonitis. Nature 1996; 381: 75.Google Scholar

Bibliography

Allison, TG, Miller, TD, Squires, RW, et al. Cardiovascular responses to immersion in a hot tub in comparison with exercise in male subjects with coronary artery disease. Mayo Clin Proc 1993; 68: 19.Google Scholar
Castle, SP. Public health implications regarding the epidemiology and microbiology of public whirlpools. Infect Control 1985; 6: 418.Google Scholar
Kosatsky, T, Kleeman, J. Superficial and systemic illness related to a hot tub. Am J Med 1985; 79: 10.Google Scholar
Lemire, RJ. Neural tube defects. JAMA 1988; 259: 558.Google Scholar
Milunsky, A, Ulcickas, M, Rothman, K, et al. Maternal heat exposure and neural tube defects. JAMA 1992; 268: 882.Google Scholar
Ridge, BR, Budd, GM. How long is too long in a spa pool. N Engl J Med 1990; 323: 835.Google Scholar

Bibliography

International Study Group for Behcet’s Disease. Criteria for diagnosis of Behcet’s disease. Lancet 1990; 35: 1078.Google Scholar
James, DG. Behcet’s syndrome. N Engl J Med 1979; 301: 431.Google Scholar
Kaklamani, VG, Vaiopoulos, G, Kaklamanis, PG. Behcet’s disease. Semin Arthritis Rheum 1998; 27: 197.Google Scholar
Lee, S, Bang, D, Lee, E, et al. Behcet’s Disease. Berlin: Springer-Verlag. 2000.Google Scholar
Rosenbaum, M, Rosner, I, Portnoy, E. Remission of Behcet’s syndrome with TNFa blocking treatment. Ann Rheum Dis 2002; 61: 283.Google Scholar
Shimizu, T, Ehrlich, GE, Inaba, G, et al. Behcet’s disease (Behcet’s syndrome). Semin Arthritis Rheum 1979; 8: 223.Google Scholar
Uzun, O, Akpolat, T, Erkan, L. Pulmonary vasculitis in Behcet’s disease. Chest 2005; 127: 2243.Google Scholar
Yazici, H. Behcet’s syndrome: where do we stand? Am J Med 2002; 112: 75.Google Scholar

Bibliography

Adour, KK. Diagnosis and management of facial paralysis. N Engl J Med 1982; 307: 348.Google Scholar
Devriese, PP, Schumacher, T, Scheide, A, et al. Incidence, prognosis and recovery of Bell’s palsy. Clin Otolaryngol 1990; 15: 15.Google Scholar
Halperin, J, Luft, BJ, Volkman, DJ, et al. Lyme neuroborreliosis: peripheral nervous system manifestations. Brain 1990; 113: 1207.Google Scholar
Murakami, S, Mizobuchi, M, Nakashiro, Y, et al. Bell palsy and herpes simplex virus identification of viral DNA in endoneurial fluid and muscle. Ann Intern Med 1996; 124: 27.Google Scholar
Mutsch, M, Zhou, W, Rhodes, P, et al. Use of the inactivated intranasal influenza vaccine and the risk of Bell’s palsy in Switzerland. N Engl J Med 2004; 350: 896.Google Scholar

Bibliography

Giuseffi, V, Wall, M, Siegel, PZ, et al. Symptoms and disease associations in idiopathic intracranial hypertension (pseudotumor cerebri). Neurology 1991; 41: 239.Google Scholar
Lyons, MK, Meyer, FB. Cerebrospinal fluid physiology and the management of increased intracranial pressure. Mayo Clin Proc 1990; 65: 684.Google Scholar
Wall, M, George, D. Idiopathic intracranial hypertension. Brain 1991; 114: 155.Google Scholar

Bibliography

Blankenhorn, MA. The diagnosis of beriberi heart disease. Ann Intern Med 1945; 23: 398.Google Scholar

Bibliography

Alberts, WM. Lung disease and the lightest of metals. Chest 2004; 126: 1730.Google Scholar
Balmes, JR, Abraham, JL, Dweik, RA, et al. An official American Thoracic Society statement: diagnosis and management of beryllium sensitivity and chronic beryllium disease. Am J Respir Crit Care Med 2014; 190: e34.Google Scholar
Infante, PF, Newman, LS. Beryllium exposure and chronic beryllium disease. Lancet 2004; 363: 415.Google Scholar
Kriebel, D, Brain, JD, Sprince, NL, et al. The pulmonary toxicity of beryllium. Am Rev Respir Dis 1988; 137: 464.Google Scholar
Lundgren, RA, Maier, LA, Rose, CS, et al. Indirect and direct gas exchange at maximum exercise in beryllium sensitization and disease. Chest 2001; 120: 1702.Google Scholar
MacMurdo, MG, Mroz, MM, Culver, DA, et al. Chronic beryllium disease: update on a moving target. Chest 2020; 158: 2458.Google Scholar
Rossman, MD, Kern, JA, Elias, JA, et al. Proliferative responses of bronchoalveolar lymphocytes to beryllium: a test for chronic beryllium disease. Ann Intern Med 1988; 108: 687.Google Scholar
Sood, A, Beckett, WS, Cullen, MR. Variable response to long-term corticosteroid therapy in chronic beryllium disease. Chest 2004; 126: 2000.Google Scholar

Bibliography

Heathcote, EJ. Management of primary biliary cirrhosis: the American Association for the Study of Liver Diseases practice guidelines. Hepatology 2000; 31: 1005.Google Scholar
James, SP, Hoofnagle, JH, Strober, W, et al. Primary biliary cirrhosis: a model autoimmune disease. Ann Intern Med 1983; 99: 500.Google Scholar
Poupon, RE, Poupon, R, Balkau, B. Ursodiol for the long-term treatment of primary biliary cirrhosis. N Engl J Med 1994; 330: 1342.Google Scholar

Bibliography

Bellomo, R, See, EJ. Novel renal biomarkers of acute kidney injury and their implications. Intern Med J 2021; 51: 316.Google Scholar
Legrand, M, Januzzi, JL, Mebazaa, A. Critical research on biomarkers: what’s new? Intens Care Med 2013; 39: 1824.Google Scholar
Moran, JL, Solomon, PJ. The search for biomarkers in the critically ill: a cautionary tale. Crit Care Resusc 2018; 20: 85.Google Scholar
Seymour, CW, Yende, S, Scott, MJ, et al. Metabolomics in pneumonia and sepsis: an analysis of the GenIMS cohort study. Intens Care Med 2013; 39: 1423.Google Scholar
Sweeney, TE, Khatri, P. Generalizable biomarkers in critical care: towards precision medicine. Crit Care Med 2017; 45: 934.Google Scholar
Various. Biomarkers in ICU: less is more? Yes, no, not sure. Intens Care Med 2021; 47: 94.Google Scholar

Bibliography

Antosia, R, Cahill, J, eds. Handbook of Bioterrorism and Disaster Medicine. Berlin: Springer. 2006.Google Scholar
Duchin, J, Malone, JD. Bioterrorism. In: Scientific American Medicine. Interdisciplinary Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Karwa, M, Bronzert, P, Kvetan, V. Bioterrorism and critical care. Crit Care Clin 2003; 19: 279.Google Scholar
Kvetan, V, Farmer, JC, et al., eds. Critical care medicine for disasters, terrorism, and military conflict. Crit Care Med 2005; 33 (1, suppl.).Google Scholar
Rotz, LD, Khan, AS, Lillibridge, SR, et al. Public health assessment of potential bioterrorism agents. Emerg Infect Dis 2002; 8: 225.Google Scholar
Ursano, RJ, Norwood, AE, Fullerton, CS, eds. Bioterrorism: Psychological and Public Health Interventions. Cambridge: Cambridge University Press. 2004.Google Scholar
Waterer, GW, Robertson, H. Bioterrorism for the respiratory physician. Respirology 2009; 14: 5.Google Scholar
Wenzel, RP, Edmond, MB. Managing SARS amidst uncertainty. N Engl J Med 2003; 348: 1947.Google Scholar
Whitby, M, Ruff, TA, Street, AC, et al. Biological agents as weapons 2: anthrax and plague. Med J Aust 2002; 176: 605.Google Scholar

Bibliography

Abroug, F, Ouanes-Besbes, L, Tilouche, N, et al. Scorpion envenomation: state of the art. Intens Care Med 2020; 46: 401.Google Scholar
Auerbach, PS. Marine envenomation. N Engl J Med 1991; 325: 486.Google Scholar
Bailey, PM, Little, M, Jetliner, GA, et al. Jellyfish envenoming syndromes: unknown toxic mechanisms and unproven therapies. Med J Aust 2003; 178: 34.Google Scholar
Barnes, JH. Cause and effect in Irukandji singings. Med J Aust 1964; 1: 897.Google Scholar
Berling, I, Isbister, GK. Hematologic effects and complications of snake envenoming. Transfus Med Rev 2015; 29: 82.Google Scholar
Bonefish, F, Jute, M, Belo, BM, et al. Prevention and treatment of Hymenoptera venom allergy: guidelines for clinical practice. Allergy 2005; 60: 1459.Google Scholar
Broacher, JR, Ravikumar, PR, Bania, T, et al. Treatment of toad venom poisoning with digoxin-specific Fab fragments. Chest 1996; 110: 1282.Google Scholar
Brooder, J, Jerald, D, Locker, J, et al. Low risk of infection in selected human bites treated without antibiotics. Am J Emerg Med 2004; 22: 10.Google Scholar
Burnett, JW, Calton, GJ. Jellyfish envenomation syndromes updated. Ann Emerg Med 1987; 16: 1000.Google Scholar
Callahan, M. Dog bite wounds. JAMA 1980; 244: 2327.Google Scholar
CSL Ltd. Treatment of Snake Bite in Australia and Papua New Guinea Using Antivenom. Melbourne: Commonwealth Serum Laboratories. 1992.Google Scholar
Cummings, P. Antibiotics to prevent infection in patients with dog bite wounds: a meta-analysis of randomized trials. Ann Emerg Med 1994; 23: 535.Google Scholar
Cuthbertson, BH, Fisher, M. Envenomation. Int J Intens Care 1998; 5: 64.Google Scholar
Dire, DJ. Cat bite wounds: risk factors for infection. Ann Emerg Med 1991; 20: 973.Google Scholar
Fanner, PJ, Haddock, JC. Fatal envenomation by jellyfish causing the Irukandji syndrome. Med J Aust 2002; 177: 362363.Google Scholar
Fanner, PJ, Williamson, JA. Worldwide deaths and severe envenomation from jellyfish stings. Med J Aust 1996; 165: 658.Google Scholar
Fisher, MM, Bowery, CJ. Urban envenomation. Med J Aust 1989; 150: 695.Google Scholar
Fisher, MM, Carr, GA, McGuinness, R, et al. Atrax robustus envenomation. Anaesth Intens Care 1980; 8: 410.Google Scholar
Flicker, H. Irukandji sting to North Queensland bathers without production of weals but with severe general symptoms. Med J Aust 1952; 2; 89.Google Scholar
Ghanaian, RV, Conte, JE. Mammalian bite wounds. Ann Emerg Med 1980; 9: 79.Google Scholar
Goldstein, EJC. Bite wounds and infection. Clin Infect Dis 1992; 14: 633.Google Scholar
Griego, RD, Rosen, T, Orengo, IF, et al. Dog, cat, and human bites. J Am Acad Dermatol 1995; 33: 1019.Google Scholar
Hamilton, RG. Diagnostic methods for insect sting allergy. Cur Open Allergy Clin Immune 2004; 4: 297.Google Scholar
Having, S, Tulleken, JE, Moller, LVM, et al. Dog-bite induced sepsis: a report of four cases. Intens Care Med 1997; 23: 1179.Google Scholar
Healy, J, Winkel, KD, eds. Venom: Fear, Fascination and Discovery. Melbourne: Medical History Museum, University of Melbourne. 2013.Google Scholar
Hunt, GR. Bites and stings of uncommon arthropods. Postgrad Med 1981; 70: 91 & 107.Google Scholar
Huynh, TT, Seymour, J, Pereira, P, et al. Severity of Irukandji syndrome and nematocyst identification from skin scrapings. Med J Aust 2003; 178: 38.Google Scholar
Isbister, GK, Bawaskar, HS. Scorpion envenomation. N Engl J Med 2014; 371: 457.Google Scholar
Isbister, GK, Brown, SGA, Page, CB, et al. Snakebite in Australia: a practical approach to diagnosis and treatment. Med J Aust 2013; 199: 763.Google Scholar
Isbister, GK, Gray, MR. A prospective study of 750 definite spider bites with expert spider identification. QJM 2002; 95: 723.Google Scholar
Isbister, GK, Gray, MR. Latrodectism: a prospective cohort study of bites by formally identified red back spiders. Med J Aust 2003; 179: 88.Google Scholar
Isbister, GK, Gray, MR, Bali, CR, et al. Funnel-web spider bite: a systematic review of recorded clinical cases. Med J Aust 2005; 182: 407.Google Scholar
Isbister, GK, Volschenk, ES, Seymour, JE. Scorpion stings in Australia. Intern Med J 2004; 34: 427.Google Scholar
Isbister, GK, Whyte, IM. Suspected white-tail spider bite and necrotic ulcers. Intern Med J 2004; 34: 38.Google Scholar
Ismail, M. The scorpion envenoming syndrome. Toxicon 1995; 33: 825.Google Scholar
Janda, DH, Ringler, DH, Hilliard, JK, et al. Nonhuman primate bites. J Orthop Res 1990; 8: 146.Google Scholar
Javaid, M, Feldberg, L, Gipson, M. Primary repair of dog bites to the face. J R Soc Med 1998; 91: 414.Google Scholar
Johnston, CI, Ryan, NM, Page, CB, et al. The Australian snakebite project, 2005–2015 (ASP-20). Med J Aust 2017; 207: 119.Google Scholar
Klein, M. Nondomestic mammalian bites. Am Fam Physician 1985; 32: 137.Google Scholar
MacBean, C, Taylor, DM, Ashby, K. Animal and human bite injuries in Victoria, 1998–2004. Med J Aust 2007; 186: 38.Google Scholar
McHugh, TP, Bartlett, RL, Raymond, JI. Rat bite fever. Ann Emerg Med 1985; 14: 1116.Google Scholar
McKinney, PE. Out-of-hospital and interhospital management of crotaline snakebite. Ann Emerg Med 2001; 37: 168.Google Scholar
Moffitt, JE, Golden, DB, Reiaman, RE, et al. Stinging insect hypersensitivity: a practice parameter update. J Allergy Clin Immunol 2004; 114: 869.Google Scholar
O’Hehir, RE, Douglass, JA. Stinging insect allergy. Med J Aust 1999; 171: 649.Google Scholar
Pennell, TC, Babu, S-S, Meredith, JW. The management of snake and spider bites in the southeastern United States. Ann Surg 1987; 53: 198.Google Scholar
Pers, C, Gahrm-Hansen, B, Frederiksen, W. Capnocytophaga canimorsus septicaemia in Denmark, 1982–1995: review of 39 cases. Clin Infect Dis 1996; 23: 71.Google Scholar
Possani, LD. Antivenom for scorpion sting. Lancet 2000; 355: 67.Google Scholar
Reisman, RE. Insect stings. N Engl J Med 1994; 331: 523.Google Scholar
Rodrigo, C, Gnanathasan, A. Management of scorpion envenomation: a systematic review and meta-analysis of controlled clinical trials. Syst Rev 2017; 6: 74.Google Scholar
Sofer, S. Scorpion envenomation. Intens Care Med 1995; 21: 626.Google Scholar
Sutherland, SK, Coulter, AR, Harris, RD. Rationalisation of first-aid measures for elapid snakebite. Lancet 1979; 1: 183.Google Scholar
Sutherland, SK, Leonard, RL. Snakebite deaths in Australia 1992–1994 and a management update. Med J Aust 1995; 163: 616.Google Scholar
Sutherland, S, Nolch, G. Dangerous Australian Animals. Sydney: Hyland House. 2000.Google Scholar
Sutherland, SK, Sutherland, J. Venomous Creatures of Australia. 5th edition. Melbourne: Oxford University Press. 2006.Google Scholar
Sutherland, SK, Tibbals, J. Australian Animal Toxins: The Creatures, Their Toxins and the Care of the Poisoned Patient. 2nd edition. Melbourne: Oxford University Press. 2001.Google Scholar
Sutherland, SK, Trinca, JC. Survey of 2144 cases of red-back spider bites: Australia and New Zealand, 1963–1976. Med J Aust 1978; 2: 620.Google Scholar
Tibballs, J. Severe tetrodotoxic fish poisoning. Anaesth Intens Care 1988; 16: 215.Google Scholar
Tibballs, J. Diagnosis and treatment of confirmed and suspected snake bite. Med J Aust 1992; 156: 270.Google Scholar
Underhill, D. Australia’s Dangerous Creatures. Sydney: Reader’s Digest. 1990.Google Scholar
Walker, JP. Venomous bites and stings. In: Scientific American Medicine. Interdisciplinary Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Warrell, DA, Fenner, PJ. Venomous bites and stings. Br Med Bull 1993; 49: 423.Google Scholar
Weiner, S. Redback spider bites in Australia. Med J Aust 1961; 2: 44.Google Scholar
White, J. CSL Antivenom Handbook. 2nd edition. Melbourne: CSL. 2001.Google Scholar
White, J. Necrotising arachnidism. Med J Aust 1999; 171: 98.Google Scholar
White, J. Debunking spider bite myths. Med J Aust 2003; 179: 180.Google Scholar
White, J, Edmonds, C, Zborowski, P. Australia’s Most Dangerous Spiders, Snakes and Marine Creatures. Sydney: Australian Geographic. 2001.Google Scholar
Williamson, JA, Le Ray, LE, Wohlfahrt, M, et al. Acute management of serious envenomation by box-jellyfish (Chironex fleckeri). Med J Aust 1984; 141: 851.Google Scholar

Bibliography

Mathes, DD. Bleomycin and hyperoxia exposure in the operating room. Anesth Analg 1995; 81: 624.Google Scholar
Sleijfer, S. Bleomycin-induced pneumonitis. Chest 2001; 120: 617.Google Scholar

Bibliography

Lee, P, Nair, P, Eisman, JA, et al. Bone failure in critical illness. Crit Care Med 2016; 44: 2270.Google Scholar

Bibliography

Arnon, SS, Schechter, R, Inglesby, TV, et al. Botulinum toxin as a biological weapon: medical and public health management. JAMA 2001; 285: 1059.Google Scholar
Hatheway, CL. Botulism: the present status of the disease. Curr Top Microbiol Immunol 1995; 195: 55.Google Scholar
Jankovic, J, Brin, MF. Therapeutic uses of botulinum toxin. N Engl J Med 1991; 324: 1186.Google Scholar
Lecour, H, Ramos, H, Almeida, B, et al. Food-borne botulism: a review of 13 outbreaks. Arch Intern Med 1988; 148: 578.Google Scholar
Merson, MH, Dowell, VR. Epidemiologic, clinical and laboratory aspects of wound botulism. N Engl J Med 1973; 289: 1005.Google Scholar
Scheinberg, A. Clinical use of botulinum toxin. Aust Prescriber 2009; 32: 39.Google Scholar
Whitby, M, Street, AC, Ruff, TA, et al. Biological agents as weapons 1: smallpox and botulism. Med J Aust 2002; 176: 431.Google Scholar

Bibliography

Afzelius, BA. A human syndrome caused by immotile cilia. Science 1976; 193: 317.Google Scholar
Agasthian, T, Deschamps, C, Trastek, VF, et al. Surgical management of bronchiectasis. Ann Thorac Surg 1996; 62: 976.Google Scholar
Angrill, J, Agusti, C, Torres, A. Bronchiectasis. Curr Opin Infect Dis 2001; 14: 193.Google Scholar
McShane, PJ. Bronchiectasis: an orphan finds a home. Chest 2017; 151: 953.Google Scholar
McShane, PJ, Tino, G. Bronchiectasis. Chest 2019; 155: 825.Google Scholar
Mygind, N, Nielsen, MH, Pedersen, M. Kartagener’s syndrome and abnormal cilia. Eur J Respir Dis 1983; 64 (suppl. 127): 1.Google Scholar
O’Donnell, AE. Bronchiectasis. Chest 2008; 134: 815.Google Scholar
Polverino, E, Goeminne, PC, McDonnell, MJ, et al. European Registry Society guidelines for the management of adult bronchiectasis. Eur Respir J 2017; 50: 1700629.Google Scholar
Visser, SK, Bye, P, Morgan, L. Management of bronchiectasis in adults. Med J Aust 2018; 209: 177.Google Scholar

Bibliography

Boehler, A, Kesten, S, Weder, W, et al. Bronchiolitis obliterans after lung transplantation: a review. Chest 1998; 114: 1411.Google Scholar
Epler, GR, Colby, TV, McLoud, TC, et al. Bronchiolitis obliterans organizing pneumonia. N Engl J Med 1985; 312: 152.Google Scholar
Ramirez, J, Dowell, AR. Silo-filler’s disease: nitrogen dioxide-induced lung injury: long-term follow-up and review of the literature. Ann Intern Med 1971; 74: 569.Google Scholar
Schwartz, DA. Acute inhalational injury. Occup Med 1987; 2: 297.Google Scholar
Theodore, J, Starnes, VA, Lewiston, NJ. Obliterative bronchiolitis. Clin Chest Med 1990; 11: 309.Google Scholar
Wohl, MEB, Chernick, V. Bronchiolitis. Am Rev Respir Dis 1978; 118: 759.Google Scholar

Bibliography

Alshabani, K, Ghosh, S, Arrossi, AV, et al. Broncholithiasis: a review. Chest 2019; 156: 445.Google Scholar
Kennedy, MP, Noone, PG, Cardon, J, et al. Calcium stone lithoptysis in primary ciliary dyskinesia. Respir Med 2007; 101: 76.Google Scholar

Bibliography

Corbell, MJ. Brucellosis: an overview. Emerg Infect Dis 1997; 3: 2.Google Scholar
Fiori, PL, Mastrandrea, S, Rappelli, P, et al. Brucella abortus infection acquired in microbiology laboratories. J Clin Microbiol 2000; 38: 2005.Google Scholar
Liles, WC. Infections due to brucella, francisella, yersinia pestis, and bartonella. In: Scientific American Medicine. Infectious Diseases. Hamilton: Dekker Medicine. 2020.Google Scholar
Pappas, G, Akritidis, N, Bosilkovski, M, et al. Brucellosis. N Engl J Med 2005; 352: 2325.Google Scholar
Radolf, J. Brucellosis: don’t let it get your goat! Am J Med Sci 1994; 307: 64.Google Scholar

Bibliography

Antzelevitch, C, Brugada, P, Borgreffe, M, et al. Brugada syndrome: report of the second consensus conference. Circulation 2005; 111: 659.Google Scholar
Brugada, P, Brugada, J. Right bundle branch block, persistent ST elevation and sudden cardiac death: a distinct clinical and electrocardiographic syndrome. J Am Coll Cardiol 1992; 20: 1391.Google Scholar
Carey, SM, Hocking, G. Brugada syndrome – a review of the implications for the anaesthetist. Anaesth Intens Care 2011; 39: 571.Google Scholar

Bibliography

Ageno, W, Dentali, F, Pomero, F, et al. Incidence rates and case fatality rates of portal vein thrombosis and Budd–Chiari Syndrome. Thromb Haemost 2017; 117: 794.Google Scholar
Bach, N, Thung, SN, Schaffner, F. Comfrey herb tea-induced hepatic veno-occlusive disease. Am J Med 1989; 87: 97.Google Scholar
Bearman, SI. The syndrome of hepatic veno-occlusive disease after marrow transplantation. Blood 1995; 85: 3005.Google Scholar
Broughton, BJ. Hepatic and portal vein thrombosis closely associated with myeloproliferative disorders. BMJ 1991; 302: 192.Google Scholar
Di Nisio, M, Valeriani, E, Riva, N, et al. Anticoagulant therapy for splanchnic vein thrombosis: ISTH SSC Subcommittee Control of Anticoagulation. J Thromb Haemost 2020; 18: 1562.Google Scholar
Klein, AS, Sitzmann, JV, Coleman, J, et al. Current management of the Budd–Chiari syndrome. Ann Surg 1990; 212: 144.Google Scholar
Kumar, S, DeLeve, LD, Kamath, PS, et al. Hepatic veno-occlusive disease (sinusoidal obstruction syndrome) after hematopoietic stem cell transplantation. Mayo Clin Proc 2003; 78: 589.Google Scholar
Mitchell, MC, Boitnott, JK, Kaufman, S, et al. Budd–Chiari syndrome: etiology, diagnosis and management. Medicine 1982; 61: 199.Google Scholar
Shulman, HM, Hinterberger, W. Hepatic veno-occlusive disease – liver toxicity syndrome after bone marrow transplantation. Bone Marrow Transpl 1992; 10: 197.Google Scholar
Valla, D, Casadevall, N, Lacombe, C, et al. Primary myeloproliferative disorder and hepatic vein thrombosis. Ann Intern Med 1985; 103: 329.Google Scholar
Vassal, G, Hartmann, O, Benhamou, E. Busulfan and veno-occlusive disease of the liver. Ann Intern Med 1990; 112: 881.Google Scholar
Wadleigh, M, Ho, V, Momtaz, P, et al. Hepatic veno-occlusive disease: pathogenesis, diagnosis and treatment. Curr Opin Hematol 2003; 10: 451.Google Scholar

Bibliography

Ellis, KJ, Yuen, N, Yasumura, S, et al. Dose-response analysis of cadmium in man: body-burden vs. kidney dysfunction. Environ Res 1984; 33: 216.Google Scholar
Lin, J-L, Lin-Tan, D-T, Chu, P-H, et al. Cadmium excretion predicting hospital mortality and illness severity of critically ill medical patients. Crit Care Med 2009; 37: 957.Google Scholar
Pinot, F, Kreps, SE, Bachelet, M, et al. Cadmium in the environment: sources, mechanisms of biotoxicity, and biomarkers. Rev Environ Health 2000; 15: 299.Google Scholar

Bibliography

Floege, J, Ketteler, M. Vascular calcification in patients with end-stage renal disease. Nephrol Dial Transplant 2004; 19 (suppl. 5): V59.Google Scholar
Guldbakke, KK, Khachemoune, A. Calciphylaxis. Int J Dermatol 2007; 46: 231.Google Scholar

Bibliography

Assicot, M, Gendrel, D, Carsin, H, et al. High serum procalcitonin concentrations in patients with sepsis and infection. Lancet 1993; 341: 515.Google Scholar
Becker, KL, Snider, R, Nylen, ES. Procalcitonin assay in systemic inflammation, infection, and sepsis: clinical utility and limitations. Crit Care Med 2008; 36: 941.Google Scholar
De Jong, E, van Oers, JA, Beishuizen, A, et al. Efficacy and safety of procalcitonin guidance in reducing the duration of antibiotic treatment in critically ill patients: a randomised, controlled, open-label trial. Lancet Infect Dis 2016; 16: 819.Google Scholar
de Werra, I, Jaccard, C, Corradin, SB, et al. Cytokines, nitrite/nitrate, soluble tumor necrosis factor receptors, and procalcitonin concentrations: comparison in patients with septic shock, cardiogenic shock, and bacterial pneumonia. Crit Care Med 1997; 25: 607.Google Scholar
Kalil, AC, Lisboa, T. To procalcitonin or not to procalcitonin. Chest 2019; 155: 1085.Google Scholar
Kalil, AC, Van Schooneveld, TC. Is procalcitonin-guided therapy associated with beneficial outcomes in critically ill patients with sepsis? Crit Care Med 2018; 46: 811.Google Scholar
Maves, RC. Procalcitonin is not an adequate tool for antimicrobial de-escalation in sepsis. Crit Care Med 2020; 48: 1848.Google Scholar
McDermott, MT. Calcitonin and its clinical applications. Endocrinologist 1992; 2: 366.Google Scholar
Povoa, P, Kalil, AC. Any role for biomarker-guided algorithms in antibiotic stewardship programs? Crit Care Med 2020; 48: 775.Google Scholar
Scheutz, P, Wirz, Y, Sager, R, et al. Effect of procalcitonin-guided antibiotic treatment on mortality in acute respiratory infections: a patient level meta-analysis. Lancet Infect Dis 2018; 18: 95.Google Scholar
Stevenson, JC, Hillyard, CJ, MacIntyre, I, et al. A physiological role for calcitonin: protection of the maternal skeleton. Lancet 1979; 2: 769.Google Scholar
Torres, A, Artigas, A, Ferrer, R. Biomarkers in the ICU: less is more? No. Intens Care Med 2021; 47: 97.Google Scholar
Uzzan, B, Cohen, R, Nicolas, P, et al. Procalcitonin as a diagnostic test for sepsis in critically ill adults and after surgery or trauma: a systematic review and meta-analysis. Crit Care Med 2006; 34: 1996.Google Scholar

Bibliography

Becker, C. Diseases of calcium metabolism and metabolic bone disease. In: Scientific American Medicine. Endocrinology & Metabolism. Hamilton: Dekker Medicine. 2020.Google Scholar

Bibliography

Aaronson, SA. Growth factors and cancer. Science 1991; 254: 1146.Google Scholar
Adjei, AA, ed. Oncology. In: Scientific American Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Angell, M. The quality of mercy. N Engl J Med 1982; 306: 98.Google Scholar
Holzman, D. New cancer genes crowd the horizon, create possibilities. J Natl Cancer Inst 1995; 87: 1108.Google Scholar
Kerr, JFR, Winterford, CM, Harmon, BV. Apoptosis: its significance to cancer and cancer therapy. Cancer 1994; 73: 2013.Google Scholar
Krontiris, TG. Oncogenes. N Engl J Med 1995; 333: 303.Google Scholar
Lowe, S, Bodis, S, McClatchey, A, et al. Status and efficacy of cancer therapy in vivo. Science 1994; 266: 807.Google Scholar
Pardoll, DM. Tumour antigens: a new look for the 1990s. Nature 1994; 369: 357.Google Scholar
Rosenberg, SA. The immunotherapy and gene therapy of cancer. J Clin Oncol 1992; 10: 180.Google Scholar
Seleznick, MJ. Tumor markers. Prim Care 1992; 19: 715.Google Scholar
Smith, RA, Cokkinides, V, Brooks, D, et al. Cancer screening in the United States, 2010: a review of current American Cancer Society guidelines and issues in cancer screening. CA: A Cancer Journal for Clinicians 2010; 60: 99.Google Scholar
Solomon, E, Borrow, J, Goddard, AD. Chromosome aberrations and cancer. Science 1991; 254: 1153.Google Scholar
Sturgeon, CM, Lai, LC, Duffy, MJ. Serum tumour markers: how to order and interpret them. BMJ 2010; 339: 852.Google Scholar
Weinberg, RA. Tumor suppressor genes. Science 1991; 254: 1138.Google Scholar
zur Hausen, H. Viruses in human cancers. Science 1991; 254: 1167.Google Scholar

Bibliography

Adelstein, DJ, Hines, SG, Carter, SF, et al. Thromboembolic events in patients with malignant superior vena cava syndrome and the role of anticoagulation. Cancer 1988; 62: 2258.Google Scholar
Arrambide, K, Toto, RD. Tumor lysis syndrome. Semin Nephrol 1993; 13: 273.Google Scholar
Barton, JC. Tumor lysis syndrome in nonhematopoietic neoplasms. Cancer 1989; 64: 738.Google Scholar
Bell, DR, Woods, RL, Levi, JA. Superior vena cava obstruction. Med J Aust 1986; 145: 566.Google Scholar
Bick, RL. Coagulation abnormalities in malignancy: a review. Semin Thromb Hemost 1992; 18: 353.Google Scholar
Carrier, M, Khorana, AA, Zwicker, JI, et al. Management of challenging cases of patients with cancer-associated thrombosis including recurrent thrombosis and bleeding: guidance from the SSC of the ISTH. J Thromb Haemost 2013; 11: 1760.Google Scholar
Cascino, TL. Neurologic complications of systemic cancer. Med Clin North Am 1993; 77: 265.Google Scholar
Chan, A, Woodruff, RK. Complications and failure of anticoagulation therapy in the treatment of venous thromboembolism in patients with disseminated malignancy. Aust NZ J Med 1992; 22: 119.Google Scholar
Coiffier, B, Mounier, N, Bologna, S, et al. Efficacy and safety of rasburicase (recombinant urate oxidase) for the prevention and treatment of hyperuricemia during induction chemotherapy of aggressive non-Hodgkin’s lymphoma. J Clin Oncol 2003; 21: 4402.Google Scholar
Colman, RW, Rubin, RN. Disseminated intravascular coagulation due to malignancy. Semin Oncol 1990; 17: 172.Google Scholar
Gutierrez, C, McEvoy, C, Munshi, L, et al. Critical care management of toxicities associated with targeted agents and immunotherapies for cancer. Crit Care Med 2020; 48: 10.Google Scholar
Howard, SC, Jones, DP, Pui, C-H. The tumor lysis syndrome. N Engl J Med 2011; 364: 1844.Google Scholar
Langstein, HN, Norton, JA. Mechanisms of cancer cachexia. Hematol Oncol Clin North Am 1991; 5: 103.Google Scholar
Lazarus, HM, Creger, RJ, Gerson, SL. Infectious emergencies in oncology patients. Semin Oncol 1989; 16: 543.Google Scholar
McCurdy, MT, Shanholtz, CB. Oncologic emergencies. Crit Care Med 2012; 40: 2212.Google Scholar
Pizzo, PA. Management of fever in patients with cancer and treatment-induced neutropenia. N Engl J Med 1993; 328: 1323.Google Scholar
Rosen, PJ. Bleeding problems in the cancer patient. Hematol Oncol Clin North Am 1992; 6: 1315.Google Scholar
Silverman, P, Distelhorst, CW. Metabolic emergencies in clinical oncology. Semin Oncol 1989; 16: 504.Google Scholar
Silverstein, RL, Nachman, RL. Cancer and clotting – Trousseau’s warning. N Engl J Med 1992; 327: 1163.Google Scholar
Weiss, HW, Walker, MD, Wiernik, PH. Neurotoxicity of commonly used antineoplastic agents. N Engl J Med 1974; 291: 75 & 127.Google Scholar
Zacharski, LR, Wojtukiewicz, MZ, Costantini, V, et al. Pathways of coagulation/fibrinolysis activation in malignancy. Semin Thromb Hemost 1992; 18: 104.Google Scholar
Zafrani, L, Canet, E, Darmon, M. Understanding tumor lysis syndrome. Intens Care Med 2019; 45: 1608.Google Scholar

Bibliography

Annane, D, Chadda, K, Gajdos, P, et al. Hyperbaric oxygen therapy for acute domestic carbon monoxide poisoning: two randomized controlled studies. Intens Care Med 2011; 37: 486.Google Scholar
Blumenthal, I. Carbon monoxide poisoning. J R Soc Med 2001; 94: 270.Google Scholar
Caravanti, EM, Adams, CJ, Joyce, SM, et al. Fetal toxicity associated with maternal carbon monoxide poisoning. Ann Emerg Med 1988; 17: 714.Google Scholar
Choi, IS. Delayed neurologic sequelae in carbon monoxide intoxication. Arch Neurol 1983; 40: 433.Google Scholar
Cobb, N, Etzel, RA. Unintentional carbon monoxide-related deaths in the United States, 1979 through 1988. JAMA 1991; 266: 659.Google Scholar
Ernst, A, Zibrak, JD. Carbon monoxide poisoning. N Engl J Med 1998; 339: 1603.Google Scholar
Hampson, NB. Pulse oximetry in severe carbon monoxide poisoning. Chest 1998; 114: 1036.Google Scholar
Hampson, NB, Hauff, NM. Risk factors for short-term mortality from carbon monoxide poisoning treated with hyperbaric oxygen. Crit Care Med 2008; 36: 2523.Google Scholar
Hampson, NB, Rudd, RA, Hauff, NM. Increased long-term mortality among survivors of acute carbon monoxide poisoning. Crit Care Med 2009; 37: 1941.Google Scholar
Hardy, KR, Thom, DR. Pathophysiology and treatment of carbon monoxide poisoning. Clin Toxicol 1994; 32: 613.Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Myers, RAM, Britten, JS. Are arterial blood gases of value in treatment decisions for carbon monoxide poisoning? Crit Care Med 1989; 17: 139.Google Scholar
Raphael, JC, Elkharrat, D, Jars-Guincestre, MC, et al. Trial of normobaric and hyperbaric oxygen for acute carbon monoxide intoxication. Lancet 1989; 2: 414.Google Scholar
Rose, JJ, Wang, L, Xu, Q, et al. Carbon monoxide poisoning: pathogenesis, management, and future directions of therapy. Am J Respir Crit Care Med 2017; 195: 596.Google Scholar
Runciman, WW, Gorman, DF. Carbon monoxide poisoning: from old dogma to new uncertainties. Med J Aust 1993; 158: 439.Google Scholar
Scheinkestel, CD, Bailey, M, Myles, PS, et al. Hyperbaric or normobaric oxygen for acute carbon monoxide poisoning: a randomised controlled clinical trial. Med J Aust 1999; 170: 203.Google Scholar
Shimazu, T. Half-life of blood carboxyhemoglobin. Chest 2001; 119: 661.Google Scholar
Smith, SJ, Brandon, S. Morbidity from acute carbon monoxide poisoning at three-year follow-up. BMJ 1973; 1: 318.Google Scholar
Tibbles, PM, Edelsberg, JS. Hyperbaric-oxygen therapy. N Engl J Med 1996; 334: 1642.Google Scholar
Walden, SM, Gottlieb, SO. Urban angina, urban arrhythmias: carbon monoxide and the heart. Ann Intern Med 1990; 113: 337.Google Scholar
Weaver, LK, Hopkins, RO, Chan, KJ, et al. Hyperbaric oxygen for acute carbon monoxide poisoning. N Engl J Med 2002; 347: 1057.Google Scholar
Winter, PM, Miller, JN. Carbon monoxide poisoning. JAMA 1976; 236: 1502.Google Scholar
Zimmerman, JL. Poisonings and overdoses in the intensive care unit: general and specific management issues. Crit Care Med 2003; 31: 2794.Google Scholar
Ziser, A, Shupak, A, Halpern, P, et al. Delayed hyperbaric oxygen treatment for acute carbon monoxide poisoning. BMJ 1984; 289: 960.Google Scholar

Bibliography

Wartenberg, D, Reyner, D, Scott, CS. Trichlorethylene and cancer: epidemiological evidence. Environ Health Perspect 2000; 108: 161.Google Scholar

Bibliography

Faisy, C, Mokline, A, Sanchez, O, et al. Effectiveness of acetazolamide for reversal of metabolic alkalosis in weaning COPD patients from mechanical ventilation. Intens Care Med 2010; 36: 859.Google Scholar
Hanley, T, Platts, MM. Acetazolamide (Diamox) in the treatment of congestive heart failure. Lancet 1956; 270: 357.Google Scholar
Preisig, PA, Toto, RD, Alpern, RJ. Carbonic anhydrase inhibitors. Renal Physiol 1987; 10: 136.Google Scholar

Bibliography

Fletcher, RH. Carcinoembryonic antigen. Ann Intern Med 1986; 104: 66.Google Scholar
Locker, GY, Hamilton, S, Harrus, J, et al. ASCO 2006 update of recommendations for the use of tumor markers in gastrointestinal cancer. J Clin Oncol 2006; 24: 5313.Google Scholar

Bibliography

Coupe, M, Levi, S, Ellis, M, et al. Therapy for symptoms in the carcinoid syndrome. Q J Med 1989; 73: 1021.Google Scholar
Godwin, JD. Carcinoid tumors: an analysis of 2837 cases. Cancer 1975; 36: 560.Google Scholar
McCaughan, BC, Martini, N, Bains, MS. Bronchial carcinoids. J Thorac Cardiovsc Surg 1985; 89: 8.Google Scholar
Modlin, IM, Moss, SF, Oberg, K, et al. Gastrointestinal neuroendocrine (carcinoid) tumours: current diagnosis and management. Med J Aust 2010; 193: 46.Google Scholar
Plockinger, U, Rindi, G, Arnold, R, et al. Guidelines for the diagnosis and treatment of neuroendocrine gastrointestinal tumours: a consensus statement on behalf of the European Neuroendocrine Tumour Society (ENETS). Neuroendocrinology 2004; 80: 394.Google Scholar
Wolin, EM. Advances in the diagnosis and management of well-differentiated and intermediate-differentiated neuroendocrine tumors of the lung. Chest 2017; 151: 1141.Google Scholar
Yao, JC, Hassan, M, Phan, A, et al. One hundred years after ‘carcinoid’: epidemiology of and prognostic factors for neuroendocrine tumors in 35,825 cases in the United States. J Clin Oncol 2008; 26: 3063.Google Scholar

Bibliography

Acebo, E, Val-Bernal, JF, Gomez-Roman, JJ, et al. Clinicopathologic study and DNA analysis of 37 cardiac myxomas: a 28-year experience. Chest 2003; 123: 1379.Google Scholar
Casey, MC, Vaughn, CJ, He, J, et al. Mutations in the protein kinase A R1alpha regulatory subunit cause familial cardiac myxomas and Carney complex. J Clin Invest 2000; 106: R31.Google Scholar
Goodwin, JF. Diagnosis of left atrial myxoma. Lancet 1963; 1: 464.Google Scholar
Hancock, EW. Malignant pericardial disease. Cardiol Clin 1990; 8: 673.Google Scholar
Klatt, EL, Heitz, DR. Cardiac metastases. Cancer 1990; 65: 1456.Google Scholar
McGregor, GA, Cullen, RA. The syndrome of fever, anaemia and high sedimentation rate with an atrial myxoma. BMJ 1959; 2: 991.Google Scholar
Meng, Q, Lai, H, Lima, J, et al. Echocardiographic and pathologic characteristics of primary cardiac tumors; a study of 149 cases. Int J Cardiol 2002; 84: 69.Google Scholar
Pimede, L, Duhaut, P, Loire, R. Clinical presentation of left atrial myxomas: a series of 112 consecutive cases. Medicine 2001; 80: 159.Google Scholar
Reynan, K. Cardiac myxomas. N Engl J Med 1995; 333: 1610.Google Scholar
Salcedo, EE, Cohen, GI, White, RD, et al. Cardiac tumors: diagnosis and management. Curr Probl Cardiol 1992; 17: 73.Google Scholar
Tazelaar, HD, Locke, TJ, McGregor, CGA. Pathology of surgically excised primary cardiac tumors. Mayo Clin Proc 1992; 67: 957.Google Scholar
Welch, TD, Shafi, S, Oh, JK. Diseases of the pericardium, cardiac tumors, and cardiac trauma. In: Scientific American Medicine. Cardiovascular Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar

Bibliography

Beesley, SJ, Weber, G, Sarge, T, et al. Septic cardiomyopathy. Crit Care Med 2018; 46: 625.Google Scholar
Cannon, RO, Tripodi, D, Dilsizian, V, et al. Results of permanent dual-chamber pacing in symptomatic nonobstructive hypertrophic cardiomyopathy. Am J Cardiol 1994; 73: 571.Google Scholar
Cherian, KM, John, TA, Abraham, KA. Endomyocardial fibrosis. Am Heart J 1983; 105: 706.Google Scholar
Fatkin, D, MacRae, C, Sasaki, T, et al. Missense mutations in the rod domain of the lamin A/C gene as causes of dilated cardiomyopathy and conduction-system disease. N Engl J Med 1999; 341: 1715.Google Scholar
Gheorghiade, M, Zarowitz, BJ. Review of randomized trials of digoxin therapy in patients with chronic heart failure. Am J Cardiol 1992; 69: 48G.Google Scholar
Gupta, PN, Valiathan, MS, Balakrishnan, KG, et al. Clinical course of endomyocardial fibrosis. Br Heart J 1989; 62: 450.Google Scholar
Homans, DC. Peripartum cardiomyopathy. N Engl J Med 1985; 312: 1432.Google Scholar
Katritsis, D, Wilmshurst, PT, Wendon, JA, et al. Primary restrictive cardiomyopathy: clinical and pathologic characteristics. J Am Coll Cardiol 1991;18: 1230.Google Scholar
Kelly, DP, Strauss, AW. Inherited cardiomyopathies. N Engl J Med 1994; 330: 913.Google Scholar
Maron, B, Maron, M. Hypertrophic cardiomyopathy. Lancet 2013; 381: 242.Google Scholar
Maron, BJ, Bonow, RO, Cannon, RO. Hypertrophic cardiomyopathy. N Engl J Med 1987; 316: 780 & 844.Google Scholar
Maron, BJ, Shirani, J, Poliac, LC, et al. Sudden death in young competitive athletes – clinical, demographic and pathological profiles. JAMA 1996; 276: 199.Google Scholar
Nishimura, R, Trusty, JM, Hayes, DL, et al. Dual-chamber pacing for hypertrophic cardiomyopathy. A randomized double-blind crossover trial. J Am Coll Cardiol 1997; 29: 435.Google Scholar
Seggewiss, H, Geichmann, U, Faber, L, et al. Percutaneous transluminal septal myocardial ablation in hypertrophic cardiomyopathy. J Am Coll Cardiol 1998; 31: 252.Google Scholar
Spirito, P, Seidman, CE, McKenna, WJ, et al. The management of hypertrophic cardiomyopathy. N Engl J Med 1997; 336: 775.Google Scholar
Sugrue, DD, Rodeheffer, RJ, Codd, MB, et al. The clinical course of idiopathic dilated cardiomyopathy. Ann Intern Med 1992; 117: 117.Google Scholar

Bibliography

Cruz, DN, Bagshaw, SM. Heart-kidney interaction: epidemiology of cardiorenal syndromes. Int J Nephrol 2010; 2011: 351291.Google Scholar
Li, X, Hassoun, HT, Santora, R, et al. Organ crosstalk: the role of the kidney. Curr Opin Crit Care 2009; 15: 481.Google Scholar
Rangaswami, J, Bhalla, V, Blair, JEA, et al. Cardiorenal syndrome: classification, pathophysiology, diagnosis, and treatment strategies: a scientific statement from the American Heart Association. Circulation 2019; 139: e840.Google Scholar
Ricci, Z, Romagnoli, S, Ronco, C. Cardiorenal syndrome. Crit Care Clin 2021; 37: 335.Google Scholar
Ronco, C, Haapio, M, House, AA, et al. Cardiorenal syndrome. J Am Coll Cardiol 2008; 25: 1527.Google Scholar

Bibliography

Becker, RC, Meade, TW, Berger, PB, et al. The primary and secondary prevention of coronary artery disease. Chest 2008; 133: (suppl. 6): 776S.Google Scholar
Burakoff, R, ed. Cardiovascular Medicine. In: Scientific American Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Calhoun, DA, Oparil, S. Treatment of hypertensive crisis. N Engl J Med 1990; 323: 1177.Google Scholar
Creager, MA, Beckman, J, Loscalzo, J, eds. Vascular Medicine. 2nd edition. Philadelphia: Saunders (Elsevier). 2012.Google Scholar
Gheorghiade, M, Zarowitz, BJ. Review of randomized trials of digoxin therapy in patients with chronic heart failure. Am J Cardiol 1992; 69: 48G.Google Scholar
Goodman, SG, Menon, V, Cannon, CP, et al. Acute ST-segment elevation myocardial infarction. Chest 2008; 133: (suppl. 6): 708S.Google Scholar
Guyton, AC. Blood pressure control: special role of the kidney and body fluids. Science 1991; 252: 1813.Google Scholar
Harrington, RA, Becker, RC, Cannon, CP, et al. Antithrombotic therapy for non-ST-segment elevation acute coronary syndromes. Chest 2008; 133: (suppl. 6): 670S.Google Scholar
Heusch, G, Schulz, R. Characterization of hibernating and stunned myocardium. Eur Heart J 1997; 18 (suppl. D): 102.Google Scholar
Libby, P, Zipes, DP, eds. Braunwald’s Heart Disease. 11th edition. Philadelphia: Saunders (Elsevier). 2018.Google Scholar
Marik, P, Varon, J. The obese patient in the ICU. Chest 1998; 113: 492.Google Scholar
Muller, DWM. Gene therapy for cardiovascular disease. Br Heart J 1994; 72: 309.Google Scholar
Nora, JJ. Causes of congenital heart disease: old and new modes, mechanisms, and models. Am Heart J 1993; 125: 1409.Google Scholar
Salem, DN, O’Gara, PT, Madias, C, et al. Valvular and structural heart disease. Chest 2008; 133: (suppl. 6): 593S.Google Scholar
Singer, DE, Albers, GW, Dalen, JE, et al. Antithrombotic therapy in atrial fibrillation. Chest 2008; 133: (suppl. 6): 546S.Google Scholar
Wilson, NJ, Neutze, JM. Adult congenital heart disease: principles and management guidelines. Aust NZ J Med 1993; 23: 498 & 697.Google Scholar

Bibliography

Azoulay, E, Darmon, M, Valade, S. Acute life-threatening toxicity from CAR T-cell therapy. Intens Care Med 2020; 46: 1723.Google Scholar
Boll, B, Subklewe, M, von Bergwelt-Baildon, M. Ten things the haematologist wants you to know about CAR-T cells. Intens Care Med 2020; 46: 1243.Google Scholar
Gutierrez, C, Brown, ART, May, HP, et al. Critically ill patients treated for chimeric antigen receptor-related toxicity: a multicenter study. Crit Care Med 2022; 50: 81.Google Scholar
Gutierrez, C, McEvoy, C, Munshi, L, et al. Critical care management of toxicities associated with targeted agents and immunotherapies for cancer. Crit Care Med 2020; 48: 10.Google Scholar
Maude, SL, Laetsch, TW, Buechner, J, et al. Tisgenlecleucel in children and young adults with B-cell lymphoblastic leukaemia. N Engl J Med 2018; 378: 439.Google Scholar
Schuster, SJ, Bishop, MR, Tam, CS, et al. Tisgenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med 2019; 380: 45.Google Scholar
Selim, AG, Tam, CS. Chimeric antigen receptor T-cell therapy for haematological malignancies. Med J Aust 2020; 213: 404.Google Scholar

Bibliography

Anderson, B, Sims, K, Regnery, R, et al. Detection of Rochalimaea henselae DNA in cat scratch disease patients by PCR. J Clin Microbiol 1994; 32: 942.Google Scholar
Bergmans, AM, Peeters, MF, Schellkens, JF, et al. Pitfalls and fallacies of cat scratch disease serology. J Clin Microbiol 1997; 35: 1931.Google Scholar
Karim, AA, Cockerell, CJ, Petri, WA. Cat scratch disease, bacillary angiomatosis, and other infections due to Rochalimaea. N Engl J Med 1994; 330: 1509.Google Scholar
Regnery, RL, Martin, M, Olson, J. Naturally occurring ‘Rochalimaea henselae’ infection in domestic cat. Lancet 1992; 340: 557.Google Scholar
Regnery, R, Tappero, J. Unraveling mysteries associated with cat-scratch disease, bacillary angiomatosis, and related syndromes. Emerg Infect Dis 1995; 1: 1.Google Scholar
Relman, DA, Falkow, S, LeBoit, PE, et al. The organism causing bacillary angiomatosis, peliosis hepatis, and fever and bacteremia in immunocompromised patients. N Engl J Med 1991; 324: 1514.Google Scholar
Slater, LN, Welch, DF, Hensel, D, et al. A newly recognized fastidious gram-negative pathogen as a cause of fever and bacteremia. N Engl J Med 1990; 323: 1587.Google Scholar
Zangwill, KM, Hamilton, DH, Perkins, BA, et al. Cat scratch disease in Connecticut – epidemiology, risk factors, and evaluation of a new diagnostic test. N Engl J Med 1993; 329: 8.Google Scholar

Bibliography

Angelillo Mackinlay, TA, Lyons, GA, Chimondeguy, DJ, et al. VATS debridement versus thoracotomy in the treatment of loculated postpneumonia empyema. Ann Thorac Surg 1996; 61: 1626.Google Scholar
Bryant, RE, Salmon, CJ. Pleural empyema. Clin Infect Dis 1996; 22: 747.Google Scholar
Davies, RJO, Traill, ZC, Gleeson, FV. Randomised controlled trial of intrapleural streptokinase in community acquired pleural infection. Thorax 1997; 52: 416.Google Scholar
Janda, S, Swiston, J. Intrapleural fibrinolytic therapy for treatment of adult parapneumonic effusions and empyema: a systematic review and meta-analysis. Chest 2012; 142: 401.Google Scholar
Jerjes-Sanchez, C, Ramirez-Rivera, A, Elizalde, JJ, et al. Intrapleural fibrinolysis with streptokinase as an adjunctive treatment in hemothorax and empyema: a multicenter trial. Chest 1996; 109: 1514.Google Scholar
Landreneau, RJ, Keenan, RJ, Hazelrigg, SR, et al. Thoracoscopy for empyema and hemothorax. Chest 1995; 109: 18.Google Scholar
Leatherman, JW, Mcdonald, FM, Niewohner, DE. Fluid-containing bullae in the lung. South Med J 1985; 78: 708.Google Scholar
Maskel, NA, Davies, CW, Nunn, AJ, et al. UK controlled trial of intrapleural streptokinase for pleural infection. N Engl J Med 2005; 352: 865.Google Scholar
Muers, MF. Streptokinase for empyema. Lancet 1997; 349: 1491.Google Scholar
Sahn, SA. Management of complicated parapneumonic effusions. Am Rev Respir Dis 1993; 148: 813.Google Scholar
Silverman, SC, Mueller, PR, Saini, S, et al. Thoracic empyema: management with image-guided catheter drainage. Radiology 1988; 169: 5.Google Scholar
Temes, RT, Follis, F, Kessler, RM, et al. Intrapleural fibrinolysis in management of empyema thoracis. Chest 1996; 110: 102.Google Scholar
Walt, MA, Sharma, S, Hohn, J, et al. A randomized trial of empyema therapy. Chest 1997; 111: 1548.Google Scholar
Weissberg, D, Refaelyb, Y. Pleural empyema: 24-year experience. Ann Thorac Surg 1996; 62: 1026.Google Scholar

Bibliography

Adrogue, HJ, Madias, NE. Hyponatremia. N Engl J Med 2000; 342: 1581.Google Scholar
Arieff, AI, Guisado, R. Effects on the central nervous system of hypernatremic and hyponatremic states. Kidney Int 1976; 10: 104.Google Scholar
Ayus, JC, Krothapalli, RK, Arieff, AI. Treatment of symptomatic hyponatremia and its relation to brain damage: a prospective study. N Engl J Med 1987; 317: 1190.Google Scholar
Berl, T. Treating hyponatremia: damned if we do and damned if we don’t. Kidney Int 1990; 37: 1006.Google Scholar
Brown, WD. Osmotic demyelination disorders: central pontine and extrapontine myelinolysis. Curr Opinion Neurol 2000; 13: 691.Google Scholar
Brunner, JE, Redmond, JM, Haggar, AM, et al. Central pontine myelinolysis and pontine lesions after rapid correction of hyponatremia: a prospective magnetic resonance imaging study. Ann Neurol 1990; 27: 61.Google Scholar
Laureno, R, Karp, BI. Pontine and extrapontine myelinolysis following rapid correction of hyponatraemia. Lancet 1988; 1: 1439.Google Scholar
Pirzada, NA, Ali, II. Central pontine myelinolysis. Mayo Clin Proc 2001; 76: 559.Google Scholar
Soupart, A, Decaux, G. Therapeutic recommendations for management of severe hyponatremia: Current concepts on pathogenesis and prevention of neurologic complications. Clin Nephrol 1996; 46: 149.Google Scholar
Sterns, RH, Cappuccio, JD, Silver, SM, et al. Neurologic sequelae after treatment of severe hyponatremia: a multicenter perspective. J Am Soc Nephrol 1994; 4: 1522.Google Scholar
Sterns, RH, Riggs, JE, Schochet, SS. Osmotic demyelination syndrome following correction of hyponatremia. N Engl J Med 1986; 314: 1535.Google Scholar
Strange, K. Regulation of solute and water balance and cell volume in the central nervous system. J Am Soc Nephrol 1992; 3: 12.Google Scholar
Tien, R, Arieff, AI, Kucharczyk, W, et al. Hyponatremic encephalopathy: is central pontine myelinolysis a component? Am J Med 1992; 92: 513.Google Scholar
Worthley, LIG. Chronic hyponatraemia and risk of myelinolysis: why is it so difficult to control the change in plasma sodium? Crit Care Resusc 2006; 8: 368.Google Scholar
Young, GB. Central pontine myelinolysis: a lesson in humility. Crit Care Med 2012; 40: 1026.Google Scholar

Bibliography

Campuzano, V, Montermini, L, Molto, MD, et al. Friedreich’s ataxia: autosomal recessive disease caused by intronic GAA triplet repeat expansion. Science 1996; 271: 1423.Google Scholar
Delatycki, M, Williamson, R, Forrest, S. Friedrich ataxia: update on pathogenesis and possible therapies. J Med Genet 2000; 37: 1.Google Scholar
Durr, A, Cossee, M, Agid, Y, et al. Clinical and genetic abnormalities in patients with Friedreich’s ataxia. N Engl J Med 1996; 335: 1169.Google Scholar
Gotoda, T, Arita, M, Arai, H, et al. Adult-onset spinocerebellar dysfunction caused by a mutation in the gene for the α-tocopherol-transfer protein. N Engl J Med 1995; 333: 1313.Google Scholar

Bibliography

Singh, S, Bohn, D, Carlotti, AP, et al. Cerebral salt wasting: truths, fallacies, theories, and challenges. Crit Care Med 2002; 30: 2575.Google Scholar

Bibliography

Burns, CB, Currie, B. The efficacy of chelation therapy and factors influencing mortality in intoxicated petrol sniffers. Aust NZ J Med 1995; 25: 197.Google Scholar
Jackson, TW, Ling, LJ, Washington, V. The effect of oral deferoxamine in iron absorption in humans. J Toxicol Clin Toxicol 1995; 33: 325.Google Scholar
Mathieu, D, Mathieu-Nolf, M, Germain-Alonso, M, et al. Massive arsenic poisoning: effect of haemodialysis and dimercaprol on arsenic kinetics. Intens Care Med 1992; 18: 47.Google Scholar
Mills, KC, Curry, SC. Acute iron poisoning. Emerg Clin North Am 1994; 12: 397.Google Scholar
Proper, R, Shurn, S, Nathan, D. Reassessment of the use of deferoxamine B in iron overload. N Engl J Med 1976; 294: 1421.Google Scholar
Proudfoot, AT, Simpson, D, Dyson, EH. Management of acute iron poisoning. Med Toxicol 1986; 1: 83.Google Scholar

Bibliography

Alapat, PM, Zimmerman, JL. Toxicology in the critical care unit. Chest 2008; 133: 1006.Google Scholar
American College of Physicians. Occupational and environmental medicine: the internist’s role. Ann Intern Med 1990; 113: 974.Google Scholar
Bascom, R, Bromberg, PA, Costa, DL, et al. Health effects of outdoor pollution. Am J Respir Crit Care Med 1996; 153: 3 & 477.Google Scholar
Cugell, DW. The hard metal diseases. Clin Chest Med 1992; 13: 269.Google Scholar
Kales, SN, Christiani, DC. Current concepts: acute chemical emergencies. N Engl J Med 2004; 350: 800.Google Scholar
Mokhlesi, B, Garinella, PS, Joffe, A, et al. Street drug abuse leading to critical illness. Intens Care Med 2004; 30: 1526.Google Scholar
Mokhlesi, B, Leiken, JB, Murray, P, et al. Adult toxicology in critical care: part I: general approach to the intoxicated patient. Chest 2003; 123: 577.Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Nemery, B. Metal toxicity and the respiratory tract. Eur Respir J 1990; 3: 202.Google Scholar
Nriagu, JO, Pacyna, JM. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988; 333: 134.Google Scholar
Olson, KR, ed. Poisoning & Drug Overdose. 7th edition. New York: McGraw-Hill (Appleton & Lange). 2017.Google Scholar
Redlich, CA, Sparer, JS, Cullen, MR. Sick building syndrome. Lancet 1997; 349: 1013.Google Scholar
Rosenstock, L, Cullen, M, Brodkin, C, et al., eds. Textbook of Clinical Occupational and Environmental Medicine. 2nd edition. Philadelphia: Saunders. 2004.Google Scholar
Roxe, DM, Krumlovsky, FA. Toxic interstitial nephropathy from metals, metabolites, and radiation. Semin Nephrol 1988; 8: 72.Google Scholar
Shannon, MW, Borron, SW, Burns, MJ, eds. Haddad and Winchester’s Clinical Management of Poisoning and Drug Overdose. 4th edition. Philadelphia: WB Saunders. 2007.Google Scholar
Trujillo, MH, Guerrero, J, Fragachan, C, et al. Pharmacologic antidotes in critical care medicine: a practical guide for drug administration. Crit Care Med 1998; 26: 377.Google Scholar
Wiegand, TJ, Patel, MM, Olson, KR. Management of poisoning and drug overdose. In: Scientific American Medicine. Interdisciplinary Medicine. Hamilton: Decker Medicine. 2020.Google Scholar

Bibliography

Bergofsky, EH. Respiratory failure in disorders of the thoracic cage. Am Rev Respir Dis 1979; 119: 643.Google Scholar
Coruh, B, Benditt, JO. Chest wall and neuromuscular disorders. In: Scientific American Medicine. Pulmonary & Critical Care Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Davies, D. Ankylosing spondylitis and lung fibrosis. Q J Med 1972; 41: 395.Google Scholar
Eisinger, RS, Islam, S. Caring for people with untreated pectus excavatum. Chest 2020; 157: 590.Google Scholar
Libby, DM, Briscoe, WA, Boyce, B, et al. Acute respiratory failure in scoliosis or kyphosis: prolonged survival and treatment. Am J Med 1982; 73: 532.Google Scholar
Ray, CS, Sue, DY, Bray, G, et al. Effects of obesity on respiratory function. Am Rev Respir Dis 1983; 128: 501.Google Scholar

Bibliography

Cade, JF, Pain, MCF. Essentials of Respiratory Medicine. Oxford: Blackwell. 1988.Google Scholar

Bibliography

Adelson, L, Kaufman, J. Fatal chlorine poisoning: report of two cases with clinicopathologic correlation. Am J Clin Pathol 1971; 56: 430.Google Scholar
Centers for Disease Control and Prevention. Chlorine gas toxicity from mixture of bleach with other cleaning products. JAMA 1991; 256: 2529.Google Scholar
Schonhofer, B, Voshaar, T, Kohler, D. Long-term lung sequelae following accidental chlorine gas exposure. Respiration 1996; 63: 155.Google Scholar

Bibliography

Angulo, P, Lindor, KD. Primary sclerosing cholangitis. Hepatology 1999; 30: 325.Google Scholar
Berger, MY, van der Velden, JJ, Lijmer, JG, et al. Abdominal symptoms: do they predict gallstones? A systematic review. Scand J Gastroenterol 2000; 35: 70.Google Scholar
Johnston, DE, Kaplan, MM. Pathogenesis and treatment of gallstones. N Engl J Med 1993; 328: 412.Google Scholar
Lai, EC, Mok, FP, Tan, ES, et al. Endoscopic biliary drainage for severe acute cholangitis. N Engl J Med 1992; 326: 1582.Google Scholar
LaRusso, NF, Wiesner, RH, Ludwig, J, et al. Primary sclerosing cholangitis. N Engl J Med 1984; 310: 899.Google Scholar
Lavillegrand, J-R, Mercier-Des-Rochettes, E, Baron, E, et al. Acute cholangitis in intensive care units: clinical, biochemical, microbiological spectrum and risk factors for mortality: a multicentre study. Crit Care 2021; 25: 49.Google Scholar
Lazaridis, KN, LaRusso, NF. Primary sclerosing cholangitis. N Engl J Med 2016; 375: 1161.Google Scholar
Miura, F, Okamoto, K, Takada, T, et al. Tokyo Guidelines 2018: initial management of acute biliary infection and flow-chart for acute cholangitis. J Hepatobiliary Pancreat Sci 2018; 25: 31.Google Scholar
Vennes, JA, Bond, JH. Approach to the jaundiced patient. Gastroenterology 1983; 84: 1615.Google Scholar

Bibliography

Lucas, ME, Deen, JL, von Seidlein, L, et al. Effectiveness of mass oral cholera vaccination in Beira, Mozambique. N Engl J Med 2005; 352: 757.Google Scholar
Popovic, T, Fields, PL, Olsvik, O, et al. Molecular subtyping of toxigenic Vibrio cholerae O139 causing epidemic cholera in India and Bangladesh, 1992–1993. J Infect Dis 1995; 171: 122.Google Scholar

Bibliography

Chandrasekhara, V, Ginsberg, GG. Gallstones and biliary tract disease. In: Scientific American Medicine. Gastroenterology. Hamilton: Dekker Medicine. 2020.Google Scholar
Jenniskens, M, Langouche, L, Vanwijngaerden, Y-M, et al. Cholestatic liver (dys)function during sepsis and other critical illnesses. Intens Care Med 2016; 42: 16.Google Scholar
Johnston, DE, Kaplan, MM. Pathogenesis and treatment of gallstones. N Engl J Med 1993; 328: 412.Google Scholar
LaMont, JT, Isselbacher, KJ. Postoperative jaundice. N Engl J Med 1973; 288: 305.Google Scholar
Vennes, JA, Bond, JH. Approach to the jaundiced patient. Gastroenterology 1983; 84: 1615.Google Scholar

Bibliography

Barceloux, DG. Chromium. J Toxicol Clin Toxicol 1999; 37: 173.Google Scholar
Langley, A, Dameron, CT. Modern metal implant toxicity and anaesthesia. In: Riley, R, ed. Australasian Anaesthesia. Melbourne: ANZCA. 2015; 57.Google Scholar
Mertz, W. Chromium in human nutrition: a review. J Nutr 1993; 123: 626.Google Scholar

Bibliography

Clayton, EW. Beyond myalgic encephalomyelitis/chronic fatigue syndrome: an IOM report on redefining an illness. JAMA 2015; 313: 1101.Google Scholar
Prins, JB, van der Meer, JW, Bleijenberg, G. Chronic fatigue syndrome. Lancet 2006; 367: 346.Google Scholar
Sandler, CX, Lloyd, AR. Chronic fatigue syndrome: progress and possibilities. Med J Aust 2020; 212: 428.Google Scholar

Bibliography

Choi, YH, Im, J-G, Han, BK, et al. Thoracic manifestations of Churg–Strauss syndrome. Chest 2000; 117: 117.Google Scholar
Chumbley, LC, Harrison, EG, DeRemee, RA. Allergic granulomatosis and angiitis (Churg–Strauss syndrome). Mayo Clin Proc 1977; 52: 477.Google Scholar
Churg, J, Strauss, L. Allergic granulomatosis, allergic angiitis, and periarteritis nodosa. Am J Pathol 1951; 27: 277.Google Scholar
Gatenby, PA. Anti-neutrophil cytoplasmic antibody-associated systemic vasculitis: nature or nurture? Intern Med J 2012; 42: 351.Google Scholar
Guillevin, L, Cohen, P, Gayraud, M, et al. Churg–Strauss syndrome: clinical study and long-term follow-up of 96 patients. Medicine 1999; 78: 26.Google Scholar
Lanham, JG, Elkon, KB, Pusey, CD, et al. Systemic vasculitis with asthma and eosinophilia: a clinical approach to the Churg–Strauss syndrome. Medicine 1984; 63: 65.Google Scholar
Sable-Fourtassou, R, Cohen, P, Mahr, A, et al. Antineutrophil cytoplasmic antibodies and the Churg–Strauss syndrome. Ann Intern Med 2005; 143: 632.Google Scholar
Salama, AD. Pathogenesis and treatment of ANCA-associated systemic vasculitis. J R Soc Med 1999; 92: 456.Google Scholar
Wechsler, ME, Finn, D, Gunawardena, D, et al. Churg–Strauss syndrome in patients receiving montelukast as treatment for asthma. Chest 2000; 117: 708.Google Scholar
Wechsler, ME, Garpestad, E, Kocher, O, et al. Pulmonary infiltrates, eosinophilia, and cardiomyopathy following corticosteroid withdrawal in patients with asthma receiving zafirlukast. JAMA 1998; 279: 455.Google Scholar

Bibliography

Gillespie, NC, Lewis, RJ, Pearn, JH, et al. Ciguatera in Australia: occurrence, clinical features, pathophysiology and management. Med J Aust 1986; 145: 584.Google Scholar
Lehane, L. Ciguatera update. Med J Aust 2000; 172: 176.Google Scholar
Morris, JG. Ciguatera fish poisoning. JAMA 1980; 244: 273.Google Scholar
Pearn, JH. Chronic fatigue syndrome: chronic ciguatera poisoning as a differential diagnosis. Med J Aust 1997; 166: 309.Google Scholar

Bibliography

Boots, R, Mead, G, Rawashdeh, O, et al. Circadian hygiene in the ICU environment (CHIE) study. Crit Care Resusc 2020; 22: 361.Google Scholar
Chan, MC, Spieth, PM, Quinn, K, et al. Circadian rhythms: from basic mechanisms to the intensive care unit. Crit Care Med 2012; 40: 246.Google Scholar
Saper, CB, Scammell, TE, Lu, J. Hypothalamic regulation of sleep and circadian rhythms. Nature 2005; 437: 1257.Google Scholar
Telias, I, Wilcox, ME. Sleep and circadian rhythm in critical illness. Crit Care 2019; 23: 82.Google Scholar

Bibliography

Atwole, L, Baqui, AH, Benfield, T, et al. Call for emergency action to limit global temperature increases, restore biodiversity and protect health. J R Soc Med 2021; 114: 422.Google Scholar
Bein, T, Karagiannidis, C, Quintel, M. Climate change, global warming, and intensive care. Intens Care Med 2020; 46: 485.Google Scholar
Capon, AG, Talley, NJ, Horton, RC. Planetary health: what is it and what should doctors do? Med J Aust 2018; 208: 296.Google Scholar
Haines, A, Ebi, K. The imperative for climate action to protect health. N Engl J Med 2019; 380: 263.Google Scholar
Hanna, EG, McIver, LJ. Climate change: a brief overview of the science and health impacts for Australia. Med J Aust 2018; 208: 311.Google Scholar
Rocque, RJ, Beaudoin, C, Ndjaboue, R, et al. Health effects of climate change: an overview of systematic reviews. BMJ Open 2021; 11: e046333.Google Scholar
Salas, RN, Malina, D, Solomon, CG. Prioritizing health in a changing climate. N Engl J Med 2019; 381: 773.Google Scholar
Watts, N, Amann, M, Arnell, N, et al. The 2020 report of the Lancet Countdown on health and climate change: responding to converging crises. Lancet 2021; 397: 129.Google Scholar

Bibliography

Loewenstein, MS. Epidemiology of Clostridium perfringens food poisoning. N Engl J Med 1972; 286: 1026.Google Scholar
Murrell, TGC, Roth, L, Egerton, J, et al. Pig-bel: enteritis necroticans, a study in diagnosis and management. Lancet 1966; 1: 217.Google Scholar
Rechner, PM, Agger, WA, Mruz, K, et al. Clinical features of clostridial bacteremia: a review from a rural area. Clin Infect Dis 2001; 33: 349.Google Scholar
Unsworth, IP, Sharp, PA. Gas gangrene: an 11-year review of 73 cases managed with hyperbaric oxygen. Med J Aust 1984; 140: 256.Google Scholar
Weinstein, L, Barza, MA. Gas gangrene. N Engl J Med 1973; 289: 1129.Google Scholar

Bibliography

Adelman, MW, Woodworth, MH, Shaffer, VO, et al. Critical care management of the patient with Clostridioides difficile. Crit Care Med 2021; 49: 127.Google Scholar
Antonelli, M, Martin-Loeches, I, Dimopoulos, G, et al. Clostrdioides difficile (formerly Clostridium difficile) infection in the critically ill: an expert statement. Intens Care Med 2020; 46: 215.Google Scholar
Blaser, MJ, Smith, PD, Ravdin, JL, et al., eds. Infections of the Gastrointestinal Tract. 2nd edition. New York: Raven Press. 2002.Google Scholar
Bobo, LD, Dubberke, ER, Kollef, M. Clostridium difficile in the ICU. Chest 2011; 140: 1643.Google Scholar
Chauhan, A, Apostolov, R, van Langenberg, D, et al. Faecal microbiota transplantation for recurrent Clostridioides difficile infection: an Australian perspective – effective, safe, yet room for improvement. Intern Med J 2021; 51: 106.Google Scholar
Dial, S, Alrasadi, K, Manoukian, C, et al. Risk of Clostridium difficile diarrhea among hospital inpatients prescribed proton pump inhibitors. CMAJ 2004; 171: 33.Google Scholar
Elliott, B, Chang, BJ, Golledge, CL, et al. Clostridium difficile-associated diarrhoea. Intern Med J 2007; 37: 561.Google Scholar
Fehily, SR, Basnayake, C, Wright, EK, et al. The gut microbiota and gut disease. Intern Med J 2021; 51: 1594.Google Scholar
Guery, B, Galperine, T, Barbut, F. Clostridioides difficile: diagnosis and treatments. BMJ 2019; 366: 14609.Google Scholar
Guy, AY, Kutty, PK. Clostridioides difficile infection. Ann Intern Med 2018; 169: ITC49.Google Scholar
Hempel, S, Newberry, SJ, Maher, AR, et al. Probiotics for the prevention and treatment of antibiotic-associated diarrhea: a systematic review and meta-analysis. JAMA 2012; 307: 1959.Google Scholar
Hickson, M, D’Souza, AL, Muthu, N, et al. Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: randomized double blind placebo controlled trial. BMJ 2007; 335: 80.Google Scholar
Hvas, CL, Jorgensen, SMD, Jorgensen, SP, et al. Fecal microbiota transplantation is superior to fidaxomicin for treatment of recurrent Clostridium difficile infection. Gastroenterology 2019; 156: 1324.Google Scholar
Johnson, S, Clabots, CR, Linn, FV, et al. Nosocomial Clostridium difficile colonization and disease. Lancet 1990; 336: 97.Google Scholar
Jones, EM, MacGowan, AP. Back to basics in management of Clostridium difficile infections. Lancet 1998; 351: 505.Google Scholar
Kelly, CP, Pothoulakis, C, La Mont, JT. Clostridium difficile colitis. N Engl J Med 1994; 330: 257.Google Scholar
Leffler, DA, Lamont, JT. Clostridium difficile infection. N Engl J Med 2015; 372: 1539.Google Scholar
Loo, VG, Bourgault, AM, Poirier, L, et al. Host and pathogen factors for Clostridium difficile infection and colonization. N Engl J Med 2011; 365: 1693.Google Scholar
Lyerly, DM, Krivan, HC, Wilkins, TD. Clostridium difficile: its disease and toxins. Clin Microbiol Rev 1988; 1: 1.Google Scholar
Moayyedi, P, Yuan, Y, Baharith, H, et al. Faecal microbiota transplantation for Clostridium difficile-associated diarrhoea: a systematic review of randomised controlled trials. Med J Aust 2017; 207: 166.Google Scholar
Mylonakis, E, Ryan, ET, Calderwood, SB. Clostridium difficile-associated diarrhea. Arch Intern Med 2001; 161: 525.Google Scholar
Pochapin, M. The effect of probiotics in Clostridium difficile diarrhea. Am J Gastroenterol 2000; 95: S11.Google Scholar
Riley, TV. Epidemic Clostridium difficile. Med J Aust 2006; 185: 133.Google Scholar
Trubiano, JA, Cheng, AC, Korman, TM, et al. Australasian Society of Infectious Diseases updated guidelines for the management of Clostridium difficile infection in adults and children in Australia and New Zealand. Intern Med J 2016; 46: 479.Google Scholar
van Langenberg, DR, Gearry, RB, Wong, H-L, et al. The potential value of faecal lactoferrin as a screening test in hospitalized patients with diarrhoea. Intern Med J 2010; 40: 819.Google Scholar
Young, GP, Bayley, N, Ward, P, et al. Antibiotic-associated colitis caused by Clostridium difficile: relapse and risk factors. Med J Aust 1986; 144: 303.Google Scholar

Bibliography

Aschnoune, K, Faraoni, D, Brohi, K. What’s new in management of traumatic coagulopathy. Intens Care Med 2014; 40: 1727.Google Scholar
Barton, C. Treatment of coagulopathy related to hepatic insufficiency. Crit Care Med 2016; 44: 1927.Google Scholar
Bartoszko, J, Karkouti, K. Managing the coagulopathy associated with cardiopulmonary bypass. J Thromb Haemost 2021; 19: 617.Google Scholar
Chakraverty, R, Davidson, S, Peggs, K, et al. The incidence and cause of coagulopathies in an intensive care population. Br J Haematol 1996; 93: 460.Google Scholar
Conway, EM. Reincarnation of ancient links between coagulation and complement. J Thromb Haemost 2015; 13: S121.Google Scholar
Flier, JS, Underhill, LH. Molecular and cellular biology of blood coagulation. N Engl J Med 1992; 326: 800.Google Scholar
Foley, JH, Conway, EM. Cross-talk pathways between coagulation and inflammation. Circ Res 2016; 118: 1392.Google Scholar
Greenberg, CS, Sane, DC. Coagulation problems in critical care medicine. In: Lumb, PD, Shoemaker, WC, eds. Critical Care: State of the Art, Chapter 9. Fullerton: Society of Critical Care Medicine. 1990; p 187.Google Scholar
Iba, T, Levy, JH. Inflammation and thrombosis: roles of neutrophils, platelets and endothelial cells and their interactions in thrombus formation during sepsis. J Thromb Haemost 2017; 16: 231.Google Scholar
Kornblith, LZ, Moore, HB, Cohen, MJ. Trauma-induced coagulopathy: the past, present, and future. J Thromb Haemost 2019; 17: 852.Google Scholar
Leung, LLK. Hemostasis and its regulation. In: Scientific American Medicine. Hematology. Hamilton: Dekker Medicine. 2020.Google Scholar
Levi, M, ten Cate, H. Disseminated intravascular coagulation. N Engl J Med 1999; 341: 586.Google Scholar
Long, AT, Kenne, E, Jung, R, et al. Contact system revisited: an interface between inflammation, coagulation, and innate immunity. J Thromb Haemost 2016; 14: 427.Google Scholar
Marder, VJ, Aird, WC, Bennett, JS, et al., eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. 6th edition. Philadelphia: Lippincott Williams & Wilkins. 2012.Google Scholar
Mavrommatis, AC, Theodoridis, T, Economou, M, et al. Activation of the fibrinolytioc system and utilization of the coagulation inhibitors in sepsis: comparison with severe sepsis and septic shock. Intens Care Med 2001; 27: 1853.Google Scholar
Moore, HB, Gando, S, Iba, T, et al. Defining trauma-induced coagulopathy with respect to future implications for patient management: communication from the SSC of the ISTH. J Thromb Haemost 2020; 18: 740.Google Scholar
Najem, MY, Couturaud, F, Lemarie, CA. Cytokine and chemokine regulation of venous thromboembolism. J Thromb Haemost 2020; 18: 1009.Google Scholar
Oldenburg, J, Schwaab, R. Molecular biology of blood coagulation. Semin Thromb Hemost 2001; 27: 313.Google Scholar
Peyvandi, F, Mannucci, PM. Rare coagulation disorders. Thromb Haemost 1999; 82: 1207.Google Scholar
Posma, JJN, Posthuma, JJ, Spronk, HMH. Coagulation and non-coagulation effects of thrombin. J Thromb Haemost 2016; 14: 1908.Google Scholar
Rapaport, SI. Preoperative hemostatic evaluation: which tests, if any? Blood 1983; 61: 229.Google Scholar
Roberts, HR, ed. Seventh Novo Nordisk symposium on haemostasis management. Semin Haematol 2004; 41(1): suppl. 1.Google Scholar
Schmaier, AH. The contact system and kallikrein/kinin systems: pathophysiologic and physiologic activities. J Thromb Haemost 2016; 14: 28.Google Scholar
Shamanaev, A, Emsley, J, Gailani, D. Proteolytic activity of contact factor zymogens. J Thromb Haemost 2021; 19: 330.Google Scholar
Spahn, DR, Bouillon, B, Duranteau, J, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition. Crit Care 2019; 23: 98.Google Scholar
Tripodi, A, Mannucci, PM. The coagulopathy of chronic liver disease. N Engl J Med 2011; 365: 147.Google Scholar
Zhang, B, Ginsburg, D. Familial multiple coagulation factor deficiencies: new biologic insight from rare genetic bleeding disorders. J Thromb Haemost 2004; 2: 1564.Google Scholar

Bibliography

Langley, A, Dameron, CT. Modern metal implant toxicity and anaesthesia. In: Riley, R, ed. Australasian Anaesthesia. Melbourne: ANZCA. 2015; p57.Google Scholar
Mao, X, Wong, AA, Crawford, RW. Cobalt toxicity – an emerging clinical problem in patients with meta-on-metal hip prostheses. Med J Aust 2011; 194: 649.Google Scholar

Bibliography

Benowitz, NL. Clinical pharmacology and toxicology of cocaine. Pharmacol Toxicol 1993; 72: 3.Google Scholar
Cregler, LL, Mark, H. Medical complications of cocaine abuse. N Engl J Med 1986; 315: 1495.Google Scholar
Dellinger, RP, Zimmerman, JL. Management of the critically ill cocaine abuser. In: Lumb, PD, Shoemaker, WC, eds. Critical Care: State of the Art, Chapter 6. Fullerton: Society of Critical Care Medicine. 1990; p 115.Google Scholar
de Prost, N, Lefebvre, A, Questel, F, et al. Prognosis of body packers. Intens Care Med 2005; 31: 955.Google Scholar
Dewey, SL, Morgan, AE, Ashby, CR, et al. A novel strategy for the treatment of cocaine addiction. Synapse 1998; 30: 119.Google Scholar
Forrester, JM, Steele, AW, Waldron, JA, et al. Crack lung: an acute pulmonary syndrome with a spectrum of clinical and histopathologic findings. Am Rev Respir Dis 1990; 142: 462.Google Scholar
Gawin, FH. Cocaine addiction: psychology and neurophysiology. Science 1991; 251: 1580.Google Scholar
Hollander, JE. The management of cocaine-associated myocardial ischaemia. N Engl J Med 1995; 333: 1267.Google Scholar
Karch, SB. Cocaine: history, use, abuse. J R Soc Med 1999; 92: 393.Google Scholar
Kloner, RA, Razkalla, SH. Cocaine and the heart. New Engl J Med 2003; 348: 487.Google Scholar
Lange, RA, Hillis, LD. Medical progress: cardiovascular complications of cocaine. N Engl J Med 2001; 345: 351.Google Scholar
Levine, SR, Brust, JCM, Futrell, N, et al. Cerebrovascular complications of the use of the ‘crack’ form of alkaloidal cocaine. N Engl J Med 1990; 323: 699.Google Scholar
Mokhlesi, B, Garinella, PS, Joffe, A, et al. Street drug abuse leading to critical illness. Intens Care Med 2004; 30: 1526.Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Shanti, CM, Lucas, CE. Cocaine and the critical care challenge. Crit Care Med 2003; 31: 1851.Google Scholar
Vasica, G, Tennant, CC. Cocaine use and cardiovascular complications. Med J Aust 2002; 177: 260.Google Scholar

Bibliography

Anderson, RP. Coeliac disease: current approach and future prospects. Intern Med J 2008; 38: 790.Google Scholar
Campbell, CB, Roberts, RK, Cowen, AE. The changing clinical presentation of coeliac disease in adults. Med J Aust 1977; 1: 89.Google Scholar
Duggan, JM. Recent developments in our understanding of adult coeliac disease. Med J Aust 1997; 166: 312.Google Scholar
Duggan, JM. Coeliac disease: the great imitator. Med J Aust 2004; 180: 524.Google Scholar
Fasano, A, Catassi, C. Celiac disease. N Engl J Med 2012; 367: 2419.Google Scholar
Feighery, C. Coeliac disease. BMJ 1999; 319: 236.Google Scholar
Green, PH, Cellier, C. Celiac disease. N Engl J Med 2007; 357: 1731.Google Scholar
Matysiak-Budnik, T, Candalh, C, Dugave, C, et al. Alteration of the intestinal transport and processing of gliadin peptides in celiac disease. Gastroenterolgy 2003; 125: 696.Google Scholar
Niland, B, Cash, BD. Health benefits and adverse effects of a gluten-free diet in non-celiac disease patients. Gastroenterol Hepatol 2018; 14: 82.Google Scholar
Potter, MDE, Walker, MM, Talley, NJ. Non-coeliac gluten or wheat sensitivity: emerging disease or misdiagnosis? Med J Aust 2017; 207: 211.Google Scholar
Reeves, GEM. Coeliac disease: against the grain. Intern Med J 2004; 34: 521.Google Scholar
Walker, MM, Ludvigsson, JF, Sanders, DS. Coeliac disease: review of diagnosis and management. Med J Aust 2017; 207: 173.Google Scholar

Bibliography

Folpini, A, Furfori, P. Colchicine toxicity: clinical features and treatment. J Toxicol Clin Toxicol 1995; 33: 71.Google Scholar
Imazio, M, Nidorf, M. Colchicine and the heart. Eur Heart J 2021; 42: 2745.Google Scholar
Maxwell, MJ, Muthu, P, Pritty, PE. Accidental colchicine overdose: a case report and literature review. Emerg Med J 2002: 19: 265.Google Scholar
Murray, SS, Kramlinger, KG, McMichan, JC, et al. Acute toxicity after excessive ingestion of colchicine. Mayo Clin Proc 1983; 58: 523.Google Scholar
Putterman, C, Ben-Chetrit, E, Caraco, Y, et al. Colchicine intoxication: clinical pharmacology, risk factors, features and management. Semin Arthritis Rheum 1991; 21: 143.Google Scholar
Stemmermann, GN, Hayashi, T. Colchicine intoxication: a reappraisal of its pathology based on study of three fatal cases. Human Pathol 1971; 2: 321.Google Scholar

Bibliography

Berentsen, S, Roth, A, Randen, U, et al. Cold agglutinin disease: current challenges and future prospects. J Blood Med 2019; 10: 93.Google Scholar
Dowd, PM. Cold-related disorders. Prog Dermatol 1987; 21: 1.Google Scholar
Frank, M, Atkinson, JP, Gadek, J. Cold agglutinins and cold agglutinin disease. Annu Rev Med 1977; 28: 291.Google Scholar

Bibliography

Antonelli, M, Martin-Loeches, I, Dimopoulos, G, et al. Clostrdioides difficile (formerly Clostridium difficile) infection in the critically ill: an expert statement. Intens Care Med 2020; 46: 215.Google Scholar
Blaser, MJ, Smith, PD, Ravdin, JL, et al., eds. Infections of the Gastrointestinal Tract. 2nd edition. New York: Raven Press. 2002.Google Scholar
Bobo, LD, Dubberke, ER, Kollef, M. Clostridium difficile in the ICU. Chest 2011; 140: 1643.Google Scholar
Field, M, Rao, MC, Chang, EB. Intestinal electrolyte transport and diarrheal disease. N Engl J Med 1989; 321: 800 & 879.Google Scholar
Guery, B, Galperine, T, Barbut, F. Clostridioides difficile: diagnosis and treatments. BMJ 2019; 366: 14609.Google Scholar
Guy, AY, Kutty, PK. Clostridioides difficile infection. Ann Intern Med 2018; 169: ITC49.Google Scholar
Hickson, M, D’Souza, AL, Muthu, N, et al. Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: randomized double blind placebo controlled trial. BMJ 2007; 335: 80.Google Scholar
Johnson, S, Clabots, CR, Linn, FV, et al. Nosocomial Clostridium difficile colonization and disease. Lancet 1990; 336: 97.Google Scholar
Leffler, DA, Lamont, JT. Clostridium difficile infection. N Engl J Med 2015; 372: 1539.Google Scholar
Linedale, EC, Andrews, JM. Diagnosis and management of irritable bowel syndrome: a guide for the generalist. Med J Aust 2017; 207: 309.Google Scholar
Loo, VG, Bourgault, AM, Poirier, L, et al. Host and pathogen factors for Clostridium difficile infection and colonization. N Engl J Med 2011; 365: 1693.Google Scholar
Moayyedi, P, Yuan, Y, Baharith, H, et al. Faecal microbiota transplantation for Clostridium difficile-associated diarrhoea: a systematic review of randomised controlled trials. Med J Aust 2017; 207: 166.Google Scholar
Pochapin, M. The effect of probiotics in Clostridium difficile diarrhea. Am J Gastroenterol 2000; 95: S11.Google Scholar
Schlager, TA, Guerrant, RL. Seven possible mechanisms for Escherichia coli diarrhea. Infect Dis Clin North Am 1988; 2: 607.Google Scholar
Soo, WT, Bryant, RV, Costello, SP. Faecal microbiota transplantation: indications, evidence and safety. Aust Prescriber 2020 43: 36.Google Scholar
Trubiano, JA, Cheng, AC, Korman, TM, et al. Australasian Society of Infectious Diseases updated guidelines for the management of Clostridium difficile infection in adults and children in Australia and New Zealand. Intern Med J 2016; 46: 479.Google Scholar
van Rheenen, PF, van de Vijver, E, Fidler, V. Faecal calprotectin for screening of patients with suspected inflammatory bowel disease: diagnostic meta-analysis. BMJ 2010; 341: c3369.Google Scholar
van Langenberg, DR, Gearry, RB, Wong, H-L, et al. The potential value of faecal lactoferrin as a screening test in hospitalized patients with diarrhoea. Intern Med J 2010; 40: 819.Google Scholar

Bibliography

Colten, HR, Rosen, FS. Complement deficiencies. Annu Rev Immunol 1992; 10: 809.Google Scholar
Conway, EM. Reincarnation of ancient links between coagulation and complement. J Thromb Haemost 2015; 13: S121.Google Scholar
Schifferli, JA, Ng, YC, Peters, DK. The role of complement and its receptors in the elimination of immune complexes. N Engl J Med 1986; 315: 488.Google Scholar
Tomlinson, S. Complement defense mechanisms. Curr Opin Immunol 1993; 5: 83.Google Scholar
Van de Meer, JWM, Kullberg, BJ. Defects in host-defense mechanisms. In: Rubin, RH, Young, LS, eds. Clinical Approach to Infections in the Compromised Host. 4th edition. New York: Plenum. 2002.Google Scholar

Bibliography

Owen, CG, Shah, A, Henshaw, K, et al. Topical treatment for seasonal allergic conjunctivitis: systematic review and meta-analysis of efficacy and effectiveness. Br J Gen Pract 2004; 54: 451.Google Scholar

Bibliography

Blumenfeld, JD, Sealey, JE, Schlussel, Y, et al. Diagnosis and treatment of primary hyperaldosteronism. Ann Intern Med 1994; 121: 877.Google Scholar
Editorial. Corticosteroids and hypothalamic-pituitary-adrenocortical function. BMJ 1980; 280: 813.Google Scholar
Gittler, RD, Fajans, SS. Primary aldosteronism (Conn’s syndrome). J Clin Endocrinol Metab 1995; 80: 3438.Google Scholar
Melby, JC. Diagnosis of hyperaldosteronism. Endocrinol Metab Clin North Am 1991; 20: 247.Google Scholar
Quinn, SJ, Williams, GH. Regulation of aldosterone secretion. Ann Rev Physiol 1988; 50: 409.Google Scholar
Yang, J, Fuller, PJ, Stowasser, M. Is it time to screen all patients with hypertension for primary aldosteronism? Med J Aust 2018; 209: 57.Google Scholar

Bibliography

Black, CJ, Ford, AC. Chronic idiopathic constipation in adults: epidemiology, pathophysiology, diagnosis and clinical management. Med J Aust 2018; 209: 86.Google Scholar

Bibliography

Barcelouz, DG. Copper. J Toxicol Clin Toxicol 1999; 37: 217.Google Scholar
Chelly, J, Monaco, AP. Cloning the Wilson disease gene. Nature Genetics 1993; 5: 317.Google Scholar
Ferenci, P. Wilson’s disease. Clin Liver Dis 1998; 2: 31.Google Scholar
Gaetke, LM, Chow, CK. Copper toxicity, oxidative stress, and antioxidant nutrients. Toxicology 2003; 189: 147.Google Scholar
Gitlin, N. Wilson’s disease: the scourge of copper. J Hepatol 1998; 28: 734.Google Scholar
Lazarchick, J. Update on anaemia and neutropenia in copper deficiency. Curr Opin Hematol 2012; 19: 58.Google Scholar
Scheinberg, IH, Sternlieb, I. Wilson’s disease. Annu Rev Med 1965; 16: 119.Google Scholar
Schilsky, ML. Wilson disease: genetic basis of copper toxicity and natural history. Semin Liver Dis 1996; 16: 83.Google Scholar
Sternlieb, I. Perspectives on Wilson’s disease. Hepatology 1990; 12: 1234.Google Scholar
Strickland, GT, Leu, M. Wilson’s disease – clinical and laboratory manifestations in 40 patients. Medicine 1975; 54: 113.Google Scholar
Wilson, SAK. Progressive lenticular degeneration. A familial nervous disease associated with cirrhosis of the liver. Brain 1912; 34: 295.Google Scholar
Yarze, JC, Martin, P, Munoz, SJ, et al. Wilson’s disease: current status. Am J Med 1992; 92: 643.Google Scholar

Bibliography

Bond, K, Williams, E, Howden, BP, et al. Serological tests for COVID-19. Med J Aust 2020; 213: 397.Google Scholar
Fischetti, M, ed. Inside the coronavirus. Sci Am 2020; 323: 28.Google Scholar
Iba, T, Levy, JH, Levi, M, et al. Coagulopathy of coronavirus disease 2019. Crit Care Med 2020; 48: 1358.Google Scholar
Jevremovic, V, Ison, MG. Coronaviruses: HCOV, SARS-COV, MERS-COV, and COVID-19. In: Scientific American Medicine. Infectious Diseases. Hamilton: Dekker Medicine. 2020.Google Scholar
Thevarajan, I, Buising, KL, Cowie, BC. Clinical presentation and management of COVID-19. Med J Aust 2020; 213: 134.Google Scholar
Tsang, JLY, Binnie, A, Fowler, RA. Twenty articles that critical care clinicians should read about COVID-19. Intens Care Med 2021; 47: 337.Google Scholar
Various. COVID-19: implications for health care. Med J Aust 2020; 212: no. 10.Google Scholar
Various. The coronavirus pandemic. Sci Am 2020; 322: no. 6.Google Scholar
Various. Special section on COVID-19. Intens Care Med 2020; 46: no. 6.Google Scholar
Various. Multiple articles on COVID-19. Intens Care Med 2020; 46: no. 8.Google Scholar
Various. How COVID changed the world. Sci Am 2022; 326: no. 3.Google Scholar

Bibliography

Canning, BJ, Chang, AB, Bolser, DC, et al. Anatomy and neurophysiology of cough: CHEST guideline and expert panel report. Chest 2014; 146: 1633.Google Scholar
Gibson, P, Wang, G, McGarvey, L, et al. Treatment of unexplained chronic cough: CHEST guideline and expert panel report. Chest 2016; 149: 27.Google Scholar
Irwin, RS, French, CT, Lewis, SZ, et al. Overview of the management of cough: CHEST guideline and expert panel report. Chest 2014; 146: 885.Google Scholar
Jiang, M, Guan, W-j, Fang, Z-f, et al. A critical review of the quality of cough clinical practice guidelines. Chest 2016; 150: 777.Google Scholar
Lee, KK, Davenport, PW, Smith, JA, et al. Global physiology and pathophysiology of cough: part 1: cough phenomenology – CHEST guideline and expert panel report. Chest 2021; 159: 282.Google Scholar

Bibliography

Black, S, Kushner, I, Samols, D. C-reactive protein. J Biol Chem 2004; 279: 48487.Google Scholar
Gabay, C, Kushner, I. Acute phase proteins and other systemic responses to inflammation. N Engl J Med 1999; 340: 448.Google Scholar
Harrison, M. Erythrocyte sedimentation rate and C-reactive protein. Aust Prescriber 2015; 38: 93.Google Scholar
Ho, KM, Lipman, J. An update on C-reactive protein for intensivists. Anaesth Intens Care 2009; 37: 234.CrossRefGoogle ScholarPubMed
Pepys, MB. C-reactive protein fifty years on. Lancet 1981; I: 653.CrossRefGoogle Scholar
Pepys, MB, Berger, A. The renaissance of C-reactive protein. BMJ 2001; 322: 4.CrossRefGoogle ScholarPubMed
Povoa, P. C-reactive protein: a valuable marker of sepsis. Intens Care Med 2002; 28: 235.CrossRefGoogle ScholarPubMed
Reny, J-L, Vuagnat, A, Ract, C, et al. Diagnosis and follow-up of infections in intensive care patients: value of C-reactive protein compared with other clinical and biological variables. Crit Care Med 2002; 30: 529.Google Scholar
Ridker, PM, Bassuk, SS, Toth, PP. C-reactive protein and risk of cardiovascular disease. Curr Atherosclerosis Rep 2003; 5: 341.Google Scholar

Bibliography

Andrews, NJ, Farrington, CP, Cousens, SN, et al. Incidence of variant Creutzfeldt-Jakob disease in the UK. Lancet 2000; 356: 481.Google Scholar
Beale, AJ. BSE and vCJD: what is the future? J R Soc Med 2001; 94: 207.Google Scholar
Beale, AJ. More on BSE/vCJD. J R Soc Med 2001; 94: 611.Google Scholar
Brown, P, Cervenakova, L, Goldfarb, LG, et al. Iatrogenic Creutzfeldt-Jakob disease: an example of the interplay between ancient genes and modern medicine. Neurology 1994; 44: 291.CrossRefGoogle ScholarPubMed
Brown, P, Will, RG, Bradley, R, et al. Bovine spongiform encephalopathy and variant Creutzfeldt-Jakob disease: background, evolution and current concerns. Emerg Infect Dis 2001; 7: 1.Google Scholar
Bruce, ME, Will, RG, Ironside, JW, et al. Transmissions of mice indicate that ‘new variant’ CJD is caused by the BSE agent. Nature 1997; 389: 448.Google Scholar
Collins, SJ, Lawson, VA, Masters, CL. Transmissible spongiform encephalopathy. Lancet 2004; 363: 51.CrossRefGoogle Scholar
Collins, S, Masters, CL. Iatrogenic and zoonotic Creutzfeldt-Jakob disease. Med J Aust 1996; 164: 598.Google Scholar
DeArmond, SJ. Overview of the transmissible spongiform encephalopathies: prion protein disorders. Br Med Bull 1993; 49: 725.Google Scholar
Edney, ATB. Spongiform encephalopathies: still many unanswered questions. J R Soc Med 1996; 89: 423.Google Scholar
Hill, AF, Butterworth, RJ, Joiner, S, et al. Investigation of variant Creutzfeldt-Jakob disease and other prion diseases with tonsil biopsy samples. Lancet 200; 353: 183.Google Scholar
Holman, RC, Khan, AS, Belay, ED, et al. Creutzfeldt-Jakob disease in the United States, 1979–1994: using national mortality data to assess the possible occurrence of variant cases. Emerg Infect Dis 1996; 2: 4.Google Scholar
Ironside, JW, Head, MW. Variant Creutzfeldt-Jakob disease and its transmission by blood. J Thromb Haemost 2003; 1: 1479.Google Scholar
Koehler, AP, Athan, E, Collins, SJ. Updated Creutzfeldt-Jakob disease infection control guidelines: sifting facts from fiction. Med J Aust 2013; 198: 245.Google Scholar
Llewelyn, CA, Hewitt, PE, Knight, RS, et al. Possible transmission of variant Creutzfeldt-Jakob disease by blood transfusion. Lancet 2004; 363: 417.Google Scholar
Masters, CL. The emerging European epidemic of variant Creutzfeldt-Jakob disease and bovine spongiform encephalopathy. Med J Aust 2001; 174: 160.Google Scholar
Mitchell, AR. Creutzfeldt-Jakob disease. Lancet 1996; 347: 1704.Google Scholar
Parchi, P, Castellani, R, Capellari, S, et al. Molecular basis of phenotypic variability in sporadic Creutzfeldt-Jakob disease. Ann Neurol 1996; 39: 767.Google Scholar
Pattison, J. The emergence of bovine spongiform encephalopathy and related diseases. Emerg Infect Dis 1998; 4: 3.Google Scholar
Prusiner, SB. Molecular biology of prion disease. Science 1991; 252: 1515.Google Scholar
Prusiner, SB, Hsiao, KK. Human prion diseases. Ann Neurol 1994; 35: 385.CrossRefGoogle ScholarPubMed
Venters, GA. New variant Creutzfeldt-Jakob disease: the epidemic that never was. BMJ 2001; 323: 858.Google Scholar
Will, RG. Gene influence on Creutzfeldt-Jakob disease. Lancet 1994; 344: 1310.Google Scholar
Will, RG, Ironside, JW, Zeidler, M, et al. A new variant of Creutzfeldt-Jakob disease in the UK. Lancet 1996; 347: 921.Google Scholar
Wilson, K, Code, C, Ricketts, MN. Risk of acquiring Creutzfeldt-Jakob disease from blood transfusions. BMJ 2000; 321: 17.Google Scholar
Zerr, I, Schulz-Schaeffer, WJ, Giese, A, et al. Current clinical diagnosis in Creutzfeldt-Jakob disease: identification of uncommon variants. Ann Neurol 2000; 48: 323.Google Scholar

Bibliography

Montgomery, WW. Cricoarytenoid arthritis. Laryngoscope 1963; 73: 801.Google Scholar

Bibliography

Jolley, SE, Bunnell, AE, Hough, CL. ICU-acquired weakness. Chest 2016; 150: 1129.Google Scholar
Kress, JP, Hall, JB. ICU-acquired weakness and recovery from critical illness. N Engl J Med 2014; 370: 1626.Google Scholar
Vanhorebeek, I, Latronico, N, Van den Berghe, G. ICU-acquired weakness. Intens Care Med 2020; 46: 637.Google Scholar

Bibliography

Chang, CC, Hall, V, Cooper, C, et al. Consensus guidelines for the diagnosis and management of cryptococcosis and rare yeast infections in the haematology/oncology setting, 2021. Intern Med J 2021; 51: 118.Google Scholar
Nadrous, HF, Antonios, VS, Terrell, CL, et al. Pulmonary cryptococcosis in nonimmunocompromised patients. Chest 2003; 124: 2143.Google Scholar

Bibliography

Al-Kurd, A, Mazeh, H. The endocrine system: adrenal glands. In: Scientific American Medicine. Organ Systems: Anatomy & Physiology. Hamilton: Dekker Medicine. 2020.Google Scholar
Aron, DC, Findling, JW, Tyrrell, JB. Cushing’s disease. Endocrinol Metab Clin North Am 1987; 16: 705.Google Scholar
Bertagna, X. New causes of Cushing’s syndrome. N Engl J Med 1992; 327: 1024.Google Scholar
Editorial. Corticosteroids and hypothalamic-pituitary-adrenocortical function. BMJ 1980; 280: 813.Google Scholar
Jeffcoate, WJ. Treating Cushing’s disease. BMJ 1988; 296: 227.Google Scholar
Johanssen, S, Allolio, B. Mifepristone (RU 486) in Cushing’s syndrome. Eur J Endocrinol 2007; 157: 561.Google Scholar
Kaye, TB, Crapo, L. The Cushing syndrome: an update on diagnostic tests. Ann Intern Med 1990; 112: 434.Google Scholar
Nieman, L. Cushing syndrome. In: Scientific American Medicine. Endocrinology & Metabolism. Hamilton: Dekker Medicine. 2020.Google Scholar
Odell, WD. Ectopic ACTH secretion: a misnomer. Endocrinol Metab Clin North Am 1991; 20: 371.Google Scholar

Bibliography

Curry, SC, Arnold-Capell, P. Nitroprusside, nitroglycerin, and angiotensin-converting enzyme inhibitors. Crit Care Clin 1991; 7: 555.CrossRefGoogle ScholarPubMed
Freeman, AG. Optic neuropathy and chronic cyanide intoxication: a review. J R Soc Med 1988; 81: 103.Google Scholar
Kulig, K. Cyanide antidotes and fire toxicology. N Engl J Med 1991; 325: 1801.Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Robin, ED, McCauley, R. Nitroprusside-related cyanide poisoning. Chest 1992; 102: 1842.Google Scholar
Vick, JA, Froehlich, H. Treatment of cyanide poisoning. Milit Med 1991; 156: 330.Google Scholar
Zerbe, NF, Wagner, BK. Use of vitamin B12 in the treatment and prevention of nitroprusside-induced cyanide toxicity. Crit Care Med 1993; 21: 465.Google Scholar

Bibliography

Bell, SC, Mall, MA, Gutierrez, H, et al. The future of cystic fibrosis care: a global perspective. Lancet Respir Med 2020; 8: 65.Google Scholar
Brock, DJH. Prenatal screening for cystic fibrosis. Lancet 1996; 347: 148.Google Scholar
Davidson, DJ, Porteous, DJ. The genetics of cystic fibrosis lung disease. Thorax 1998; 53: 389.Google Scholar
Editorial. What is cystic fibrosis? N Engl J Med 2002; 347: 439.Google Scholar
Edmondson, C, Davies, JC. Current and future treatment options for cystic fibrosis lung disease: latest evidence and clinical implications. Ther Adv Chronic Dis 2016; 7: 170.Google Scholar
Elborn, JS. Cystic fibrosis. Lancet 2016; 388: 2519.Google Scholar
Elborn, JS, Shale, DJ, Britton, JR. Cystic fibrosis: current survival and population estimates to the year 2000. Thorax 1991; 46: 881.Google Scholar
Elkins, MR, Robinson, M, Rose, BR, et al. A controlled trial of long-term inhaled hypertonic saline in patients with cystic fibrosis. N Engl J Med 2006; 354: 229.Google Scholar
Flume, PA, Mogayzel, PJ, Robinson, KA, et al. Cystic fibrosis pulmonary guidelines: pulmonary complications of haemoptysis and pneumothorax. Am J Respir Crit Care Med 2010; 182: 298.Google Scholar
Frizzell, RA. Functions of the cystic fibrosis transmembrane conductance regulator protein. Am J Respir Crit Care Med 1995; 151: S54.Google Scholar
Fuchs, HJ, Borowitz, DS, Christiansen, DH, et al. Effect of recombinant human DNase on exacerbations of respiratory symptoms and on pulmonary function in patients with cystic fibrosis. N Engl J Med 1994; 331: 637.Google Scholar
Hilman, BC. Genetic and immunologic aspects of cystic fibrosis. Ann Allergy Asthma Immunol 1997; 79: 379.Google Scholar
Hoffman, LR, Ramsey, BW. Cystic fibrosis therapeutics: the road ahead. Chest 2013; 143: 207.Google Scholar
King, CS, Brown, AW, Aryal, S, et al. Critical care of the adult patient with cystic fibrosis. Chest 2019; 155: 202.Google Scholar
Knowles, MR, Church, NL, Waltner, WE, et al. A pilot study of aerosolized amiloride for the treatment of lung disease in cystic fibrosis. N Engl J Med 1990; 322: 1189.Google Scholar
Masel, P. Management of cystic fibrosis in adults. Aust Prescriber 2012; 35: 118.Google Scholar
Merlo, CA, Boyle, MP. Modifier genes in cystic fibrosis lung disease. J Lab Clin Med 2003; 141: 237.Google Scholar
Mills, CE. Nutrition and lung disease in cystic fibrosis. Clin Chest Med 2007; 28: 319.Google Scholar
Orenstein, DM. Diagnosis of cystic fibrosis. Semin Respir Med 1985; 6: 252.CrossRefGoogle Scholar
Pittman, JE, Ferkol, TW. The evolution of cystic fibrosis care. Chest 2015; 148: 533.Google Scholar
Robinson, M, Regnis, JA, Bailey, DL, et al. Effect of hypertonic saline, amiloride, and cough on mucociliary clearance in patients with cystic fibrosis. Am J Respir Crit Care Med 1996; 153: 1503.Google Scholar
Rosenstein, BJ, Zeitlin, PL. Cystic fibrosis. Lancet 1998; 351: 277.Google Scholar
Rowe, SM, Clancy, JP, Sorscher, EJ. A breath of freash air. Sci Am 2011; 305: 49.Google Scholar
Rowe, SM, Miller, S, Sorscher, EJ. Cystic fibrosis. N Engl J Med 2005; 352: 1992.Google Scholar
Rubin, BK. Emerging therapies for cystic fibrosis lung disease. Chest 1999; 115: 1120.Google Scholar
Sawyer, SM, Robertson, CF, Bowes, G. Cystic fibrosis: a changing clinical perspective. Aust NZ J Med 1997; 27: 6.Google Scholar
Stoltz, DA, Meyerholz, DK, Welsh, MJ. Origins of cystic fibrosis lung disease. N Engl J Med 2015; 372: 351.Google Scholar
The Cystic Fibrosis Genotype-Phenotype Consortium. Correlation between genotype and phenotype in patients with cystic fibrosis. N Engl J Med 1993; 329: 1308.Google Scholar
Tsui, L-C. The cystic fibrosis transmembrane conductance regulator gene. Am J Respir Crit Care Med 1995; 151: S47.Google Scholar
Wallis, G. Diagnosing cystic fibrosis: blood, sweat, and tears. Arch Dis Child 1997; 76: 85.Google Scholar
Welsh, MJ, Smith, AE. Cystic fibrosis. Sci Am 1995; 273: 36.Google Scholar
Yankaskas, JR, Mallory, GB. Lung transplantation in cystic fibrosis: consensus conference statement. Chest 1998; 113: 217.Google Scholar
Yankaskas, JR, Marshall, BC, Sufian, B, et al. Cystic fibrosis adult care: consensus conference report. Chest 2004; 125: 1S.Google Scholar

Bibliography

Goodgame, RW. Gastrointestinal cytomegalovirus disease. Ann Intern Med 1993; 119: 924.Google Scholar
Jacobson, MA, Mills, J. Serious cytomegalovirus disease in acquired immunodeficiency syndrome (AIDS): clinical findings, diagnosis, and treatment. Ann Intern Med 1988; 108: 585.Google Scholar
Lancini, D, Faddy, HM, Flower, R, et al. Cytomegalovirus disease in immunocompetent adults. Med J Aust 2014; 201: 578.Google Scholar
Merigan, TC, Renlund, DG, Keay, S, et al. A controlled trial of ganciclovir to prevent cytomegalovirus disease after heart transplantation. N Engl J Med 1992; 326: 1182.Google Scholar
Yong, MK, Gottlieb, D, Lindsay, J, et al. New advances in the management of cytomegalovirus in allogenic haemopoietic stem cell transplantation. Intern Med J 2020; 50: 277.Google Scholar

Bibliography

Balas, MC, Weinhouse, GL, Denehy, L, et al. Interpreting and implementing the 2018 pain, agitation/sedation, delirium, immobility, and sleep disruption clinical practice guideline. Crit Care Med 2018; 46: 1464.Google Scholar
Barr, J, Fraser, GL, Puntillo, K, et al. Clinical practice guidelines for the management of pain, agitation, and delirium in adult patients in the intensive care unit. Crit Care Med 2013; 41: 263.Google Scholar
Barr, J, Pandharipande, PP, eds. Creating and implementing the 2013 ICU pain, agitation, and delirium guidelines for adult ICU patients. Crit Care Med 2013; 41: S1.Google Scholar
Bergeron, N, Dubois, MJ, Dumont, M, et al. Intensive Care Delirium Screening Checklist: evaluation of a new screening tool. Intens Care Med 2001; 27: 859.CrossRefGoogle ScholarPubMed
Bienvenu, OJ, Neufeld, KJ, Needham, DM. Treatment of four psychiatric emergencies in the intensive care unit. Crit Care Med 2012; 40: 2662.Google Scholar
Brown, CH, Dowdy, D. Risk factors for delirium: are systemic reviews enough? Crit Care Med 2015; 43: 232.Google Scholar
Brown, TM. Drug-induced delirium. Semin Clin Neuropsychiatry 2000; 5: 113.Google Scholar
Burry, LD, Cheng, W, Williamson, DR, et al. Pharmacological and non-pharmacological interventions to prevent delirium in critically ill patients: a systematic review and network meta-analysis. Intens Care Med 2021; 47: 943.Google Scholar
Devlin, JW, Fong, JJ, Fraser, GL, et al. Delirium assessment in the critically ill. Intens Care Med 2007; 33: 929.Google Scholar
Devlin, JW, Skrobik, Y, Gelinas, C, et al. Executive summary: clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med 2018; 46: 1532.Google Scholar
Dubois, M-J, Bergeron, N, Dumont, M, et al. Delirium in an intensive care unit: a study of risk factors. Intens Care Med 2001; 27: 1297.Google Scholar
Ely, EW, Gautam, S, Margolin, R, et al. The impact of delirium in the intensive care unit on hospital length of stay. Intens Care Med 2001; 27: 1892.Google Scholar
Figueroa-Ramos, MI, Arroya-Novoa, CM, Lee, KA, et al. Sleep and delirium in ICU patients: a review of mechanisms and manifestations. Intens Care Med 2009; 35: 781.Google Scholar
Honarmand, K, Rafay, H, Le, J, et al. A systematic review of risk factors for sleep disruption in critically ill adults. Crit Care Med 2020; 48: 1066.Google Scholar
Jones, D, Hodgson, CL, Shehabi, Y, et al. Reducing confusion about post-cardiotomy delirium. Crit Care Resusc 2017; 19: 5.Google Scholar
Kronzer, VL, Avidan, MS. Preventing postoperative delirium: all that glisters is not gold. Lancet 2016; 388: 1854.Google Scholar
Luetz, A, Heymann, A, Radtke, FM, et al. Different assessment tools for intensive care unit delirium: which score to use? Crit Care Med 2010; 38: 409.Google Scholar
Neto, AS, Nassar, AP, Cardoso, SO, et al. Delirium screening in critically ill patients: a systematic review and meta-analysis. Crit Care Med 2012; 40: 1946.Google Scholar
Ouimet, S, Kavanagh, BP, Gottfried, SB. Incidence, risk factors and consequences of ICU delirium. Crit Care Med 2007; 33: 66.Google Scholar
Pandharipande, P, Jackson, J, Ely, EW. Delirium: acute cognitive dysfunction in the critically ill. Curr Opin Crit Care 2005; 11: 360.Google Scholar
Pun, BT, Ely, EW. The importance of diagnosing and managing ICU delirium. Chest 2007; 132: 624.Google Scholar
Riker, RR, Fraser, GL. Delirium – beyond the CAM-ICU. Crit Care Med 2020; 48: 134.Google Scholar
Salluh, JI, Wang, H, Schneider, EB, et al. Outcome of delirium in critically ill patients: systematic review and meta-analysis. BMJ 2015: 350: h2538.Google Scholar
Shehabi, Y, Howe, BD, Bellomo, R, et al. Early sedation with dexmedetomidine in critically ill patients. N Engl J Med 2019; 380: 2506.Google Scholar
Stollings, JL, Kotfis, K, Chanques, G, et al. Delirium in critical illness: clinical manifestations, outcomes, and management. Intens Care Med 2021; 47: 1089.Google Scholar
Weber, JB, Coverdale, JH, Kunik, ME. Delirium: current trends in prevention and treatment. Intern Med J 2004; 34: 115.Google Scholar

Bibliography

Arie, T. Pseudodementia. BMJ 1983; 286:1301.Google Scholar
Bryson, HM, Benfield, P. Donepezil. Drugs & Aging 1997; 10: 234.Google Scholar
Chong, TWH, Macpherson, H, Schaumberg, MA, et al. Dementia prevention: the time to act is now. Med J Aust 2021; 214: 302.Google Scholar
Fischman, J, ed. A new era for Alzheimer’s. Sci Am 2020; 322: 22.Google Scholar
Guttman, R, Seleski, M, eds. Diagnosis, Management and Treatment of Dementia. Chicago: American Medical Association. 1999.Google Scholar
Harvey, K, Stough, C. Caution with complementaries for cognitive impairment. Aust Prescriber 2011; 34: 19.Google Scholar
Katzman, R. Alzheimer’s disease. N Engl J Med 1986; 314: 964.Google Scholar
LoGiudice, D. Dementia: an update to refresh your memory. Intern Med J 2002; 32: 535.Google Scholar
Mayeux, R, Saunders, AM, Shea, S, et al. Utility of the apolipoprotein E genotype in the diagnosis of Alzheimer’s disease. N Engl J Med 1998; 338: 506.Google Scholar
Morantz, RA, Walsh, JW, eds. Brain Tumors. New York: Marcel Dekker. 1994.Google Scholar
Panegyres, PK, Goldblatt, J, Walpole, I, et al. Genetic testing for Alzheimer’s disease. Med J Aust 2000; 172: 339.Google Scholar
Saunders, AM, Hulette, C, Welsh-Bohmer, KA, et al. Specificity, sensitivity, and predictive value of apolipoprotein-E genotyping for sporadic Alzheimer’s disease. Lancet 1996; 348: 90.Google Scholar
Schmaier, AH. Alzheimer disease is in part a thrombohaemorrhagic disorder. J Thromb Haemost 2016; 14: 991.Google Scholar
Shah, A, Royston, MC. Donepezil for dementia. J R Soc Med 1997; 90: 531.Google Scholar
Smith, JS, Kiloh, LG. The investigation of dementia. Lancet 1981; 1: 824.Google Scholar
Wells, CE, ed. Dementia. Philadelphia: F.A. Davis. 1977.Google Scholar

Bibliography

Brooks, BR, Walker, DL. Progressive multifocal leukoencephalopathy. Neurol Clin 1984; 2: 299.Google Scholar
Cortese, I, Muranski, P, Enose-Akahata, Y, et al. Pembrolizumab treatment for progressive multifocal leukoencephalopathy. N Engl J Med 2019; 380: 1597.Google Scholar
Lennon, VA, Wingerchuk, DM, Kryzer, TJ, et al. A serum autoantibody marker of neuromyelitis optica: distinction from multiple sclerosis. Lancet 2004: 364: 2106.Google Scholar
Lindsey, JW. Multiple sclerosis and related disorders. In: Scientific American Medicine. Neurology. Hamilton: Dekker Medicine. 2020.Google Scholar
Tippett, DS, Fishman, PS, Panitch, HS. Relapsing transverse myelitis. Neurology 1991; 41: 703.Google Scholar
Tormochlen, LM. Toxic leukoencephalopathies. Neurol Clin 2011; 29: 591.Google Scholar
Tselis, A. Acute disseminated encephalomyelitis. Curr Treat Options Neurol 2001; 3: 537.Google Scholar
Wingerchuk, DM, Weinshenker, BG. Neuromyelitis optica. Curr Treat Options Neurol 2005; 71: 173.Google Scholar
Yamamura, T, Kleiter, I, Fujihara, K, et al. Trial of satralizumab in neuromyelitis optica spectrum disorder. N Engl J Med 2019; 381: 2114.Google Scholar

Bibliography

Bhatt, S, Gething, PW, Brady, OJ, et al. The global distribution and burden of dengue. Nature 2013; 496: 504.Google Scholar
Gubler, DJ, Clark, GG. Dengue/dengue hemorrhagic fever: the emergence of a global health problem. Emerg Infect Dis 1995; 1: 2.Google Scholar
Halstead, SB. Dengue. Lancet 2007; 370: 1644.Google Scholar
Rigau-Perez, JG, Clark, GG, Gubler, DJ, et al. Dengue and dengue haemorrhagic fever. Lancet 1998; 352: 971.Google Scholar
Simmons, CP, Farrar, JJ, Nguyen, vV, et al. Dengue. New Engl J Med 2012; 366: 1423.Google Scholar
Webster, DP, Farrar, J, Rowland-Jones, S. Progress towards a dengue vaccine. Lancet Infect Dis 2009; 9: 678.Google Scholar
Wilder-Smith, A. The expanding geographic range of dengue in Australia. Med J Aust 2021; 215: 171.Google Scholar

Bibliography

Aneja, S, Taylor, JS. Contact dermatitis and related disorders. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Hanifin, JM. Atopic dermatitis: new therapeutic considerations. J Am Acad Dermatol 1991; 24: 1097.Google Scholar
Kalliomaki, M, Salminen, S, Poussa, T, et al. Probiotics and prevention of atopic disease: 4-year follow-up of randomized placebo-controlled trial. Lancet 2003; 361: 1869.Google Scholar
Katz, SI, Hall, RP, Lawley, TJ, et al. Dermatitis herpetiformis: the skin and the gut. Ann Intern Med 1980; 93: 857.Google Scholar
Krob, HA, Fleischer, AB, D’Agostino, R, et al. Prevalence and relevance of contact dermatitis allergens. J Am Acad Dermatol 2004; 51: 349.Google Scholar
LeBrec, H, Bachot, N, Gaspard, I, et al. Mechanisms of drug-induced allergic contact dermatitis. Cell Biol Toxicol 1999; 15: 57.Google Scholar
Nicolis, GD, Helwig, EB. Exfoliative dermatitis: a clinicopathologic study of 135 cases. Arch Dermatol 1973; 108: 788.Google Scholar
Rietschel, RL, Fowler, JF, eds. Fisher’s Contact Dermatitis. 6th edition. Hamilton: BC Dekker. 2008.Google Scholar
Simpson, EI, Basco, M, Hanifin, J. A cross-sectional survey of complementary and alternative medicine in patients with atopic dermatitis. Am J Contact Dermat 2003; 14: 144.Google Scholar
Stevens, SR. Eczematous disorders, atopic dermatitis, and ichthyosis. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Wollenberg, A, Kraft, S, Oppel, T, et al. Atopic dermatitis: pathogenetic mechanisms. Clin Exp Dermatol 2000; 25: 530.Google Scholar

Bibliography

Badia, M, Trujillano, J, Gasco, E, et al. Skin lesions in the ICU. Intens Care Med 1999; 25: 1271.Google Scholar
Champion, RH. Generalised pruritus. BMJ 1984; 289: 751.Google Scholar
Denman, ST. A review of pruritus. J Am Acad Dermatol 1986; 14: 375.Google Scholar
Dowd, PM. Cold-related disorders. Prog Dermatol 1987; 21: 1.Google Scholar
Fox, BJ, Odom, RB. Papulosquamous diseases: a review. J Am Acad Dermatol 1985; 12: 597.Google Scholar
Gerull, R, Nelle, M, Schaible, T. Toxic epidermal necrolysis and Stevens-Johnson syndrome: a review. Crit Care Med 2011; 39: 1521.Google Scholar
Hirschmann, JV. Antimicrobial prophylaxis in dermatology. Semin Cutan Med Surg 2000; 19: 2.Google Scholar
Johnson, RA, Wolff, K, eds. Fitzpatrick’s Color Atlas and Synopsis of Clinical Dermatology. 6th edition. New York: McGraw-Hill. 2009.Google Scholar
Lebwohl, MG, ed. Dermatology. In: Scientific American Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Peter, RU. Cutaneous manifestations in intensive care patients. Intens Care Med 1998; 24: 997.Google Scholar
Rietschel, RL, Fowler, JF, eds. Fisher’s Contact Dermatitis. 6th edition. Hamilton: BC Dekker 2008.Google Scholar
Roujeau, JC, Stern, RS. Severe adverse cutaneous reactions to drugs. N Engl J Med 1994; 10: 1272.Google Scholar
Sehgal, VN, Gangwani, OP. Fixed drug eruption: current concepts. Int J Dermatol 1987; 26: 67.Google Scholar
Wolff, K, Goldsmith, L, Katz, S, et al., eds. Fitzpatrick’s Dermatology in General Medicine. 7th edition. New York: McGraw-Hill. 2007.Google Scholar
Some online dermatology atlases: www.dermis.net, www.dermatlas.net.Google Scholar

Bibliography

Cattaneo, M, Harris, AS, Stromberg, U, et al. The effect of desmopressin on reducing blood loss in cardiac surgery – a meta-analysis of double-blind placebo-controlled trials. Thromb Haemost 1995; 74: 1064.Google Scholar
Gordon, AC, Russell, JA, Walley, KR, et al. The effects of vasopressin on acute kidney injury in septic shock. Intens Care Med 2010; 36: 83.Google Scholar
Fogel, MR, Knauer, CM, Andres, LL, et al. Continuous intravenous vasopressin in active upper gastrointestinal bleeding: a placebo-controlled trial. Ann Intern Med 1982; 96: 565.Google Scholar
Mannucci, PM. Desmopressin: a nontransfusional form of treatment for congenital and acquired bleeding disorders. Blood 1988; 72: 1449.Google Scholar
Richardson, DW, Robinson, AG. Desmopressin. Ann Intern Med 1985; 103: 228.Google Scholar

Bibliography

Baylis, PH. Posterior pituitary function in health and disease. Clin Endocrinol Metab 1983; 12: 747.Google Scholar
Baylis, PH, Cheetham, T. Diabetes insipidus. Arch Dis Child 1998; 79: 84.Google Scholar
Ober, KP. Endocrine crises: diabetes insipidus. Crit Care Clin 1991; 7: 109.Google Scholar
Richardson, DW, Robinson, AG. Desmopressin. Ann Intern Med 1985; 103: 228.Google Scholar
Singer, I, Oster, JR, Fishman, LM. The management of diabetes insipidus in adults. Arch Intern Med 1997; 157: 1293.Google Scholar
Wright, WL. Sodium and fluid management in acute brain injury. Curr Neurol Neurosci Rep 2012; 12: 466.Google Scholar

Bibliography

Dres, M, Goligher, EC, Heunks, LMA, et al. Critical illness-associated diaphragm weakness. Intens Care Med 2017; 43: 1441.Google Scholar
Markand, ON, Moorthy, SS, Mahomed, Y, et al. Postoperative phrenic nerve palsy in patients with open-heart surgery. Ann Thorac Surg 1985; 39: 68.Google Scholar
Riley, EA. Idiopathic diaphragmatic paralysis. Am J Med 1962; 32: 404.Google Scholar
Supinski, GS, Morris, PE, Dhar, S, et al. Diaphragm dysfunction in critical illness. Chest 2018; 153: 1040.Google Scholar

Bibliography

Beers, M, Cameron, S. Hemolytic uremic syndrome. Emerg Infect Dis 1995; 1: 4.Google Scholar
Blaser, MJ, Smith, PD, Ravdin, JL, et al., eds. Infections of the Gastrointestinal Tract. 2nd edition. New York: Raven Press. 2002.Google Scholar
Cappell, M. Colonic toxicity of administered drugs and chemicals. Am J Gastroenterol 2004; 99: 1175.Google Scholar
Dionne, JC, Mbuagbaw, L, Devlin, JW, et al. Diarrhea during critical illness: a multicenter cohort study. Intens Care Med 2022; 48: 570.Google Scholar
Fairchild, PG, Blacklow, NR. Viral diarrhea. Infect Dis Clin North Am 1988; 2: 677.Google Scholar
Field, M, Rao, MC, Chang, EB. Intestinal electrolyte transport and diarrheal disease. N Engl J Med 1989; 321: 800 & 879.Google Scholar
Goldberg, MB, Paras, M. Gastrointestinal tract infections. In: Scientific American Medicine. Gastroenterology. Hamilton: Dekker Medicine. 2020.Google Scholar
Hellard, ME, Fairley, CK. Gastroenteritis in Australia: who, what, where, and how much? Aust NZ J Med 1997; 27: 147.Google Scholar
Kelly, CP, Pothoulakis, C, La Mont, JT. Clostridium difficile colitis. N Engl J Med 1994; 330: 257.Google Scholar
Krejs, GJ. VIPoma syndrome. Am J Med 1987; 82: 37.Google Scholar
Linedale, EC, Andrews, JM. Diagnosis and management of irritable bowel syndrome: a guide for the generalist. Med J Aust 2017; 207: 309.Google Scholar
Lyerly, DM, Krivan, HC, Wilkins, TD. Clostridium difficile: its disease and toxins. Clin Microbiol Rev 1988; 1: 1.Google Scholar
Phillips, SF. Diarrhea: a current view of the pathophysiology. Gastroenterology 1972; 63: 495.Google Scholar
Schlager, TA, Guerrant, RL. Seven possible mechanisms for Escherichia coli diarrhea. Infect Dis Clin North Am 1988; 2: 607.Google Scholar
Slutsker, L, Ries, AA, Greene, KD, et al. Escherichia coli O157:H7 diarrhea in the United States: clinical and epidemiologic features. Ann Intern Med 1997; 126: 505.Google Scholar
Van Langenberg, DR, Gearry, RB, Wong, H-L, et al. The potential value of faecal lactoferrin as a screening test in hospitalized patients with diarrhoea. Intern Med J 2010; 40: 819.Google Scholar
Wanke, CA, Guerrant, RL. Viral hepatitis and gastroenteritis transmitted by shellfish and water. Infect Dis Clin North Am 1987; 1: 649.Google Scholar
Wong, CS, Jelacic, S, Habeeb, RL, et al. The risk of the hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157-H7 infections. N Engl J Med 2000; 342: 1930.Google Scholar
Young, GP, Bayley, N, Ward, P, et al. Antibiotic-associated colitis caused by Clostridium difficile: relapse and risk factors. Med J Aust 1986; 144: 303.Google Scholar

Bibliography

Frankel, SR, Eardley, A, Lauwers, G, et al. The ‘retinoic acid syndrome’ in acute promyelocytic leukemia. Ann Intern Med 1992; 117: 292.Google Scholar
Nicholls, MR, Terada, LS, Tuder, RM, et al. Diffuse alveolar hemorrhage with underlying pulmonary capillaritis in the retinoic acid syndrome. Am J Respir Crit Care Med 1998; 158: 1302.Google Scholar

Bibliography

Green, RJ, Ruoss, SJ, Kraft, SA, et al. Pulmonary capillaritis and alveolar hemorrhage: update on diagnosis and management. Chest 1996; 110: 1305.Google Scholar
Lara, AR, Schwarz, M. Diffuse alveolar hemorrhage. Chest 2010; 137: 1164.Google Scholar
Leatherman, JW, Davies, SF, Hoidal, JR. Alveolar hemorrhage syndromes: diffuse microvascular lung hemorrhage in immune and idiopathic disorders. Medicine 1984; 63: 343.Google Scholar
Schwarz, MI, Albert, RK. ‘Imitators’ of the ARDS: implications for diagnosis and treatment. Chest 2004; 125: 1530.Google Scholar
Specks, U. Diffuse alveolar hemorrhage syndromes. Curr Opinion Rheumatol 2001; 13: 12.Google Scholar
Young, KR. Diagnostic pitfalls in alveolar hemorrhage syndromes. Pulmonary Perspectives 2000; 17: 11.Google Scholar

Bibliography

Antman, EM, Wenger, TL, Butler, VP, et al. Treatment of 150 cases of life-threatening digitalis intoxication with digoxin-specific Fab antibody fragments. Circulation 1990; 81: 1744.Google Scholar
Brubacher, JR, Ravikumar, PR, Bania, T, et al. Treatment of toad venom poisoning with digoxin-specific Fab fragments. Chest 1996; 110: 1282.Google Scholar
Kelly, RA, Smith, TW. Recognition and management of digitalis toxicity. Am J Cardiol 1992; 69: 1186.Google Scholar
Pincus, M. Management of digoxin toxicity. Aust Prescriber 2016; 39: 18.Google Scholar
Smith, TW, Haber, E, Yeatman, L, et al. Reversal of advanced digoxin intoxication with Fab fragments of digoxin-specific antibodies. N Engl J Med 1976; 294: 797.Google Scholar
Taboulet, P, Baud, FJ, Bismuth, C. Clinical features and management of digitalis poisoning – rationale for immunotherapy. J Toxicol Clin Toxicol 1993; 31: 247.Google Scholar

Bibliography

Boyer, NH, Weinstein, L. Diphtheritic myocarditis. N Engl J Med 1948; 239: 913.Google Scholar
Dobie, RA, Tobey, DN. Clinical features of diphtheria in the respiratory tract. JAMA 1979; 242: 2197.Google Scholar
Farizo, KM, Strebel, PM, Chen, RT, et al. Fatal respiratory disease due to Corynebacterium diphtheriae: case report and review of guidelines for management, investigation, and control. Clin Infect Dis 1993; 16: 59.Google Scholar
Galazka, AM, Robertson, SE, Oblapenko, GP. Resurgence of diphtheria. Eur J Epidemiol 1995; 11: 95.Google Scholar
Harmisch, JP, Tronca, E, Nolan, CM, et al. Diphtheria among alcoholic urban adults. Ann Intern Med 1989; 111: 71.Google Scholar
Mofred, A, Guerin, JM, Falfoul-Borsali, N, et al. Cutaneous diphtheria. Rev Med Interne 1994; 15: 515.Google Scholar

Bibliography

Bick, RL. Disseminated intravascular coagulation; a review of etiology, pathophysiology, diagnosis and management. Clin Appl Thromb Hemost 2002; 8: 1.Google Scholar
Iba, T, Levy, JH, Warkentin, TE, et al. Diagnosis and management of sepsis-induced coagulopathy and disseminated intravascular coagulation. J Thromb Haemost 2019; 17: 1989.Google Scholar
Levi, M, ed.. Disseminated intravascular coagulation. Semin Thromb Hemost 2001; 27: 565.Google Scholar
Levi, M, Schultz, MJ. What do sepsis-induced coagulation test result abnormalities mean to intensivists. Intens Care Med 2017; 43: 581.Google Scholar
Levi, M, ten Cate, H. Disseminated intravascular coagulation. N Engl J Med 1999; 341: 586.Google Scholar
Rabinovich, A, Abdul-Kadir, R, Thachil, J, et al. DIC in obstetrics: Diagnostic score, highlights in management, and international registry – communication from the DIC and Women’s Health SSCs of the International Society of Thrombosis and Haemostasis. J Thromb Haemost 2019; 17: 1562.Google Scholar
Squizzato, A, Gallo, A, Levi, M, et al. Underlying disorders of disseminated intravascular coagulation: communication from the ISTH SSC subcommittees on Disseminated Intravascular Coagulation and Perioperative and Critical Care Thrombosis and Haemostasis. J Thromb Haemost 2020; 18: 2400.Google Scholar
Squizzato, A, Hunt, BJ, Kinasewitz, GT, et al. Supportive management strategies for disseminated intravascular coagulation: an international consensus. Thromb Haemost 2016; 203: 896.Google Scholar
Zeerleder, S, Hack, E, Wuillemin, WA. Disseminated intravascular coagulation in sepsis. Chest 2005; 128: 2864.Google Scholar

Bibliography

Charles, MJ, Wirjosemito, SA. Flying and diving: still a real hazard. J Hyperbaric Med 1989; 4: 23.Google Scholar
Elliot, DH, Hallenbeck, LM, Bove, AA. Acute decompression sickness. Lancet 1974; 2: 1193.Google Scholar
Emerson, GM. What you need to know about diving medicine but won’t find in a textbook. Emergency Med 2002; 14: 371.Google Scholar
Francis, J. Decompression sickness. Emergency Med 2002; 14: 358.Google Scholar
Gorman, D. Accidental arterial gas embolism. Emergency Med 2002; 14: 364.Google Scholar
Lundgren, CEG, Miller, JN, eds. The Lung at Depth. New York: Marcel Dekker. 1999.Google Scholar
Melamed, Y, Shupak, A, Bitterman, H. Medical problems associated with underwater diving. N Engl J Med 1992; 326: 30.Google Scholar
Moon, RE, Camporesi, EM, Kisslo, JA. Patent foramen ovale and decompression sickness in divers. Lancet 1989; 1: 513.Google Scholar
Tetzlaff, K, Reuter, M, Leplow, B, et al. Risk factors for pulmonary barotrauma in divers. Chest 1997; 112: 654.Google Scholar
Weathersby, PK, Survanshi, SS, Homer, LD, et al. Predicting the time of occurrence of decompression sickness. J Appl Physiol 1992; 72: 1541.Google Scholar
Weinmann, M, Tuxen, D, Scheinkestel, C, et al. Decompression illnesses. SPUMS J 1991; 21: 135.Google Scholar

Bibliography

Bierens, JJ, Modell, J, Pepe, P, et al., eds. Handbook on Drowning: Prevention, Rescue, Treatment. Berlin: Springer. 2005.Google Scholar
Dix, J. Asphyxia and Drowning: An Atlas. Boca Raton: CRC Press. 2000.Google Scholar
Edwards, ND, Timmins, AC, Randalls, B, et al. Survival in adults after cardiac arrest due to drowning. Intens Care Med 1990; 16: 336.Google Scholar
Golden, FS, Tipton, MJ, Scott, RC. Immersion, near-drowning and drowning. Br J Anaesthesia 1997; 79: 214.Google Scholar
Hasibeder, WR. Near-drowning. Int J Intens Care 2003; 10: 166.Google Scholar
Markarian, T, Loudou, A, Heyer, V, et al. Drowning classification: a reappraisal of clinical presentation and prognosis for severe cases. Chest 2020; 158: 596.Google Scholar
Modell, JH. Serum electrolyte changes in near-drowning victims. JAMA 1985; 253: 557.Google Scholar
Modell, JH. Drowning. N Engl J Med 1993; 328: 253.Google Scholar
Moon, RE, Long, RJ. Drowning and near-drowning. Emerg Med 2002; 14: 377.Google Scholar
Orlowski, JP. Drowning, near-drowning, and ice-water drowning. JAMA 1988; 260: 390.Google Scholar
Sachdeva, RC. Near drowning. Crit Care Clin 1999; 15: 281.Google Scholar
Szpilman, D. Near-drowning and drowning classification. Chest 1997; 112: 660.Google Scholar
Szpilman, D, Bierens, JJLM, Handley, AJ, et al. Drowning. N Engl J Med 2012; 366: 2102.Google Scholar
Szpilman, D, Morgan, PJ. Management for the drowning patient. Chest 2021; 159: 1473.Google Scholar
Thom, O, Roberts, K, Devine, S, et al. Treatment of the lung injury of drowning: a systematic review. Crit Care 2021; 25: 253.Google Scholar
Williamson, JP, Illing, R, Gertler, P, et al. Near-drowning treated with therapeutic hypothermia. Med J Aust 2004; 181: 500.Google Scholar

Bibliography

Baldwin, JL, Speck, AL. Drug allergies. In: Scientific American Medicine. Allergy & Immunology. Hamilton: Dekker Medicine. 2020.Google Scholar
Gorevic, P. Drug allergy. In: Kaplan, AP, ed. Allergy. New York: Churchill Livingstone. 1985; p 473.Google Scholar
Katelaris, CH, Smith, WB. ‘Iodine allergy’ label is misleading. Aust Prescriber 2009; 22: 125.Google Scholar
Kolawole, H, Marshall, SD, Crilly, H, et al. Australian and New Zealand Allergy Group/Australian and New Zealand College of Anaesthetists perioperative anaphylaxis management guidelines. Anaesth Intens Care 2017; 45: 151.Google Scholar
Papadopoulos, J, Kane-Gill, S, Cooper, B, eds. Identification and prevention of common adverse drug events in the intensive care unit. Crit Care Med 2010; 36: 6 (suppl.).Google Scholar
Rosenberg, J, Pentel, P, Pond, S, et al. Hyperthermia associated with drug intoxication. Crit Care Med 1986; 14: 964.Google Scholar
Shear, NH, Knowles, S, Shapiro, L. Cutaneous adverse drug reactions. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Solensky, R, Earl, HS, Gruchalla, RS, et al. Lack of penicillin resensitization in patients with a history of penicillin allergy after receiving repeated penicillin courses. Arch Intern Med 2002; 162: 822.Google Scholar
Weiss, ME. Drug allergy. Med Clin North Am 1992; 76: 857.Google Scholar

Bibliography

Chrispin, PS, Park, GR. Unexpected drug reactions and interactions in the critical care unit. Curr Opin Crit Care 1997; 3: 262.Google Scholar
Hansten, PB, Horn, JR. Drug Interactions. Philadelphia: Lippincott Williams and Wilkins. 2006.Google Scholar
Leape, LL, Brennan, TA, Laird, N, et al. The nature of adverse events in hospitalized patients: results from the Harvard Medical Practice Study II. N Engl J Med 1991; 324: 377.Google Scholar
Papadopoulos, J, Kane-Gill, S, Cooper, B, eds. Identification and prevention of common adverse drug events in the intensive care unit. Crit Care Med 2010; 36: 6 (suppl.).Google Scholar
Peck, CC, Temple, R, Collins, JM. Understanding consequences of concurrent therapies. JAMA 1993; 269: 1550.Google Scholar
Snyder, BD, Polasek, TM, Doogue, MP. Drug interactions: principles and practice. Aust Prescriber 2012; 35: 85.Google Scholar
Zarowitz, BJ. Drug-drug interactions in ICU. In: Parker, MM, Shapiro, MJ, Porembka, DT, eds. Critical Care: State of the Art, Chapter 4. Anaheim: Society of Critical Care Medicine. 1995; p 91.Google Scholar

Bibliography

Johnson, DH, Cunha, BA. Drug fever. Infect Dis Clin North Am 1996; 10: 85.Google Scholar
Mackowiak, PA, LeMaistre, CF. Drug fever. Ann Intern Med 1987; 106: 728.Google Scholar
Olson, KR, Benowitz, NL. Environmental and drug-induced hyperthermia: pathophysiology, recognition and management. Emerg Med Clin North Am 1984; 2: 459.Google Scholar

Bibliography

Adedoyin, A, Branch, RA. The effect of liver disease on drugs. Curr Opin Crit Care 1997; 3: 255.Google Scholar
Alapat, PM, Zimmerman, JL. Toxicology in the critical care unit. Chest 2008; 133: 1006.Google Scholar
Brunton, L, Hila-Dandan, R, Knollmann, BC, eds.-in-chief. Goodman & Gilman’s The Pharmacological Basis of Therapeutics. 13th edition. New York: McGraw-Hill. 2017.Google Scholar
Carruthers, S, Hoffman, B, Melmon, K, et al., eds. Melmon and Morrelli’s Clinical Pharmacology. 4th edition. New York: McGraw-Hill. 2000.Google Scholar
Chernow, B, ed. The Pharmacological Approach to the Critically Ill Patient. 3rd edition. Baltimore: Williams & Wilkins. 1994.Google Scholar
Chrispin, PS, Park, GR. Unexpected drug reactions and interactions in the critical care unit. Curr Opin Crit Care 1997; 3: 262.Google Scholar
Classen, D, Pestonik, S, Evans, R, et al. Adverse drug events in hospitalized patients: excess length of stay, extra costs and attributable mortality. JAMA 1997; 277: 301.Google Scholar
Crowe, AV, Griffiths, RD. Nutritional failure and drugs. Curr Opin Crit Care 1997; 3: 268.Google Scholar
Gora-Harper, ML, in conjunction with the Society of Critical Care Medicine. The Injectable Drug Reference. Princeton: Bioscientific Resources. 1998.Google Scholar
Karch, FE, Lasagna, L. Adverse drug reactions: a critical review. JAMA 1975; 234: 1236.Google Scholar
Kennedy, D. Classifying drugs in pregnancy. Aust Prescriber 2014; 37: 38.Google Scholar
Koch-Weser, J. Definition and classification of adverse drug reactions. Drug Information Bulletin 1968; July/September: 72.Google Scholar
Koch-Weser, J. Bioavailability of drugs. N Engl J Med 1974; 291: 233 & 503.Google Scholar
Lazarou, J, Pomeranz, B, Corey, P. Incidence of adverse drug reactions in hospitalized patients: a meta-analysis of prospective studies. JAMA 1998; 279: 1200.Google Scholar
Ling, L, Clark, RF, Erickson, T, et al., eds. Toxicology Secrets. Philadelphia; Hanley & Belfus. 2001.Google Scholar
Marik, P, Varon, J. The obese patient in the ICU. Chest 1998; 113: 492.Google Scholar
Naranjo, CA, Shear, NH, Lanctot, KL. Advances in the diagnosis of adverse drug reactions. J Clin Pharmacol 1992; 32: 897.Google Scholar
Nigen, S, Knowles, SR, Shear, NH. Drug eruptions: approaching the diagnosis of drug-induced skin diseases. J Drugs Dermatol 2003; 2: 278.Google Scholar
Papadopoulos, J, Kane-Gill, S, Cooper, B, eds. Identification and prevention of common adverse drug events in the intensive care unit. Crit Care Med 2010; 36: 6 (suppl.).Google Scholar
Paw, HGW, Shulman, R. Handbook of Drugs in Intensive Care. 6th edition. Cambridge: Cambridge University Press. 2019.Google Scholar
Rossi, S, ed.-in-chief. Australian Medicines Handbook. Adelaide: AMH. 2020.Google Scholar
Shann, F. Drug Doses. 17th edition. Melbourne: Royal Children’s Hospital. 2017.Google Scholar
Shannon, MW, Borron, SW, Burns, MJ, eds. Haddad and Winchester’s Clinical Management of Poisoning and Drug Overdose. 4th edition. Philadelphia: WB Saunders. 2007.Google Scholar
Shear, NH, Knowles, S, Shapiro, L. Cutaneous adverse drug reactions. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Susla, GM, Suffredini, AF, McAreavey, D, et al., eds. The Handbook of Critical Care Drug Delivery. 3rd edition. Baltimore: Williams & Wilkins. 2006.Google Scholar
Thompson, DF, Pierce, DR. Drug-induced nightmares. Ann Pharmacother 1999; 33: 93.Google Scholar
Trujillo, MH, Guerrero, J, Fragachan, C, et al. Pharmacologic antidotes in critical care medicine: a practical guide for drug administration. Crit Care Med 1998; 26: 377.Google Scholar
Vargas, E, Terleira, A, Hernando, F, et al. Effect of adverse drug reactions on length of stay in surgical intensive care units. Crit Care Med 2003; 31: 694.Google Scholar

Bibliography

Aronoff, GR, Bennett, WM, Berns, JS, et al. eds. Drug Prescribing in Renal Failure: Dosing Guidelines for Adults and Children. 5th edition. Philadelphia: American College of Physicians. 2007.Google Scholar
Hoitsma, AJ, Wetzels, JFM, Koene, RAP. Drug-induced nephrotoxicity: aetiology, clinical features and management. Drug Safety 1991; 6: 131.Google Scholar
Olyaei, AJ, Bennett, WM. Pharmacologic approach to renal insufficiency. In: Scientific American Medicine. Nephrology. Hamilton: Dekker Medicine. 2020.Google Scholar
Papadopoulos, J, Kane-Gill, S, Cooper, B, eds. Identification and prevention of common adverse drug events in the intensive care unit. Crit Care Med 2010; 36: 6 (suppl.).Google Scholar
Rossert, J. Drug-induced acute interstitial nephritis. Kidney Int 2001; 60: 804.Google Scholar
Weisbord, SD, Gallagher, M, Jneid, H, et al. Outcomes after angiography with sodium bicarbonate and acetylcysteine. N Engl J Med 2018; 378: 603.Google Scholar

Bibliography

Albertson, TE, Walby, WF, Derlet, RW. Stimulant-induced pulmonary toxicity. Chest 1995; 108: 1140.Google Scholar
Cooper, JA, White, DA, Matthay, RA. Drug-induced pulmonary disease. Am J Respir Dis 1986; 133: 321 & 488.Google Scholar
Foucher, P, Biour, M, Blayac, JP, et al. Drugs that may injure the respiratory system. Eur Respir J 1997; 10: 265.Google Scholar
Heffner, JE, Harley, RA, Schabel, SI. Pulmonary reactions from illicit substance abuse. Clin Chest Med 1990; 11: 151.Google Scholar
Morelock, SY, Sahn, SA. Drugs and the pleura. Chest 1999; 116: 212.Google Scholar
Parsons, PE. Respiratory failure as a result of drugs, overdoses, and poisonings. Clin Chest Med 1994; 15: 93.Google Scholar

Bibliography

Brodsky, MB, Pandian, V, Needham, DM. Post-extubation dysphagia: a problem needing multidisciplinary efforts. Intens Care Med 2020; 46: 93.Google Scholar
DeVault, KR. Symptoms of esophageal disease. In: Feldman, M, Friedman, L, Brandt, L, eds. Sleisenger and Fordtran’s Gastrointestinal and Liver Disease. 11th edition. Philadelphia: Elsevier. 2020.Google Scholar
Duncan, S, McAuley, DF, Walshe, M, et al. Interventions for oropharyngeal dysphagia in acute and critical care: a systematic review and meta-analysis. Intens Care Med 2020; 46: 1326.Google Scholar
Katzka, DA. Eosinophilic esophagitis. Curr Opin Gastroenterol 2006; 22: 429.Google Scholar
Macht, M, White, D, Moss, M. Swallowing dysfunction after critical illness. Chest 2014; 146: 1681.Google Scholar
Macht, M, Wimbish, T, Bodine, C, et al. ICU-acquired swallowing disorders. Crit Care Med 2013; 41: 2396.Google Scholar
Selvanderan, S, Wong, S, Holloway, R, et al. Dysphagia: clinical evaluation and management. Intern Med J 2021; 51: 1021.Google Scholar

Bibliography

Baseler, L, Chertow, DS, Johnson, KM, et al. The pathogenesis of Ebola virus disease. Annu Rev Pathol 2017; 12: 387.Google Scholar
Bennet, D, Brown, D. Ebola virus. BMJ 1995; 310: 1344.Google Scholar
Bouree, P, Bergman, J-F. Ebola virus infection in man. Am J Trop Med Hyg 1983; 32: 1465.Google Scholar
Howard, CR. Viral hemorrhagic fevers: properties and prospects for treatment and prevention. Antiviral Res 1984; 4: 169.Google Scholar
Kiiza, P, Mullin, S, Teo, K, et al. Treatment of Ebola-related critical illness. Intens Care Med 2020; 46: 285.Google Scholar
Leroy, EM, Kumulunqui, B, Pourrut, X, et al. Fruit bats as reservoirs of Ebola virus. Nature 2005; 438: 575.Google Scholar
Leroy, EM, Rouquet, P, Formenty, P, et al. Multiple Ebola virus transmission events and rapid decline of central African wildlife. Science 2004; 303: 387.Google Scholar
Li, YH, Chen, SP. Evolutionary history of Ebola virus. Epidemiol Infect 2014; 142: 1138.Google Scholar
Martin, P, Laupland, KB, Frost, EH, et al. Laboratory diagnosis of Ebola virus disease. Intens Care Med 2015; 41: 895.Google Scholar
Mulangu, S, Dodd, LE, Davey, RT, et al. A randomized controlled trial of Ebola virus disease therapeutics. N Engl J Med 2019; 381: 2293.Google Scholar
Parkes-Ratanshi, R, Ssekabira, U, Crozier, I. Ebola in West Africa: be aware and prepare. Intens Care Med 2014; 40: 1742.Google Scholar
Piot, P. Ebola’s perfect storm. Science 2014; 345: 1221.Google Scholar
Sanchez, A, Ksiazek, TG, Rollin, PE, et al. Reemergence of Ebola virus in Africa. Emerg Infect Dis 1995; 1: 3.Google Scholar
Suresh, V. The enigmatic haemorrhagic fevers. J R Soc Med 1997; 90: 622.Google Scholar
Tattevin, P, Durante-Mangoni, E, Massaquoi, M. Does this patient have Ebola virus disease? Intens Care Med 2014; 40: 1738.Google Scholar

Bibliography

Eckert, J, Deplazes, P. Biological, epidemiological, and clinical aspects of echinococcosis, a zoonosis of increasing concern. Clin Microbiol Rev 2004; 17: 107.Google Scholar
Kammerer, WS, Schantz, PM. Echinococcal disease. Infect Dis Clin North Am 1993; 7: 605.Google Scholar
McCullagh, PJ. Hydatid disease: medical problems, veterinary solutions, political obstacles. Med J Aust 1996; 164: 7.Google Scholar
McManus, DP, Zhang, W, Li, J, et al. Echinococcosis. Lancet 2003; 362: 1295.Google Scholar

Bibliography

Greene, SL, Su, WP, Muller, SA. Ecthyma gangrenosum. J Am Acad Dermatol 1984; 11: 781.Google Scholar
Hirschmann, JV. Fungal, bacterial, and viral infections of the skin. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar

Bibliography

Mallette, LE. The parathyroid polyhormones: new concepts in the spectrum of peptide hormone action. Endocr Rev 1991; 12: 110.Google Scholar

Bibliography

Borow, KM, Karp, R. Atrial septal defect: lessons from the past, directions for the future. N Engl J Med 1990; 323: 1698.Google Scholar
Nora, JJ. Causes of congenital heart disease: old and new modes, mechanisms, and models. Am Heart J 1993; 125: 1409.Google Scholar
Wilson, NJ, Neutze, JM. Adult congenital heart disease: principles and management guidelines. Aust NZ J Med 1993; 23: 498 & 697.Google Scholar

Bibliography

Britton, PN, Eastwood, K, Brew, BJ, et al. Consensus guidelines for the investigation and management of encephalitis. Med J Aust 2015; 202: 576.Google Scholar
Burrow, JNC, Whelan, PI, Kilburn, CJ, et al. Australian encephalitis in the Northern Territory: clinical and epidemiological features, 1987–1996. Aust NZ J Med 1998; 28: 590.Google Scholar
Dalmau, J, Gleichman, AJ, Hughes, EG, et al. Anti-NMDA-receptor encephalitis: case series and analysis of the effects of antibodies. Lancet Neurol 2008; 7: 1091.Google Scholar
Dalmau, J, Graus, F. Antibody-mediated encephalitis. N Engl J Med 2018; 378: 840.Google Scholar
Ho, KM. Use of tramadol to attenuate severe dyskinesia in anti-N-methyl-D-aspartate receptor encephalitis. Anaesth Intens Care 2010; 47: 561.Google Scholar
Honarmand, S, Glaser, CA, Chow, E, et al. SSPE in the differential diagnosis of encephalitis. Neurology 2004; 63: 1489.Google Scholar
Knox, J, Cowan, RU, Doyle, JS, et al. Murray Valley encephalitis: a review of clinical features, diagnosis and treatment. Med J Aust 2012; 196: 322.Google Scholar
Meyfroidt, G, Kurtz, P, Sonneville, R. Critical care management of infectious meningitis and encephalitis. Intens Care Med 2020; 46: 192.Google Scholar
Neyens, RR, Gaskill, GE, Chalela, JA. Critical care management of anti-N-methyl-D-aspartate receptor encephalitis. Crit Care Med 2018; 46: 1514.Google Scholar
Sonneville, R, Venkatesan, A, Honnorat, J. Understanding auto-immune encephalitis in the ICU. Intens Care Med 2019; 45: 1795.Google Scholar
Varvat, J, Lafond, P, Page, Y, et al. Acute psychiatric syndrome leading young patients to ICU: consider anti-NMDA-receptor antibodies. Anaesth Intens Care 2010; 38: 748.Google Scholar
Whitley, RJ. Viral encephalitis. N Engl J Med 1990; 323: 242.Google Scholar

Bibliography

Bolton, CF, Young, GB, Zochodne, DW. The neurological complications of sepsis. Ann Neurol 1993; 33: 94.Google Scholar
Brooks, BR, Walker, DL. Progressive multifocal leukoencephalopathy. Neurol Clin 1984; 2: 299.Google Scholar
Celesia, GG, Grigg, MM, Ross, E. Generalized status myoclonicus in acute anoxic and toxic-metabolic encephalopathies. Arch Neurol 1988; 45: 781.Google Scholar
Edgren, E, Hedstrand, U, Kelsey, S, et al. Assessment of neurological prognosis in comatose survivors of cardiac arrest. Lancet 1994; 343: 1055.Google Scholar
Fraser, CL, Arieff, AI. Nervous system complications in uremia. Ann Intern Med 1988; 109: 143.Google Scholar

Bibliography

Alpert, JS, Krous, HF, Dalen, JE, et al. Pathogenesis of Osler’s nodes. Ann Intern Med 1976; 85: 471.Google Scholar
Bayer, AS, Bolger, AF, Taubert, KA, et al. Diagnosis and management of infective endocarditis and its complications. Circulation 1998; 98: 2936.Google Scholar
Calderwood, SB, Swinski, LA, Karchmer, AW, et al. Prosthetic valve endocarditis. J Thorac Cardiovasc Surg 1986; 92: 776.Google Scholar
Chambers, JB, Shanson, D, Hall, R, et al. Antibiotic prophylaxis of endocarditis: the rest of the world and NICE. J R Soc Med 2011; 104: 138.Google Scholar
Dajani, AS, Taubert, KA, Wilson, W, et al. Prevention of bacterial endocarditis: recommendations by the American Heart Association. JAMA 1997; 277: 1794.Google Scholar
DiNubile, MJ. Surgery in active endocarditis. Ann Intern Med 1982; 96: 650.Google Scholar
Houpikian, P, Raoult, D. Diagnostic methods: current best practices and guidelines for identification of difficult-to-culture pathogens in infective endocarditis. Cardiol Clin 2003; 21: 207.Google Scholar
Kaye, D. Changing pattern of infective endocarditis. Am J Med 1985; 79 (suppl. 6B): 157.Google Scholar
Lerner, PI, Weinstein, L. Infective endocarditis in the antibiotic era. N Engl J Med 1966; 274: 199, 259, 323 & 388.Google Scholar
Levin, HJ, Paulker, SG, Salzman, EW, et al. Antithrombotic therapy in valvular heart disease. Chest 1992; 102: S434.Google Scholar
Liesenborghs, L, Meyers, S, Vanassche, T, et al. Coagulation: at the heart of infective endocarditis. J Thromb Haemost 2020; 18: 995.Google Scholar
Mansur, AJ, Grinberg, M, Lemos da Luz, P, et al. The complications of infective endocarditis. Arch Intern Med 1992; 152: 2428.Google Scholar
O’Gara, PT. Infective endocarditis. In: Scientific American Medicine. Infectious Diseases. Hamilton: Dekker Medicine. 2020.Google Scholar
Pierotti, LC, Baddour, LM. Fungal endocarditis, 1995–2000. Chest 2002; 122: 302.Google Scholar
Stein, PD, Alpert, JS, Copeland, J, et al. Antithrombotic therapy in patients with mechanical and biological prosthetic heart valves. Chest 1992; 102: S445.Google Scholar
Tornos, P, Almirante, B, Olona, M, et al. Clinical outcome and long-term prognosis of late prosthetic valve endocarditis: a 20-year experience. Clin Infect Dis 1997; 24: 381.Google Scholar
Tunkel, AR, Kaye, D. Endocarditis with negative blood cultures. N Engl J Med 1992; 326: 1215.Google Scholar
Weinstein, L, Rubin, RH. Infective endocarditis. Progr Cardiovasc Dis 1973; 16: 239.Google Scholar
Wilson, W, Taubert, KA, Gewitz, M, et al. Prevention of infective endocarditis: guidelines from the American Heart Association. Circulation 2007; 116: 1736.Google Scholar
Wolff, M, Mourvillier, B, Sonnerville, R, et al. My paper 10 years later: infective endocarditis in the intensive care unit. Intens Care Med 2014; 40: 1843.Google Scholar
Yau, JWY, Lee, P, Wilson, A, et al. Prosthetic valve endocarditis: what is the evidence for anticoagulant therapy? Intern Med J 2011; 41: 795.Google Scholar

Bibliography

Axelrod, L. Glucocorticoid therapy. Medicine 1976; 55: 39.Google Scholar
Berl, T. Treating hyponatremia: damned if we do and damned if we don’t. Kidney Int 1990; 37: 1006.Google Scholar
Chernow, B, ed. The Pharmacological Approach to the Critically Ill Patient. 3rd edition. Baltimore: Williams & Wilkins. 1994.Google Scholar
Chrousos, GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 1995; 332: 1351.Google Scholar
Cook, DM, Loriaux, DL. The incidental adrenal mass. Endocrinologist 1996; 6: 4.Google Scholar
Curry, SC, Arnold-Capell, P. Nitroprusside, nitroglycerin, and angiotensin-converting enzyme inhibitors. Crit Care Clin 1991; 7: 555.Google Scholar
Deane, A, Chapman, MJ, Fraser, RJL, et al. Bench-to-bedside: the gut as an endocrine organ in the critically ill. Crit Care 2010; 14: 228.Google Scholar
Editorial. Corticosteroids and hypothalamic-pituitary-adrenocortical function. BMJ 1980; 280: 813.Google Scholar
Editorial. The function of adrenaline. Lancet 1985; 1: 561.Google Scholar
Ekins, R. The free hormone hypothesis and measurement of free hormones. Clin Chem 1992; 38: 1289.Google Scholar
Grinspoon, SK, Bilezikian, JP. HIV disease and the endocrine system. N Engl J Med 1992; 327: 1360.Google Scholar
Ligtenberg, JJM, Girbes, ARJ, Beentjes, JAM, et al. Hormones in the critically ill patient: to intervene or not to intervene? Intens Care Med 2001; 27: 1567.Google Scholar
Loriaux, DL. The polyendocrine deficiency syndromes. N Engl J Med 1985; 312: 1568.Google Scholar
McMahon, GT, Dluhy, RG. Approach to the patient with endocrine disorders. In: Scientific American Medicine. Endocrinology & Metabolism. Hamilton: Dekker Medicine. 2020.Google Scholar
Melmed, S, Koenig, R, Rosen, C, et al., eds. Williams Textbook of Endocrinology. 14th edition. Philadelphia: Elsevier. 2019.Google Scholar
Oster, JR, Singer, I, Fishman, LM. Heparin-induced aldosterone suppression and hyperkalemia. Am J Med 1995; 98: 575.Google Scholar
Reichlin, S. Neuroendocrine-immune interactions. N Engl J Med 1993; 329: 1246.Google Scholar
Rose, BD. New approach to disturbances in the plasma sodium concentration. Am J Med 1986; 81: 1033.Google Scholar
Salem, M, Tainsh, RE, Bromberg, J, et al. Perioperative glucocorticoid coverage: a reassessment 42 years after emergence of a problem. Ann Surg 1994; 219: 416.Google Scholar
Tonner, DR, Schlechte, JA. Neurologic complications of thyroid and parathyroid disease. Med Clin North Am 1993; 77: 251.Google Scholar

Bibliography

Parikh, HG, Miller, A, Chapman, M, et al. Calorie delivery and clinical outcomes in the critically ill: a systematic review and meta-analysis. Crit Care Resusc 2016; 18: 17.Google Scholar
Phelan, G. Determination of energy expenditure. In: Scientific American Medicine. Nutrition. Hamilton: Dekker Medicine. 2020.Google Scholar
Taylor, BE, McClave, SA, Martindale, RG, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN). Crit Care Med 2016; 44: 390.Google Scholar

Bibliography

Beers, M, Cameron, S. Hemolytic uremic syndrome. Emerg Infect Dis 1995; 1: 4.Google Scholar
Blaser, MJ, Smith, PD, Ravdin, JL, et al., eds. Infections of the Gastrointestinal Tract. 2nd edition. New York: Raven Press. 2002.Google Scholar
Hellard, ME, Fairley, CK. Gastroenteritis in Australia: who, what, where, and how much? Aust NZ J Med 1997; 27: 147.Google Scholar
Phillips, SF. Diarrhea: a current view of the pathophysiology. Gastroenterology 1972; 63: 495.Google Scholar
Schlager, TA, Guerrant, RL. Seven possible mechanisms for Escherichia coli diarrhea. Infect Dis Clin North Am 1988; 2: 607.Google Scholar
Slutsker, L, Ries, AA, Greene, KD, et al. Escherichia coli O157:H7 diarrhea in the United States: clinical and epidemiologic features. Ann Intern Med 1997; 126: 505.Google Scholar
Wong, CS, Jelacic, S, Habeeb, RL, et al. The risk of the hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157-H7 infections. N Engl J Med 2000; 342: 1930.Google Scholar

Bibliography

American College of Physicians. Occupational and environmental medicine: the internist’s role. Ann Intern Med 1990; 113: 974.Google Scholar
Bascom, R, Bromberg, PA, Costa, DL, et al. Health effects of outdoor pollution. Am J Respir Crit Care Med 1996; 153: 3 & 477.Google Scholar
Cugell, DW. The hard metal diseases. Clin Chest Med 1992; 13: 269.Google Scholar
Nriagu, JO, Pacyna, JM. Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 1988; 333: 134.Google Scholar
Redlich, CA, Sparer, JS, Cullen, MR. Sick building syndrome. Lancet 1997; 349: 1013.Google Scholar
Rosenstock, L, Cullen, M, Brodkin, CA, et al., eds. Textbook of Clinical Occupational and Environmental Medicine. 2nd edition. Philadelphia: Saunders. 2005.Google Scholar
Roxe, DM, Krumlovsky, FA. Toxic interstitial nephropathy from metals, metabolites, and radiation. Semin Nephrol 1988; 8: 72.Google Scholar

Bibliography

Fauci, A, Harley, J, Roberts, W, et al. The idiopathic hypereosinophilic syndrome. Ann Intern Med 1982; 97: 278.Google Scholar
Gleich, GJ, Loegering, DA. Immunobiology of eosinophils. Annu Rev Immunol 1984; 2: 429.Google Scholar
Kalac, M, Quintas-Cardama, A, Vrhovac, R, et al. A critical appraisal of conventional and investigational drug therapy in patients with hypereosinophilic syndrome and clonal eosinophilia. Cancer 2007; 110: 955.Google Scholar
Kita, H. The eosinophil: a cytokine-producing cell? J Allergy Clin Immunol 1996; 97: 889.Google Scholar
Salter, BM, Sehmi, R. Hematopoietic processes in eosinophilic asthma. Chest 2017; 152: 410.Google Scholar

Bibliography

Allen, JN, Davis, WB. Eosinophilic lung diseases. Am J Respir Crit Care Med 1994; 150: 1423.Google Scholar
Allen, JN, Magro, CM, King, MA. The eosinophilic pneumonias. Semin Respir Crit Care Med 2002; 23: 127.Google Scholar
Janz, DR, O’Neal, HR, Ely, EW. Acute eosinophilic pneumonia: a case report and review of the literature. Crit Care Med 2009; 37: 1470.Google Scholar
Jederlinic, PJ, Sicilian, L, Gaensler, EA. Chronic eosinophilic pneumonia: a report of 19 cases and a review of the literature. Medicine 1988; 67: 154.Google Scholar
Johkoh, T, Muller, NL, Akira, M, et al. Eosinophilic lung diseases: diagnostic accuracy of thin-section CT in 111 patients. Radiology 2000; 216: 773.Google Scholar
Naughton, M, Fahy, J, FitzGerald, MX. Chronic eosinophilic pneumonia. Chest 1993; 103: 162.Google Scholar
Ong, RKC, Doyle, RL. Tropical pulmonary eosinophilia. Chest 1998; 113: 1673.Google Scholar
Ottesen, EA, Nutman, TB. Tropical pulmonary eosinophilia. Annu Rev Med 1992; 43: 417.Google Scholar
Ricketti, AJ, Greenberger, PA, Mintzer, RA, et al. Allergic bronchopulmonary aspergillosis. Arch Intern Med 1983; 143: 1553.Google Scholar
Rosenberg, CE, Khoury, R. Approach to eosinophilia presenting with pulmonary symptoms. Chest 2021; 159: 507.Google Scholar
Salter, BM, Sehmi, R. Hematopoietic processes in eosinophilic asthma. Chest 2017; 152: 410.Google Scholar
Schatz, M, Wasserman, S, Patterson, R. Eosinophils and immunologic lung disease. Med Clin North Am 1981; 65: 1055.Google Scholar
Schuyler, MR. Allergic bronchopulmonary aspergillosis. Clin Chest Med 1983; 4: 15.Google Scholar

Bibliography

Fine, J-D. Epidermolysis bullosa: clinical aspects, pathology, and recent advances in research. Int J Dermatol 1986; 25: 143.Google Scholar

Bibliography

Baker, AS, Ojemann, RG, Swartz, MN, et al. Spinal epidural abscess. N Engl J Med 1975; 293: 463.Google Scholar
Jefferson, AA, Keogh, AJ. Intracranial abscesses. Q J Med 1977; 46: 389.Google Scholar

Bibliography

Tynell, E, Aurelius, E, Brandell, A, et al. Acyclovir and prednisolone treatment of acute infectious mononucleosis: a multicenter, double-blind, placebo-controlled study. J Infect Dis 1996; 174: 324.Google Scholar

Bibliography

Ogilvie, CM, Milsom, SR. Dopamine agonists in the treatment of prolactinoma: are they still first choice? Intern Med J 2011; 41: 156.Google Scholar
Redfield, MM, Nicholson, WJ, Edwards, WD, et al. Valve disease associated with ergot alkaloid use. Ann Intern Med 1992; 117: 50.Google Scholar

Bibliography

Eriksson, B, Jorup-Ronstrom, C, Karkkoonen, K, et al. Erysipelas: clinical and bacteriologic spectrum and serological aspects. Clin Infect Dis 1996; 23: 1091.Google Scholar
Grieco, MH, Sheldon, C. Erysipelothrix rhusiopathiae. Ann NY Acad Sci 1970; 174: 523.Google Scholar
Hirschmann, JV. Fungal, bacterial, and viral infections of the skin. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar

Bibliography

Auquier-Dunant, A, Mockenhaupt, M, Naldi, L, et al. Correlations between clinical patterns and causes of erythema multiforme majus, Stevens-Johnson syndrome, and toxic epidermal necrolysis: results of an international prospective study. Arch Dermatol 2002; 138: 1019.Google Scholar
Struck, MF, Hilbert, P, Mockenhaupt, M, et al. Severe cutaneous adverse reactions: emergency approach to non-burn epidermolytic syndromes. Intens Care Med 2010; 36: 22.Google Scholar
Tonnesen, MG, Soter, NA. Erythema multiforme. J Am Acad Dermatol 1979; 1: 357.Google Scholar

Bibliography

Corwin, HL, Gettinger, A, Fabian, TC, et al. Efficacy and safety of epoetin alfa in critically ill patients. N Engl J Med 2007; 357: 965.Google Scholar
Finch, CA. Erythropoiesis, erythropoietin, and iron. Blood 1982; 60: 1241.Google Scholar
Henry, DH, Spivak, JL. Clinical use of erythropoietin. Curr Opinion Hematol 1995; 2: 118.Google Scholar
Krafte-Jacobs, B, Levetown, ML, Bray, GL, et al. Erythropoietin responses to critical illness. Crit Care Med 1994; 22: 821.Google Scholar
Krantz, SB. Erythropoietin. Blood 1991; 77: 419.Google Scholar
Litton, E, Latham, P, Inman, J, et al. Safety and efficacy of erythropoiesis-stimulating agents in critically ill patients admitted to the intensive care unit: a systematic review and meta-analysis. Intens Care Med 2019; 45: 1190.Google Scholar
Nichol, A, French, C, Little, L, et al. Erythropoietin in traumatic brain injury (EPO-TBI): a double-blind randomised controlled trial. Lancet 2015; 386: 2499.Google Scholar

Bibliography

Barceloux, DG, Krenzelok, EP, Olson, K, et al. American Academy of Clinical Toxicology practice guidelines on the treatment of ethylene glycol poisoning. J Toxicol Clin Toxicol 1999; 37: 537.Google Scholar
Brent, J, McMartin, K, Phillips, S, et al. Fomepizole for the treatment of ethylene glycol poisoning. N Engl J Med 1999; 340: 832.Google Scholar
DaRoza, R, Henning, RI, Sunshine, I, et al. Acute ethylene glycol poisoning. Crit Care Med 1984; 12: 103.Google Scholar
Gabow, PA. Ethylene glycol intoxication. Am J Kidney Dis 1988; 11: 277.Google Scholar
Hantson, Ph, Hassoun, A, Mahieu, P. Ethylene glycol poisoning treated by intravenous 4-methylpyrazole. Intens Care Med 1998; 24: 736.Google Scholar
Jacobsen, D, McMartin, KE. Methanol and ethylene glycol poisoning: mechanism of toxicity, clinical course, diagnosis and treatment. Med Toxicol 1986; 1: 309.Google Scholar
Jacobsen, D, McMartin, KE. Antidotes for methanol and ethylene glycol poisoning. J Toxicol Clin Toxicol 1997; 35: 127.Google Scholar
Karlson-Stiber, C, Persson, H. Ethylene glycol poisoning: experience from an epidemic in Sweden. J Toxicol Clin Toxicol 1992; 30: 565.Google Scholar
Kulig, K, Duffy, JP, Lenden, CH, et al. Toxic effects of methanol, ethylene glycol and isopropyl alcohol. Topics in Emerg Med 1984; 6: 14.Google Scholar
Megarbane, B, Borron, SW, Baud, FJ. Current recommendations for treatment of severe toxic alcohol poisonings. Intens Care Med 2005; 31: 189.Google Scholar
Megarbane, B, Borron, SW, Trout, H, et al. Treatment of acute methanol poisoning with fomepizole. Intens Care Med 2001; 27: 1370Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Parry, MF, Wallach, R. Ethylene glycol poisoning. Am J Med 1974; 57: 143.Google Scholar
Shannon, M. Toxicology reviews: fomepizole - a new antidote. Pediatr Emerg Care 1998; 14: 170.Google Scholar
Zimmerman, JL. Poisonings and overdoses in the intensive care unit: general and specific management issues. Crit Care Med 2003; 31: 2794.Google Scholar

Bibliography

Berger, MM, Reymond, MJ, Shenkin, A, et al. Influence of selenium supplements on the post-traumatic alterations of the thyroid axis. Intens Care Med 2001; 27: 91.Google Scholar
Docter, R, Krenning, EP, De Jong, M, et al. The sick euthyroid syndrome: changes in thyroid hormone serum parameters and hormone metabolism. Clin Endocrinol 1993; 39: 499.Google Scholar
Kaptein, EM, Spencer, CA, Kamiel, MB, et al. Prolonged dopamine administration and thyroid hormone economy in normal and critically ill subjects. J Clin Endocrinol Metab 1980; 51: 387.Google Scholar
Ramsay, I. Drug and non-thyroid induced changes in thyroid function tests. Postgrad Med J 1985; 61: 375.Google Scholar
Surks, MI, Chopra, IJ, Mariash, CN, et al. American Thyroid Association guidelines for use of laboratory tests in thyroid disorders. JAMA 1990; 263: 1529.Google Scholar
Wartofsky, L, Burman, KD. Alterations in thyroid function in patients with systemic illness: ‘The euthyroid sick syndrome’. Endocrinol Rev 1982; 3: 164.Google Scholar
Young, R, Worthley, LIG. Diagnosis and management of thyroid disease and the critically ill patient. Crit Care Resusc 2004; 6: 295.Google Scholar

Bibliography

Auquier-Dunant, A, Mockenhaupt, M, Naldi, L, et al. Correlations between clinical patterns and causes of erythema multiforme majus, Stevens-Johnson syndrome, and toxic epidermal necrolysis: results of an international prospective study. Arch Dermatol 2002; 138: 1019.Google Scholar
Gerull, R, Nelle, M, Schaible, T. Toxic epidermal necrolysis and Stevens-Johnson syndrome: a review. Crit Care Med 2011; 39: 1521.Google Scholar
Kim, P, Goldfarb, P, Gaisford, T, et al. Stevens-Johnson syndrome and toxic epidermal necrolysis. J Burn Care Rehabil 1983; 4: 93.Google Scholar
Lin, M-S, Dai, Y-S, Pwu, R-F, et al. Risk estimates for drugs suspected of being associated with Stevens-Johnson syndrome and toxic epidermal necrolysis. Intern Med J 2005; 35: 188.Google Scholar
Lyell, A. A review of toxic epidermal necrolysis in Britain. Br J Dermatol 1967; 79: 662.Google Scholar
Melish, ME, Glasgow, LA, Turner, MD. The staphylococcal scalded-skin syndrome: isolation and partial purification of the exfoliative toxin. J Infect Dis 1972; 125: 129.Google Scholar
Nicolis, GD, Helwig, EB. Exfoliative dermatitis: a clinicopathologic study of 135 cases. Arch Dermatol 1973; 108: 788.Google Scholar
Roujeau, JC, Kelly, JP, Naldi, L, et al. Medication use and the risk of Stevens-Johnson syndrome or toxic epidermal necrolysis. N Engl J Med 1995; 333: 1600.Google Scholar
Schwartz, RA. Toxic epidermal necrolysis. Cutis 1997; 59: 123.Google Scholar
Sehgal, VN, Gangwani, OP. Fixed drug eruption: current concepts. Int J Dermatol 1987; 26: 67.Google Scholar
Stanley, JR, Amagai, M. Pemphigus, bullous impetigo and staphylococcal scalded skin syndrome. N Engl J Med 2006; 355: 1800.Google Scholar
Struck, MF, Hilbert, P, Mockenhaupt, M, et al. Severe cutaneous adverse reactions: emergency approach to non-burn epidermolytic syndromes. Intens Care Med 2010; 36: 22.Google Scholar
Thestrup-Pedersen, K, Halkier-Sorensen, L, Sogaard, H, et al. The red man syndrome: exfoliative dermatitis of unknown etiology. J Am Acad Dermatol 1988; 18: 1307.Google Scholar
Wolff, K, Tappeiner, G. Treatment of toxic epidermal necrolysis. Arch Dermatol 2003; 139: 85.Google Scholar

Bibliography

Brady, RO, Gal, AE, Bradley, RM, et al. Enzymatic defect in Fabry’s disease: ceramide trihexosidase deficiency. N Engl J Med 1967; 276: 1163.Google Scholar
Brady, RO, Schiffmann, R. Clinical features and recent advances in therapy for Fabry disease. JAMA 2000; 284: 2771.Google Scholar
Desnick, RJ, Brady, R, Barranger, J, et al. Fabry disease, an under-recognized multisystemic disorder: expert recommendations for diagnosis, management, and enzyme replacement therapy. Ann Intern Med 2003; 138: 338.Google Scholar
Garman, SC, Garboczi, DN. The molecular defect leading to Fabry disease: structure of human alpha-galactosidase. J Mol Biol 2004; 337: 319.Google Scholar
Germain, DP, Hughes, DA, Nicholls, K, et al. Treatment of Fabry’s disease with the pharmacologic chaperone migalastat. N Engl J Med 2016; 375: 545.Google Scholar
Nicholls, K. Fabry disease: an X-linked cause of cardiorenal syndrome. Intern Med J 2020; 50 (suppl 4): 11.Google Scholar

Bibliography

An, Y-K, Prince, D, Gardiner, F, et al. Faecal calprotectin testing for identifying patients with organic gastrointestinal disease: systematic review and meta-analysis. Med J Aust 2019; 211: 461.Google Scholar
Burri, E, Beglinger, C. The use of fecal calprotectin as a biomarker in gastrointestinal disease. Expert Rev Gastroenterol Hepatol 2014; 8: 197.Google Scholar
van Rheenen, PF, van de Vijver, E, Fidler, V. Faecal calprotectin for screening of patients with suspected inflammatory bowel disease: diagnostic meta-analysis. BMJ 2010; 341: c3369.Google Scholar
Wright, EK. Calprotectin or lactoferrin: do they help? Dig Dis 2016; 34: 98.Google Scholar

Bibliography

van Langenberg, DR, Gearry, RB, Wong, H-L, et al. The potential value of faecal lactoferrin as a screening test in hospitalized patients with diarrhoea. Intern Med J 2010; 40: 819.Google Scholar
Wright, EK. Calprotectin or lactoferrin: do they help? Dig Dis 2016; 34: 98.Google Scholar

Bibliography

Chauhan, A, Apostolov, R, van Langenberg, D, et al. Faecal microbiota transplantation for recurrent Clostridioides difficile infection: an Australian perspective – effective, safe, yet room for improvement. Intern Med J 2021; 51: 106.Google Scholar
Costello, SP, Bryant, RV. Faecal microbiota transplantation in Australia: bogged down in regulatory uncertainty. Intern Med J 2019; 49: 148.Google Scholar
Costello, SP, Hughes, PA, Waters, O, et al. Effect of fecal microbiota transplantation on 8-week remission in patients with ulcerative colitis: a randomized clinical trial. JAMA 2019; 321: 156.Google Scholar
Hvas, CL, Jorgensen, SMD, Jorgensen, SP, et al. Fecal microbiota transplantation is superior to fidaxomicin for treatment of recurrent Clostridium difficile infection. Gastroenterology 2019; 156: 1324.Google Scholar
Soo, WT, Bryant, RV, Costello, SP. Faecal microbiota transplantation: indications, evidence and safety. Aust Prescriber 2020 43: 36.Google Scholar
Van Nood, E, Vrieze, A, Nieuwdorp, M, et al. Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 2013; 368: 407.Google Scholar

Bibliography

Akar, S, Yuksel, F, Tunca, M, et al. Familial Mediterranean fever: risk factors, causes of death, and prognosis in the colchicine era. Medicine 2012; 91: 131.Google Scholar
Ben-Chetrit, E, Levy, M. Familial Mediterranean fever. Lancet 1998; 351: 659.Google Scholar
Drenth, JPH, van der Meer, JWM. Hereditary periodic fever. New Engl J Med 2001; 345: 1748.Google Scholar
Editorial. Familial Mediterranean fever. BMJ 1980; 281: 2.Google Scholar
Eliakim, M, Levy, M, Ehrenfeld, M. Recurrent Polyserositis (Familial Mediterranean Fever, Periodic Disease). Amsterdam: Elsevier. 1981.Google Scholar
Gattorno, M, Hofer, M, Federici, S, et al. Classification criteria for autoinflammatory recurrent fevers. Ann Rheum Dis 2019; 78: 1025.Google Scholar
Moghaddas, F. Monogenic autoinflammatory disorders: beyond the periodic fever. Intern Med J 2020; 50: 151.Google Scholar
Sohar, E, Gafni, J, Heller, H. Familial Mediterranean fever. Am J Med 1967; 43: 227.Google Scholar

Bibliography

Brenton, DP, Isenberg, DA, Cusworth, DC, et al. The adult presenting Fanconi syndrome. J Inh Metab Dis 1981; 4: 211.Google Scholar

Bibliography

Goldberg, J, Pinals, RS. Felty syndrome. Semin Arthritis Rheum 1980; 10: 52.Google Scholar
Spivak, JL. Felty’s syndrome: an analytical review. Johns Hopkins Med J 1977; 141: 156.Google Scholar

Bibliography

Bobbio-Pallavicni, F, Verde, G, Spirano, P, et al. Body iron status in critically ill patients: significance of serum ferritin. Intens Care Med 1989; 15: 171.Google Scholar
Cullis, JO, Fitzsimons, EJ, Griffiths, WJ, et al. British Society of Haematology: investigation and management of a raised serum ferritin. Br J Haematol 2018; 181: 331.Google Scholar
Lachmann, G, Knaak, C, Vorderwulbecke, G, et al. Hyperferritinemia in critically ill patients. Crit Care Med 2020; 48: 459.Google Scholar

Bibliography

Balsara, RD, Ploplis, VA. Plasminogen activator inhibitor-1: the double-edged sword in apoptosis. Thromb Haemost 2008; 100: 1029.Google Scholar
Cap, AP. CRASH-3: a win for patients with traumatic brain injury. Lancet 2019; 394: 1687.Google Scholar
Collen, D, Lijnen, HR. Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 1991; 78: 3114.Google Scholar
CRASH-2 trial collaborators, Shakur, H, Roberts, I, Bautista, R, et al. Effects of tranexamic acid on death, vascular occlusive events, and blood transfusion in trauma patients with significant haemorrhage (CRASH-2): a randomised, placebo-controlled trial. Lancet 2010; 376: 23.Google Scholar
Mavrommatis, AC, Theodoridis, T, Economou, M, et al. Activation of the fibrinolytioc system and utilization of the coagulation inhibitors in sepsis: comparison with severe sepsis and septic shock. Intens Care Med 2001; 27: 1853.Google Scholar
Medcalf, RL. Fibrinolysis: from blood to brain. J Thromb Haemost 2017; 15: 2089.Google Scholar
Prins, MH, Hirsh, J. A critical review of the evidence supporting a relationship between impaired fibrinolytic activity and venous thromboembolism. Arch Intern Med 1991; 151: 1721.Google Scholar
Saes, JL, Schols, SEM, Van Herde, WL, et al. Hemorrhagic disorders of fibrinolysis: a clinical review. Thromb Haemost 2018; 16: 1498.Google Scholar

Bibliography

Elston, D. Infestations. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar

Bibliography

Pochi, PE. Hormones, retinoids and acne. N Engl J Med 1983; 308: 1024.Google Scholar

Bibliography

Dansky, LV, Rosenblatt, DS, Andermann, E. Mechanisms of teratogenesis: folic acid and antiepileptic therapy. Neurology 1992; 42 (suppl. 5): 32.Google Scholar
McPartin, J, Halligan, A, Scott, JM, et al. Accelerated folate breakdown in pregnancy. Lancet 1993; 341: 148.Google Scholar
Wald, NJ, Bower, C. Folic acid, pernicious anaemia, and prevention of neural tube defects. Lancet 1994; 343: 307.Google Scholar

Bibliography

Hirschmann, JV. Fungal, bacterial, and viral infections of the skin. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar

Bibliography

Hughes, JM, Merson, MH. Fish and shellfish poisoning. N Engl J Med 1976; 295: 1117.Google Scholar
Mead, PS, Slutsker, L, Dietz, V, et al. Food-related illness and death in the United States. Emerg Infect Dis 1999; 5: 607.Google Scholar
Morse, DL, Guzewich, JJ, Hanrahan, JP, et al. Widespread outbreaks of clam- and oyster-associated gastroenteritis: role of Norwalk virus. N Engl J Med 1986; 314: 678.Google Scholar
Olson, KR, ed. Poisoning and Drug Overdose. 5th edition. Norwalk: Appleton & Lange. 2006.Google Scholar
Shannon, MW, Borron, SW, Burns, MJ, eds. Haddad and Winchester’s Clinical Management of Poisoning and Drug Overdose. 4th edition. Philadelphia: WB Saunders. 2007.Google Scholar
Trujillo, MH, Guerrero, J, Fragachan, C, et al. Pharmacologic antidotes in critical care medicine: a practical guide for drug administration. Crit Care Med 1998; 26: 377.Google Scholar

Bibliography

Bagshaw, SM, Stelfox, HT, McDermid, RC, et al. Association between frailty and short- and long-term outcomes among critically ill patients: a multicentre prospective cohort study. CMAJ 2014; 186: E95.Google Scholar
Darvall, JN, Bellomo, R, Paul, E, et al. Frailty in very old critically ill patients in Australia and New Zealand: a population-based cohort study. Med J Aust 2019; 211: 318.Google Scholar

Bibliography

Hirschmann, JV. Fungal, bacterial, and viral infections of the skin. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar

Bibliography

Chin, RL, Sporer, KA, Cullison, B, et al. Clinical course of γ-hydroxybutyrate overdose. Ann Emerg Med 1998; 31: 716.Google Scholar
Henderson, RS, Holmes, CM. Reversal of the anaesthetic action of sodium gamma-hydroxybutyrate. Anaesth Intens Care 1976; 4: 351.Google Scholar
Li, J, Stokes, SA, Wockener, A. A tale of novel intoxication: a review of the effects of gamma-hydroxybutyric acid with recommendations for management. Ann Emerg Med 1998; 31: 729.Google Scholar
Mokhlesi, B, Garinella, PS, Joffe, A, et al. Street drug abuse leading to critical illness. Intens Care Med 2004; 30: 1526.Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Viera, AJ, Yates, SW. Toxic ingestion of gamma-hydroxybutyric acid. South Med J 1999; 92: 404.Google Scholar

Bibliography

Anaya, D, Dellinger, E. Necrotizing soft-tissue infection: diagnosis and management. Clin Infect Dis 2007; 44: 705.Google Scholar
Bessman, AN, Wagner, W. Nonclostridial gas gangrene. JAMA 1975; 233: 958.Google Scholar
Bisno, AL, Stevens, DL. Streptococcal infections of skin and soft tissue. N Engl J Med 1996; 334: 240.Google Scholar
Brown, RD, Davis, NL, Lepawski, M, et al. A multicentre review of the treatment of major truncal necrotising infections with and without hyperbaric oxygen therapy. Am J Surg 1994; 167: 483.Google Scholar
Dahl, PR, Perniciaro, C, Holmkvist, KA, et al. Fulminant group A streptococcal necrotizing fasciitis: clinical and pathologic findings in 7 patients. J Am Acad Dermatol 2002; 47: 489.Google Scholar
Davies, HD, McGeer, A, Schwartz, B, et al. Invasive group A streptococcal infections in Ontario, Canada. N Engl J Med 1996; 335: 547.Google Scholar
Devaney, B, Frawley, G, Frawley, J, et al. Necrotising soft tissue infections: the effect of hyperbaric oxygen on mortality. Anaesth Intens Care 2015; 43: 685.Google Scholar
Eke, N. Fournier’s gangrene: a review of 1726 cases. Br J Surg 2000; 87: 718.Google Scholar
Elliott, DC, Kufera, JA, Myers, RAM, et al. Necrotizing soft tissue infections: risk factors for mortality and strategies for management. Ann Surg 1996; 224: 672.Google Scholar
Giuliano, A, Lewis, F, Hadley, K, et al. Bacteriology of necrotizing fasciitis. Am J Surg 1977; 134: 52.Google Scholar
Green, RJ, Dafoe, DC, Raffin, TA. Necrotizing fasciitis. Chest 1996; 110: 219.Google Scholar
Hirschmann, JV. Fungal, bacterial, and viral infections of the skin. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Jarrett, P, Rademaker, M. Duffill, M. The clinical spectrum of necrotising fasciitis. Aust NZ J Med 1997; 27: 29.Google Scholar
Kaul, R, McGeer, A, Low, DE, et al. Population-based surveillance for group A streptococcal necrotizing fasciitis: clinical features, prognostic indicators, and microbiological analysis of seventy-seven cases. Am J Med 1997; 103: 18.Google Scholar
Lille, ST, Sato, TT, Engray, LH, et al. Necrotizing soft tissue infections: obstacles in diagnosis. J Am Coll Surg 1996; 182; 7.Google Scholar
Morpurgo, E, Galandiuk, S. Fournier’s gangrene. Surg Clin N Am 2002; 82: 1213.Google Scholar
Phan, HH, Cocanour, CS. Necrotizing soft tissue infections in the intensive care unit. Crit Care Med 2010; 38 (suppl.): S460.Google Scholar
Riegels-Nielsen, P, Hesselfeldt-Nielsen, J, Bang-Jensen, E, et al. Fournier’s gangrene. J Urol 1984; 132: 918.Google Scholar
Seal, DV. Necrotizing fasciitis. Curr Opin Infect Dis 2001; 14: 127.Google Scholar
Short, B. Fournier gangrene: an historical perspective. Intern Med J 2018; 48: 1157.Google Scholar
Stevens, DL. Invasive group A Streptococcus infections. Clin Infect Dis 1992; 14: 2.Google Scholar
Stevens, DL. The flesh-eating bacterium. J Infect Dis 1999; 179 (suppl. 2): S366.Google Scholar
Stevens, DL, Bryant, AE. Necrotizing soft-tissue infections. N Engl J Med 2017; 377: 2253.Google Scholar
Stone, HH, Martin, JJ. Synergistic necrotizing cellulitis. Ann Surg 1972; 175: 702.Google Scholar
Unsworth, IP, Sharp, PA. Gas gangrene: an 11-year review of 73 cases managed with hyperbaric oxygen. Med J Aust 1984; 140: 256.Google Scholar
Urbina, T, Madsen, MB, de Prost, N. Understanding necrotizing soft tissue infections in the intensive care unit. Intens Care Med 2020; 46: 1739.Google Scholar
Ustin, JS, Malangoni, MA. Necrotizing soft-tissue infections. Crit Care Med 2011; 39: 2156.Google Scholar
Weinstein, L, Barza, MA. Gas gangrene. N Engl J Med 1973; 289: 1129.Google Scholar

Bibliography

Bessman, AN, Wagner, W. Nonclostridial gas gangrene. JAMA 1975; 233: 958.Google Scholar
Giuliano, A, Lewis, F, Hadley, K, et al. Bacteriology of necrotizing fasciitis. Am J Surg 1977; 134: 52.Google Scholar
Unsworth, IP, Sharp, PA. Gas gangrene: an 11-year review of 73 cases managed with hyperbaric oxygen. Med J Aust 1984; 140: 256.Google Scholar
Weinstein, L, Barza, MA. Gas gangrene. N Engl J Med 1973; 289: 1129.Google Scholar

Bibliography

Heyland, D, Cook, DJ, Winder, B, et al. Enteral nutrition in the critically ill patient: a prospective study. Crit Care Med 1995; 23: 1055.Google Scholar
Lewis, K, Alqahtani, Z, Mcintyre, L, et al. The efficacy and safety of prokinetic agents in critically ill patients receiving enteral nutrition: a systematic review and meta-analysis of randomized trials. Crit Care 2016; 20: 259.Google Scholar
Montejo, JC, Minambres, E, Bordeje, L, et al. Gastric residual volume during enteral nutrition in ICU patients: the REGANE study. Intens Care Med 2010; 36: 1386.Google Scholar

Bibliography

Abraham, E, ed. Acid suppression in a critical care environment. Crit Care Med 2002; 30: no.6, suppl.Google Scholar
Barie, PS, Fischer, E, Eachempati, SR. Acute acalculous cholecystitis. Curr Opin Crit Care 1999; 5: 144.Google Scholar
Berger, HG, Matsuno, S, Cameron, JL, eds. Diseases of the Pancreas. Berlin: Springer. 2008.Google Scholar
Blaser, MJ, Smith, PD, Ravdin, JL, et al., eds. Infections of the Gastrointestinal Tract. 2nd edition. New York: Raven Press. 2002.Google Scholar
Doe, WF. The immunology of the gut. In: Peters, PJ, Rosen, FS, Walport, M, eds. Clinical Aspects of Immunology. 4th edition. Oxford: Blackwell. 1993; p 2079.Google Scholar
Dooley, J, Lok, ASF, Garcia-Tsao, G, et al., eds. Sherlock’s Diseases of the Liver and Biliary System. 13th edition. Hoboken: Wiley. 2018.Google Scholar
Fehily, SR, Basnayake, C, Wright, EK, et al. The gut microbiota and gut disease. Intern Med J 2021; 51: 1594.Google Scholar
Feldman, M, Friedman, L, Brandt, L. Sleisenger and Fordtran’s Gastrointestinal and Liver Disease. 11th edition. Philadelphia: Elsevier. 2020.Google Scholar
Go, VLW, et al., eds. The Pancreas: Biology, Pathobiology and Diseases. New York: Raven Press. 1993.Google Scholar
Johnston, DE, Kaplan, MM. Pathogenesis and treatment of gallstones. N Engl J Med 1993; 328: 412.Google Scholar
Mutlu, GM, Mutlu, EA, Factor, P. GI complications in patients receiving mechanical ventilation. Chest 2001; 119: 1222.Google Scholar
Powell, LW, Piper, DW, eds. Fundamentals of Gastroenterology. 6th edition. Sydney: McGraw-Hill. 1995.Google Scholar
Shearman, DJC, Finlayson, NDC. Diseases of the Gastrointestinal Tract and Liver. 2nd edition. Edinburgh: Churchill Livingstone. 1989.Google Scholar
Various. Gastroenterology. In: Scientific American Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar

Bibliography

Beutler, E. Gaucher’s disease. N Engl J Med 1991; 325: 1354.Google Scholar
Charrow, J, Esplin, JA, Gribble, TJ, et al. Gaucher disease: recommendations on diagnosis, evaluation and monitoring. Arch Intern Med 1998; 158: 1754.Google Scholar
Jmoudiak, M, Futerman, AH. Gaucher disease: pathological mechanisms and modern management. Br J Haematol 2005; 129: 178.Google Scholar
Meikle, PJ, Hopwood, JJ, Clague, AE, et al. Prevalence of lysosomal storage disorders. JAMA 1999; 281: 249.Google Scholar
Szer, J, Peters, H. Gaucher disease: a multi-organ disorder with a heterogeneous phenotype. Intern Med J 2020; 50 (suppl 4): 7.Google Scholar

Bibliography

Breman, JG, Henderson, DA. Diagnosis and management of smallpox. N Engl J Med 2002; 346: 1300.Google Scholar
Rotz, LD, Khan, AS, Lillibridge, SR, et al. Public health assessment of potential bioterrorism agents. Emerg Infect Dis 2002; 8: 225.Google Scholar
Whitby, M, Ruff, TA, Street, AC, et al. Biological agents as weapons 2: anthrax and plague. Med J Aust 2002; 176: 605.Google Scholar

Bibliography

Deane, A, Chapman, MJ, Fraser, RJL, et al. Bench-to-bedside: the gut as an endocrine organ in the critically ill. Crit Care 2010; 14: 228.Google Scholar

Bibliography

Abraham, PA, Keane, WF. Glomerular and interstitial disease induced by nonsteroidal anti-inflammatory drugs. Am J Nephrol 1984; 4: 1.Google Scholar
Balow, J. Renal vasculitis. Kidney Int 1985; 27: 954.Google Scholar
Balow, JE, Austin, HA, Tsokos, GC, et al. Lupus nephritis. Ann Intern Med 1987; 106: 79.Google Scholar
Bonegio, RGB, Salant, DS. Glomerular diseases. In: Scientific American Medicine. Nephrology. Hamilton: Dekker Medicine. 2020.Google Scholar
Kincaid-Smith, P. Analgesic abuse and the kidney. Kidney Int 1980; 17: 250.Google Scholar
Llach, F. Hypercoagulability, renal vein thrombosis, and other thrombotic complications of the nephrotic syndrome. Kidney Int 1985; 28: 429.Google Scholar
Morgan, DB, Dillon, S, Payne, RB. The assessment of glomerular function: creatinine clearance or plasma creatinine? Postgrad Med J 1978; 54: 302.Google Scholar
Muirhead, N. Management of idiopathic membranous nephropathy: evidence-based recommendations. Kidney Int 1999; 70 (suppl.): S47.Google Scholar
Nolin, L, Courteau, M. Management of IgA nephropathy: evidence based recommendations. Kidney Int 1999; 70 (suppl.): S56.Google Scholar
Ronco, PM, Flahault, A. Drug-induced end-stage renal disease. N Engl J Med 1994; 331: 1711.Google Scholar
Turner, NN, Lamiere, N, Goldsmith, DJ, et al., eds. Oxford Textbook of Clinical Nephrology. 4th edition. Oxford: Oxford University Press. 2018.Google Scholar

Bibliography

Leichter, SB. Clinical and metabolic aspects of glucagonoma. Medicine 1980; 59: 100.Google Scholar

Bibliography

Beutler, E. The genetics of glucose-6-phosphate dehydrogenase deficiency. Semin Hematol 1990; 27: 137.Google Scholar

Bibliography

Ait-Outfella, H, Maury, E, Lehoux, S, et al. The endothelium: physiological functions and role of microcirculatory failure during sepsis. Intens Care Med 2010; 36: 1286.Google Scholar
Iba, T, Levy, JH. Derangement of the endothelial glycocalyx in sepsis. J Thromb Haemost 2019; 17: 283.Google Scholar
Reitsma, S, Slaaf, DW, Vink, H, et al. The endothelial glycocalyx: composition, functions, and visualization. Pflugers Arch 2007; 454: 345.Google Scholar
Weinbaum, S, Tarbell, JM, Damiano, ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 2007; 9: 121.Google Scholar

Bibliography

Layzer, RB. McArdle’s disease in the 1980s. N Engl J Med 1985; 312: 370.Google Scholar
Pears, JS, Jung, RT, Hopwood, D, et al. Glycogen storage disease diagnosed in adults. Quart J Med 1992; 82: 207.Google Scholar
Talente, GM, Coleman, RA, Alter, C, et al. Glycogen storage disease in adults. Ann Intern Med 1994; 120: 218.Google Scholar

Bibliography

Green, RJ, Ruoss, SJ, Kraft, SA, et al. Pulmonary capillaritis and alveolar hemorrhage: update on diagnosis and management. Chest 1996; 110: 1305.Google Scholar
Joachimescu, OC, Sieber, S, Koch, A. Idiopathic pulmonary haemosiderosis revisited. Eur Respir J 2004; 24: 162.Google Scholar
Kefalides, NA. The Goodpasture antigen and basement membranes: the search must go on. Lab Invest 1987; 56: 1.Google Scholar
Kelly, PT, Haponik, EF. Goodpasture syndrome: molecular and clinical advances. Medicine 1994; 73: 171.Google Scholar
Leatherman, JW, Davies, SF, Hoidal, JR. Alveolar hemorrhage syndromes: diffuse microvascular lung hemorrhage in immune and idiopathic disorders. Medicine 1984; 63: 343.Google Scholar
Pacheo, A, Casanova, C, Fogue, L, et al. Long-term clinical follow-up of adult idiopathic pulmonary hemosiderosis and celiac disease. Chest 1991; 99: 1525.Google Scholar
Specks, U. Diffuse alveolar hemorrhage syndromes. Curr Opin Rheumatol 2001; 13: 12.Google Scholar
Turner, N, Mason, PJ, Brown, R, et al. Molecular cloning of the human Goodpasture antigen demonstrates it to be the α3 chain of type IV collagen. J Clin Invest 1992; 89: 592.Google Scholar
Young, KR. Diagnostic pitfalls in alveolar hemorrhage syndromes. Pulmonary Perspectives 2000; 17: 11.Google Scholar

Bibliography

Beck, LH. Requiem for gouty nephropathy. Kidney Int 1986; 30: 280.Google Scholar
Boss, GR, Seegmiller, JE. Hyperuricemia and gout: classification, complications and management. N Engl J Med 1979; 300: 1459.Google Scholar
Dalvi, SR, Pillinger, MH. Saturnine gout, redux: a review. Am J Med 2013; 126: 450.Google Scholar
Dieppe, PA, Huskisson, EC, Crocker, P, et al. Apatite deposition disease: a new arthropathy. Lancet 1976; 1: 266.Google Scholar
Edwards, Nl. Crystal-induced joint disease. In: Scientific American Medicine. Rheumatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Emmerson, BT. The management of gout. N Engl J Med 1996; 334: 445.Google Scholar
Fam, AG. Treating acute gouty arthritis with selective COX 2 inhibitors. BMJ 2002; 325: 980.Google Scholar
Galassi, FM, Borghi, C. A brief history of uric acid from gout to cardiovascular risk factor. Eur J Intern Med 2015; 26: 373.Google Scholar
Gupta, MN, Sturrock, RD, Field, M. Prospective comparative study of patients with culture proven and high suspicion of adult onset septic arthritis. Ann Rheum Dis 2003; 62: 327.Google Scholar
Hadler, NM, Franck, WA, Bress, NM, et al. Acute polyarticular gout. Am J Med 1974; 56: 715.Google Scholar
Hui, M, Carr, A, Cameron, S, et al. The British Society for Rheumatology guidelines for the management of gout. Rheumatology 2017; 56: e1.Google Scholar
McGill, NW. Gout and other crystal arthropathies. Med J Aust 1997; 166: 33.Google Scholar
McGill, NW. Management of gout: beyond allopurinol. Intern Med J 2010; 40: 545.Google Scholar
Mikula, TR, Sang, KG. New insights into gout epidemiology. Curr Opin Rheumatol 2006; 18: 199.Google Scholar
Pascual, E. Gout update: from lab to the clinic and back. Curr Opin Rheumatol 2000; 12: 213.Google Scholar
Simkin, PA. The pathogenesis of podagra. Ann Intern Med 1977; 86: 230.Google Scholar
Stamp, LK, O’Donnell, JL, Chapman, PT. Emerging therapies in the long-term management of hyperuricaemia and gout. Intern Med J 2007; 37: 258.Google Scholar
Ting, K, Graf, SW, Whittle, SL. Update on the diagnosis and management of gout. Med J Aust 2015; 203: 86.Google Scholar
Yu, KH, Luo, SF, Liou, LB, et al. Concomitant septic and gouty arthritis: an analysis of 30 cases. Rheumatology 2003; 42: 1062.Google Scholar

Bibliography

Ashbury, AK, Cornblath, DR. Assessment of current diagnostic criteria for Guillain–Barre syndrome. Ann Neurol 1990; 27 (suppl.): S21.Google Scholar
Bromberg, MB, Feldman, EL, Albers, JW. Chronic inflammatory demyelinating polyradiculoneuropathy. Neurology 1992; 42: 1157.Google Scholar
Dalakas, MC, Engel, WK. Chronic relapsing (dysimmune) polyneuropathy: pathogenesis and treatment. Ann Neurol 1981; 9 (suppl.): 134.Google Scholar
Feasby, TE, Hughes, RA. Campylobacter jejuni, antiganglioside antibodies, and Guillain–Barré syndrome. Neurology 1998; 51: 340.Google Scholar
Fisher, M. An unusual variant of acute idiopathic polyneuritis (syndrome of ophthalmoplegia, ataxia and areflexia). N Engl J Med 1956; 255: 57.Google Scholar
Fuller, GN, Jacobs, JM, Guiloff, RJ. Nature and incidence of peripheral neuropathy syndromes in HIV infection. J Neurol Neurosurg Psychiatry 1993; 56: 372.Google Scholar
Haber, P, DeStafano, F, Angulo, FJ, et al. Guillain–Barré syndrome following influenza vaccination. JAMA 2004; 292: 2478.Google Scholar
Hahn, AF. Guillain–Barré syndrome. Lancet 1998; 352: 635.Google Scholar
Hughes, RAC. Ineffectiveness of high-dose intravenous methylprednisolone in Guillain–Barré syndrome. Lancet 1991; 338: 1142.Google Scholar
Hughes, RA, van der Meche, FG. Corticosteroids for treating Guillain–Barré syndrome. Cochrane Database Systematic Review 2000; 2: CD001446.Google Scholar
Lasky, T, Terracciano, GJ, Magder, L, et al. The Guillain–Barré syndrome and the 1992–1993 and 1993–1994 influenza vaccines. N Engl J Med 1998; 339: 1797.Google Scholar
Misawa, S, Kuwahara, S, Sato, Y, et al. Safety and efficacy of eculizumab in Guillain–Barré syndrome: a multicentre, double-blind, randomised phase 2 trial. Lancet Neurol 2018; 17: 519.Google Scholar
Moore, P, Owen, J. Guillain–Barré syndrome: incidence, management and outcome of major complications. Crit Care Med 1981; 9: 549.Google Scholar
Plasma Exchange/Sandoglobulin Guillain–Barré Syndrome Trial Group. Randomised trial of plasma exchange, intravenous immunoglobulin, and combined treatments in Guillain–Barré syndrome. Lancet 1997; 349: 225.Google Scholar
Rees, JH, Soudain, SE, Gregson, NA, et al. Campylobacter jejuni infection and Guillain–Barré syndrome. N Engl J Med 1995; 333: 1374.Google Scholar
Ropper, AH. Campylobacter diarrhea and Guillain–Barré syndrome. Arch Neurol 1988; 45: 655.Google Scholar
Ropper, AH. The Guillain–Barré syndrome. N Engl J Med 1992; 326: 1130.Google Scholar
Ropper, AH, Victor, M. Influenza vaccination and the Guillain–Barré syndrome. N Engl J Med 1998; 339: 1845.Google Scholar
Shahrizaila, N, Yuki, N. Bickerstaff brainstem encephalitis and the Fisher syndrome: anti-CQ1b antibody syndrome. J Neurol Neurosurg Psychiatry 2013; 84: 576.Google Scholar
van der Meche, FGA, Schmitz, PIM. The Dutch Guillain–Barré Study Group: A randomized trial comparing intravenous immune globulin and plasma exchange in Guillain–Barré syndrome. N Engl J Med 1992; 326: 1123.Google Scholar
van Doorn, PA, Ruts, L, Jacobs, BC. Clinical features, pathogenesis, and treatment of Guillain–Barré syndrome. Lancet Neurol 2008; 7: 939.Google Scholar
Wijdicks, EF, Klein, CJ. Guillain–Barré Syndrome. Mayo Clin Proc 2017; 92: 467.Google Scholar
Winer, JB. Bickerstaff’s encephalitis and the Miller Fisher syndrome. J Neurol Neurosurg Psychiatry 2001; 71: 433.Google Scholar
Yuki, N, Hartung, HP. Guillain–Barré syndrome. N Engl J Med 2012; 366: 2294.Google Scholar

Bibliography

Alliot, C, Tribout, B Barrios, M, et al. Angiosarcoma variant of Kasabach-Merritt syndrome. Eur J Gastroenterol Hepatol 2001; 13: 731.Google Scholar

Bibliography

Arya, S, Hong, R, Gilbert, EF. Reactive hemophagocytic syndrome. Pediatr Pathol 1985; 3: 129.Google Scholar
Barrett-Connor, E. Anemia and infection. Am J Med 1972; 52: 242.Google Scholar
Berliner, N, ed. Hematology. In: Scientific American Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Bohnsack, JF, Brown, EJ. The role of the spleen in resistance to infection. Annu Rev Med 1986; 37: 49.Google Scholar
Bolan, CD, Alving, BM. Pharmacologic agents in the management of bleeding disorders. Transfusion 1990; 30: 541.Google Scholar
Collen, D, Lijnen, HR. Basic and clinical aspects of fibrinolysis and thrombolysis. Blood 1991; 78: 3114.Google Scholar
Colman, N, Herbert, V. Hematologic complications of alcoholism: overview. Semin Hematol 1980; 17: 164.Google Scholar
Copeman, PW. Livedo reticularis: signs in the skin of disturbance of blood viscosity and blood flow. Br J Dermatol 1975; 93: 519.Google Scholar
Dexter, TM. Stem cells in normal growth and disease. BMJ 1987; 295: 1192.Google Scholar
Doll, DC, List, AF. Myelodysplastic syndromes. Semin Oncol 1992; 19: 1.Google Scholar
Editorial. Nitrous oxide and acute marrow failure. Lancet 1982; 2: 856.Google Scholar
Editorial. Peripheral stem cells made to work. Lancet 1992; 339: 648.Google Scholar
Goodnough, LT, ed. RFVIIa: potential treatment of critical bleeding in the future ICU. Intens Care Med 2002; 28 (suppl. 2): S221.Google Scholar
Greenberg, CS, Sane, DC. Coagulation problems in critical care medicine. In: Lumb, PD, Shoemaker, WC, eds. Critical Care: State of the Art, Chapter 9. Fullerton: Society of Critical Care Medicine. 1990; p 187.Google Scholar
Guyatt, G, Akl, EA, Crowther, M, et al., eds. Antithrombotic therapy and prevention of thrombosis, 9th ed: ACCP evidence-based clinical practice guidelines. Chest 2012; 141: no. 2 (suppl.).Google Scholar
Hirsh, J, Levine, MN. Low molecular weight heparin. Blood 1992; 79: 1.Google Scholar
Kushner, I, Rzewnicki, DL. The acute phase response: general aspects. Baillieres Clin Rheumatol 1994; 8: 513.Google Scholar
Lieschke, GJ, Burgess, AW. Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor. N Engl J Med 1992; 327: 28 & 99.Google Scholar
Marder, VJ, Aird, WC, Bennett, JS, et al., eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. 6th edition. Philadelphia: Lippincott Williams & Wilkins. 2012.Google Scholar
Metcalf, D. Hematopoietic regulators: redundancy or subtlety? Blood 1993; 82: 3515.Google Scholar
Moake, JL. Common hemostatic problems and blood banking in critical care medicine. In: Lumb, PD, Shoemaker, WC, eds. Critical Care: State of the Art, Chapter 8. Fullerton: Society of Critical Care Medicine. 1990; p 161.Google Scholar
Nachman, RL. Thrombosis and atherogenesis: molecular connections. Blood 1992; 79: 1897.Google Scholar
Ogawa, M. Differentiation and proliferation of hemopoietic stem cells. Blood 1993; 81: 2844.Google Scholar
Provan, D, ed. ABC of Clinical Haematology. 4th edition. London: BMJ Publishing. 2018.Google Scholar
Rapaport, SI. Preoperative hemostatic evaluation: which tests, if any? Blood 1983; 61: 229.Google Scholar
Rose, WF. The spleen as a filter. N Engl J Med 1987; 317: 704.Google Scholar
Salama, A, Mueller-Eckhardt, C. Immune-mediated blood cell dyscrasias related to drugs. Semin Hematol 1992; 29: 54.Google Scholar
Schafer, AI. Bleeding and thrombosis in the myeloproliferative disorders. Blood 1984; 64: 1.Google Scholar
Shram, AM, Berliner, N. Nonmalignant disorders of leukocytes. In: Scientific American Medicine. Hematology. Hamilton: Dekker Medicine. 2020.Google Scholar
Silverstein, RL, Nachman, RL. Cancer and clotting – Trousseau’s warning. N Engl J Med 1992; 327: 1163.Google Scholar
Sox, HC, Liang, MH. The erythrocyte sedimentation rate: guidelines for rational use. Ann Intern Med 1986; 104: 515.Google Scholar
Weitz, JI. Low-molecular-weight heparins. N Engl J Med 1997; 337: 688.Google Scholar

Bibliography

Cronin, RE, Kaehny, WD, Miller, PD, et al. Renal cell carcinoma: unusual systemic manifestations. Medicine 1976; 55: 291.Google Scholar
Froom, P, Ribak, J, Benbassat, J. Significance of microhaematuria in young adults. BMJ 1984; 288: 20.Google Scholar

Bibliography

Adams, PC, Kertesz, AE, Valberg, LS. Clinical presentation of hemochromatosis. Am J Med 1991; 90: 445.Google Scholar
Bassett, ML. Haemochromatosis: iron still matters. Intern Med J 2001; 31: 237.Google Scholar
Bomford, A. Genetics of haemochromatosis. Lancet 2002; 360: 1673.Google Scholar
Burke, W, Thomson, E, Khoury, MJ, et al. Hereditary hemochromatosis: gene discovery and its implications for population-based screening. JAMA 1998; 280: 172.Google Scholar
Burt, MJ, George, DK, Powell, LW. Haemochromatosis – a clinical update. Med J Aust 1996; 164: 348.Google Scholar
Challoner, T, Briggs, C, Rampling, MW, et al. A study of the haematological and haemorrheological consequences of venesection. Br J Haematol 1986; 62: 671.Google Scholar
Editorial. Serum-ferritin. Lancet 1979; 1: 533.Google Scholar
Finch, CA. The detection of iron overload. N Engl J Med 1982; 307: 1702.Google Scholar
Finch, CA, Huebers, H. Perspectives in iron metabolism. N Engl J Med 1992; 306: 1520.Google Scholar
Gertig, DM, Hopper, JL, Allen, KJ. Population genetic screening for hereditary haemochromatosis. Med J Aust 2003; 179: 517.Google Scholar
Olynyk, JK. Hereditary haemochromatosis: diagnosis and management in the gene era. Liver 1999; 19: 73.Google Scholar
Powell, LW, Bassett, ML. Haemochromatosis: diagnosis and management after the cloning of the HFE gene. Aust NZ J Med 1998; 28: 159.Google Scholar
Radford-Smith, DE, Powell, EE, Powell, LW. Haemochromatosis: a clinical update for the practicing physician. Intern Med J 2018; 48: 509.Google Scholar
Valberg, LS, Ghent, CN. Diagnosis and management of hereditary hemochromatosis. Annu Rev Med 1985; 36: 27.Google Scholar

Bibliography

Bunn, HF. Pathogenesis and treatment of sickle cell disease. N Engl J Med 1997; 337: 762.Google Scholar
Charache, S, Terrin, ML, Moore, RD, et al. Effect of hydroxyurea on the frequency of painful crises in sickle cell anaemia. N Engl J Med 1995; 332: 1317.Google Scholar
Cohen, AR, Galanello, R, Piga, A. Safety and effectiveness of long-term therapy with the oral iron chelator deferiprone. Blood 2003; 102: 1583.Google Scholar
Davies, SC, Luce, PJ, Win, AA, et al. Acute chest syndrome in sickle-cell disease. Lancet 1984; 1: 36.Google Scholar
Dessap, AM, Fartoukh, M, Machado, RF. Ten tips for managing critically ill patients with sickle cell disease. Intens Care Med 2017; 43: 80.Google Scholar
Embury, SH. The clinical pathophysiology of sickle cell disease. Annu Rev Med 1986; 37: 361.Google Scholar
Francis, RB, Johnson, CS. Vascular occlusion in sickle cell disease: current concepts and unanswered questions. Blood 1991; 77: 1405.Google Scholar
Koshy, M, Burd, L. Management of pregnancy in sickle cell anemia. Hematol Oncol Clin North Am 1991; 5: 585.Google Scholar
Novelli, EM, Gladwin, MT. Crises in sickle cell disease. Chest 2016; 149: 1082.Google Scholar
Otis, S, Price, EA. Hemoglobinopathies and hemolytic anemias. In: Scientific American Medicine. Hematology. Hamilton: Dekker Medicine. 2020.Google Scholar
Piomelli, S, Loew, T. Management of thalassemia major (Cooley’s anemia). Hematol Oncol Clin North Am 1991; 5: 557.Google Scholar
Platt, OS. Easing the suffering caused by sickle cell disease. N Engl J Med 1994; 330: 783.Google Scholar
Rice, L, Teruya, M. Sickle cell patients face death in ICU. Crit Care Med 2014; 42: 1730.Google Scholar
Schrier, SL. Thalassemia: pathophysiology of red cell shapes. Annu Rev Med 1994; 45: 211.Google Scholar
Styles, LA, Schalkwijk, CG, Aarsman, AJ, et al. Phospholipase A2 levels in acute chest syndrome of sickle cell disease. Blood 1996; 87: 2573.Google Scholar
Weatherall, DJ. The treatment of thalassemia – slow progress and new dilemmas. N Engl J Med 1993; 329: 877.Google Scholar

Bibliography

Boutboul, D, Touzot, F, Szalat, R. Understanding therapeutic emergencies in acute hemolysis. Intens Care Med 2018; 44: 482.Google Scholar

Bibliography

Aster, RH. Quinine sensitivity: a new cause of hemolytic-uremic syndrome. Ann Intern Med 1993; 119: 243.Google Scholar
Azoulay, E, Knoebl, P, Garnacho-Montero, J, et al. Expert statements on the standard of care in critically ill adult patients with atypical hemolytic uremic syndrome. Chest 2017; 152: 424.Google Scholar
Beers, M, Cameron, S. Hemolytic uremic syndrome. Emerg Infect Dis 1995; 1: 4.Google Scholar
Caprioli, J, Peng, L, Remuzzi, G. The hemolytic uremic syndromes. Curr Opin Crit Care 2005; 11: 487.Google Scholar
Franchini, M. Atypical hemolytic uremic syndrome: from diagnosis to treatment. Clin Chem Lab Med 2015; 53: 1679.Google Scholar
Hovinger, JAK, Heeb, SR, Skowronska, M, et al. Pathophysiology of thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. J Thromb Haemost 2018; 16: 618.Google Scholar
Kaplan, B, Drummond, K. The hemolytic-uremic syndrome is a syndrome. N Engl J Med 1978; 298: 964.Google Scholar
Legendre, CM, Licht, C, Loirat, C. Eculizumab in atypical hemolytic-uremic syndrome. N Engl J Med 2013; 369: 1379.Google Scholar
Remuzzi, G. HUS and TTP: variable expression of a single entity. Kidney Int 1987; 32: 292.Google Scholar
Wehling, C, Kirschfink, M. Tailored eculizumab regimen for patients with atypical hemolytic uremic syndrome. J Thromb Haemost 2014; 12: 1437.Google Scholar
Wong, CS, Jelacic, S, Habeeb, RL, et al. The risk of hemolytic-uremic syndrome after antibiotic treatment of Escherichia coli O157:H7 infection. N Engl J Med 2000; 342: 1930.Google Scholar
Zipfel, P, Naumann, HP, Jozsi, M. Genetic screening of hemolytic uremic syndrome. Curr Opin Nephrol Hypertens 2003; 12: 653.Google Scholar

Bibliography

Athale, J. Challenges in identifying hemophagocytic lymphohistiocytosis in the ICU. Crit Care Med 2020; 48: 599.Google Scholar
Creput, C, Galicier, L, Buyse, S, et al. Understanding organ dysfunction in hemophagocytic lymphohistiocytosis. Intens Care Med 2008; 34: 1177.Google Scholar
Fisman, DN. Hemophagocytic syndromes and infection. Emerg Infect Dis 2000; 6: 6.Google Scholar
Gauvin, F, Toledano, B, Champagne, J, et al. Reactive hemophagocytic syndrome presenting as a component of multiple organ dysfunction syndrome. Crit Care Med 2000; 28: 3341.Google Scholar
Grom, AA. Macrophage activation syndrome and reactive hemophagocytic lymphohistiocytosis: the same entities? Curr Opin Rheumatol 2003; 15: 587.Google Scholar
Janka, GE. Hemophagocytic syndromes. Blood Rev 2007; 21: 245.Google Scholar
Lachmann, G, Knaak, C, Vorderwulbecke, G, et al. Hyperferritinemia in critically ill patients. Crit Care Med 2020; 48: 459.Google Scholar
La Rosee, P, Horne, A, Hines, M, et al. Recommendations for the management of hemophagocytic lymphohistiocytosis in adults. Blood 2019; 133: 2465.Google Scholar
Otrock, ZK, Eby, CS. Clinical characteristics, prognostic factors, and outcomes of adult patients with hemophagocytic lymphohistiocytosis. Am J Hematol 2015; 90: 220.Google Scholar
Ramos-Casals, M, Brito-Zeron, P, Lopez-Guillermo, A, et al. Adult haemophagocytic syndrome. Lancet 2014; 383: 1503.Google Scholar

Bibliography

Aledort, LM. Economic aspects of haemophilia care in the United States. Haemophilia 1999: 5: 282.Google Scholar
Arruda, VR. The search for the origin of factor VIII synthesis and its impact on therapeutic strategies for haemophilia A. Haematologica 2015; 100: 849.Google Scholar
Berntorp, E, ed. Modern management of haemophilia A to prevent bleeding and arthropathy. Semin Thromb Hemost 2003; 29: 1.Google Scholar
Bloom, AL. Progress in the clinical management of haemophilia. Thromb Haemost 1991; 66: 166.Google Scholar
Chuah, MK, Collen, D, Van den Driessche, T. Gene therapy for hemophilia. J Gene Med 2001; 3: 3.Google Scholar
Fay, PJ. Activation of factor VIII and mechanism of cofactor action. Blood Rev 2004; 18: 1.Google Scholar
Franchini, M, Mannucci, PM. Acquired haemophilia A: a 2013 update. Thromb Haemost 2013; 110: 1087.Google Scholar
Furie, B, Furie, BC. Molecular basis of hemophilia. Semin Hematol 1990; 27: 270.Google Scholar
Gitschier, J, Wood, WI, Goralka, TM, et al. Characterization of the human factor VIII gene. Nature 1984; 312: 326.Google Scholar
Green, P. The ‘Royal Disease’. J Thromb Haemost 2010; 8: 2214.Google Scholar
Hoyer, LW. Haemophilia, A. N Engl J Med 1994; 330: 38.Google Scholar
Klinge, J, Ananyeva, NM, Hauser, CAE, et al. Hemophilia A – from basic science to clinical practice. Semin Thromb Hemost 2002; 28: 309.Google Scholar
Mann, KG, Kalafatis, M. Factor V: a combination of Dr Jekyll and Mr Hyde. Blood 2002 101: 20.Google Scholar
Mannucci, PM. Hemophilia: treatment options in the twenty-first century. J Thromb Haemost 2003; 1: 1349.Google Scholar
Mannucci, PM, Tuddenham, EGD. The hemophiliac – from royal genes to gene therapy. N Engl J Med 2001; 344: 1773.Google Scholar
Oldenburg, J, Schwaab, R. Molecular biology of blood coagulation. Semin Thromb Hemost 2001; 27: 313.Google Scholar
Sommer, SS, Scaringe, WA, Hill, KA. Human germline mutation in the factor IX gene. Mutat Res 2001; 487: 1.Google Scholar
Srivastava, AWFH, Santagostino, E, Dougall, A, et al. Guidelines for the management of haemophilia. Haemophilia 2020; 26: 1.Google Scholar

Bibliography

Andrejak, C, Parrot, A, Bazelly, B, et al. Surgical lung resection for severe hemoptysis. Ann Thorac Surg 2009; 88: 1556.Google Scholar
Bobrowitz, ID, Ramakrishna, S, Shim, Y-S. Comparison of medical v surgical treatment of major hemoptysis. Arch Intern Med 1983; 143: 1343.Google Scholar
Davidson, K, Shojaee, S. Managing massive haemoptysis. Chest 2020; 157: 77.Google Scholar
Jean-Baptiste, E. Clinical assessment and management of massive hemoptysis. Crit Care Med 2000; 28: 1642.Google Scholar
Ong, T-H, Eng, P. Massive hemoptysis requiring intensive care. Intens Care Med 2003; 29: 317.Google Scholar
Remy, J, Arnaud, A, Fardou, H, et al. Treatment of hemoptysis by embolization of bronchial arteries. Radiology 1977; 122: 33.Google Scholar
Swanson, KL, Johnson, CM, Prakash, UB, et al. Bronchial artery embolization. Chest 2002; 121: 789.Google Scholar
Valipour, A, Kreuzer, A, Koller, H, et al. Bronchoscopy-guided topical hemostatic tamponade therapy for the management of life-threatening hemoptysis. Chest 2005; 127: 2113.Google Scholar

Bibliography

Boender, J, Kruip, MJ, Leebeek, FW. A diagnostic approach to mild bleeding disorders. J Thromb Haemost 2016; 14: 1507.Google Scholar
Mezzano, D, Quiroga, T. Diagnostic challenges of inherited mild bleeding disorders: a bait for poorly explored clinical and basic research. J Thromb Haemost 2019; 17: 257.Google Scholar

Bibliography

Duchin, JS, Koster, FT, Peters, CJ, et al. Hantaviral pulmonary syndrome: clinical description of disease caused by a newly recognized hemorrhagic fever virus in the Southwestern United States. N Engl J Med 1994; 330: 949.Google Scholar
Hallin, GW, Simpson, SQ, Crowell, RE, et al. Cardiopulmonary manifestations of hantavirus pulmonary syndrome. Crit Care Med 1996; 24: 252.Google Scholar
Hughes, JM, Peters, CJ, Cohen, ML, et al. Hantavirus pulmonary syndrome: an emerging infectious disease. Science 1993; 262: 850.Google Scholar
Khan, AS, Young, JC. Hantavirus pulmonary syndrome: at the crossroads. Curr Opin Infect Dis 2001; 14: 205.Google Scholar
Schmaljohn, C, Hjelle, B. Hantaviruses: a global disease problem. Emerg Infect Dis 1997; 3: 2.Google Scholar
Shope, RE. A midcourse assessment of hantavirus pulmonary syndrome. Emerg Infect Dis 1999; 5: 1.Google Scholar

Bibliography

Lugo-Amador, NM, Rothenhaus, T, Moyer, P. Heat-related illness. Emerg Med Clin North Am 2004; 22: 315.Google Scholar
Marr, JJ, Geiss, PT. Management of heat injury syndromes. In: Shoemaker, WC, Thompson, WL, eds. Critical Care: State of the Art. Fullerton: Society of Critical Care Medicine. 1982; p K1.Google Scholar

Bibliography

Bruemmer-Smith, S, Stuber, F, Schroeder, S. Protective functions of intracellular heat-shock protein (HSP) 70-expression in patients with severe sepsis. Intens Care Med 2001; 27: 1835.Google Scholar
Buchman, TG. Manipulation of stress gene expression: a novel therapy for the treatment of sepsis? Crit Care Med 1994; 22: 901.Google Scholar
Chu, EK, Ribeiro, SP, Slutsky, AS. Heat stress increases survival rates in polysaccharide-stimulated rats. Crit Care Med 1997; 25: 1727.Google Scholar
Delogu, G, Bosco, LL, Marandola, M, et al. Heat shock protein (HSP70) expression in septic patients. J Crit Care 1997; 12: 188.Google Scholar
Lindquist, S. The heat shock response. Annu Rev Biochem 1986; 55: 1151.Google Scholar
Schopf, FH, Biebl, MM, Buchner, J. The HSP90 machinery. Nat Rev Mol Cell Biol 2017; 18: 345.Google Scholar
Trepel, J, Mollapour, M, Giaccone, G, et al. Targeting the dynamic HSP90 complex in cancer. Nat Rev Cancer 2010; 10: 537.Google Scholar
van Eden, W, ed. Heat shock proteins and inflammation. Basel: Birkhauser. 2003.Google Scholar
van Eden, W, Young, DB, eds. Stress Proteins in Medicine. New York: Dekker. 1996.Google Scholar
Villar, J, Ribeiro, SP, Mullen, JBM, et al. Induction of the heat shock response reduces mortality rate and organ damage in a sepsis induced acute lung injury model. Crit Care Med 1994; 22: 914.Google Scholar

Bibliography

Bouchama, A, al-Sedairy, S, Siddiqui, S, et al. Elevated pyrogenic cytokines in heat stroke. Chest 1993; 104: 1498.Google Scholar
Bouchama, A, Cafege, A, Devol, EB, et al. Ineffectiveness of dantrolene sodium in the treatment of heatstroke. Crit Care Med 1991; 19: 176.Google Scholar
Bouchama, A, Knochel, JP. Heat stroke. N Engl J Med 2002; 346: 1978.Google Scholar
Clowes, GHA, O’Donnell, TF. Heat stroke. N Engl J Med 1974; 291: 564.Google Scholar
Costrini, A. Emergency treatment of exertional heatstroke and comparison of whole body cooling techniques. Med Sci Sports Exerc 1990; 22: 15.Google Scholar
Knochel, JP. Heat stroke and related heat stress disorders. Dis Mon 1989; 35: 301.Google Scholar
Lugo-Amador, NM, Rothenhaus, T, Moyer, P. Heat-related illness. Emerg Med Clin North Am 2004; 22: 315.Google Scholar
Marr, JJ, Geiss, PT. Management of heat injury syndromes. In: Shoemaker, WC, Thompson, WL, eds. Critical Care: State of the Art. Fullerton: Society of Critical Care Medicine. 1982; p K1.Google Scholar
Pease, S, Bouadma, L, Kermarrec, N, et al. Early organ dysfunction course, cooling time and outcome in classic heatstroke. Intens Care Med 2009; 35: 1454.Google Scholar
Simon, HB. Hyperthermia. N Engl J Med 1993; 329: 483.Google Scholar

Bibliography

Burrows, RF, Kelton, JG. Thrombocytopenia at delivery: a prospective survey of 6715 deliveries. Am J Obstet Gynecol 1990; 162: 731.Google Scholar
Jayawardena, L, Mcnamara, E. Diagnosis and management of pregnancies complicated by haemolysis, elevated liver enzymes and low platelets syndrome in the tertiary setting. Intern Med J 2020; 50: 342.Google Scholar
Martin, JN, Files, FC, Blake, PG. Plasma exchange for preeclampsia: I. Postpartum use for persistently severe preeclampsia with HELLP syndrome. Am J Obstet Gynecol 1990; 162: 126.Google Scholar
Pousti, TJ, Tominaga, GT, Scannell, G. Help for the HELLP syndrome. Intens Care World 1994; 11: 62.Google Scholar
Sibai, B. Diagnosis, controversies, and management of the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Obstet Gynecol 2004; 103: 981.Google Scholar
Sibai, BM, Ramadan, MK, Usta, I, et al. Maternal morbidity and mortality in 442 pregnancies with hemolysis, elevated liver enzymes and low platelets (HELLP syndrome). Am J Obstet Gynecol 1993; 169: 1000.Google Scholar
Van Dam, PA, Renier, M, Baekelandt, M, et al. Disseminated intravascular coagulation and the syndrome of hemolysis, elevated liver enzymes, and low platelets in severe preeclampsia. Obstet Gynecol 1989; 73: 97.Google Scholar
Weinstein, L. Syndrome of hemolysis, elevated liver enzymes and low platelet count: a severe consequence of hypertension. Am J Obstet Gynecol 1982; 142: 159.Google Scholar

Bibliography

Khemasuwan, D, Farver, CF, Mehta, AC. Parasites of the airways. Chest 2014; 145: 883.Google Scholar
Van Voorhis, WC. Helminthic infections. In: Scientific American Medicine. Infectious Diseases. Hamilton: Dekker Medicine. 2020.Google Scholar

Bibliography

Morantz, RA, Walsh, JW, eds. Brain Tumors. New York: Marcel Dekker. 1994.Google Scholar

Bibliography

Young, JR, Selvey, CE, Symons, R. Hendra virus. Med J Aust 2011; 195: 250.Google Scholar

Bibliography

Cameron, JS. Henoch-Schonlein purpura: clinical presentation. Contrib Nephrol 1984; 40: 246.Google Scholar
Hetland, LE, Susrud, KS, Lindahl, KH, et al. Henoch-Schonlein purpura: a literature review. Acta Derm Venereol 2017; 97: 1160.Google Scholar
Saulsbury, FT. Henoch-Schonlein purpura. Curr Opin Rheumatol 2010; 22: 598.Google Scholar
Szer, I. Henoch-Schonlein purpura: when and how to treat. J Rheumatol 1996; 23: 1661.Google Scholar

Bibliography

Hemker, HC. A century of heparin: past, present and future. J Thromb Haemost 2016; 14: 2329.Google Scholar
Hirsh, J, Bauer, KA, Donati, MB, et al. Parenteral anticoagulants. Chest 2008; 133 (suppl.): 141S.Google Scholar
Hirsh, J, Levine, MN. Low molecular weight heparin. Blood 1992; 79: 1.Google Scholar
Oster, JR, Singer, I, Fishman, LM. Heparin-induced aldosterone suppression and hyperkalaemia. Am J Med 1995; 98: 575.Google Scholar
Poteruche, TJ, Libby, P, Goldhaber, SZ. More than an anticoagulant: do heparins have direct anti-inflammatory effects. Thromb Haemost 2017; 117: 437.Google Scholar
Schindewolf, M, Kroll, H, Ackermann, H, et al. Heparin-induced non-necrotizing skin lesions: rarely associated with heparin-induced thrombocytopenia. J Thromb Haemost 2010; 8: 1486.Google Scholar
Thachil, J. The versatile heparin in COVID-19. J Thromb Haemost 2020; 18: 1020.Google Scholar
Weitz, JI, Hirsh, J, Samama, MM. New antithrombotic drugs. Chest 2008; 133 (suppl.): 234S.Google Scholar

Bibliography

Aster, RH, Bougie, DW. Drug-induced immune thrombocytopenia. N Engl J Med 2007; 357: 904.Google Scholar
Aster, RH, Curtis, BR, McFarland, JG, et al. Drug-induced immune thrombocytopenia: pathogenesis, diagnosis, and management. J Thromb Haemost 2009; 7: 911.Google Scholar
Bick, RL. Heparin-induced thrombocytopenia and paradoxical thromboembolism: diagnostic and therapeutic dilemmas. Clin Appl Thromb Hemost 1997; 3: 63.Google Scholar
Chong, BH. Heparin-induced thrombocytopenia. J Thromb Haemost 2003; 1: 1471.Google Scholar
Chong, BH, Ismail, F, Cade, J, et al. Heparin-induced thrombocytopenia: studies with low molecular weight heparinoid, Org 10172. Blood 1989; 73: 1592.Google Scholar
Farag, SS, Savoia, H, O’Malley, CJ, et al. Lack of in vitro cross-reactivity predicts safety of low-molecular weight heparins in heparin-induced thrombocytopenia. Clin Appl Thromb Hemost 1997; 3: 58.Google Scholar
Greinacher, A. Heparin-associated thrombocytopenia. Vessels 1995; 1: 17.Google Scholar
Greinacher, A, Selleng, K, Warkentin, E. Autoimmune heparin-induced thrombocytopenia. J Thromb Haemost 2017; 15: 2099.Google Scholar
Hoylaerts, MF, Vanassche, T, Verhamme, P. Bacterial killing by platelets; making sense of (H)IT. J Thromb Haemost 2018; 16: 1182.Google Scholar
Kelton, JG, Arnold, DM, Bates, SM. Nonheparin anticoagulants for heparin-induced thrombocytopenia. N Engl J Med 2013; 368: 737.Google Scholar
Lewis, BE, Wallis, DE, Leya, F, et al. Argatroban anticoagulation in patients with heparin-induced thrombocytopenia. Arch Intern Med 2003; 163: 1849.Google Scholar
Magnani, HN, Gallus, A. Heparin-induced thrombocytopenia: a report of 1478 clinical outcomes of patients treated with danaparoid (Orgaran) from 1982 to mid 2004. Thromb Haemost 2006; 95: 967.Google Scholar
Padmanabhan, A, Jones, CG, Pechauer, SM, et al. IVIg for treatment of severe refractory heparin-induced thrombocytopenia. Chest 2017; 152: 478.Google Scholar
Selleng, K, Warkentin, TE, Greinacher, A. Heparin-induced thrombocytopenia in intensive care patients. Crit Care Med 2007; 35: 1165.Google Scholar
Schindewolf, M, Kroll, H, Ackermann, H, et al. Heparin-induced non-necrotizing skin lesions: rarely associated with heparin-induced thrombocytopenia. J Thromb Haemost 2010; 8: 1486.Google Scholar
Shantsila, E, Lip, GYH, Chong, BH. Heparin-induced thrombocytopenia. Chest 2009; 135: 1651.Google Scholar
Shih, AW, Sheppard, J-AI, Warkentin, TE. Platelet count recovery and seroreversion in immune HIT despite continuation of heparin: further observations and literature review. Thromb Haemost 2017; 117: 1868.Google Scholar
Various. Drug-induced thrombocytopenia. Chest 2005; 127(2): suppl.Google Scholar
Warkentin, TE. Heparin-induced thrombocytopenia: yet another treatment paradox. Thromb Haemost 2001; 85: 947.Google Scholar
Warkentin, TE. Heparin-induced thrombocytopenia: pathogenesis and management. Br J Haematol 2003; 121: 535.Google Scholar
Warkentin, TE, Chong, BH, Greinacher, A. Heparin-induced thrombocytopenia: towards consensus. Thromb Haemost 1998; 79: 1.Google Scholar
Warkentin, TE, Greinacher, A, eds. Heparin-Induced Thrombocytopenia. 5th edition. London: CRC Press. 2012.Google Scholar
Warkentin, TE, Greinacher, A, Koster, A, et al. Treatment and prevention of heparin-induced thrombocytopenia: ACCP evidence-based clinical practice guidelines Chest 2008; 133 (suppl.): 340S.Google Scholar
Warkentin, TE, Levine, MN, Hirsh, J, et al. Heparin-induced thrombocytopenia in patients treated with low-molecular-weight heparin or unfractionated heparin. N Engl J Med 1995; 332: 1330.Google Scholar
Warkentin, TE, Pai, M, Linkins, LA. Direct oral anticoagulants for treatment of HIT. Blood 2017; 130: 1104.Google Scholar
Warkentin, TE, Sheppard, J-AI, Heels-Ansdell, D, et al. Heparin-induced thrombocytopenia in medical surgical critical illness. Chest 2013; 144: 848.Google Scholar

Bibliography

Adedoyin, A, Branch, RA. The effect of liver disease on drugs. Curr Opin Crit Care 1997; 3: 255.Google Scholar
Alshamsi, F, Alshammari, K, Belley-Cote, E, et al. Extracorporeal liver support in patients with liver failure: a systematic review and meta-analysis of randomized trials. Intens Care Med 2020; 46: 1.Google Scholar
Ambrosino, P, Tarantino, L, Di Minno, G, et al. The risk of venous thromboembolism in patients with cirrhosis: a systematic review and meta-analysis. Thromb Haemost 2017; 117: 139.Google Scholar
Bailey, B, Amre, DK, Gaudreault, P. Fulminant hepatic failure secondary to acetaminophen poisoning: a systematic review and meta-analysis of prognostic criteria determining the need for liver transplantation. Crit Care Med 2003; 31: 299.Google Scholar
Bauer, M, Fuhrmann, V, Wendon, J. Pulmonary complications of liver disease. Intens Care Med 2019; 45: 1433.Google Scholar
Bernal, W, Auzinger, G, Dhawan, A, et al. Acute liver failure. Lancet 2010; 376: 190.Google Scholar
Bernal, W, Wendon, J. Acute liver failure. N Engl J Med 2013; 369: 2525.Google Scholar
Bernsmeier, C, Antoniades, CG, Wendon, J. What’s new in acute liver failure? Intens Care Med 2014; 40: 1545.Google Scholar
Better, OS. Renal and cardiovascular dysfunction in liver disease. Kidney Int 1986; 29: 598.Google Scholar
Calvo, CP, Sipman, FS, Caramelo, C. Renal and electrolyte abnormalities in patients with hepatic insufficiency. Curr Opin Crit Care 1996; 2: 413.Google Scholar
Dooley, J, Lok, ASF, Garcia-Tsao, G, et al., eds. Sherlock’s Diseases of the Liver and Biliary System. 13th edition. Hoboken: Wiley. 2018.Google Scholar
Eckardt, K-U. Renal failure in liver disease. Intens Care Med 1999; 25: 5.Google Scholar
Editorial. Hepatic osteomalacia and vitamin D. Lancet 1982; 1: 943.Google Scholar
Foreman, MG, Moss, M. The role of hepatic dysfunction in critical illness. Pulmonary Perspectives 2001; 18(4): 8.Google Scholar
Fraser, CL, Arieff, AI. Hepatic encephalopathy. N Engl J Med 1985; 313: 865.Google Scholar
Garcia-Tsao, G. Treatment of ascites with single total paracentesis. Hepatology 1991; 13: 1005.Google Scholar
LaMont, JT, Isselbacher, KJ. Postoperative jaundice. N Engl J Med 1973; 288: 305.Google Scholar
Larsen, FS, Wendon, J. Understanding paracetamol-induced liver failure. Intens Care Med 2014; 40: 888.Google Scholar
Lee, WM. Drug-induced hepatotoxicity. N Engl J Med 2003; 349: 474.Google Scholar
Lieber, CS. Medical disorders of alcoholism. N Engl J Med 1995; 333: 1058.Google Scholar
Ludwig, J. The nomenclature of chronic active hepatitis: an obituary. Gastroenterology 1993; 105: 274.Google Scholar
McClain, CJ. Trace metals in liver disease. Semin Liver Dis 1991; 11: 321.Google Scholar
Mills, PR, Sturrock, RD. Clinical associations between arthritis and liver disease. Ann Rheum Dis 1982; 41: 295.Google Scholar
Nanchal, R, Subramanian, R, Karvellas, CJ, et al. Guidelines for the management of adult acute and acute-on-chronic liver failure in the ICU: cardiovascular, endocrine, hematologic, pulmonary and renal considerations. Crit Care Med 2020; 48: 415.Google Scholar
Raschke, RA, Curry, SC, Rempe, S, et al. Results of a protocol for the management of patients with fulminant liver failure. Crit Care Med 2008; 36: 2244.Google Scholar
Riordan, SM, Williams, R. Current management of fulminant hepatic failure. Curr Opin Crit Care 1999; 5: 136.Google Scholar
Romero-Gomez, M, Montagnese, S, Jalan, R. Hepatic encephalopathy in patients with acute decompensation of cirrhosis and acute-on-chronic liver failure. J Hepatol 2015; 62: 437.Google Scholar
Runyon, BA. Care of patients with ascites. N Engl J Med 1994; 330: 337.Google Scholar
Starzl, TE, Demetris, AJ, Van Thiel, D. Liver transplantation. N Engl J Med 1989; 321: 1014 & 1092.Google Scholar
Stravitz, RT. Critical management decisions in patients with acute liver failure. Chest 2008; 134: 1092.Google Scholar
Stravitz, RT, Kramer, AH, Davern, T, et al. Intensive care of patients with acute liver failure: recommendations of the US Acute Liver Failure Study Group. Crit Care Med 2007; 35: 2498.Google Scholar
Thomson, SJ, Cowan, ML, Johnston, I, et al. ‘Liver function tests’ on the intensive care unit: a prospective, observational study. Intens Care Med 2009; 35: 1406.Google Scholar
Vennes, JA, Bond, JH. Approach to the jaundiced patient. Gastroenterology 1983; 84: 1615.Google Scholar
Warrilow, S, Bailey, M, Pilcher, D, et al. Characteristics and outcomes of patients with acute liver failure admitted to Australian and New Zealand intensive care units. Intern Med J 2019; 49: 874.Google Scholar
Warrilow, SJ, Bellomo, R. Preventing cerebral oedema in acute liver failure: the case for quadruple-H therapy. Anaesth Intens Care 2014; 42: 78.Google Scholar
Weiss, N, Jalan, R, Thabout, D. Understanding hepatic encephalopathy. Intens Care Med 2018; 44: 231.Google Scholar
Wilkinson, GR. Drug metabolism and variability among patients in drug response. N Engl J Med 2005; 352: 2211.Google Scholar
Wright, TL. Etiology of fulminant hepatic failure: is another virus involved? Gastroenterology 1993; 104: 640.Google Scholar

Bibliography

Ambrosino, P, Tarantino, L, Di Minno, G, et al. The risk of venous thromboembolism in patients with cirrhosis: a systematic review and meta-analysis. Thromb Haemost 2017; 117: 139.Google Scholar
Assis, DN, Navarro, VJ. Human drug hepatotoxicity: a contemporary clinical perspective. Expert Opin Drug Metab Toxicol 2009; 5: 463.Google Scholar
Bell, SJ, Nguyen, T. The management of hepatitis B. Aust Prescriber 2009; 32: 99.Google Scholar
Bernal, W, Wendon, J. Acute liver failure. N Engl J Med 2013; 369: 2525.Google Scholar
Chiew, AL, Reith, D, Pomerleau, A, et al. Updated guidelines for the management of paracetamol poisoning in Australia and New Zealand. Med J Aust 2020; 212: 175.Google Scholar
Ciesek, S, Manns, MP. Chronic liver diseases. In: Scientific American Medicine. Hepatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Croagh, CM, Lubel, J. Advances in the management of hepatitis C. Intern Med J 2013; 43: 1265.Google Scholar
Davis, GL, Esteban-Mur, R, Rustgi, V, et al. Interferon alfa–2b alone or in combination with ribavirin for the treatment of relapse of chronic hepatitis C. N Engl J Med 1998; 339: 1493.Google Scholar
Dienstag, JL, Schiff, ER, Wright, TL, et al. Lamivudine as initial treatment for chronic hepatitis B in the United States. N Engl J Med 1999; 341: 1256.Google Scholar
D’Souza, R, Foster, GR. Diagnosis and management of chronic hepatitis B. J R Soc Med 2004; 97: 318.Google Scholar
Farrell, GC. Acute viral hepatitis. Med J Aust 1998; 168: 565.Google Scholar
Farrell, GC. Chronic viral hepatitis. Med J Aust 1998; 168: 619.Google Scholar
Froomes, PRA, Morgan, DJ, Smallwood, RA, et al. Comparative effects of oxygen supplementation on theophylline and acetaminophen clearance in human cirrhosis. Gastroenterology 1999; 116: 915.Google Scholar
Fuhrmann, V, Kneidinger, N, Herkner, H, et al. Hypoxic hepatitis: underlying conditions and risk factors for mortality in critically ill patients. Intens Care Med 2009; 35: 1397.Google Scholar
Gross, JB, Persing, DH. Hepatitis C: advances in diagnosis. Mayo Clin Proc 1995; 70: 296.Google Scholar
Hoofnagle, JH. Type, D (delta) hepatitis. JAMA 1989; 261: 1321.Google Scholar
Hoofnagle, JH, Bjornsson, ES. Drug-induced liver injury: types and phenotypes. N Engl J Med 2019; 381: 264.Google Scholar
Hutin, YJ, Pool, V, Cramer, EH, et al. A multistate, foodborne outbreak of hepatitis A. N Engl J Med 1999; 340: 595.Google Scholar
Jackson, K, MacLachlan, J, Cowie, B, et al. Epidemiology and phylogenetic analysis of hepatitis D virus infection in Australia. Intern Med J 2018; 48: 1308.Google Scholar
Johnson, RJ, Gretch, Dr, Yamabe, H, et al. Membranoproliferative glomerulonephritis associated with hepatitis C virus infection. N Engl J Med 1993; 328: 465.Google Scholar
Kaplowitz, N, Aw, TY, Simon, FR, et al. Drug-induced hepatotoxicity. Ann Intern Med 1986; 104: 826.Google Scholar
Keays, R, Harrison, PM, Wendon, JA, et al. Intravenous acetylcysteine in paracetamol fulminant hepatic failure: a prospective controlled trial. BMJ 1991; 303: 1026.Google Scholar
Krawczynski, K. Hepatitis, E. Hepatology 1993; 17: 932.Google Scholar
Lau, JY, Wright, TL. Molecular virology and pathogenesis of hepatitis B. Lancet 1995; 342: 1335.Google Scholar
Lee, WM. Hepatitis B virus infection. N Engl J Med 1997; 337: 1733.Google Scholar
Liang, TJ, Rehermann, B, Seeff, LB, et al. Pathogenesis, natural history, treatment, and prevention of hepatitis C. Ann Intern Med 2000; 132: 296.Google Scholar
Linnen, J, Wages, J, Zhen-Yong, ZK, et al. Molecular cloning and disease association of hepatitis G virus: A transfusion-transmissible agent. Science 1996; 271: 505.Google Scholar
Lok, AS, McMahon, BJ. Chronic hepatitis B: update of recommendations. AASLD Practice Guidelines. Hepatology 2004; 39: 857.Google Scholar
Lubel, JS, Strasser, SI, Thompson, AJ, et al. Australian consensus recommendations for the management of hepatitis B. Med J Aust 2022; 216: 478.Google Scholar
Maddrey, WC. Chronic hepatitis. Dis Mon 1993; 39: 53.Google Scholar
McCaughan, GW, Koorey, DJ. Liver transplantation. Aust NZ J Med 1997; 27: 371.Google Scholar
McCaughan, GW, Strasser, SI. Emerging therapies for hepatitis C virus (HCV) infection: the importance of HCV genotype. Aust NZ J Med 2000; 30: 644.Google Scholar
McHutchison, JG, Gordon, SC, Schiff, ER, et al. Interferon alfa–2b alone or in combination with ribavirin as initial treatment for chronic hepatitis C. N Engl J Med 1998; 339: 1485.Google Scholar
Mitra, AK. Hepatitis C-related hepatocellular carcinoma. Epidem Rev 1999; 21: 180.Google Scholar
Mohsen, W, Levy, MT. Hepatitis A to E: what’s new? Intern Med J 2017; 47: 380.Google Scholar
Moulds, RFW, Malani, J. Kava: herbal panacea or liver poison. Med J Aust 2003; 178: 451.Google Scholar
Navarro, VJ, Khan, I, Bjornsson, E, et al. Liver injury from herbal and dietary supplements. Hepatology 2017; 65: 363.Google Scholar
Pak, E, Esrason, KT, Wu, VH. Hepatotoxicity of herbal remedies: an emerging dilemma. Prog Transplant 2004; 14: 91.Google Scholar
Perron, AD, Patterson, JA, Yanofsky, NN. Kombucha ‘mushroom’ hepatotoxicity. Ann Emerg Med 1995; 26: 660.Google Scholar
Riordan, SM, Williams, R. Current management of fulminant hepatic failure. Curr Opin Crit Care 1999; 5: 136.Google Scholar
Schaefer, EAK, Dienstag, JL. Viral hepatitis. In: Scientific American Medicine. Hepatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Shapiro, CN. Transmission of hepatitis viruses. Ann Intern Med 1994; 120: 82.Google Scholar
Shrestha, MP, Scott, RM, Joshi, DM, et al. Safety and efficacy of a recombinant hepatitis E vaccine. N Engl J Med 2007; 356: 895.Google Scholar
Teoh, NC, Farrell, GC. Management of chronic hepatitis C virus infection: a new era of disease control. Intern Med J 2004; 34: 324.Google Scholar
Thompson, AJV. Australian recommendations for the management of hepatitis C virus infection: a consensus statement. Med J Aust 2016; 204: 268.Google Scholar
Thompson, AJ, Holmes, JA. Treating hepatitis C – what’s new? Aust Prescriber 2015; 38: 191.Google Scholar
Tsukuma, H, Hiyama, T, Tanaka, S, et al. Risk factors for hepatocellular carcinoma among patients with chronic liver disease. N Engl J Med 1993; 328: 1797.Google Scholar
Whiting, P, Clouston, A, Kerlin, P. Black cohosh and other herbal remedies associated with acute hepatitis. Med J Aust 2002; 177: 440.Google Scholar
Wright, TL. Etiology of fulminant hepatic failure: is another virus involved? Gastroenterology 1993; 104: 640.Google Scholar
Zuckerman, AJ. The new GB hepatitis viruses. Lancet 1995; 345: 1453.Google Scholar

Bibliography

Earl, TM, Chapman, WC. Hepatocellular carcinoma: resection versus transplantation. Semin Liver Dis 2013; 33: 282.Google Scholar
El-Serag, HB, Mason, AC. Rising incidence of hepatocellular carcinoma in the United States. N Engl J Med 1999; 340: 745.Google Scholar
Fan, S-T, Lo, C-M, Lai, ECS, et al. Perioperative nutritional support in patients undergoing hepatectomy for hepatocellular carcinoma. N Engl J Med 1994; 331: 1547.Google Scholar
Farmer, DG, Rosove, MH, Shaked, A, et al. Current treatment modalities for hepatocellular carcinoma. Ann Surg 1994; 219: 236.Google Scholar
Forner, A, Reig, M, Bruix, J. Hepatocellular carcinoma. Lancet 2018; 391: 1301.Google Scholar
Heimbach, JK, Kulik, LM, Finn, RS, et al. AASLD guidelines for the treatment of hepatocellular carcinoma. Hepatology 2018; 67: 358.Google Scholar
Koorey, D. Hepatocellular carcinoma: prevention, detection and treatment … in the real world. Intern Med J 2007; 37: 513.Google Scholar
Livraghi, T, Giorgio, A, Marin, G, et al. Hepatocellular carcinoma and cirrhosis in 746 patients: long-term results of percutaneous ethanol injection. Radiology 1995; 197: 101.Google Scholar
Lubel, JS, Roberts, SK, Strasser, SI, et al. Australian recommendations for the management of hepatocellular carcinoma: a consensus statement. Med J Aust 2021; 214: 475.Google Scholar
Margolis, S, Homcy, C. Systemic manifestations of hepatoma. Medicine 1972; 51: 381.Google Scholar
Mazzaferro, V, Regalia, E, Doci, R, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med 1996; 334: 693.Google Scholar
McCaughan, GW, Koorey, DJ, Strasser, SI. Hepatocellular carcinoma: current approaches to diagnosis and management. Intern Med J 2002; 32: 394.Google Scholar
Mitra, AK. Hepatitis C-related hepatocellular carcinoma. Epidem Rev 1999; 21: 180.Google Scholar
Tsukuma, H, Hiyama, T, Tanaka, S, et al. Risk factors for hepatocellular carcinoma among patients with chronic liver disease. N Engl J Med 1993; 328: 1797.Google Scholar
Venook, AP. Treatment of hepatocellular carcinoma: too many options? J Clin Oncol 1994; 12: 1323.Google Scholar
Wands, JR, Blum, HE. Primary hepatocellular carcinoma. N Engl J Med 1991; 325: 729.Google Scholar

Bibliography

Bauer, M, Fuhrmann, V, Wendon, J. Pulmonary complications of liver disease. Intens Care Med 2019; 45: 1433.Google Scholar
Herve, P, Lebrec, D, Brenot, F, et al. Pulmonary vascular disorders in portal hypertension. Eur Respir J 1998; 11: 1153.Google Scholar
Krowka, MJ, Cortese, DA. Hepatopulmonary syndrome: current concepts in diagnostic and therapeutic considerations. Chest 1994; 105: 1528.Google Scholar
Krowka, MJ, Wiseman, GA, Burnett, OL, et al. Hepatopulmonary syndrome. Chest 2000; 118: 615.Google Scholar
Rodriguez-Roisin, R, Krowka, MJ. Hepatopulmonary syndrome: a liver-induced lung vascular disorder. N Engl J Med 2008; 358: 2378.Google Scholar
Schraufnagel, DE, Kay, JM. Structural and pathological changes in the lung vasculature in chronic liver disease. Clin Chest Med 1996; 17: 1.Google Scholar

Bibliography

Al-Khafaji, A, Nadim, MK, Kellum, JA. Hepatorenal disorders. Chest 2015; 148: 550.Google Scholar
Gines, P, Schrier, RW. Renal failure in cirrhosis. New Engl J Med 2009; 361: 1279.Google Scholar
Salerno, F, Gerbes, A, Gines, P, et al. Diagnosis, prevention and treatment of hepatorenal syndrome in cirrhosis. Gut 2007; 56: 1310.Google Scholar
Wong, F, Nadim, MK, Kellum, JA. Working party proposal for a revised classification system of renal dysfunction in patients with cirrhosis. Gut 2011; 60: 702.Google Scholar

Bibliography

Hirsch, MS. Herpesvirus infections. In: Scientific American Medicine. Infectious Diseases. Hamilton: Dekker Medicine. 2020.Google Scholar
Whitley, RJ, Roizman, B. Herpes simplex virus infections. Lancet 2001; 357: 1513.Google Scholar

Bibliography

Bartsch, P, Mairbaurl, H, Maggiorini, M, et al. Physiological aspects of high-altitude pulmonary edema. J Appl Physiol 2005; 98: 1101.Google Scholar
Boyer, SJ, Blume, FD. Weight loss and changes in body composition at high altitude. J Appl Physiol 1984; 57: 1580.Google Scholar
Cottrell, JJ. Altitude exposure during aircraft flight: flying higher. Chest 1988; 92: 81.Google Scholar
Cramer, D, Ward, S, Geddes, D. Assessment of oxygen supplementation during air travel. Thorax 1996; 51: 202.Google Scholar
Frayser, R, Houston, CS, Bryan, AC, et al. Retinal hemorrhage at high altitude. N Engl J Med 1970; 282: 1183.Google Scholar
Hackett, PH, Rennie, D, Levine, HD. The incidence, importance and prophylaxis of acute mountain sickness. Lancet 1976; 2: 1149.Google Scholar
Hackett, PH, Roach, RC. High-altitude illness. N Engl J Med 2001; 345: 107.Google Scholar
Hock, RJ. The physiology of high altitude. Sci Am 1970; 222: 2: 52.Google Scholar
Hornbein, TF, Schoene, RB, eds. High Altitude: An Exploration of Human Adaptation. New York: Marcel Dekker. 2001.Google Scholar
Houston, CS, Dickinson, J. Cerebral form of high-altitude illness. Lancet 1975; 2: 758.Google Scholar
Hultgren, HN. High-altitude pulmonary edema: current concepts. Annu Rev Med 1996; 47: 267.Google Scholar
Johnson, TS, Rock, PB. Acute mountain sickness. N Engl J Med 1988; 319: 841.Google Scholar
Luks, AM, Swenson, ER. Medication and dosage considerations in the prophylaxis and treatment of high-altitude illness. Chest 200; 133: 744.Google Scholar
Menon, ND. High altitude pulmonary edema. New Engl J Med 1965; 273: 66.Google Scholar
Penaloza, D, Sime, F. Chronic cor pulmonale due to loss of altitude acclimatization (chronic mountain sickness). Am J Med 1971; 50: 728.Google Scholar
Plata, R, Cornejo, A, Arratia, C, et al. Angiotensin-converting-enzyme inhibition therapy in altitude polycythaemia. Lancet 2002; 359: 663.Google Scholar
Pollard, AJ, Murdoch, DR. High Altitude Medicine. 3rd edition. Abingdon: Radcliffe. 2003.Google Scholar
Richalet, JP. High altitude pulmonary oedema: still a place for controversy? Thorax 1995; 50: 923.Google Scholar
Saxena, S, Kumar, R, Madan, T, et al. Association of polymorphisms in pulmonary surfactant protein A1 and A2 genes with high-altitude pulmonary edema. Chest 2005; 128: 1611.Google Scholar
Scherrer, U, Vollenweider, L, Delabays, A, et al. Inhaled nitric oxide for high-altitude pulmonary edema. N Engl J Med 1996; 334: 624.Google Scholar
Schoene, RB. Pulmonary edema at high altitude: review, pathophysiology, and update. Clin Chest Med 1985; 6: 491.Google Scholar
Schoene, RB. Illnesses at high altitude. Chest 2008; 134: 402.Google Scholar
Sutton, JR, Reeves, JT, Wagner, PD, et al. Operation Everest II: oxygen transport during exercise at extreme simulated altitude. J Appl Physiol 1988; 64: 1309.Google Scholar
Ward, M, Millege, J, West, J. High Altitude Medicine and Physiology. Philadelphia: University of Pennsylvania Press. 1989.Google Scholar
Waterlow, JC, Bunje, HW. Observations on mountain sickness in the Colombian Andes. Lancet 1966; 2: 655.Google Scholar
West, JB. The physiologic basis of high-altitude diseases. Ann Intern Med 2004; 141: 789.Google Scholar
West, JB, Boyer, SJ, Graber, DJ, et al. Maximal exercise at extreme altitudes on Mount Everest. J Appl Physiol 1983; 55: 688.Google Scholar

Bibliography

Del Rosso, JQ. Disorders of hair. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Ikhena, DE, Pal, L. Hirsutism and hyperandrogenism. In: Scientific American Medicine. Women’s Health. Hamilton: Decker Medicine. 2020.Google Scholar
Kvedar, JC, Gibson, M, Krusinski, PA. Hirsutism: evaluation and treatment. J Am Acad Dermatol 1985; 12: 215.Google Scholar
McKenna, TJ. Screening for sinister causes of hirsutism. N Engl J Med 1994; 331: 1015.Google Scholar
Paus, R, Cotsarelis, G. The biology of hair follicles. N Engl J Med 1999; 341: 491.Google Scholar
Rusting, RL. Hair: why it grows, why it stops. In: The Frontiers of Biotechnology. New York: Scientific American. 2002; p 66.Google Scholar
Wolff, K, Goldsmith, L, Katz, S, et al., eds. Fitzpatrick’s Dermatology in General Medicine. 7th edition. New York: McGraw-Hill. 2007.Google Scholar

Bibliography

Cheyne, C. Histiocytosis, X. J Bone Joint Surg 1971; 53: 366.Google Scholar
Coppes-Zantinga, A, Egeler, RM. Historical review: the Langerhans cell histiocytosis X files revealed. Br J Haematol 2002; 116: 3.Google Scholar
Crausman, RS, Jennings, CA, Tuder, RM, et al. Pulmonary histiocytosis X: pulmonary function and exercise physiology. Am J Respir Crit Care Med 1996; 153: 426.Google Scholar
Kambouchner, M, Valeyre, D, Soler, P, et al. Pulmonary Langerhans’ cell granulomatosis (histiocytosis X). Annu Rev Med 1992; 43: 105.Google Scholar
Litchenstein, L. Histiocytosis: integration of eosinophilic granuloma of the bone, Letterer-Siwe disease and Hand-Schuller-Christian disease as related manifestations of a single nosologic entity. Arch Pathol 1953; 56: 84.Google Scholar
Nezelof, C, Basset, F. Langerhans cell histiocytosis research: past, present and future. Hematol Oncol Clin North Am 1998; 12: 385.Google Scholar
Seigelman, SS. Taking the X out of histiocytosis X. Radiology 1997; 204: 322.Google Scholar
Steinman, RS. Dendritic cell system and its role in immunogenicity. Annu Rev Immunol 1991; 9: 271.Google Scholar

Bibliography

Guillet, J-G, Lai, M-Z, Briner, TJ, et al. Immunological self, nonself discrimination. Science 1987; 235: 865.Google Scholar
Lundy, SK, Gizinski, A, Fox, DA. Introduction to clinical immunology: overview of immune response, autoimmune conditions, and immunosuppressive therapeutics for rheumatic diseases. In: Scientific American Medicine. Allergy & Immunology. Hamilton: Dekker Medicine. 2020.Google Scholar
Schlossman, SF, Boumsell, L, Gilks, W, et al. Update: CD antigens 1993. J Immunol 1994; 152: 1.Google Scholar
Sheehan, NJ. The ramifications of HLA-B27. J R Soc Med 2004; 97: 10.Google Scholar
Tiwari, JL, Terasaki, PI. HLA and Disease Associations. New York: Springer-Verlag. 1985.Google Scholar

Bibliography

Kauffman, CA. Mycotic infections. In: Scientific American Medicine. Infectious Diseases. Hamilton: Dekker Medicine. 2020.Google Scholar
Wheat, LJ. Systemic fungal infections: diagnosis and treatment; I. Histoplasmosis. Infect Dis Clin North Am 1988; 2: 841.Google Scholar

Bibliography

Reddy, G, Coombes, A, Hubbard, AD. Horner’s syndrome following internal jugular vein cannulation. Intens Care Med 1998; 24: 194.Google Scholar

Bibliography

Beauchamp, RO, Bus, JS, Popp, JA, et al. A critical review of the literature on hydrogen sulfide toxicity. Crit Rev Toxicol 1984; 13: 25.Google Scholar
Drabek, T. Hydrogen sulphide – curiouser and curiouser! Crit Care Med 2012; 40: 2255.Google Scholar
Kapoor, A, Thiemermann, C. Hydrogen sulfide, neurogenic inflammation and cardioprotection: a tale of rotten eggs and vanilloid receptors. Crit Care Med 2010; 38: 728.Google Scholar
Li, L, Bhatia, M, Moore, PK. Hydrogen sulphide: a novel mediator of inflammation? Curr Opin Pharmacol 2006; 6: 125.Google Scholar
Steendijk, P. Toward therapeutic use of hydrogen sulfide in critical care. Crit Care Med 2010; 38: 725.Google Scholar
Szabo, C. Hydrogen sulphide and its therapeutic potential. Nat Rev Drug Discov 2007; 6: 917.Google Scholar
Wagner, F, Asfar, P, Calzia, E, et al. Bench-to-bedside review: hydrogen sulfide – the third gaseous transmitter: applications for critical care. Crit Care 2009; 13: 213.Google Scholar

Bibliography

Bachmann, C. Mechanisms of hyperammonemia. Clin Chem Lab Med 2002; 40: 653.Google Scholar
Bernal, W, Wendon, J. Acute liver failure N Engl J Med 2013; 369: 2525.Google Scholar
Clay, AS, Hainline, BE. Hyperammonaemia in the ICU. Chest 2008; 132: 1368.Google Scholar
Crosbie, DC, Sugamar, H, Simpson, MA, et al. Late-onset ornithine transcarbamylase deficiency: a potentially fatal yet treatable cause of coma. Crit Care Resusc 2009; 11: 222.Google Scholar
Kwan, L, Wang, C, Levitt, L. Hyperammonemic encephalopathy in multiple myeloma. N Engl J Med 2002; 346: 1674.Google Scholar
Lockwood, AH. Controversies in ammonia metabolism: implications for hepatic encephalopathy. Metab Brain Dis 2007; 22: 285.Google Scholar
Summar, M, Barr, F, Dawling, S, et al. Unmasked adult-onset urea cycle disorder in the critical care setting. Crit Care Clin 2005; 21 (suppl.): S1.Google Scholar
Warrilow, S, Fisher, C, Bellomo, R. Correction and control of hyperammonemia in acute liver failure: the impact of continuous renal replacement timing, intensity, and duration. Crit Care Med 2020; 48: 218.Google Scholar

Bibliography

Featherstone, PJ, Ball, CM. The therapeutic use of air under hyperbaric pressure. Anaesth Intens Care 2021; 49: 159.Google Scholar
Weaver, LK. Hyperbaric oxygen in the critically ill. Crit Care Med 2011; 39: 1784.Google Scholar

Bibliography

Anderson, JJB, Toverud, SU. Diet and vitamin D: a review with an emphasis on human function. J Nutr Biochem 1994; 5: 58.Google Scholar
Beall, DP, Scofield, RH. Milk-alkali syndrome associated with calcium carbonate consumption. Medicine 1995; 74: 89.Google Scholar
Bilerzikian, JP. Management of acute hypercalcemia. N Engl J Med 1992; 326: 1196.Google Scholar
Cox, M, Haddad, JG. Lymphoma, hypercalcemia, and the sunshine vitamin. Ann Intern Med 1994; 21: 709.Google Scholar
DeLuca, HF. Vitamin D metabolism and function. Arch Intern Med 1978; 138: 836.Google Scholar
Dickinson, M, Prince, HM, Kirsa, S, et al. Osteonecrosis of the jaw complicating bisphosphonate treatment for bone disease in multiple myeloma: an overview with recommendations for prevention and treatment. Intern Med J 2009; 39: 304.Google Scholar
Major, P, Lortholary, A, Hon, J, et al. Zoledronic acid is superior to palmidronate in the treatment of hypercalcaemia of malignancy. J Clin Oncol 2001; 19: 558.Google Scholar
Mallette, LE. The parathyroid polyhormones: new concepts in the spectrum of peptide hormone action. Endocr Rev 1991; 12: 110.Google Scholar
Mundy, GR. Hypercalcemia of malignancy revisited. J Clin Invest 1988; 82: 1.Google Scholar
Nussbaum, SR. Pathophysiology and management of severe hypercalcemia. Endocrinol Metab Clin North Am 1993; 22: 343.Google Scholar
Ralston, SH, Gallacher, SJ, Patel, U, et al. Comparison of three intravenous biphosphonates in cancer-associated hypercalcemia. Lancet 1989; 2: 1180.Google Scholar
Rodan, GA, Fleisch, HA. Bisphosphonates: mechanisms of action. J Clin Invest 1996; 97: 2692.Google Scholar
Theriault, RL. Hypercalcemia of malignancy: pathophysiology and implications for treatment. Oncology 1993; 7: 47.Google Scholar
Wysolmerski, JJ, Broadus, AE. Hypercalcemia of malignancy: the central role of parathyroid hormone-related protein. Annu Rev Med 1994; 45: 189.Google Scholar

Bibliography

Levy, B, Fritz, C, Tahon, E, et al. Vasoplegia treatments: the past, the present, and the future. Crit Care 2018; 22: 52.Google Scholar

Bibliography

Becker, C. Diseases of calcium metabolism and metabolic bone disease. In: Scientific American Medicine. Endocrinology & Metabolism. Hamilton: Dekker Medicine. 2020.Google Scholar
Bilezikian, JP, Potts, JT, Fuleihan, G-H, et al. Summary statement from a workshop on asymptomatic primary hyperparathyroidism: a perspective for the 21st century. J Bone Miner Res 2002; 17 (suppl. 2): N2.Google Scholar
Block, GA, Martin, KJ, de Francisco, ALM, et al. Cinacalcet for secondary hyperparathyroidism in patients receiving hemodialysis. Ne Engl J Med 2004; 350: 1516.Google Scholar
Brown, EM. Extracellular Ca2+ sensing regulation of parathyroid cell function, and role of Ca2+ and other ions as extracellular (first) messengers. Physiol Rev 1991; 71: 371.Google Scholar
Brown, EM, Gamba, G, Riccardi, D, et al. Cloning and characterization of an extracellular Ca2+-sensing receptor from bovine parathyroid. Nature 1993; 366: 575.Google Scholar
Deftos, LJ, Parthemore, JG, Stabile, BE. Management of primary hyperparathyroidism. Annu Rev Med 1993; 44: 19.Google Scholar
Fischer, JA. ‘Asymptomatic’ and symptomatic primary hyperparathyroidism. Clin Invest 1993; 71: 505.Google Scholar
Glendenning, P. Diagnosis of primary hyperparathyroidism: controversies, practical issues and the need for Australian guidelines. Intern Med J 2003; 33: 598.Google Scholar
Heath, H. Familial benign (hypocalciuric) hypercalcemia: a troublesome mimic of mild primary hyperparathyroidism. Endocrinol Metab Clin North Am 1989; 18: 723.Google Scholar
Heath, H, Hodgson, SE, Kennedy, MA. Primary hyperparathyroidism: incidence, morbidity and potential economic impact in a community. N Engl J Med 1980; 302: 189.Google Scholar
Mallette, LE. The parathyroid polyhormones: new concepts in the spectrum of peptide hormone action. Endocr Rev 1991; 12: 110.Google Scholar
Pocotte, SL, Ehrenstein, G, Fitzpatrick, LA. Regulation of parathyroid hormone secretion. Endocr Rev 1991; 12: 291.Google Scholar
Slatopolsky, E, Delmez, JA. Pathogenesis of secondary hyperparathyroidism. Am J Kidney Dis 1994; 23: 229.Google Scholar
Tonner, DR, Schlechte, JA. Neurologic complications of thyroid and parathyroid disease. Med Clin North Am 1993; 77: 251.Google Scholar

Bibliography

Coburn, JW, Salusky, IB. Control of serum phosphorus in uremia. N Engl J Med 1989; 320: 1140.Google Scholar
Connor, A, Tolan, D, Hughes, S, et al. Consensus guidelines for the safe prescription and administration of oral bowel-cleansing agents. Gut 2012; 61: 1525.Google Scholar
Weisinger, JR, Bellorin-Font, E. Magnesium and phosphorus. Lancet 1998; 352: 391.Google Scholar

Bibliography

Bernardo, J, Center, DM. Hypersensitivity pneumonia. Dis Mon 1981; 27: 1.Google Scholar
Fernandez-Perez, ER, Travis, WD, Lynch, DA, et al. Executive summary: diagnosis and evaluation of hypersensitivity pneumonitis: CHEST guideline and expert panel report. Chest 2021; 160: 595.Google Scholar
Fink, JN, Ortega, HG, Reynolds, HY, et al. Needs and opportunities for research in hypersensitivity pneumonitis. Am J Respir Crit Care Med 2005; 171: 792.Google Scholar
Glazer, C, Rose, C, Lynch, D. Clinical and radiological manifestations of hypersensitivity pneumonitis. J Thorac Imaging 2002; 17: 261.Google Scholar
Ismail, T, McSharry, C, Royd, G. Extrinsic allergic alveolitis. Respirology 2006; 11: 262.Google Scholar
Lacasse, Y, Girard, M, Cornier, Y. Recent advances in hypersensitivity pneumonitis. Chest 2012; 142: 208.Google Scholar
Mohr, LC. Hypersensitivity pneumonitis. Curr Opin Pulm Med 2004; 10: 401.Google Scholar
Morell, F, Roger, A, Cruz, M-J, et al. Suberosis: clinical study and new etiologic agents in a series of eight patients. Chest 2003; 124: 1145.Google Scholar
Nicholson, DP. Extrinsic allergic pneumonias. Am J Med 1972; 53: 131.Google Scholar
Salvaggio, JE. Extrinsic allergic alveolitis: past, present and future. Clin Exp Allergy 1997; 27 (suppl. 1): 18.Google Scholar

Bibliography

Bohnsack, JF, Brown, EJ. The role of the spleen in resistance to infection. Annu Rev Med 1986; 37: 49.Google Scholar
Rose, WF. The spleen as a filter. N Engl J Med 1987; 317: 704.Google Scholar

Bibliography

Bourcier, S, Coutrot, M, Kimmoun, A, et al. Thyroid storm in the ICU: a retrospective multicenter study. Crit Care Med 2020; 48: 83.Google Scholar
Burrow, GN. The management of thyrotoxicosis in pregnancy. N Engl J Med 1985; 313: 562.Google Scholar
Carter, JA, Utiger, RD. The ophthalmopathy of Graves’ disease. Annu Rev Med 1992; 43: 487.Google Scholar
Cooper, DS. Which anti-thyroid drug? Am J Med 1986; 80: 1165.Google Scholar
Cooper, DS. Hyperthyroidism. Lancet 2003; 362: 459.Google Scholar
DeGroot, LJ, Quintans, J. The causes of autoimmune thyroid disease. Endocr Rev 1989; 10: 537.Google Scholar
El-Kaissi, S, Frauman, AG, Wall, JR. Thyroid-associated ophthalmopathy: a practical guide to classification, natural history and management. Intern Med J 2004; 34: 482.Google Scholar
Franklyn, J, Sheppard, M. Radioiodine for thyrotoxicosis: perhaps the best option. BMJ 1992; 305: 727.Google Scholar
Hall, AJH, Topliss, DJ. Medical and surgical treatment of thyroid eye disease. Intern Med J 2022; 52: 14.Google Scholar
Jiang, YZ, Hutchinson, KA, Bartelloni, P, et al. Thyroid storm presenting as multiple organ dysfunction syndrome. Chest 2000; 118: 877.Google Scholar
Khir, ASM. Suspected thyrotoxicosis. BMJ 1985; 290: 916.Google Scholar
Lazar, MA. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev 1993; 14: 184.Google Scholar
Magner, JA. Thyroid-stimulating hormone: biosynthesis, cell biology, and bioactivity. Endocr Rev 1990; 11: 354.Google Scholar
Nayak, B, Burman, K. Thyrotoxicosis and thyroid storm. Endocrinol Metab Clin North Am 2006; 35: 663.Google Scholar
Ramsay, I. Drug and non-thyroid induced changes in thyroid function tests. Postgrad Med J 1985; 61: 375.Google Scholar
Shupnik, MA, Ridgway, EC, Chin, WW. Molecular biology of thyrotropin. Endocr Rev 1989; 10: 459.Google Scholar
Smallridge, RC. Metabolic and anatomic thyroid emergencies: a review. Crit Care Med 1992; 20: 276.Google Scholar
Smith, TJ, Hegedus, L. Graves’ disease. N Engl J Med 2016; 375: 1552.Google Scholar
Stockigt, JR. Hyperthyroidism secondary to drugs and acute illness. Endocrinologist 1993; 3: 67.Google Scholar
Surks, MI, Chopra, IJ, Mariash, CN, et al. American Thyroid Association guidelines for use of laboratory tests in thyroid disorders. JAMA 1990; 263: 1529.Google Scholar
Tonner, DR, Schlechte, JA. Neurologic complications of thyroid and parathyroid disease. Med Clin North Am 1993; 77: 251.Google Scholar
Topliss, DJ, Eastman, CJ. Diagnosis and management of hyperthyroidism and hypothyroidism. Med J Aust 2004; 180: 186.Google Scholar
Waldstein, SS, Slodki, SJ, Kaganiec, GI. A clinical study of thyroid storm. Ann Intern Med 1960; 52: 626.Google Scholar
Woeber, KA. Thyrotoxicosis and the heart. N Engl J Med 1992; 327: 94.Google Scholar
Wong, R, Farrell, SG, Grossmann, M. Thyroid nodules: diagnosis and management. Med J Aust 2018; 209: 92.Google Scholar

Bibliography

Aberegg, SK. Ionized calcium in the ICU: should it be measured and corrected? Chest 2016; 149: 846.Google Scholar
Becker, C. Diseases of calcium metabolism and metabolic bone disease. In: Scientific American Medicine. Endocrinology & Metabolism. Hamilton: Dekker Medicine. 2020.Google Scholar
Cholst, IN, Steinberg, SF, Tropper, PJ, et al. The influence of hypermagnesemia on serum calcium and parathyroid hormone levels in human subjects. N Engl J Med 1984; 310: 1221.Google Scholar
Kelly, A, Levine, MA. Hypocalcemia in the critically ill patient. J Intens Care Med 2013; 28: 166.Google Scholar
Lebowitz, MR, Moses, AM. Hypocalcemia. Semin Nephrol 1992; 12: 146.Google Scholar
Reid, IR, Bolland, MJ. Controversies in medicine: the role of calcium and vitamin D supplements in adults. Med J Aust 2019; 211: 468.Google Scholar
Slomp, J, van der Voort, PHJ, Gerritsen, RT, et al. Albumin-adjusted calcium is not suitable for diagnosis of hyper- and hypocalcemia in the critically ill. Crit Care Med 2003; 31: 1389.Google Scholar
Vivien, B, Langeron, O, Morell, E, et al. Early hypocalcemia in severe trauma. Crit Care Med 2005; 33: 1946.Google Scholar
Zaloga, GP. Hypocalcemia in critically ill patients. Crit Care Med 1992; 20: 251.Google Scholar

Bibliography

Achinger, SG, Ayus, JC. Treatment of hyponatremic encephalopathy in the critically ill. Crit Care Med 2017; 45: 1762.Google Scholar
Nigro, N, Grossmann, M, Chiang, C, et al. Polyuria-polydipsia syndrome: a diagnostic challenge. Intern Med J 2018; 48: 244.Google Scholar
Spasovski, G, Vanholder, R, Allolio, B, et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Intens Care Med 2014; 40: 320.Google Scholar
Tee, SL, Sindone, A, Roger, S, et al. Hyponatraemia in heart failure. Intern Med J 2020; 50: 659.Google Scholar

Bibliography

Bilezikian, JP, Brandi, ML, Cusano, NE, et al. Management of hypoparathyroidism: present and future. J Clin Endocrinol Metab 2016; 101: 2313.Google Scholar
Loriaux, DL. The polyendocrine deficiency syndromes. N Engl J Med 1985; 312: 1568.Google Scholar
Pocotte, SL, Ehrenstein, G, Fitzpatrick, LA. Regulation of parathyroid hormone secretion. Endocr Rev 1991; 12: 291.Google Scholar
Tonner, DR, Schlechte, JA. Neurologic complications of thyroid and parathyroid disease. Med Clin North Am 1993; 77: 251.Google Scholar

Bibliography

Aubier, M, Murciano, D, Lecocguic, Y, et al. Effect of hypophosphatemia on diaphragmatic contractility in patients with acute respiratory failure. N Engl J Med 1985; 313: 420.Google Scholar
Charro, T, Bernard, F, Skrobik, Y, et al. Intravenous phosphate in the intensive care unit: more aggressive repletion regimens for moderate and severe hypophosphatemia. Intens Care Med 2003; 29: 1273.Google Scholar
Coburn, JW, Salusky, IB. Control of serum phosphorus in uremia. N Engl J Med 1989; 320: 1140.Google Scholar
Kingston, M, Al-Siba’l, MB. Treatment of severe hypophosphatemia. Crit Care Med 1985; 13: 16.Google Scholar
Weisinger, JR, Bellorin-Font, E. Magnesium and phosphorus. Lancet 1998; 352: 391.Google Scholar

Bibliography

Kanhutu, K, Jones, P, Cheng, AC, et al. Spleen Australia guidelines for the prevention of sepsis in patients with asplenia and hyposplenism in Australia and New Zealand. Intern Med J 2017; 47: 848.Google Scholar
Katz, SC, Pachter, HL. Indications for splenectomy. Am Surg 2006; 72: 565.Google Scholar
O’Neal, HR, Niven, AS, Karam, GH. Critical illness in patients with asplenia. Chest 2016; 150: 1394.Google Scholar
Rubin, LG, Schaffner, W. Clinical practice: care of the asplenic patient. N Engl J Med 2014; 371: 349.Google Scholar
Spelman, D, Buttery, J, Daley, A, et al. Guidelines for the prevention of sepsis in asplenic and hyposplenic patients. Intern Med J 2008; 38: 349.Google Scholar

Bibliography

Alqalyoobi, S, Boctor, N, Sarkeshik, AA, et al. Therapeutic hypothermia and mortality in the intensive care unit: systematic review and meta-analysis. Crit Care Resusc 2019; 21: 287.Google Scholar
Arons, MM, Wheeler, AP, Bernard, GR, et al. Effects of ibuprofen on the physiology and survival of hypothermic sepsis. Crit Care Med 1999; 27: 699.Google Scholar
Bernard, SA, Buist, M. Induced hypothermia in critical care medicine: a review. Intens Care Med 2003; 31: 2041.Google Scholar
Bernard, SA, Gray, TW, Buist, MD, et al. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia. N Engl J Med 2002; 346: 557.Google Scholar
Brauer, A, Wrigge, H, Kersten, J, et al. Severe accidental hypothermia: rewarming strategy using a veno-venous bypass system and a convective air warmer. Intens Care Med 1999; 25: 520.Google Scholar
Britt, LD, Dascombe, WH, Rodriguez, A. New horizons in management of hypothermia and frostbite injury. Surg Clin North Am 1991; 71: 345.Google Scholar
Chen, H, Wu, F, Yang, P, et al. A meta-analysis of therapeutic hypothermia in adult patients with traumatic brain injury. Crit Care 2019; 23: 396.Google Scholar
Clemmer, TP, Fisher, CJ, Bone, RC, et al. Hypothermia in the sepsis syndrome and clinical outcome. Crit Care Med 1992; 20: 1395.Google Scholar
Clifton, GL, Miller, ER, Choi, SC, et al. Lack of effect of induction of hypothermia after acute brain injury. N Engl J Med 2001; 344: 556.Google Scholar
Cooper, DJ, Nichol, AD, Bailey, M, et al. Effect of early sustained prophylactic hypothermia on neurologic outcomes among patients with severe traumatic brain injury: the POLAR randomized clinical trial. JAMA 2018; 320: 2211.Google Scholar
Dexter, WW. Hypothermia: safe and efficient methods of rewarming the patient. Postgrad Med 1990; 88: 55.Google Scholar
Dowd, PM. Cold-related disorders. Prog Dermatol 1987; 21: 1.Google Scholar
Easterbrook, PJ, Davis, HP. Thrombocytopenia in hypothermia: a common but poorly recognised complication. BMJ 1985; 291: 23.Google Scholar
Frank, SM, Fleischer, LA, Breslow, MJ, et al. Perioperative maintenance of normothermia reduces the incidence of morbid cardiac events: a randomized clinical trial. JAMA 1997; 277: 1127.Google Scholar
Hanania, NA, Zimmerman, JL. Accidental hypothermia. Crit Care Clin 1999; 15: 235.Google Scholar
Herr, DL, Badjatia, N, eds. Therapeutic temperature management: state of the art in the critically ill. Crit Care Med 2009; 37 (suppl.): S185.Google Scholar
Kim, JH, Nagy, A, Putzu, A, et al. Therapeutic hypothermia in critically ill patients: a systematic review and meta-analysis of high quality randomized trials. Crit Care Med 2020; 48: 1047.Google Scholar
Ku, J, Brasel, KJ, Baker, CC, et al. Triangle of death: hypothermia, acidosis, and coagulopathy. New Horizons 1999; 7: 61.Google Scholar
Kurisu, K, Yenari, MA. Therapeutic hypothermia for ischemic stroke: pathophysiology and future promise. Neuropharmacology 2018; 134: 302.Google Scholar
Kurz, A, Sessler, DI, Lenhardt, R. Perioperative normothermia to reduce the incidence of surgical-wound infection and shorten hospitalization. N Engl J Med 1996; 334: 1209.Google Scholar
Larach, MG. Accidental hypothermia. Lancet 1995; 345: 493.Google Scholar
Lefrant, J-Y, Muller, L, Coussaye, JE, et al. Temperature measurement in intensive care patients: comparison of urinary bladder, oesophageal, rectal, axillary, and inguinal methods versus pulmonary artery core method. Intens Care Med 2003; 29: 414.Google Scholar
Lloyd, EL. Treatment after exposure to cold. Lancet 1972; 1: 491.Google Scholar
Perman, SM, Goyal, M, Neumar, RW, et al. Clinical applications of targeted temperature management. Chest 2014; 145: 386.Google Scholar
Polderman, KH. Application of therapeutic hypothermia in the ICU: opportunities and pitfalls of a promising treatment modality. Part 1: indications and evidence. Intens Care Med 2004; 30: 556.Google Scholar
Polderman, KH. Application of therapeutic hypothermia in the ICU: opportunities and pitfalls of a promising treatment modality. Part 2: practical aspects and side effects. Intens Care Med 2004; 30: 757.Google Scholar
Polderman, KH, Herold, I. Therapeutic hypothermia and controlled normothermia in the intensive care unit: practical considerations, side effects, and cooling methods. Crit Care Med 2009; 37: 1101.Google Scholar
Reuler, JB. Hypothermia: pathophysiology, clinical settings, and management. Ann Intern Med 1978; 89: 519.Google Scholar
Sessler, DI. Mild perioperative hypothermia. N Engl J Med 1997; 336: 1730.Google Scholar
Sunjic, KM, Webb, AC, Sunjic, I, et al. Pharmacokinetic and other considerations for drug therapy during targeted temperature management. Crit Care Med 2015; 43: 2228.Google Scholar
The Hypothermia after Cardiac Arrest Study Group. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest. N Engl J Med 2002; 346: 549.Google Scholar
Tisherman, SA, Sterz, F, eds. Therapeutic Hypothermia. Berlin: Springer. 2005.Google Scholar
Tortorici, MA, Kochanek, PM, Poloyac, SM. Effects of hypothermia on drug disposition, metabolism, and response: a focus on hypothermia-mediated alterations on the cytochrome P450 enzyme system. Crit Care Med 2007; 35: 2196.Google Scholar
Varon, J, Acosta, P. Therapeutic hypothermia: past, present and future. Chest 2008; 133: 1267.Google Scholar
Varon, J, Sadovnikoff, N, Sternbach, GL. Hypothermia: saving patients from the big chill. Postgrad Med 1992; 92: 47.Google Scholar
Vassal, T, Benoit-Gonin, B, Carrat, F, et al. Severe accidental hypothermia treated in an ICU: prognosis and outcome. Chest 2001; 120: 1998.Google Scholar
Walpoth, BH, Walpoth-Aslan, BN, Mattle, HP, et al. Outcome of survivors of accidental deep hypothermia and circulatory arrest treated with extracorporeal blood warming. N Engl J Med 1997; 337: 1500.Google Scholar
Woodhouse, P, Keatinge, WR, Coleshaw, SR. Factors associated with hypothermia in patients admitted to a group of inner city hospitals. Lancet 1989; 2: 1201.Google Scholar

Bibliography

Bastenie, PA, Bonnyns, M, Vanhaelst, L. Natural history of primary myxedema. Am J Med 1985; 79: 91.Google Scholar
DeGroot, LJ, Quintans, J. The causes of autoimmune thyroid disease. Endocr Rev 1989; 10: 537.Google Scholar
Editorial. Subclinical hypothyroidism. Lancet 1986; 1: 251.Google Scholar
Jordan, RM. Myxedema coma: the prognosis is improving. Endocrinologist 1993; 3: 149.Google Scholar
Lazar, MA. Thyroid hormone receptors: multiple forms, multiple possibilities. Endocr Rev 1993; 14: 184.Google Scholar
Loriaux, DL. The polyendocrine deficiency syndromes. N Engl J Med 1985; 312: 1568.Google Scholar
Magner, JA. Thyroid-stimulating hormone: biosynthesis, cell biology, and bioactivity. Endocr Rev 1990; 11: 354.Google Scholar
Mazzaferri, EL. Adult hypothyroidism. Postgrad Med 1986; 79: 64 & 75.Google Scholar
Ramsay, I. Drug and non-thyroid induced changes in thyroid function tests. Postgrad Med J 1985; 61: 375.Google Scholar
Roberts, CG, Ladenson, PW. Hypothyroidism. Lancet 2004; 363: 793.Google Scholar
Shupnik, MA, Ridgway, EC, Chin, WW. Molecular biology of thyrotropin. Endocr Rev 1989; 10: 459.Google Scholar
Smallridge, RC. Metabolic and anatomic thyroid emergencies: a review. Crit Care Med 1992; 20: 276.Google Scholar
Surks, MI, Chopra, IJ, Mariash, CN, et al. American Thyroid Association guidelines for use of laboratory tests in thyroid disorders. JAMA 1990; 263: 1529.Google Scholar
Surks, MI, Ortiz, E, Daniels, GH, et al. Subclinical thyroid disease: scientific review and guidelines for diagnosis and management. JAMA 2004; 291: 228.Google Scholar
Topliss, DJ, Eastman, CJ. Diagnosis and management of hyperthyroidism and hypothyroidism. Med J Aust 2004; 180: 186.Google Scholar
Vance, ML. Hypopituitarism. N Engl J Med 1994; 330: 1651.Google Scholar
Tonner, DR, Schlechte, JA. Neurologic complications of thyroid and parathyroid disease. Med Clin North Am 1993; 77: 251.Google Scholar
Walsh, JP, Stuckey, BGA. What is the optimal treatment for hypothyroidism. Med J Aust 2001; 174: 141.Google Scholar

Bibliography

Jolley, SE, Bunnell, AE, Hough, CL. ICU-acquired weakness. Chest 2016; 150: 1129.Google Scholar
Kress, JP, Hall, JB. ICU-acquired weakness and recovery from critical illness. N Engl J Med 2014; 370: 1626.Google Scholar
Vanhorebeek, I, Latronico, N, Van den Berghe G. ICU-acquired weakness. Intens Care Med 2020; 46: 637.Google Scholar

Bibliography

Agusti, C, Xaubet, A, Roca, J, et al. Interstitial pulmonary fibrosis with and without associated collagen vascular disease. Thorax 1992; 47: 1035.Google Scholar
Behr, J, Kolb, M, Cox, G. Treating IPF – all or nothing? A PRO-CON debate. Respirology 2009; 14: 1072.Google Scholar
Canestaro, WJ, Forrester, SH, Raghu, G, et al. Drug treatment of idiopathic pulmonary fibrosis: systematic review and network meta-analysis. Chest 2016; 149: 756.Google Scholar
Carrington, CB, Gaensler, EA, Coutu, RE, et al. Natural history and treated course of usual and desquamative interstitial pneumonia. N Engl J Med 1978; 298: 801.Google Scholar
Cherniack, RM, Colby, TV, Flint, A, et al. Correlation of structure and function in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 1995; 151: 1180.Google Scholar
Crystal, RG, Bitterman, PB, Rennard, SI, et al. Interstitial lung diseases of unknown cause. N Engl J Med 1984; 310: 154 & 235.Google Scholar
Flaherty, KR, Toews, GB, Lynch, JP, et al. Steroids in idiopathic pulmonary fibrosis: a prospective assessment of adverse reactions, response to therapy, and survival. Am J Med 2001; 110: 278.Google Scholar
Fumeaux, T, Rothmeier, C, Jolliet, P. Outcome of mechanical ventilation for acute respiratory failure in patients with pulmonary fibrosis. Intens Care Med 2001; 27: 1868.Google Scholar
Gross, TJ, Hunninghake, GW. Idiopathic pulmonary fibrosis. N Engl J Med 2001; 345: 517.Google Scholar
Homma, Y, Ohtsuka, Y, Tanimura, K, et al. Can interstitial pneumonia as the sole presentation of collagen vascular disease be differentiated from idiopathic interstitial pneumonia. Respiration 1995; 62: 248.Google Scholar
Hubbard, R, Lewis, S, Richards, K, et al. Occupational exposure to metal or wood dust and aetiology of cryptogenic fibrosing alveolitis. Lancet 1996; 347: 284.Google Scholar
International Consensus Statement. Idiopathic pulmonary fibrosis: diagnosis and treatment. Am J Respir Crit Care Med 2000; 161: 646.Google Scholar
Jo, HE, Troy, LK, Keir, G, et al. Treatment of idiopathic pulmonary fibrosis in Australia and New Zealand: a position statement from the Thoracic Soociety of Australia and New Zealand and the Lung Foundation Australia. Respirology 2017; 22: 1436.Google Scholar
Johnston, IDA, Prescott, RJ, Chalmers, JC, et al. British Thoracic Society study of cryptogenic fibrosing alveolitis: current presentation and initial management. Thorax 1997; 52: 38.Google Scholar
Kamp, DW. Idiopathic pulmonary fibrosis: the inflammatory hypothesis revisited. Chest 2003; 124: 1187.Google Scholar
Klingsberg, RC, Mutsaers, SE, Lasky, JA. Current clinical trials for the treatment of idiopathic pulmonary fibrosis. Respirology 2010; 15: 19.Google Scholar
Kottmann, RM, Hogan, CM, Phipps, RP, et al. Determinants of initiation and progression of idiopathic pulmonary fibrosis. Respirology 2009; 14: 917.Google Scholar
Lin, C, Borensztajn, K, Spek, CA. Targeting coagulation factor receptors – protease-activated receptors in idiopathic pulmonary fibrosis. J Thromb Haemost 2017; 15: 597.Google Scholar
Lynch, DA, Godwin, JD, Safrin, S, et al. High-resolution computed tomography in idiopathic pulmonary fibrosis: diagnosis and prognosis. Am J Respir Crit Care Med 2005; 172: 488.Google Scholar
Marinelli, WA. Idiopathic pulmonary fibrosis: progress and challenge. Chest 1995; 108: 297.Google Scholar
Mason, DP, Brizzio, ME, Alster, JM, et al. Lung transplantation for idiopathic pulmonary fibrosis. Ann Thorac Surg 2007; 84: 1121.Google Scholar
Michaelson, JE, Aguayo, SM, Roman, J. Idiopathic pulmonary fibrosis. Chest 2000; 118: 788.Google Scholar
Prasad, J, Holland, AE, Glaspole, I, et al. Idiopathic pulmonary fibrosis: an Australian perspective. Intern Med J 2016; 46: 663.Google Scholar
Raghu, G, Collard, HR, Egan, JJ, et al. An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 2011; 183: 788.Google Scholar
Riches, DWH, Worthen, GS, eds. Mechanisms of pulmonary fibrosis. Chest 2001; 120: suppl. 1.Google Scholar
Schmidt, SL, Sundaram, B, Flaherty, KR. Diagnosing fibrotic lung disease: when is high-resolution computed tomography sufficient to make a diagnosis of idiopathic pulmonary fibrosis? Respirology 2009; 14: 934.Google Scholar
Swaminathan, AC, Todd, JL. That was then, this is now: a fresh look at idiopathic pulmonary fibrosis biomarkers in the antifibrotic era. Chest 2020; 158: 1321.Google Scholar
Swigris, JJ, Kuschner, WG, Kelsey, JL, et al. Idiopathic pulmonary fibrosis. Chest 2005; 127: 275.Google Scholar
Turner-Warwick, M, Burrows, B, Johnson, A. Cryptogenic fibrosing alveolitis. Thorax 1980; 35: 171.Google Scholar
Various. Controversies in the diagnosis and management of idiopathic pulmonary fibrosis. Chest 2005; 128 (suppl.): 513S.Google Scholar
Ziesche, R, Hofbauer, E, Wittmann, K, et al. A preliminary study of long-term treatment with interferon gamma-1b and low-dose prednisolone in patients with idiopathic pulmonary fibrosis. N Engl J Med 1999; 341: 1264.Google Scholar

Bibliography

Lawley, TJ, Bielory, L, Gascon, P, et al. A prospective clinical and immunologic analysis of patients with serum sickness. N Engl J Med 1984; 311: 1407.Google Scholar
Schifferli, JA, Ng, YC, Peters, DK. The role of complement and its receptors in the elimination of immune complexes. N Engl J Med 1986; 315: 488.Google Scholar
Wiggins, RC, Cochrane, CG. Immune-complex-mediated biologic effects. N Engl J Med 1981; 304: 518.Google Scholar

Bibliography

Choi, PY, Merriman, E, Bennett, A, et al. Consensus guidelines for the management of adult immune thrombocytopenia in Australia and New Zealand. Med J Aust 2022; 216: 43.Google Scholar
Chong, BH. Primary immune thrombocytopenia: understanding pathogenesis is the key to better treatments. J Thromb Haemost 2009; 7: 319.Google Scholar
Cines, DB, Blanchette, VS. Immune thrombocytopenic purpura. N Engl J Med 2002; 346: 995.Google Scholar
Ferrara, JLM. The febrile platelet transfusion reaction: a cytokine shower. Transfusion 1995; 35: 89.Google Scholar
George, JN. Management of patients with refractory immune thrombocytopenic purpura. J Thromb Haemost 2006; 4: 1664.Google Scholar
Kuter, DJ, Bussel, JB, Lyons, RM, et al. Efficacy of romiplostim in patients with chronic immune thrombocytopenic purpura. Lancet 2008; 371: 395.Google Scholar
Lakshmanan, S, Cuker, A. Contemporary management of primary immune thrombocytopenia in adults. J Thromb Haemost 2012; 10: 1988.Google Scholar
Nugent, D, McMillan, R, Nichol, JL, et al. Pathogenesis of chronic immune thrombocytopenia: increased platelet destruction and/or decreased platelet production. Br J Haematol 2009; 146: 585.Google Scholar
Provan, D, Arnold, DM, Russell, JB, et al. Updated international consensus report on the investigation and management of primary immune thrombocytopenia. Blood Adv 2019; 3: 3780.Google Scholar
Sivapathasingam, V, Harvey, MP, Wilson, RB. Helicobacter pylori eradication: a novel therapeutic option in chronic immune thrombocytopenic purpura. Med J Aust 2008; 189: 367.Google Scholar

Bibliography

Buckley, RH, Schiff, RI. The use of intravenous immune globulin in immunodeficiency diseases. N Engl J Med 1991; 325: 110.Google Scholar
Gupta, S, Pattaniak, D, Krishnaswamy, G. Common variable immune deficiency and associated complications. Chest 2019; 156: 579.Google Scholar
Sneller, MC, Strober, W, Eisenstein, E, et al. NIH conference: new insights into common variable immunodeficiency. Ann Intern Med 1993; 118: 720.Google Scholar
Sullivan, KE, Jyonoudi, S. Deficiencies of innate and adaptive immunity. In: Scientific American Medicine. Allergy & Immunology. Hamilton: Dekker Medicine. 2020.Google Scholar
Van de Meer, JWM, Kullberg, BJ. Defects in host-defense mechanisms. In: Rubin, RH, Young, LS, eds. Clinical Approach to Infections in the Compromised Host. 4th edition. New York: Plenum. 2002.Google Scholar
Yu, Z, Lennon, VA. Mechanism of intravenous immune globulin therapy in antibody-mediated autoimmune diseases. N Engl J Med 1999; 340: 227.Google Scholar

Bibliography

Anderson, KC, Weinstein, HJ. Transfusion-associated graft-versus-host disease. N Engl J Med 1990; 323: 315.Google Scholar
Austen, KF, Burakoff, SJ, Rosen, FS, et al., eds. Therapeutic Immunology. 2nd edition. Cambridge: Blackwell. 2001.Google Scholar
Ballow, M, Nelson, R. Immunopharmacology: immunomodulation and immunotherapy. JAMA 1997; 278: 2008.Google Scholar
Barnes, PJ, Karin, M. Nuclear factor-κβ – a pivotal transcription factor in chronic inflammatory diseases. N Engl J Med 1997; 336: 1066.Google Scholar
Chrousos, GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 1995; 332: 1351.Google Scholar
Clark, EA, Ledbetter, JA. How B and T cells talk to each other. Nature 1994; 367: 425.Google Scholar
Cohen, JJ. Apoptosis. Immunol Today 1993; 14: 126.Google Scholar
Couriel, D, Weinstein, R. Complications of therapeutic plasma exchange: a recent assessment. J Clin Apheresis 1994; 9: 1.Google Scholar
Davies, PJ, Martin, SJ, Burton, DR, et al. Roitt’s Essential Immunology. 13th edition. Hoboken: Wiley 2018.Google Scholar
Dwyer, JM. Manipulating the immune system with immune globulin. N Engl J Med 1992; 326: 107.Google Scholar
Engelhard, VH. How cells process antigens. Sci Am 1994; 271(2): 54.Google Scholar
Faist, E, Wichmann, M, Kim, C. Immunosuppression and immunomodulation in surgical patients. Curr Opin Crit Care 1997; 3: 293.Google Scholar
Fox, DA, ed. Allergy & Immunology. Scientific American Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Guillet, J-G, Lai, M-Z, Briner, TJ, et al. Immunological self, nonself discrimination. Science 1987; 235: 865.Google Scholar
Lundy, SK, Gizinski, A, Fox, DA. Introduction to clinical immunology: overview of immune response, autoimmune conditions, and immunosuppressive therapeutics for rheumatic diseases. In: Scientific American Medicine. Allergy & Immunology. Hamilton: Dekker Medicine. 2020.Google Scholar
Nossal, GJV. Current concepts: immunology: the basic components of the immune system. N Engl J Med 1987; 316: 1320.Google Scholar
Nossal, GJV. Immunologic tolerance: collaboration between antigen and lymphokines. Science 1989; 245: 147.Google Scholar
Nossal, GJV. Life, death and the immune system. Sci Am 1993; 269(3): 20.Google Scholar
Nossal, GJV. Negative selection of lymphocytes. Cell 1994; 76: 229.Google Scholar
Pardoll, DM. Tumour antigens: a new look for the 1990s. Nature 1994; 369: 357.Google Scholar
Parker, CW. Allergic reactions in man. Pharmacol Rev 1982; 34: 85.Google Scholar
Paul, WE. Infectious diseases and the immune system. Sci Am 1993; 269(3): 57.Google Scholar
Reichlin, S. Neuroendocrine-immune interactions. N Engl J Med 1993; 329: 1246.Google Scholar
Reimann, PM, Mason, PD. Plasmapheresis: technique and complications. Intens Care Med 1990; 16: 3.Google Scholar
Roberts, NJ. Impact of temperature elevation on immunologic defenses. Rev Infect Dis 1991; 13: 462.Google Scholar
Shortman, K, Scollay, R. Death in the thymus. Nature 1994; 372: 44.Google Scholar
Smith, RM, Giannoudis, PV. Trauma and the immune response. J R Soc Med 1998; 91: 417.Google Scholar
Van de Meer, JWM, Kullberg, BJ. Defects in host-defense mechanisms. In: Rubin, RH, Young, LS, eds. Clinical Approach to Infections in the Compromised Host. 4th edition. New York: Plenum. 2002.Google Scholar
Von Boehmer, H. Positive selection of lymphocytes. Cell 1994; 76: 219.Google Scholar
Yu, Z, Lennon, VA. Mechanism of intravenous immune globulin therapy in antibody-mediated autoimmune diseases. N Engl J Med 1999; 340: 227.Google Scholar
Zanetti, G, Calandra, T. Intravenous immunoglobulins and granulocyte colony-stimulating factor for the management of infection in intensive care units. Curr Opin Crit Care 1997; 3: 342.Google Scholar
Zweiman, B, Levinson, AI. Immunologic aspects of neurological and neuromuscular diseases. JAMA 1992; 268: 2918.Google Scholar

Bibliography

Bearn, AG, Miller, ED. Archibald Garrod and the development of the concept of inborn errors of metabolism in the newborn period. Bull Hist Med 1979; 53: 315.Google Scholar
Chopra, SS, Berry, GT. Metabolic disorders: inborn errors of amino acid, ammonia, organic acid, and fatty acid metabolism. In: Scientific American Medicine. Endocrinology & Metabolism. Hamilton: Dekker Medicine. 2020.Google Scholar
Wappner, RS. Biochemical diagnosis of genetic diseases. Pediatr Ann 1993; 22: 282.Google Scholar
Wenger, DA, Copploa, S, Liu, SL. Insights into the diagnosis and treatment of lysosomal storage diseases. Arch Neurol 2003; 60: 322.Google Scholar

Bibliography

Azoulay, E, ed. Severe infections in the critically ill. Intens Care Med 2020; 46: no. 2.Google Scholar
Barrett-Connor, E. Anemia and infection. Am J Med 1972; 52: 242.Google Scholar
Bennett, JE, Dolin, R, Blaser, MJ, eds. Mandell, Douglas and Bennett’s Principles and Practice of Infectious Diseases. 9th edition. New York: Elsevier. 2019.Google Scholar
Bion, JF, Brun-Buisson, C, eds. Infection and critical illness: genetic and environmental aspects of susceptibility and resistance. Intens Care Med 2000; 26; suppl. 1.Google Scholar
Bohnsack, JF, Brown, EJ. The role of the spleen in resistance to infection. Annu Rev Med 1986; 37: 49.Google Scholar
Brigden, ML, Pattullo, AL. Prevention and management of overwhelming postsplenectomy infection – an update. Crit Care Med 1999; 27: 836.Google Scholar
Cassell, GH, Cole, BC. Mycoplasmas as agents of human disease. N Engl J Med 1981; 304: 80.Google Scholar
Cohen, S, Tyrrell, DA, Smith, AP. Psychological stress and susceptibility to the common cold. N Engl J Med 1991; 325: 606.Google Scholar
Cunha, BA, ed. Infectious Diseases in Critical Care Medicine. 3rd edition. Boca Baton: CRC Press. 2009.Google Scholar
Durand, MI, Calserwood, SB, Weber, MD, et al. Acute bacterial meningitis in adults. N Engl J Med 1993; 328: 21.Google Scholar
Fisman, DN. Hemophagocytic syndromes and infection. Emerg Infect Dis 2000; 6: 6.Google Scholar
Gilbert, GL. Infections in pregnant women. Med J Aust 2002; 176: 229.Google Scholar
Gorbach, SL, Bartlett, JG, Blacklow, NR, eds. Infectious Diseases. 3rd edition. Philadelphia: WB Saunders. 2004.Google Scholar
Howard, CR. Viral hemorrhagic fevers: properties and prospects for treatment and prevention. Antiviral Res 1984; 4: 169.Google Scholar
Hughes, AJ, Biggs, BA. Parasitic worms of the central nervous system. Intern Med J 2002; 32: 541.Google Scholar
Keusch, GT, Barza, MJ, Bennish, ML, et al., eds. Year Book of Infectious Diseases 1998. St Louis: Mosby-Year Book. 1998.Google Scholar
Manocha, S, Walley, KR, Russell, JA. Severe acute respiratory distress syndrome (SARS): a critical care perspective. Crit Care Med 2003; 31: 2684.Google Scholar
Maslin, F-X. Global aspects of emerging and potential zoonoses: a WHO perspective. Emerg Infect Dis 1997; 3: 2.Google Scholar
Paul, WE. Infectious diseases and the immune system. Sci Am 1993; 269(3): 57.Google Scholar
Peeling, RW, Brunham, RC. Chlamydiae as pathogens: new species and new issues. Emerg Infect Dis 1996; 2: 4.Google Scholar
Pinder, M, Bellomo, R, Lipman, J. Pharmacological principles of antibiotic prescription in the critically ill. Anaesth Intens Care 2002; 30: 134.Google Scholar
Rahall, JJ. Antibiotic combinations: the clinical relevance of synergy and antagonism. Medicine 1978; 57: 179.Google Scholar
Shafazand, S, Weinacker, AB. Blood cultures in the critical care unit: improving utilization and yield. Chest 2002; 122: 1727.Google Scholar
Sigurdardottir, B, Bjornsson, OM, Jonsdottir, KE, et al. Acute bacterial meningitis in adults. Arch Intern Med 1997; 157: 425.Google Scholar
Spach, D, Liles, W, Campbell, G, et al. Tick-borne diseases in the United States. N Engl J Med 1993; 329: 936.Google Scholar
Sprung, CL, Cohen, R, Adini, B, eds. Recommendations and standard operating procedures for intensive care unit and hospital preparations for an influenza epidemic or mass disaster. Summary report of the European Society of Intensive Care Medicine’s Task Force for intensive care unit triage during an influenza epidemic or mass disaster. Intens Care Med 2010; 36 (suppl. 1): S1.Google Scholar
Tomkins, L. The use of molecular methods in the diagnosis of infectious diseases. N Engl J Med 1992; 327: 1290.Google Scholar
Various. Infectious Diseases. In: Scientific American Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Whitley, RJ. Viral encephalitis. N Engl J Med 1990; 323: 242.Google Scholar
Zanetti, G, Calandra, T. Intravenous immunoglobulins and granulocyte colony-stimulating factor for the management of infection in intensive care units. Curr Opin Crit Care 1997; 3: 342.Google Scholar
Zumla, A, James, DG. Granulomatous infections: etiology and classification. Clin Infect Dis 1996; 23: 146.Google Scholar

Bibliography

Black, H, Mendoza, M, Murin, S. Thoracic manifestations of inflammatory bowel disease. Chest 2007; 131: 524.Google Scholar
Bongartz, T, Sutton, AJ, Sweeting, MJ, et al. Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA 2006; 295: 2275.Google Scholar
Carter, MJ, Lobo, AJ, Travis, SP. Guidelines for the management of inflammatory bowel disease in adults. Gut 2004; 53 (suppl. 5): VI.Google Scholar
Colombel, JF, Loftus, EV, Tremaine, WJ, et al. The safety profile of infliximab in patients with Crohn’s disease. Gastroenterology 2004; 126: 19.Google Scholar
Davis, WC, Kuenstner, JT, Singh, SV. Resolution of Crohn’s (Johne’s) disease with antibiotics: what are the next steps?. Expert Rev Gastroenterol Hepatol 2017; 11: 393.Google Scholar
Fehily, SR, Basnayake, C, Wright, EK, et al. The gut microbiota and gut disease. Intern Med J 2021; 51: 1594.Google Scholar
Gibson, PR, Anderson, RP. Inflammatory bowel disease. Med J Aust 1998; 169: 387.Google Scholar
Greenberg, GR. Nutritional support in inflammatory bowel disease: current status and future directions. Scand J Gastroenterol 1992; 192 (suppl.): 117.Google Scholar
Greenstein, RJ. Is Crohn’s disease caused by a mycobacterium? Comparisons with leprosy, tuberculosis, and Johne’s disease. Lancet Infect Dis 2004; 4: 507.Google Scholar
Grimpen, F, Pavli, P. Advances in the management of inflammatory bowel disease. Intern Med J 2010; 40: 258.Google Scholar
Kornbluth, A, George, J, Sachar, DB. Immunosuppressive drugs in Crohn’s disease. Gastroenterologist 1994; 2: 239.Google Scholar
MacDermott, RP, Stenson, WF. Inflammatory Bowel Disease. New York: Elsevier. 1992.Google Scholar
McNees, AL, Markesich, D, Zayyani, NR, et al. Mycobacterium paratuberculosis as a cause of Crohn’s disease. Expert Rev Gastroenterol Hepatol 2015; 9: 1523.Google Scholar
Ng, SC, Shi, HY, Hamidi, N, et al. Worldwide incidence and prevalence of inflammatory bowel disease in the 21st century: a systematic review of population-based studies. Lancet 2017; 390: 2769.Google Scholar
Podolsky, DK. Inflammatory bowel disease. N Engl J Med 2002; 347: 417.Google Scholar
Present, DH, Rutgeerts, P, Targan, S, et al. Infliximab for the treatment of fistulas in patients with Crohn’s disease. N Engl J Med 1999; 340: 1398.Google Scholar
Rachmilewitz, D. New forms of treatment for inflammatory bowel disease. Gut 1992; 33: 1301.Google Scholar
Sands, BE. Biologic therapy for inflammatory bowel disease. Inflamm Bowel Dis 1997; 3: 95.Google Scholar
Sands, BE, Anderson, FH, Bernstein, CN, et al. Infliximab maintenance therapy for fistulizing Crohn’s disease. New Engl J Med 2004; 350: 876.Google Scholar
Shouval, DS. Evaluation and treatment of monogenic forms of inflammatory bowel diseases. In: Scientific American Medicine. Gastroenterology. Hamilton: Dekker Medicine. 2020.Google Scholar
Schreiber, S, Hampe, J. Genomics and inflammatory bowel disease. Curr Opin Gastroenterol 1999; 16: 297.Google Scholar
Selby, WS. Current issues in Crohn’s disease. Med J Aust 2003; 178: 532.Google Scholar
Thompson, NP, Montgomery, SM, Pounder, RE, et al. Is measles vaccination a risk factor for inflammatory bowel disease? Lancet 1995; 345: 1071.Google Scholar

Bibliography

ANZIC Influenza Investigators. Critical care services and 2009 H1N1 influenza in Australia and New Zealand. N Engl J Med 2009; 361: 1925.Google Scholar
Arabi, Y, Gomersall, CD, Ahmed, QA, et al. The critically ill avian influenza A (H5N1) patient. Crit Care Med 2007; 35: 1397.Google Scholar
Beigel, JH. Influenza. Crit Care Med 2008; 36: 2660.Google Scholar
Beigel, JH, Farrar, J, Han, AM, et al. Avian influenza A (H5N1) infection in humans. New Engl J Med 2005; 353: 1374.Google Scholar
Bishop, JF, Murnane, MP, Owen, R. Australia’s winter with the 2009 pandemic influenza A (H1N1) virus. N Engl J Med 2009; 361: 2591.Google Scholar
Dawood, FS, Jain, S, Finelli, L, et al. Emergence of a novel swine-origin influenza A (H1N1) virus in humans. N Engl J Med 2009; 360: 2605.Google Scholar
Dwyer, DE, Emery, S, McKinnon, M. Preparing for an influenza pandemic. Med J Aust 2006; 185 (suppl.): S25.Google Scholar
Gruber, PC, Gomersall, CD, Joynt, GM. Avian influenza (H5N1): implications for intensive care. Intens Care Med 2006; 32: 823.Google Scholar
Harrigan, PWJ, Webb, SAR, Seppelt, IM, et al. The practical experience of managing the H1N1 2009 influenza pandemic in Australian and New Zealand intensive care units. Crit Care Resusc 2010; 12: 121.Google Scholar
Loh, L-C, Hui, DS-C, Beasley, R, eds. Avian influenza: from basic biology to endemic planning. Respirology 2008; 13 (suppl.): S1.Google Scholar
Macfarlane, JT, Lim, WS. Bird flu and pandemic flu. BMJ 2005; 331: 975.Google Scholar
Mitchell, MD, Mikkelsen, ME, Umscheid, CA, et al. A systematic review to inform institutional decisions about the use of extracorporeal membrane oxygenation during the H1N1 influenza pandemic. Crit Care Med 2010; 38: 1398.Google Scholar
Smith, GJ, Vijaykrishna, D, Bahl, J, et al. Origins and evolutionary genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 2009; 459: 1122.Google Scholar
Sprung, CL, Cohen, R, Adini, B, eds. Recommendations and standard operating procedures for intensive care unit and hospital preparations for an influenza epidemic or mass disaster. Summary report of the European Society of Intensive Care Medicine’s Task Force for intensive care unit triage during an influenza epidemic or mass disaster. Intens Care Med 2010; 36 (suppl. 1): S1.Google Scholar
Torres, A, Martin-Loeches, I, Sligl, W. et al. Severe flu management: a point of view. Intens Care Med 2020; 46: 153.Google Scholar
Wong, SSY, Yuen, K-y. Avian influenza virus infections in humans. Chest 2006; 129: 156.Google Scholar
Yang, Y, Sugimoto, JD, Halloran, ME, et al. The transmissibility and control of pandemic influenza A (H1N1) virus. Science 2009; 326: 729.Google Scholar

Bibliography

Baud, FJ, Barriot, P, Toffis, V, et al. Elevated blood cyanide concentrations in victims of smoke inhalation. N Engl J Med 1991; 325: 1761.Google Scholar
Crapo, RO. Smoke-inhalation injuries. JAMA 1981; 246: 1694.Google Scholar
Dancey, DR, Hayes, J, Gomez, M, et al. ARDS in patients with thermal injury. Intens Care Med 1999; 25: 1231.Google Scholar
de la Cal, MA, Cerda, E, Garcia-Hierro, P, et al. Pneumonia in patients with severe burns. Chest 2001; 119: 1160.Google Scholar
Dennekamp, M, Abramson, MJ. The effects of bushfire smoke on respiratory health. Respirology 2011; 16: 198.Google Scholar
Dietch, E. The management of burns. N Engl J Med 1990; 323: 1249.Google Scholar
Dyer, RF, Esch, VH. Polyvinyl chloride toxicity in fires: hydrogen chloride toxicity in firefighters. JAMA 1976; 235: 393.Google Scholar
Fogarty, PW, George, PJM, Solomon, M, et al. Long term effects of smoke inhalation in survivors of the King’s Cross underground station fire. Thorax 1991; 46: 914.Google Scholar
Gueugniaud, P-Y, Carsin, H, Bertin-Maghit, M, et al. Current advances in the initial management of major thermal burns. Intens Care Med 2000; 26: 848.Google Scholar
Haponik, E, Munster, A, eds. Respiratory Injury: Smoke Inhalation and Burns. New York: McGraw-Hill. 1990.Google Scholar
Hettiaratchy, S, Dziewulski, P. ABC of burns. BMJ 2004; 328: 1366 et seq.Google Scholar
Holley, AD, Reade, MC, Lipman, J, et al. There is no fire without smoke! Pathophysiology and treatment of inhalational injury in burns: a narrative review. Anaesth Intens Care 2020; 48: 114.Google Scholar
Large, AA, Owens, GR, Hoffman, LA. The short-term effects of smoke exposure on the pulmonary function of firefighters. Chest 1990; 97: 806.Google Scholar
Mlcak, RP, Suman, OE, Herndon, DN. Respiratory management of inhalation injury. Burns 2007; 33: 2.Google Scholar
Park, GY, Park, JW, Jeong, DH, et al. Prolonged airway and systemic inflammatory reactions after smoke inhalation. Chest 2003; 123: 475.Google Scholar
Ryan, CM, Schoenfeld, DA, Thorpe, WP, et al. Objective estimates of the probability of death from burn injuries. N Engl J Med 1998; 338: 362.Google Scholar
Schulz, JT, Ryan, CM. The frustrating problem of smoke inhalation injury. Crit Care Med 2000; 28: 1677.Google Scholar
Sheridan, R. Specific therapies for inhalation injury. Crit Care Med 2002; 30: 718.Google Scholar
Walker, PF, Buehner, MF, Wood, LA, et al. Diagnosis and management of inhalation injury: an updated review. Crit Care 2015; 19: 351.Google Scholar

Bibliography

Baughman, RP, Dent, M. Role of bronchoalveolar lavage in interstitial lung disease. Clin Chest Med 2001; 22: 331.Google Scholar
Chu, SC, Horiba, K, Usuki, J, et al. Comprehensive evaluation of 35 patients with lymphangioleiomyomatosis. Chest 1999; 115: 1041.Google Scholar
Coultas, DB, Zumwalt, RE, Black, WC, et al. The epidemiology of interstitial lung diseases. Am J Respir Crit Care Med 1994; 150: 967.Google Scholar
Crystal, RG, Bitterman, PB, Rennard, SI, et al. Interstitial lung diseases of unknown cause. N Engl J Med 1984; 310: 154 & 235.Google Scholar
Kitaichi, M, Nishimura, K, Itoh, H, et al. Pulmonary lymphangioleiomyomatosis. Am J Respir Crit Care Med 1995; 151: 527.Google Scholar
McCormack, FX. Lymphangioleiomyomatosis: a clinical update. Chest 2008; 133: 507.Google Scholar
Moss, J, ed. LAM (lymphangioleiomyomatosis) and Other Diseases Characterized by Smooth Muscle Proliferation. New York: Marcel Dekker. 1999.Google Scholar
Prakash, UB, Barham, SS, Rosenow, EC, et al. Pulmonary alveolar microlithiasis. Mayo Clin Proc 1983; 58: 290.Google Scholar
Reynolds, HY. Diagnostic and management strategies for diffuse interstitial lung disease. Chest 1998; 113: 192.Google Scholar
Skolnik, K, Ryerson, CJ. Unclassifiable interstitial lung disease: a review. Respirology 2016; 21: 51.Google Scholar
Taylor, JR, Ryu, J, Colby, TV, et al. Lymphangioleiomyomatosis. N Engl J Med 1990; 323: 1254.Google Scholar
Vij, R, Strek, ME. Diagnosis and treatment of connective tissue disease-associated interstitial lung disease Chest 2013: 143: 814.Google Scholar

Bibliography

American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias, June 2001. Am J Respir Crit Care Med 2002; 165: 277.Google Scholar
Boehler, A, Kesten, S, Weder, W, et al. Bronchiolitis obliterans after lung transplantation: a review. Chest 1998; 114: 1411.Google Scholar
Cha, SI, Fessler, MB, Cool, CD, et al. Lymphoid interstitial pneumonia: clinical features, associations and prognosis. Eur Respir J 2006; 28: 364.Google Scholar
Cordier, JF. Cryptogenic organising pneumonia. Eur Respir J 2006; 28: 422.Google Scholar
Epler, GR, Colby, TV, McLoud, TC, et al. Bronchiolitis obliterans organizing pneumonia. N Engl J Med 1985; 312: 152.Google Scholar
Fischer, A, West, SG, Swigris, JJ, et al. Connective tissue disease-associated interstitial lung disease. Chest 2010; 138: 251.Google Scholar
Frankel, SK, Cool, CD, Lynch, DA, et al. Idiopathic pleuroparenchymal fibroelastosis: description of a novel clinicopathologic entity. Chest 2004; 126: 2007.Google Scholar
Hamman, L, Rich, AR. Fulminating diffuse interstitial fibrosis of the lungs. Trans Am Clin Climatol Assoc 1935; 51: 154.Google Scholar
Kinder, BW, Collard, HR, Koth, L, et al. Idiopathic nonspecific interstitial pneumonia: lung manifestation of undifferentiated connective tissue disease. Am J Respir Crit Care Med 2007; 176: 691.Google Scholar
Ryu, JH, Myers, JL, Capizzi, SA, et al. Desquamative interstitial pneumonia and respiratory bronchiolitis-associated interstitial lung disease. Chest 2005; 127: 178.Google Scholar
Travis, WD, Costabel, U, Hansell, DM, et al. An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of idiopathic interstitial pneumonia. Am J Respir Crit Care Med 2013; 188: 733.Google Scholar
Vourlekis, JS. Acute interstitial pneumonia. Clin Chest Med 2004; 25: 739.Google Scholar

Bibliography

Kirkpatrick, AW, Roberts, DJ, De Waele, J, et al. Intra-abdominal hypertension and the abdominal compartment syndrome: updated consensus definitions and clinical practice guidelines from the World Society of the Abdominal Compartment Syndrome. Intens Care Med 2013; 39: 1190.Google Scholar
Maluso, P, Olson, J, Sarani, B. Abdominal compartment hypertension and abdominal compartment syndrome. Crit Care Clin 2016; 32: 213.Google Scholar
Rogers, WK, Garcia, L. Intraabdominal hypertension, abdominal compartment syndrome, and the open abdomen. Chest 2018; 153: 238.Google Scholar

Bibliography

Bothwell, TH, Charlton, RW, Cook, JD, et al. Iron Metabolism in Man. Oxford: Blackwell. 1979.Google Scholar
Conrad, ME, Umbreit, JN, Moore, EG. Iron absorption and cellular uptake of iron. Adv Exp Med Biol 1994; 356: 69.Google Scholar
Editorial. Serum-ferritin. Lancet 1979; 1: 533.Google Scholar
Finch, CA. Erythropoiesis, erythropoietin, and iron. Blood 1982; 60: 1241.Google Scholar
Finch, CA. The detection of iron overload. N Engl J Med 1982; 307: 1702.Google Scholar
Finch, CA, Huebers, H. Perspectives in iron metabolism. N Engl J Med 1992; 306: 1520.Google Scholar
Ganz, T, Nemeth, E. Iron homeostasis in host defence and inflammation. Nat Rev Immunol 2015; 15: 500.Google Scholar
Hershko, C, Peto, TEA, Weatherall, DJ. Iron and infection. BMJ 1988; 296: 660.Google Scholar
Huebers, HA, Finch, CA. The physiology of transferrin and transferrin receptors. Physiol Rev 1987; 67: 520.Google Scholar
Kuhn, LC. Molecular regulation of iron proteins. Baillieres Clin Haematol 1994; 7: 763.Google Scholar
Means, RT. Red blood cell function and disorders of iron metabolism. In: Scientific American Medicine. Hematology. Hamilton: Dekker Medicine. 2020.Google Scholar
Mills, KC, Curry, SC. Acute iron poisoning. Emerg Clin North Am 1994; 12: 397.Google Scholar
Pieracci, FM, Barie, PS. Diagnosis and management of iron-related anemias in critical illness. Crit Care Med 2006; 34: 1898.Google Scholar
Sayers, MH, English, G, Finch, C. Capacity of the store-regulator in maintaining iron balance. Am J Hematol 1994; 47: 194.Google Scholar

Bibliography

Cook, JD, Skikne, BS. Iron deficiency: definition and diagnosis. J Intern Med 1989; 226: 349.Google Scholar
Hershko, C, Peto, TEA, Weatherall, DJ. Iron and infection. BMJ 1988; 296: 660.Google Scholar
Lopez, A, Cacoub, P, Macdougall, IC, et al. Iron deficiency anaemia. Lancet 2016; 387: 907.Google Scholar
Low, MSY, Grigoriadis G. Iron deficiency and new insights into therapy. Med J Aust 2017; 207: 81.Google Scholar
Pasricha, SR, Flecknoe-Brown, SC, Allen, KJ, et al. Diagnosis and management of iron deficiency anaemia: a clinical update. Med J Aust 2010; 193: 525.Google Scholar

Bibliography

Le Quesne, LP, Nabarro, JDN, Kurtz, A, et al. The management of insulin tumours of the pancreas. Br J Surg 1979; 66: 31.Google Scholar

Bibliography

Gelfand, JA, Elin, RJ, Berry, FW, et al. Endotoxemia associated with the Jarisch-Herxheimer reaction. N Engl J Med 1976; 295: 211.Google Scholar

Bibliography

Afzelius, BA. A human syndrome caused by immotile cilia. Science 1976; 193: 317.Google Scholar
Corbelli, R, Bringolf-Isler, B, Amacher, A, et al. Nasal nitric oxide measurements to screen for primary ciliary dyskinesia. Chest 2004; 126: 1054.Google Scholar
Horani A, Ferkol TW. Advances in the genetics of primary ciliary dyskinesia: clinical implications. Chest 2018; 154: 645.Google Scholar
Kennedy, MP, Noone, PG, Cardon, J, et al. Calcium stone lithoptysis in primary ciliary dyskinesia. Respir Med 2007; 101: 76.Google Scholar
Marthin, JK, Mortensen, J, Pressler, T, et al. Pulmonary radioaerosol mucociliary clearance in diagnosis of primary ciliary dyskinesia. Chest 2007; 132: 966.Google Scholar
Mygind, N, Nielsen, MH, Pedersen, M. Kartagener’s syndrome and abnormal cilia. Eur J Respir Dis 1983; 64 (suppl. 127): 1.Google Scholar
Noone, PG, Leigh, MW, Sannuti, A, et al. Primary ciliary dyskinesia: diagnostic and phenotypic features. Am J Respir Crit Care Med 2004; 169: 459.Google Scholar

Bibliography

Gustafson, T, Franklin, KA, Midgren, B, et al. Survival of patients with kyphoscoliosis receiving mechanical ventilation or oxygen at home. Chest 2006; 130: 1828.Google Scholar
Libby, DM, Briscoe, WA, Boyce, B, et al. Acute respiratory failure in scoliosis or kyphosis: prolonged survival and treatment. Am J Med 1982; 73: 532.Google Scholar

Bibliography

Arieff, AI. Indications for use of bicarbonate in patients with metabolic acidosis. Br J Anaesth 1991; 67: 165.Google Scholar
Bakker, J. Blood lactate levels. Curr Opin Crit Care 1999; 5: 234.Google Scholar
Bakker, J. Lactate: may I have your votes please? Intens Care Med 2001; 27: 6.Google Scholar
Cohen, RD, Woods, HF, eds. Clinical and Biochemical Aspects of Lactic Acidosis. Oxford: Blackwell. 1976.Google Scholar
Cooper, DJ, Walley, KR, Wiggs, BR, et al. Bicarbonate does not improve hemodynamics in critically ill patients who have lactic acidosis. Ann Intern Med 1990; 112: 492.Google Scholar
De Backer, D. Lactic acidosis. Intens Care Med 2003; 29: 699.Google Scholar
Dempsey, GA, Lyall, HJ, Corke, CF, et al. Pyroglutamic acidemia: a cause of high anion gap metabolic acidosis. Crit Care Med 2000; 28: 1803.Google Scholar
Editorial. The colon, rumen, and D-lactic acidosis. Lancet 1990; 336: 599.Google Scholar
Emmett, M, Narins, RG. Clinical use of the anion gap. Medicine 1977; 56: 38.Google Scholar
Forsythe, SM, Schmidt, GA. Sodium bicarbonate for the treatment of lactic acidosis. Chest 2000; 117: 260.Google Scholar
Fudickar, A, Bein, B, Tonner, PH. Propofol infusion syndrome in anaesthesia and intensive care medicine. Curr Opin Anaesthesiol 2006; 19: 404.Google Scholar
Huckabee, WE. Abnormal resting blood lactate: II. Lactic acidosis. Am J Med 1961; 30: 840.Google Scholar
Iyer, VN, Hoel, R, Rabinstein, AA. Propofol infusion syndrome in patients with refractory status epilepticus: an 11-year clinical experience. Crit Care Med 2009; 37: 3024.Google Scholar
Jaber, S, Paugam, C, Futier, E, et al. Sodium bicarbonate therapy for patients with severe metabolic acidaemia in the intensive care unit (BICAR-ICU): a multicentre, open-label, randomised, controlled, phase 3 trial. Lancet 2018; 392: 31.Google Scholar
James, JH, Luchette, FA, McCarter, FD, et al. Lactate is an unreliable indicator of tissue hypoxia in injury and sepsis. Lancet 1999; 354: 505.Google Scholar
Kraut, JA, Madias, NE. Lactic acidosis. N Engl J Med 2014; 371: 2309.Google Scholar
Kruse, JA. Clinical utility and limitations of the anion gap. Int J Intens Care 1997; 4: 51.Google Scholar
Linas, SL. Disorders of acid-base and potassium balance. In: Scientific American Medicine. Nephrology. Hamilton: Dekker Medicine. 2020.Google Scholar
Malhotra, D, Shapiro, JI. Pathogenesis and management of lactic acidosis. Curr Opin Crit Care 1996; 2: 439.Google Scholar
Mizock, BA. Lactic acidosis. Dis Mon 1989; 35: 233.Google Scholar
Mizock, BA, Belyaev, S, Mecher, C. Unexplained metabolic acidosis in critically ill patients: the role of pyroglutamic acid. Intens Care Med 2004; 30: 502.Google Scholar
Mizock, BA, Falk, JL. Lactic acidosis in critical illness. Crit Care Med 1992; 20: 80.Google Scholar
Mo, L, Lliang, DL, Madden, A, et al. A case of delayed onset pyroglutamic acidosis in the sub-acute setting. Intern Med J 2016; 46: 747.Google Scholar
Nasraway, S, Black, R, Sottile, F. The anion gap in patients admitted to the medical intensive care unit. Chest 1989; 96: 287S.Google Scholar
Riker, RR, Glisic, EK, Fraser, GL. Propofol infusion syndrome: difficult to recognize, difficult to study. Crit Care Med 2009; 37: 3169.Google Scholar
Schelling, JR, Howard, RL, Winter, SD, et al. Increased osmol gap in alcoholic ketoacidosis and lactic acidosis. Ann Intern Med 1990; 113: 580.CrossRefGoogle ScholarPubMed
Stacpoole, PW. Lactic acidosis: the case against bicarbonate therapy. Ann Intern Med 1986; 105: 276.Google Scholar
Suetrong, B, Walley, KR. Lactic acidosis in sepsis: it’s not all anaerobic. Chest 2016; 149: 252.Google Scholar
Various. The Janus face of bicarbonate therapy in ICU. Intens Care Med 2020; 46: 516, 519, 522.Google Scholar
Vasile, B, Rasulo, F, Candiani, A, et al. The pathophysiology of propofol infusion syndrome: a simple name for a complex syndrome. Intens Care Med 2003; 29: 1417.Google Scholar

Bibliography

Howard, CR. Viral hemorrhagic fevers: properties and prospects for treatment and prevention. Antiviral Res 1984; 4: 169.Google Scholar
McCormick, JB, Webb, PA, Krebs, JW, et al. A prospective study of the epidemiology and ecology of Lassa fever. J Infect Dis 1987; 155: 437.Google Scholar

Bibliography

Alperstein, G, Reznik, RB, Duggin, GG. Lead: subtle forms and new modes of poisoning. Med J Aust 1991; 155: 407.Google Scholar
Balestra, DJ. Adult chronic lead intoxication: a clinical review. Arch Intern Med 1991; 151: 1718.Google Scholar
Buenz, EJ. Lead exposure through eating wild game. Am J Med 2016; 129: 457.Google Scholar
Dalvi, SR, Pillinger, MH. Saturnine gout, redux: a review. Am J Med 2013; 126: 450.Google Scholar
Carton, JA, Maradona, JA, Arribas, JM. Acute-subacute lead poisoning: clinical findings and comparative study of diagnostic tests. Arch Intern Med 1987; 147: 697.Google Scholar
Flegal, AR, Smith, DR. Lead levels in preindustrial humans. N Engl J Med 1992; 326: 1293.Google Scholar
White, JM, Selhi, HS. Lead and the red cell. Br J Haematol 1975; 30: 133.Google Scholar

Bibliography

Anon. Leflunomide and interstitial lung disease. Aust Adv Drug Reactions Bull. 2009; 28: 15.Google Scholar
Savage, RL, Highton, J, Boyd, IW, et al. Pneumonitis associated with leflunomide: a profile of New Zealand and Australian reports. Intern Med J 2006; 36: 162.Google Scholar
Shankaranarayana, S, Barrett, C, Kubler, P. The safety of leflunomide. Aust Prescriber 2013; 36: 28.CrossRefGoogle Scholar

Bibliography

Hoehn, S, Dominguez, TE. Lemierre’s syndrome: an unusual cause of sepsis and abdominal pain. Crit Care Med 2002; 30: 1644.Google Scholar
Johannesen, KM, Bodtger, U. Lemierre’s syndrome: current perspectives on diagnosis and management. Infect Drug Resist 2016; 9: 221.Google Scholar
Lemierre, A. On certain septicaemias due to anaerobic organisms. Lancet 1936; I; 701.Google Scholar
Nougue, H, Le Maho, A-L, Boudiaf, M, et al. Clinical and imaging factors associated with severe complications of cervical necrotizing fasciitis. Intens Care Med 2015; 41: 1256.Google Scholar
Sinave, CP, Hardy, GL, Fardy, PW. The Lemierre syndrome: suppurative thrombophlebitis of the internal jugular vein secondary to oropharyngeal infection. Medicine 1989; 68: 85.Google Scholar

Bibliography

Ahima, RS, Flier, JS. Leptin. Annu Rev Physiol 2000; 62: 413.CrossRefGoogle ScholarPubMed
Jutant, E-M, Tu, L, Humbert, M, et al. The thousand faces of leptin in the lung. Chest 2021; 159: 239.Google Scholar

Bibliography

Abidi, K, Dendane, T, Madani, N, et al. The clinical picture of severe leptospirosis in critically ill patients. Intens Care Med 2017; 43: 1740.CrossRefGoogle ScholarPubMed
Bharti, AR, Nally, JE, Ricaldi, JN, et al. Leptospirosis: a zoonotic disease of global importance. Lancet Infect Dis 2003; 3: 757.Google Scholar
Levett, PN. Leptospirosis. Clin Microbial Rev 2001; 4: 296.Google Scholar
McBride, AJ, Athanazio, DA, Reis, MG, et al. Leptospirosis. Curr Opin Infect Dis 2005; 18: 376.Google Scholar
Meites, E, Jay, MT, Deresinski, S, et al. Reemerging leptospirosis. Emerg Infect Dis 2004; 10: 406.CrossRefGoogle ScholarPubMed
Pappas, G, Papadimitriou, P, Siozopoulou, V, et al. The globalization of leptospirosis: worldwide incidence trends. Int J Infect Dis 2008; 12: 351.Google Scholar
Taniguchi, LU, Povoa, P. Leptospirosis: one of the forgotten diseases. Intens Care Med 2019; 45: 1816.Google Scholar
Turner, LH. Leptospirosis. BMJ 1973; 1: 537.Google Scholar

Bibliography

Elston, D. Infestations. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar

Bibliography

Browne, B, Gaasch, W. Electrical injuries and lightning. Emerg Med Clin North Am 1992; 2: 211.Google Scholar
Hiestant, D, Colice, G. Lightning-strike injury. J Intens Care Med 1988; 3: 303.Google Scholar
Koumbourlis, AC. Electrical injuries. Crit Care Med 2002; 30: S424.Google Scholar
Makdissi, M, Brukner, P. Recommendations for lightning protection in sport. Med J Aust 2002; 177: 35.Google Scholar

Bibliography

Baron, SE, Haramati, LB, Rivera, VT. Radiological and clinical findings in acute and chronic exogenous lipoid pneumonia. J Thorac Imaging 2003; 18: 217.Google Scholar
Hu, X, Lee, JS, Pianosi, PT, et al. Aspiration-related pulmonary syndromes. Chest 2015; 147: 815.Google Scholar
Samhouri, BF, Tandon, YK, Hartman, TE, et al. Presenting clinicoradiologic features, causes, and clinical course of exogenous lipoid pneumonia in adults. Chest 2021; 160: 624.Google Scholar
Sood, N, Murin, S. Lipoid pneumonia: fat chance of making the diagnosis. Chest 2021; 160: 407.CrossRefGoogle ScholarPubMed
Wright, BA, Jeffrey, PH. Lipoid pneumonia. Semin Respir Infect 1990; 5: 314.Google Scholar

Bibliography

Blachley, JD, Knochel, JP. Tobacco chewer’s hypokalemia: licorice revisited. N Engl J Med 1980; 302: 784.Google Scholar
de Klerk, GJ, Nieuwenhuis, MG, Beutler, JJ. Hypokalaemia and hypertension associated with use of liquorice flavoured chewing gum. BMJ 1997; 314: 751.Google Scholar
Farese, RV, Biglieri, EG, Shackleton, CHL, et al. Licorice-induced hypermineralocorticoidism. N Engl J Med 1991; 325: 1224.Google Scholar

Bibliography

Calder, JAM. Listeria meningitis in adults. Lancet 1997; 350: 307.Google Scholar
Crum, NF. Update on Listeria monocytogenes infection. Curr Gastroenterol Rep 2002; 4: 287.Google Scholar
Durand, ML, Calderwood, SB, Weber, DJ, et al. Acute bacterial meningitis in adults. N Engl J Med 1993; 328: 21.Google Scholar
Gellin, BG, Broome, CV. Listeriosis. JAMA 1989; 261: 1313.Google Scholar
Goulet, V. What can we do to prevent listeriosis in 2006? Clin Infect Dis 2007; 44: 521.Google Scholar
Hearmon, CJ, Ghosh, SK. Listeria monocytogenes meningitis in previously healthy adults. Postgrad Med J 1989; 65: 74.Google Scholar
Nieman, RE, Lorber, B. Listeriosis in adults: a changing pattern. Rev Infect Dis 1980; 2: 207.Google Scholar
Schlech, WF. Foodborne listeriosis. Clin Infect Dis 2000; 31: 770.Google Scholar
Southwick, PS, Purich, DL. Intracellular pathogenesis of listeriosis. N Engl J Med 1996; 334: 770.Google Scholar

Bibliography

Beckmann, U, Oakley, PW, Dawson, AH, et al. Efficacy of continuous venovenous hemodialysis in the treatment of severe lithium toxicity. J Toxicol Clin Toxicol 2001; 39: 393.Google Scholar
Brown, WA. Lithium: A Doctor, A Drug, and A Breakthrough. New York: Liveright. 2019.Google Scholar
Cade, JFJ. Lithium salts in the treatment of psychotic excitement. Med J Aust 1949; 2: 349.CrossRefGoogle ScholarPubMed
Jaeger, A, Sauder, P, Kopferschmitt, T, et al. When should dialysis be performed in lithium poisoning. Clin Toxicol 1993; 31: 429.Google Scholar
Kulig, K. All lithium overdoses deserve respect. J Emerg Med 1992;10: 757.Google Scholar
Linton, RA, Band, DM, Haire, KM. A new method of measuring cardiac output using lithium dilution. Br J Anaesth 1993; 71: 262.Google Scholar
Malhi, GS, Tanious, M, Bargh, D, et al. Safe and effective use of lithium. Aust Prescriber 2013; 36: 18.Google Scholar
Mitchel, JE, MacKenzie, TB. Cardiac effects of lithium therapy in man: a review. J Clin Psychiatry 1982; 43: 47.Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Nagappan, R, Parkin, WG, Holdsworth, SR. Acute lithium intoxication. Anaesth Intens Care 2002; 30: 90.CrossRefGoogle Scholar
Oakley, PW, Whyte, IM, Carter, GL. Lithium toxicity: an iatrogenic problem in susceptible individuals. Aust N Z J Psychiatry 2001; 35: 833.Google Scholar
Okusa, MD, Crystal, LJT. Clinical manifestations and management of acute lithium intoxication. Am J Med 1994; 97: 383.Google Scholar
Ott, M, Stegmayr, B, Salander Renberg, E, et al. Lithium intoxication: incidence, clinical course and renal function – a population-based retrospective cohort study. J Psychopharmacol 2016; 30: 1008.Google Scholar
Salata, R, Klein, I. Effect of lithium on the endocrine system: a review. J Lab Clin Med 1987; 110: 130.Google Scholar
Scharman, EJ. Methods used to decrease lithium absorption or enhance elimination. J Toxicol Clin Toxicol 1997; 35: 601.Google Scholar
Walker, RG. Lithium nephrotoxicity. Kidney Int 1993; 42 (suppl.): S93.Google Scholar
Zimmerman, JL. Poisonings and overdoses in the intensive care unit: general and specific management issues. Crit Care Med 2003; 31: 2794.Google Scholar

Bibliography

Burton, JL. Livedo reticularis, porcelain-white scars, and cerebral thromboses. Lancet 1988; 1: 1263.Google Scholar
Copeman, PW. Livedo reticularis: signs in the skin of disturbance of blood viscosity and of blood flow. Br J Dermatol 1975; 93: 519.Google Scholar
Klein, K, Pittelkow, M. Tissue plasminogen activator for the treatment of livedoid vasculitis. Mayo Clin Proc 1992; 67: 923.CrossRefGoogle ScholarPubMed
Schroeter, AL, Diaz-Perez, JL, Winkelmann, RK, et al. Livedo vasculitis (the vasculitis of atrophie blanche): immunohistopathologic study. Arch Dermatol 1975; 111: 188.Google Scholar

Bibliography

Branum, GD, Tyson, GS, Branum, MA, et al. Hepatic abscess: changes in etiology, diagnosis and management. Ann Surg 1990; 212: 655.Google Scholar
Rustgi, AK, Richter, JM. Pyogenic and amebic abscess. Med Clin North Am 1989; 73: 847.Google Scholar

Bibliography

Alberts, WM, chair. Diagnosis and management of lung cancer: ACCP evidence-based clinical practice guidelines (2nd edition). Chest 2007; 132: 2 (suppl.): 1S.Google Scholar
Bains, MS. Surgical treatment of lung cancer. Chest 1991; 100: 826.Google Scholar
Belani, CP, ed. International symposium on thoracic malignancies. Chest 1998; 113 (suppl.): 1S.Google Scholar
Clamon, GH, Evans, WK, Shepherd, FA, et al. Myasthenic syndrome and small cell cancer of the lung: variable response to antineoplastic therapy. Arch Intern Med 1984; 144: 999.Google Scholar
Crawford, J, Strickler, J. Lung cancer. In: Scientific American Medicine. Oncology. Hamilton: Dekker Medicine. 2020.Google Scholar
Hall, TC, ed. Paraneoplastic syndromes. Ann NY Acad Sci 1974; 230: 1.Google Scholar
McCaughan, BC, Martini, N, Bains, MS. Bronchial carcinoids. J Thorac Cardiovsc Surg 1985; 89: 8.Google Scholar
Menkes, MS, Comstock, GW, Vuilleumier, JP, et al. Serum beta-carotene, vitamins A and E, selenium, and the risk of lung cancer. N Engl J Med 1986; 315: 1250.Google Scholar
Miller, YE, Keith, RL, eds. Lung cancer: early events, early interventions. Chest 2004; 125: No. 5 (suppl.).Google Scholar
Minna, J, Ihde, D, Glatstein, E. Lung cancer: scalpels, beams, drugs, and probes. N Engl J Med 1986; 315: 1411.Google Scholar
Pass, HI, Carbone, DP, Johnson, DH, et al., eds. Principles and Practice of Lung Cancer. 4th edition. Philadelphia: Lippincott Williams & Wilkins. 2010.Google Scholar
Sugarbaker, DJ, ed. Multimodality therapy of chest malignancies – update ‘96. Chest 1997; 112: 181S.Google Scholar
The Cancer Council Australia. Clinical Practice Guidelines for the Prevention, diagnosis and Management of Lung Cancer. Sydney: NH&MRC. 2004.Google Scholar
Yellin, A, Rosenman, Y, Lieberman, Y. Review of smooth muscle tumours of the lower respiratory tract. Br J Dis Chest 1984; 78: 337.Google Scholar
Yesner, R, Careter, D. Pathology of carcinoma of the lung: changing patterns. Clin Chest Med 1982; 3: 257.Google Scholar

Bibliography

Barbour, AG, Fish, D. The biological and social phenomenon of Lyme disease. Science 1993; 260: 1610.Google Scholar
Beaman, MH. Lyme disease: why the controversy? Intern Med J 2016; 46: 1370.Google Scholar
Benoist, C, Mathis, D. Autoimmunity provoked by infection. Nat Immunol 2001; 2: 797.Google Scholar
Burgdorfer, W, Barbour, AG, Benach, JL, et al. Lyme disease – a tick-borne spirochetosis? Science 1982; 216: 1317.Google Scholar
Collignon, PJ, Lum, GD, Robson, JMB. Does Lyme disease exist in Australia? Med J Aust 2016; 205: 413.Google Scholar
Fraser, CM, Casjens, S, Huang, WM, et al. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 1997; 390: 580.Google Scholar
Halperin, J, Luft, BJ, Volkman, DJ, et al. Lyme neuroborreliosis: peripheral nervous system manifestations. Brain 1990; 113: 1207.Google Scholar
Nadelman, RB, Wormser, GP. Lyme borreliosis. Lancet 1998; 352: 557.Google Scholar
Shadick, NA, Philips, CB, Logigian, EL, et al. The long-term clinical outcomes of Lyme disease. Ann Intern Med 1994; 121: 560.Google Scholar
Spach, D, Liles, W, Campbell, G, et al. Tick-borne diseases in the United States. N Engl J Med 1993; 329: 936.Google Scholar
Steere, AC. Lyme disease. N Engl J Med 2001; 345: 115.Google Scholar
Steere, AC, McHugh, G, Damle, N, et al. Prospective study of serologic tests for lyme disease. Clin Infect Dis 2008; 47: 188.Google Scholar
Steere, AC, Sikand, VJ, Meurice, F, et al. Vaccination against Lyme disease with recombinant Borrelia burgdorferi outer surface protein A with adjuvant. N Engl J Med 1998; 339: 209.Google Scholar
Steere, AC, Taylor, E, McHugh, GL, et al. The overdiagnosis of Lyme disease. JAMA 1993; 269: 1812.Google Scholar
Tompkins, DC, Luft, B. Lyme disease and other spirochetal zoonoses. In: Scientific American Medicine. Infectious Disease 2. Hamilton: Dekker Medicine. 2020.Google Scholar

Bibliography

Chu, SC, Horiba, K, Usuki, J, et al. Comprehensive evaluation of 35 patients with lymphangioleiomyomatosis. Chest 1999; 115: 1041.Google Scholar
Crino, PB, Nathanson, KL, Henske, EP. The tuberous sclerosis complex. N Engl J Med 2006; 355: 1345.Google Scholar
Henske, EP, McCormack, FX. Lymphangioleiomyomatosis – a wolf in sheep’s clothing. J Clin Invest 2012; 122; 3807.Google Scholar
Johnson, SR. Lymphangioleiomyomatosis. Eur Respir J 2006; 27: 1056.Google Scholar
Kitaichi, M, Nishimura, K, Itoh, H, et al. Pulmonary lymphangioleiomyomatosis. Am J Respir Crit Care Med 1995; 151: 527.Google Scholar
Liu, H-J, Krymskaya, VP, Henske, EP. Immunotherapy for lymphangioleiomyomatosis and tuberous sclerosis: progress and future directions. Chest 2019; 156: 1062.Google Scholar
McCormack, FX. Lymphangioleiomyomatosis: a clinical update. Chest 2008; 133: 507.Google Scholar
McCormack, FX, Inoue, Y, Moss, J, et al. Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med 2011; 364: 1595.Google Scholar
Moss, J, ed. LAM (lymphangioleiomyomatosis) and Other Diseases Characterized by Smooth Muscle Proliferation. New York: Marcel Dekker. 1999.Google Scholar
Taylor, JR, Ryu, J, Colby, TV, et al. Lymphangioleiomyomatosis. N Engl J Med 1990; 323: 1254.Google Scholar

Bibliography

Castelino, DJ, McNair, P, Kay, TWH. Lymphocytopenia in a hospital population – what does it signify? Aust NZ J Med 1997; 27: 170.Google Scholar

Bibliography

Francis, JR, McCall, BJ, Hutchinson, P, et al. Australian bat lyssavirus: implications for public health. Med J Aust 2014; 201: 647.Google Scholar
Warrell, MJ, Warrell, DA. Rabies and other lyssavirus disease. Lancet 2004; 363: 959.Google Scholar

Bibliography

Arsenian, MA. Magnesium and cardiovascular disease. Progr Cardiovasc Dis 1993; 35: 271.Google Scholar
Casscells, W. Magnesium and myocardial infarction. Lancet 1994; 343: 807.Google Scholar
Chernow, B, Bamberger, S, Stoiko, M, et al. Hypomagnesemia in patients in postoperative intensive care. Chest 1989; 95: 391.Google Scholar
Cholst, IN, Steinberg, SF, Tropper, PJ, et al. The influence of hypermagnesemia on serum calcium and parathyroid hormone levels in human subjects. N Engl J Med 1984; 310: 1221.Google Scholar
Connolly, E, Worthley, LIG. Intravenous magnesium. Crit Care Resusc 1999; 1: 162.Google Scholar
Hughes, R, Goldkorn, A, Masoli, M, et al. Use of isotonic nebulised magnesium sulphate as an adjuvant to salbutamol in treatment of severe asthma in adults: randomised placebo-controlled trial. Lancet 2003; 361: 2114.Google Scholar
ISIS-4 (Fourth International Study of Infarct Survival) Collaborative Group. ISIS-4: A randomised factorial trial assessing early oral captopril, oral mononitrate, and intravenous magnesium sulphate in 58 050 patients with suspected acute myocardial infarction. Lancet 1995; 345: 669.Google Scholar
Lucas, MJ, Leveno, KJ, Cunningham, FG. A comparison of magnesium sulfate with phenytoin for the prevention of eclampsia. N Engl J Med 1995; 333: 201.Google Scholar
Mackay, JD, Bladon, PT. Hypomagnesaemia due to proton-pump inhibitor therapy: a clinical case series. Q J Med 2010; 103: 387.Google Scholar
Magnesium in Coronaries (MAGIC) Trial Investigators. Early administration of intravenous magnesium to high-risk patients in the Magnesium in Coronaries (MAGIC) trial: a randomized controlled trial. Lancet 2002; 360: 1189.Google Scholar
Magpie Trial Collaborative Group. Do women with pre-eclampsia, and their babies, benefit from magnesium sulphate? The Magpie Trial: a randomized placebo controlled trial. Lancet 2002; 359: 1877.Google Scholar
McLean, RM. Magnesium and its therapeutic uses. Am J Med 1994; 96: 63.Google Scholar
Nadler, JL, Rude, RK. Disorders of magnesium metabolism. Endocrinol Metab Clin North Am 1995; 24: 623.Google Scholar
Noronha, JL, Matuschak, GM. Magnesium in critical illness: metabolism, assessment, and treatment. Intens Care Med 2002; 28: 667.Google Scholar
Silverman, RA, Osborn, H, Runge, J, et al. IV magnesium sulfate in the treatment of acute severe asthma: a multicenter randomized controlled trial. Chest 2002; 122: 489.Google Scholar
Teo, KK, Yusuf, S, Collins, R, et al. Effects of intravenous magnesium in suspected acute myocardial infarction: overview of randomized trials. BMJ 1991; 303: 1499.Google Scholar
Weisinger, JR, Bellorin-Font, E. Magnesium and phosphorus. Lancet 1998; 352: 391.Google Scholar
Westermaier, T, Stetter, C, Vince, GH, et al. Prophylactic intravenous magnesium sulfate for treatment of aneurysmal subarachnoid hemorrhage: a randomized, placebo-controlled, clinical study. Crit Care Med 2010; 38: 1284.Google Scholar
Whang, R, Whang, D, Ryan, M. Refractory potassium depletion: a consequence of magnesium deficiency. Arch Intern Med 1992; 152: 40.Google Scholar
Woods, KL, Fletcher, S, Roffe, C, et al. Intravenous magnesium sulphate in suspected acute myocardial infarction: results of the second Leicester Magnesium Intervention Trial (LIMIT–2). Lancet 1992; 339: 1553.Google Scholar
Wu, J, Carter, A. Magnesium: the forgotten electrolyte. Aust Prescriber 2007; 30: 102.Google Scholar

Bibliography

Anderson, RP. Coeliac disease: current approach and future prospects. Intern Med J 2008; 38: 790.Google Scholar
Campbell, CB, Roberts, RK, Cowen, AE. The changing clinical presentation of coeliac disease in adults. Med J Aust 1977; 1: 89.Google Scholar
Corsini, G, Gandolfi, E, Bonechi, I, et al. Postgastrectomy malabsorption. Gastroenterology 1966; 50: 358.CrossRefGoogle ScholarPubMed
Duggan, JM. Recent developments in our understanding of adult coeliac disease. Med J Aust 1997; 166: 312.Google Scholar
Duggan, JM. Coeliac disease: the great imitator. Med J Aust 2004; 180: 524.Google Scholar
Feighery, C. Coeliac disease. BMJ 1999; 319: 236.Google Scholar
Fisher, RL, ed. Malabsorption and nutritional status and support. Gastrenterol Clin North Am 1989; 18: 467.Google Scholar
Go, VLW, et al., eds. The Pancreas: Biology, Pathobiology and Diseases. New York: Raven Press. 1993.Google Scholar
Gosh, SK, Littlewood, JM, Goddard, D, et al. Stool microscopy in screening for steatorrhoea. J Clin Pathol 1977; 30: 749.Google Scholar
Green, PHR, Tall, AR. Drugs, alcohol and malabsorption. Am J Med 1979; 67: 1066.Google Scholar
Marshak, RL, Lindner, AE. Malabsorption syndrome. Semin Roentgenol 1966; 1: 138.Google Scholar
Matysiak-Budnik, T, Candalh, C, Dugave, C, et al. Alteration of the intestinal transport and processing of gliadin peptides in celiac disease. Gastroenterolgy 2003; 125: 696.Google Scholar
Mukherjee, R, Kelly, CO. Diseases producing malabsorption and maldigestion. In: Scientific American Medicine. Gastroenterology. Hamilton: Dekker Medicine. 2020.Google Scholar
Reeves, GEM. Coeliac disease: against the grain. Intern Med J 2004; 34: 521.Google Scholar
Rubio-Tapia, A, Herman, ML, Ludviggson, JF, et al. Severe sprue-like enteropathy associated with olmesartan. Mayo Clin Proc 2012; 87: 732.Google Scholar
Toouli, J, Biankin, AV, Oliver, MR, et al. Management of pancreatic exocrine insufficiency: Australasian Pancreatic Club recommendations. Med J Aust 2010; 193: 461.Google Scholar

Bibliography

Brown, GV, Good, MF. Prospects for a vaccine against malaria. Intern Med J 2002; 32: 129.Google Scholar
Iqbal, KM, Ahmed, N, Aziz, L. Malaria: its severe form and its management. Crit Care Shock 2000; 3: 69.Google Scholar
Kain, KC, Shanks, GD, Keystone, JS. Malaria chemoprophylaxis in the age of drug resistance. Clin Infect Dis 2001; 33: 226.Google Scholar
Knope, K, Doggett, SL, Jansen, CC, et al. Arborviral diseases and malaria: Annual report of the National Arborvirus and Malaria Advisory Committee. Communicable Diseases Intelligence. 2019; vol. 43.Google Scholar
Mai, NTH, Day, NPJ, Chuong, LV, et al. Post-malaria neurological syndrome. Lancet 1996; 348: 917.Google Scholar
Marks, M, Gupta-Wright, A, Doherty, JF, et al. Managing malaria in the intensive care unit. Br J Anaesth 2014; 113: 910.Google Scholar
Martens, P, Hall, L. Malaria on the move. Emerg Infect Dis 2000; 6: 2.Google Scholar
McCarthy, JS. Malaria prophylaxis: in war and peace. Med J Aust 2005; 182: 148.Google Scholar
Mer, M, Dunser, MW, Giera, R, et al. Severe malaria: current concepts and practical overview: what every intensivist should know. Intens Care Med 2020; 46: 907.Google Scholar
Miller, LH, Baruch, DI, Marsh, K, et al. The pathogenic basis of malaria. Nature 2002; 415: 673.Google Scholar
Trampuz, A, Jereb, M, Muzlovic, I, et al. Clinical review: severe malaria. Crit Care 2003; 7: 315.Google Scholar
White, NJ, Pukrittayakamee, S, Hien, TT, et al. Malaria. Lancet 2014; 383: 723.Google Scholar
Wyler, DJ. Malaria – resurgence, resistance, and research. N Engl J Med 1983; 308: 875.Google Scholar
Zucker, JR. Changing patterns of autochthonous malaria transmission in the United States. Emerg Infect Dis 1996; 2: 37.Google Scholar

Bibliography

Denborough, MA, Lovell, RR. Anaesthetic deaths in a family. Lancet 1960; 2: 45.Google Scholar
Hopkins, PM. Malignant hyperthermia: advances in clinical management and diagnosis. Br J Anaesth 2000; 85: 118.Google Scholar
Kolb, ME, Horne, ML, Martz, R. Dantrolene in human malignant hyperthermia: a multicenter study. Anesthesiology 1982; 56: 254.Google Scholar
MacLennon, DH, Phillips, MS. Malignant hyperthermia. Science 1992; 256: 789.Google Scholar
Nelson, TE, Flewellen, EH. The malignant hyperthermia syndrome. N Engl J Med 1983; 309: 416.Google Scholar
O’Keefe, S, Nelson, P, Davis, M. Malignant hyperthermia. In: Riley, R, ed. Australasian Anaesthesia. Melbourne: ANZCA. 2017; p 263.Google Scholar
Rosenberg, H, Antognini, JF, Muldoon, S. Testing for malignant hyperthermia. Anesthesiology 2002; 96: 232.Google Scholar
Urwyler, A, Deufel, T, McCarthy, T, et al. European Malignant Hyperthermia Group: guidelines for molecular genetic detection of susceptibility to malignant hyperthermia. Br J Anaesth 2001; 86: 283.Google Scholar
Waddingham, M. Malignant hyperthermia: investigation for the uninitiated. In: Keneally, J, ed. Australian Anaesthesia. Melbourne: ANZCA. 2005; p 41.Google Scholar

Bibliography

Bhatia, P, Portin, D, Inculet, RI, et al. Current concepts in the management of esophageal perforations. Ann Thorac Surg 2011; 92: 209.Google Scholar

Bibliography

Barceloux, DG. Manganese. J Toxicol Clin Toxicol 1999; 37: 293.Google Scholar

Bibliography

De Paepe, A, Devereux, RB, Dietz, HC, et al. Revised diagnostic criteria for the Marfan syndrome. Am J Med Genet 1996; 62: 417.Google Scholar
Summers, KM, West, JA, Hattam, A, et al. Recent developments in the diagnosis of Marfan syndrome and related disorders. Med J Aust 2012; 197: 494.Google Scholar
Summers, KM, West, JA, Peterson, MM, et al. Challenges in the diagnosis of Marfan syndrome. Med J Aust 2006; 184: 627.Google Scholar

Bibliography

Arthur, G, Bradding, P. New developments in mast cell biology. Chest 2016; 150: 680.Google Scholar
Denburg, JA. Basophil and mast cell lineage in vitro and in vivo. Blood 1992; 79: 846.Google Scholar
Fine, J. Mastocytosis. Int J Dermatol 1980; 19: 117.Google Scholar
Lewis, RA. Mastocytosis. J Allergy Clin Immunol 1984; 74: 755.Google Scholar
Pardanini, A. Systemic mastocytosis in adult: 2012 update on diagnosis, risk stratification, and management. Am J Hematol 2012; 87: 402.Google Scholar
van der Weide, HY, van Westerloo, DJ, van den Bergh, WM. Critical care management of systemic mastocytosis. Crit Care 2015; 19: 238.Google Scholar

Bibliography

Abolnik, I, Lossos, IS, Breuer, R. Spontaneous pneumomediastinum. Chest 1991; 100: 93.Google Scholar
Azarow, KS, Pearl, RH, Zurcher, R, et al. Primary mediastinal masses. J Thorac Cardiovasc Surg 1993; 106: 67.Google Scholar
Duwe, BV, Sterman, DH, Musani, AI. Tumors of the mediastinum. Chest 2005; 128: 2893.Google Scholar
Estrera, AS, Landay, MJ, Grisham, JM, et al. Descending necrotizing mediastinitis. Surg Gynecol Obstet 1983; 157: 545.Google Scholar
Freeman, RK, Vallieres, E, Verrier, ED, et al. Descending necrotizing mediastinitis: an analysis of the effects of serial surgical debridement on patient mortality. J Thorac Cardiovasc Surg 2000; 119: 260.Google Scholar
Lerner, AD, Feller-Kopman, D. Disorders of the pleura, mediastinum, and hilum. In: Scientific American Medicine. Pulmonary & Critical Care Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Schowengerdt, CG, Suyemoto, R, Main, FB. Granulomatous and fibrous mediastinitis. J Thorac Cardiovasc Surg 1969; 57: 365.Google Scholar
Strollo, DC, de Christenson, MLR, Jett, JR. Primary mediastinal tumors. Chest 1997; 112: 511 & 1344.Google Scholar
Takeda, S, Miyoshi, S, Minami, M, et al. Clinical spectrum of mediastinal cysts. Chest 2003; 124: 125.Google Scholar
Whooley, BP, Urschel, JD, Antkowiak, JG, et al. Primary tumors of the mediastinum. J Surg Oncol 1999; 70: 95.Google Scholar

Bibliography

Editorial. Nitrous oxide and acute marrow failure. Lancet 1982; 2: 856.Google Scholar
Pruthi, RK, Tefferi, A. Pernicious anemia revisited. Mayo Clin Proc 1994; 69: 144.Google Scholar
Romain, M, Sviri, S, Linton, DM, et al. The role of vitamin B12 in the critically ill – a review. Anaesth Intens Care 2016; 44: 447.Google Scholar

Bibliography

Bourne, RS, Mills, GH. Melatonin: possible implications for the postoperative and critically ill patient. Intens Care Med 2006; 32: 371.Google Scholar
Bourne, RS, Mills, GH, Minelli, C. Melatonin therapy to improve nocturnal sleep in critically ill patients: encouraging results from a small randomised controlled trial. Crit Care 2008; 12: R52.Google Scholar
Brzezinski, A. Melatonin in humans. N Engl J Med 1997; 336: 186.Google Scholar
Buscemi, N, Vandermeer, B, Hooten, N, et al. Efficacy and safety of exogenous melatonin for secondary sleep disorders and sleep disorders accompanying sleep restriction: meta-analysis. BMJ 2006; 332: 385.Google Scholar
Garfinkel, D, Laudon, M, Zisapel, N. Improvement in sleep quality in elderly people by controlled-release melatonin. Lancet 1995; 346: 541.Google Scholar
Hamblin, SE, Burka, AT. Ramelteon for ICU delirium prevention: is it time to melt away? Crit Care Med 2019; 47: 1813.Google Scholar
Jarratt, J. Perioperative melatonin use. Anaesth Intens Care 2011; 39: 171.Google Scholar
Lewis, KS, McCarthy, RJ, Rothenberg, DM. Does melatonin decrease sedative use and time to extubation in patients requiring prolonged mechanical ventilation? Anesth Analg 1999; 88: S123.Google Scholar
Lewis, SR, Pritchard, MW, Schofield-Robinson, OJ, et al. Melatonin for the promotion of sleep in adults in the intensive care unit. Cochrane Database Syst Rev 2018; 5: CD012455.Google Scholar
Maas, MB, Lizza, BD, Abbott, SM, et al. Factors disrupting melatonin secretion rhythms during critical illness. Crit Care Med 2020; 48: 854.Google Scholar
Maldonado, M-D, Murillo-Cabezas, F, Calvo, J-R, et al. Melatonin as a pharmacologic support in burns patients: a proposed solution to thermal injury-related lymphocytopenia and oxidative damage. Crit Care Med 2007; 35: 1177.Google Scholar
Mundigler, G, Delle-Karth, G, Koreny, M, et al. Impaired circadian rhythm of melatonin secretion in sedated critically ill patients with severe sepsis. Crit Care Med 2002; 30: 536.Google Scholar
Perras, B, Meier, M, Dodt, C. Light and darkness fail to regulate melatonin release in critically ill humans. Intens Care Med 2007; 33: 1954.Google Scholar
Riutta, A, Ylitalo, P, Kaukinen, S. Diurnal variation of melatonin and cortisol is maintained in non-septic intensive care patients. Intens Care Med 2009; 35: 1720.Google Scholar
Shilo, L, Dagan, Y, Smorjik, Y, et al. Effect of melatonin on sleep quality of COPD Intensive Care patients. Chronobiol Int 2000; 17: 71.Google Scholar
Webb, SM, Puig-Domingo, M. Role of melatonin in health and disease. Clin Endocrinol 1995; 42: 221.Google Scholar
Wurtman, RJ, Moskowitz, MA. The pineal organ. N Engl J Med 1977; 1329: 1383.Google Scholar

Bibliography

Koponen, M, Zlock, D, Palmer, D, et al. Melioidosis: forgotten, but not gone! Arch Intern Med 1991; 151: 605.Google Scholar
MacLaren, G, Lye, DC, Lee, VJ. Increasing experience with melioidosis and critical care: medical and military implications. Crit Care Med 2016; 44: 1608.Google Scholar
Wiersinga, WJ, Currie, BJ, Peacock, SJ. Melioidosis. N Engl J Med 2012; 367: 1035.Google Scholar

Bibliography

Bernhoft, RA, Mercury toxicity and treatment: a review of the literature. J Environ Public Health 2012; 2012: 460508.Google Scholar
Black, J. The puzzle of pink disease. J R Soc Med 1999; 92: 478.Google Scholar

Bibliography

Anderson, JJB, Toverud, SU. Diet and vitamin D: a review with an emphasis on human function. J Nutr Biochem 1994; 5: 58.Google Scholar
Biolo, G, Grimble, G, Preiser, J-C, et al. Position paper of the ESICM working group on nutrition and metabolism: metabolic basis of nutrition in intensive care unit patients: ten critical questions. Intens Care Med 2002; 11: 1512.Google Scholar
Casaer, MP, Van den Berghe, G. Nutrition in the acute phase of critical illness. N Engl J Med 2014; 370: 1227.Google Scholar
Chandra, RK. Effect of vitamin and trace-element supplementation on immune responses and infection in elderly patients. Lancet 1992; 340: 1124.Google Scholar
Crowe, AV, Griffiths, RD. Nutritional failure and drugs. Curr Opin Crit Care 1997; 3: 268.Google Scholar
Cynober, L, Moore, FA, eds. Nutrition and Critical Care. Basel: Karger. 2003Google Scholar
DeLuca, HF. Vitamin D metabolism and function. Arch Intern Med 1978; 138: 836.Google Scholar
Dent, CE, Smith, R. Nutritional osteomalacia. Q J Med 1969; 38: 195.Google Scholar
Editorial. Hepatic osteomalacia and vitamin D. Lancet 1982; 1: 943.Google Scholar
Faber, P, Siervo, M, eds. Nutrition in Critical Care. Cambridge: Cambridge University Press. 2014.Google Scholar
Fetterplace, K, Holt, D, Udy, A, et al. Parenteral nutrition in adults during acute illness: a clinical perspective for clinicians. Intern Med J 2020; 50: 403.Google Scholar
Fisher, RL, ed. Malabsorption and nutritional status and support. Gastroenterol Clin North Am 1989; 18: 467.Google Scholar
Herndon, DN, Wernerman, J, eds. Metabolic support in sepsis and multiple organ failure. Crit Care Med 2007; 35: (suppl.) S435.Google Scholar
Kellum, JA. Recent advances in acid-base physiology applied to critical care. In: Vincent, J-L, ed. Yearbook of Intensive Care and Emergency Medicine 1998. Berlin: Springer. 1998; p. 577.Google Scholar
Marik, P, Varon, J. The obese patient in the ICU. Chest 1998; 113: 492.Google Scholar
Mogensen, KM, Robinson, MK. Enteral and parenteral nutrition. In: Scientific American Medicine. Gastroenterology. Hamilton: Dekker Medicine. 2020.Google Scholar
Nasraway, S, Black, R, Sottile, F. The anion gap in patients admitted to the medical intensive care unit. Chest 1989; 96: 287S.Google Scholar
Preiser, J-C, Chiolero, R, Wernerman, J. Nutritional papers in ICU patients: what lies between the lines? Intens Care Med 2003; 29: 156.Google Scholar
Rose, BD, Post, TW, Stokes, J, eds. Clinical Physiology of Acid-Base and Electrolyte Disorders. 6th edition. New York: McGraw-Hill. 2021.Google Scholar
Schelling, JR, Howard, RL, Winter, SD, et al. Increased osmol gap in alcoholic ketoacidosis and lactic acidosis. Ann Intern Med 1990; 113: 580.Google Scholar
Taylor, BE, McClave, SA, Martindale, RG, et al. Guidelines for the provision and assessment of nutrition support therapy in the adult critically ill patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (ASPEN). Crit Care Med 2016; 44: 390.Google Scholar

Bibliography

Ajayi, T, Gropper, MA. Methemoglobinemia. Pulmonary Perspectives 2001; 18(4): 4.Google Scholar
Barker, SJ, Tremper, KK, Hyatt, J. Effects of methemoglobinemia on pulse oximetry and mixed venous oximetry. Anesthesiology 1989; 70: 112.Google Scholar
Charache, S. Methemoglobinemia – sleuthing for a new cause. N Engl J Med 1986; 314: 776.Google Scholar
Dotsch, J, Demirakca, S, Hamm, R, et al. Extracorporeal circulation increases nitric oxide induced methemoglobinemia in vivo and in vitro. Crit Care Med 1997; 25: 1153.Google Scholar
Hall, AH, Kulig, KW, Rumack, BH. Drug- and chemical-induced methemoglobinemia: clinical features and management. Med Toxicol 1986; 1: 253.Google Scholar
Mansouri, A, Lurie, AA. Concise review: methemoglobinemia. Am J Hematol 1993; 42: 7.Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Schweitzer, SA. Spurious pulse oximeter desaturation due to methemoglobinemia. Anesth Intens Care 1991; 19: 988.Google Scholar
Warren, JB, Higenbottam, T. Caution with the use of inhaled nitric oxide. Lancet 1996; 348: 629.Google Scholar

Bibliography

Barceloux, DG, Bond, GR, Krenzelok, EP, et al. American Academy of Chemical Toxicology practice guidelines on the treatment of methanol poisoning. J Toxicol Clin Toxicol 2002; 40: 415.Google Scholar
Brent, J, McMartin, K, Phillips, S, et al. Fomepizole for the treatment of methanol poisoning. N Engl J Med 2001; 344: 424.Google Scholar
Burns, MJ, Graudins, A, Aaron, CK, et al. Treatment of methanol with intravenous 4-methylpyrazole. Ann Emerg Med 1997; 30: 829.Google Scholar
Jacobsen, D, McMartin, KE. Methanol and ethylene glycol poisoning: mechanism of toxicity, clinical course, diagnosis and treatment. Med Toxicol 1986; 1: 309.Google Scholar
Jacobsen, D, McMartin, KE. Antidotes for methanol and ethylene glycol poisoning. J Toxicol Clin Toxicol 1997; 35: 127.Google Scholar
Kruse, JA. Methanol poisoning. Intens Care Med 1992; 18: 391.Google Scholar
Kulig, K, Duffy, JP, Lenden, CH, et al. Toxic effects of methanol, ethylene glycol and isopropyl alcohol. Topics in Emerg Med 1984; 6: 14.Google Scholar
McCoy, HG, Cipolle, RJ, Ehlers, SM, et al. Severe methanol poisoning: application of a pharmacokinetic model for ethanol therapy and hemodialysis. Am J Med 1979; 67: 804.Google Scholar
Megarbane, B, Borron, SW, Baud, FJ. Current recommendations for treatment of severe toxic alcohol poisonings. Intens Care Med 2005; 31: 189.Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Palatnick, W, Redman, LW, Sitar, DS, et al. Methanol half-life during ethanol administration: implications for management of methanol poisoning. Ann Emerg Med 1995; 26: 202.Google Scholar
Zimmerman, JL. Poisonings and overdoses in the intensive care unit: general and specific management issues. Crit Care Med 2003; 31: 2794.Google Scholar

Bibliography

Ajayi, T, Gropper, MA. Methemoglobinemia. Pulmonary Perspectives 2001; 18(4): 4.Google Scholar
Blass, N, Fung, D. Dyed but not dead: methylene blue overdose. Anesthesiology 1976; 45: 458.Google Scholar
Gachot, B, Bedos, JP, Veber, B, et al. Short-term effects of methylene blue on hemodynamics and gas exchange in humans with septic shock. Intens Care Med 1995; 21: 1027.Google Scholar
Hall, HA, Kulig, KW, Rumack, BH. Drug and chemical-induced methaemoglobinaemia; clinical features and management. Med Toxicol 1986; 1: 253.Google Scholar
Kartha, SS, Chacko, CE, Bumpous, JM, et al. Toxic metabolic encephalopathy after parathyroidectomy with methylene blue localization. Otolaryngol Head Neck Surg 2006; 135: 765.Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Pasin, L, Umbrello, M, Greco, T, et al. Methylene blue as a vasopressor: a meta-analysis of randomized trials. Crit Care Resusc 2013; 15: 42.Google Scholar
Viaro, F, Dalio, MB, Evora, PRB. Catastrophic cardiovascular adverse reactions to protamine are nitric oxide/cyclic guanosine monophosphate dependent and endothelium mediated: should methylene blue be the treatment of choice? Chest 2002; 122: 1061.Google Scholar

Bibliography

Darmon, M, Azoulay, E, Thiery, G, et al. Time course of organ dysfunction in thrombotic microangiopathy patients receiving either plasma perfusion or plasma exchange. Crit Care Med 2006; 34: 2127.Google Scholar
Moake, JL. Thrombotic microangiopathies. N Engl J Med 2002; 347: 589.Google Scholar
Nand, S, Bansal, VK, Kozeny, G, et al. Red cell fragmentation syndrome with the use of subclavian hemodialysis catheters. Arch Intern Med 1985; 145: 1421.Google Scholar
Scully, M, Cataland, S, Coppo, P, et al. Consensus on the standardization of terminology in thrombotic thrombocytopenic purpura and related thrombotic microangiopathies. J Thromb Haemost 2017; 15: 312.Google Scholar

Bibliography

Almeida, A, Mitchell, AL, Boland, M, et al. A new genomic blueprint of the human gut microbiota. Nature 2019; 568: 499.Google Scholar
Bassetti, M, Bandera, A, Gori, A. Therapeutic potential of gut microbiota in the management of sepsis critical care. Crit Care 2020; 24: 105.Google Scholar
Dickson, RP. The microbiome and critical illness. Lancet Respir Med 2016; 4: 59.Google Scholar
Fehily, SR, Basnayake, C, Wright, EK, et al. The gut microbiota and gut disease. Intern Med J 2021; 51: 1594.Google Scholar
Gilbert, JA, Blaser, MJ, Caporaso, JG, et al.Current understanding of the human microbiome. Nat Med 2018; 24: 392.Google Scholar
Gilbert, JA, Quinn, RA, Debelius, J, et al. Microbiome-wide association studies link dynamic microbial consortia to disease. Nature 2016; 535: 94.Google Scholar
Ho, KM, Kalgudi, S, Corbett, J-M, et al. Gut microbiota in surgical and critically ill patients. Anaesth Intens Care 2020; 48: 179.Google Scholar
Johnson, AL, Backhed, F. Role of gut microbiota in atherosclerosis. Nat Rev Cardiol 2017; 14: 79.Google Scholar
Relman, DA. The human microbiome and the future practice of medicine. JAMA 2015; 314: 1127.Google Scholar
Rusting, R, ed. The Microbiome: Your Inner Ecosystem. New York: Scientific American. 2020.Google Scholar
Sharma, A, Das, P, Buschmann, M, et al. The future of microbiome-based therapeutics in clinical applications. Clin Pharmacol Ther 2020; 107: 123.Google Scholar
Soo, WT, Bryant, RV, Costello, SP. Faecal microbiota transplantation: indications, evidence and safety. Aust Prescriber 2020 43: 36.Google Scholar

Bibliography

De Backer, D, Hollenberg, S, Boerma, C, et al. How to evaluate the microcirculation: report of a round table conference. Crit Care 2007; 11: R101.Google Scholar
Den Uil, CA, Klijn, E, Lagrand, WK, et al. The microcirculation in health and clinical disease. Prog Cardiovasc Dis 2008; 51: 161.Google Scholar
Edul, VS, Enrico, C, Lavoille, B, et al. Quantitative assessment of the microcirculation in healthy volunteers and in patients with septic shock. Crit Care Med 2012; 40: 1443.Google Scholar

Bibliography

Alsolamy, S. Middle East Respiratory Syndrome: knowledge to date. Crit Care Med 2015; 43:1283.Google Scholar
Arabi, YM, Mandourah, Y, Sindi, AA, et al. Critically ill patients with the Middle East respiratory syndrome: a multicenter retrospective cohort study. Crit Care Med 2017; 45: 1683.Google Scholar

Bibliography

Chinnery, PF, Turnbull, DM. Mitochondrial DNA and disease. Lancet 1999; 354: S117.Google Scholar
Clay, AS, Behnia, M, Brown, KK. Mitochondrial disease: a pulmonary and critical-care perspective. Chest 2001; 120: 634.Google Scholar
DiMauro, S, Bonilla, E, Zeviani, M, et al. Mitochondrial myopathies. Ann Neurol 1985; 17: 521.Google Scholar
Dziadek, MA, Sue, CM. Mitochondrial donation. Med J Aust 2022; 216: 118.Google Scholar
Howell, N. Human mitochondrial diseases: answering questions and questioning answers. Int Rev Cytol 1999; 186: 49.Google Scholar
Hutchin, T, Cortopassi, G. A mitochondrial DNA clone is associated with increased risk of Alzheimer’s disease. Proc Natl Acad Sci 1995; 92: 6892.Google Scholar
Neupert, W. Mitochondrial gene expression: a playground of evolutionary thinking. Annu Rev Biochem 2016; 85: 65.Google Scholar
Ng, YS, Bindoff, LA, Gorman, GS, et al. Mitochondrial disease in adults: recent advances and future promise. Lancet Neurol 2021; 20: 573.Google Scholar
Ng, YS, Turnbull, DM. Mitochondrial disease: genetics and management. J Neurol 2016; 263: 179.Google Scholar
Shoffner, JM. Maternal inheritance and the evaluation of oxidative phosphorylation diseases. Lancet 1996; 348: 1283.Google Scholar
Sue, CM. Mitocochondrial disease: recognizing more than just the tip of the iceberg. Med J Aust 2010; 193: 195.Google Scholar
Sue, CM, Balasubramaniam, S, Bratkovic, D, et al. Patient care standards for primary mitochondrial disease in Australia. Intern Med J 2022; 52: 110.Google Scholar
Thorburn, DR. Mitochondrial diseases: not so rare after all. Intern Med J 2004; 34: 3.Google Scholar
Zhang, Q, Raoof, M, Chen, Y, et al. Circulating mitcochondrial DAMPs cause inflammatory responses to injury. Nature 2010; 464: 104.Google Scholar

Bibliography

Prockop, DJ. Mutations in collagen genes as a cause of connective-tissue diseases. N Engl J Med 1992; 326: 540.Google Scholar

Bibliography

Schaumburg, HH, Byck, R, Gerstl, R, et al. Monosodium L-glutamate. Science 1969; 163: 826.Google Scholar

Bibliography

Strickman, D. Buzz kill. Sci Am 2018; 319: 59.Google Scholar
Winegard, TC. The Mosquito: A Human History of Our Deadliest Predator. New York: Dutton (Penguin Random House). 2019.Google Scholar

Bibliography

Bach, JR. Amyotrophic lateral sclerosis: prolongation of life by noninvasive respiratory aids. Chest 2002; 122: 92.Google Scholar
Baumer, D, Talbot, K, Turner, MR. Advances in motor neurone disease. J R Soc Med 2014; 107: 14.Google Scholar
Boman, K, Meurman, T. Prognosis of amyotrophic lateral sclerosis. Acta Neurol Scand 1967; 43: 489.Google Scholar
Brown, RH, Al-Chalabi, A. Amyotrophic lateral sclerosis. N Engl J Med 2017; 377: 162.Google Scholar
Dharmadasa, T, Henderson, RD, Talman, PS, et al. Motor neurone disease: progress and challenges. Med J Aust 2017; 206: 357.Google Scholar
Greenland, KJ, Zajac, JD. Kennedy’s disease: pathogenesis and clinical approaches. Intern Med J 2004; 34: 279.Google Scholar
Kiernan, MC. Motor neurone disease: a Pandora’s box. Med J Aust 2003; 178: 311.Google Scholar
Kiernan, MC. Riluzole: a glimmer of hope in the treatment of motor neurone disease. Med J Aust 2005; 182: 319.Google Scholar
Kiernan, MC, ed. Motor Neurone Disease. Sydney: MJA Books. 2007.Google Scholar
Kiernan, MC, Vucic, S, Cheah, BC, et al. Amyotrophic lateral sclerosis. Lancet 2011; 377: 942.Google Scholar
Pestronk, A. Motor neuropathies, motor neuron disorders, and antiglycolipid antibodies. Muscle Nerve 1991; 14: 927.Google Scholar
Petrucelli, L, Gitler, AD. Unlocking the mystery of ALS. Sci Am 2017; 316: 40.Google Scholar
Simmons, Z. Management strategies for patients with amyotrophic lateral sclerosis from diagnosis to death. Neurologist 2005; 11: 257.Google Scholar
Simon, NG, Huynh, W, Vucic, S, et al. Motor neuron disease: current management and future prospects. Intern Med J 2015; 45: 1005.Google Scholar
The ALS/Riluzole Study Group. A controlled trial of riluzole in amyotrophic lateral sclerosis. N Engl J Med 1994; 330: 585.Google Scholar

Bibliography

Moreland, LW, Corey, J, McKenzie, R. Ludwig’s angina. Arch Intern Med 1988; 148: 463.Google Scholar
Pruett, TL, Simmons, RL. Nosocomial gram-negative bacillary parotitis. JAMA 1984; 251: 252.Google Scholar
Utsunomiya, J, Gocho, H, Miyanaga, T, et al. Peutz-Jeghers syndrome: its natural course and management. Johns Hopkins Med J 1975; 136: 71.Google Scholar

Bibliography

Marshall, JC, Deutschman, CS. The multiple organ dysfunction syndrome: syndrome, metaphor, and unsolved clinical challenge. Crit Care Med 2021; 49: 1402.Google Scholar

Bibliography

Brandi, ML. Multiple endocrine neoplasia type 1: general features and new insights into etiology. J Endocrinol Invest 1991; 14: 61.Google Scholar
Burgess, JR. Multiple endocrine neoplasia type 1: current concepts in diagnosis and management. Med J Aust 1999; 170: 605.Google Scholar
Chandrasekharappa, SC, Guru, SC, Manickam, P, et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997; 276: 404.Google Scholar
Eng, C. RET proto-oncogene in the development of human cancer. J Clin Oncol 1999; 17: 380.Google Scholar
Learoyd, DL, Delbridge, LW, Robinson, BG. Multiple endocrine neoplasia. Aust NZ J Med 2000; 30: 675.Google Scholar
Mallette, LE. The parathyroid polyhormones: new concepts in the spectrum of peptide hormone action. Endocr Rev 1991; 12: 110.Google Scholar
McDonnell, JE, Gild, ML, Clifton-Bligh, RJ, et al. Multiple endocrine neoplasia: an update. Intern Med J 2019; 49: 954.Google Scholar
Robinson, BG. Multiple endocrine neoplasia – who should be screened? Med J Aust 1994; 160: 739.Google Scholar
Schimke, RN. Multiple endocrine neoplasia: how many syndromes? Am J Med Genet 1990; 37: 375.Google Scholar

Bibliography

Almond, JB, Cohen, GM. The proteasome: a novel target for cancer chemotherapy. Leukemia 2002; 16: 433.Google Scholar
Attal, M, Harousseau, J-L, Stoppa, A-M, et al. A prospective, randomized trial of autologous bone marrow transplantation and chemotherapy in multiple myeloma. N Engl J Med 1996; 335: 91.Google Scholar
Bataille, R. Management of myeloma with bisphosphonates. N Engl J Med 1996; 334: 529.Google Scholar
Bjorkstrand, B, Ljungman, P, Svensson, H, et al. Allogeneic bone marrow transplantation versus autologous stem cell transplantation in multiple myeloma. Blood 1996; 88: 4711.Google Scholar
Brouet, JC, Clouvel, JP, Danon, F, et al. Biologic and clinical significance of cryoglobulins. Am J Med 1974; 57: 775.Google Scholar
Clark, WF, Stewart, AK, Rock, GA, et al. Plasma exchange when myeloma presents as acute renal failure: a randomized, controlled trial. Ann Intern Med 2005; 143: 777.Google Scholar
Dauel, TF, Dauth, J, Mellstedt, H, et al. Waldenstrom’s macroglobulinaemia. Lancet 1985; 2: 311.Google Scholar
Dowd, PM. Cold-related disorders. Prog Dermatol 1987; 21: 1.Google Scholar
Frankel, AH, Singer, DRJ, Winearls, CG, et al. Type II essential mixed cryoglobulinemia: presentation, treatment and outcome in 13 patients. Q J Med 1992; 82: 101.Google Scholar
Gertz, MA, Kyle, RA, Greipp, PR. Response rates and survival in primary systemic amyloidosis. Blood 1991; 77: 257.Google Scholar
Gertz, MA, Kyle, RA. Secondary systemic amyloidosis. Medicine 1991; 70: 246.Google Scholar
Grateau, G, Kyle, RA, Skinner, M, eds. Amyloid and Amyloidosis. Boca Baton: CRC Press. 2004.Google Scholar
Greipp, PR. Advances in the diagnosis and management of myeloma. Semin Hematol 1992; 29: 24.Google Scholar
Hamblin, TJ. The kidney in myeloma. BMJ 1986; 292: 2.Google Scholar
Joshua, DE. Multiple myeloma: the present and the future. Med J Aust 2005; 183: 344.Google Scholar
Joshua, DE, Bryant, C, Dix, C, et al. Biology and therapy of multiple myeloma. Med J Aust 2019; 210: 375.Google Scholar
Joshua, DE, Gibson, J. Multiple myeloma – evolving concepts of biology and treatment. Aust NZ J Med 2000; 30: 311.Google Scholar
Kintzer, JS, Rosenow, EC, Kyle, RA. Thoracic and pulmonary abnormalities in multiple myeloma. Arch Intern Med 1978; 138: 727.Google Scholar
Kwaan, HC, ed. The hyperviscosity syndromes. Semin Thromb Hemost 2003; 29: 433.Google Scholar
Kyle, RA. Amyloidosis: review of 236 cases. Medicine 1975; 54: 271.Google Scholar
Kyle, RA. ‘Benign’ monoclonal gammopathy. Mayo Clin Proc 1993; 68: 26.Google Scholar
Kyle, RA, Gertz, MA, Greipp, PR, et al. A trial of three regimens for primary amyloidosis. N Engl J Med 1997; 336: 1202.Google Scholar
Kyle, RA, Rajkumar, SV. Multiple myeloma. N Engl J Med 2004; 351: 1860.Google Scholar
Kyle, RA, Remstein, ED, Therneau, TM, et al. Clinical course and prognosis of smouldering (asymptomatic) multiple myeloma. N Engl J Med 2007; 356: 2582.Google Scholar
Kyle, RA, Therneau, TM, Rajkumar, SV, et al. Prevalence of monoclonal gammopathy of undetermined significance. N Engl J Med 2006; 354: 1362.Google Scholar
McGrath, MA, Penny, R. Paraproteinemia: blood hyperviscosity and clinical manifestations. J Clin Invest 1976; 58: 1155.Google Scholar
Mollee, P, Renaut, P, Gottlieb, D, et al. How to diagnose amyloidosis. Intern Med J 2014; 44: 7.Google Scholar
Norden, CW. Infections in patients with multiple myeloma. Arch Intern Med 1980; 140:1150.Google Scholar
Pepys, MB. Amyloidosis: some recent developments. Q J Med 1988; 67: 283.Google Scholar
Picken, MM, Herrera, GA, Dogan, A, eds. Amyloid and Related Disorders. 2nd edition. New York: Springer. 2015.Google Scholar
Richardson, P, Hideshima, T, Anderson, KC. An update of novel therapeutic approaches for multiple myeloma. Curr Treat Options Oncol 2004; 5: 227.Google Scholar
Smith, A, Wisloff, F, Samson, D. Guidelines on the diagnosis and management of multiple myeloma 2005. Br J Haematol 2006; 132: 410.Google Scholar
Solomon, A, Weiss, DT, Kattine, AA. Nephrotoxic potential of Bence Jones proteins. N Engl J Med 1991; 324: 1845.Google Scholar
Talaulikar, D, Tam, CS, Joshua, D, et al. Treatment of patients with Waldenstrom macroglobulinaemia: clinical practice guidelines from the Myeloma Foundation of Australia Medical and Scientific Advisory Group. Intern Med J 2017; 47: 35.Google Scholar

Bibliography

Anderson, DW, Ellenberg, JH, Leventhal, CM, et al. Revised estimate of the prevalence of multiple sclerosis in the United States. Ann Neurol 1992; 31: 333.Google Scholar
Broadley, SA, Barnett, MH, Boggild, M, et al. A new era in the treatment of multiple sclerosis. Med J Aust 2015; 203: 139.Google Scholar
Dhib-Jalbut, S, McFarlin, DE. Immunology of multiple sclerosis. Ann Allergy 1990; 64: 433.Google Scholar
Ebers, GC. Optic neuritis and multiple sclerosis. Arch Neurol 1985; 42: 702.Google Scholar
Editorial. Where to hit MS. Lancet 1991; 337: 765.Google Scholar
European Study Group on interferon beta-1b in secondary progressive MS. Placebo-controlled multicentre randomised trial of interferon beta-1b in treatment of secondary progressive multiple sclerosis. Lancet 1998; 352: 1491.Google Scholar
Hauser, SL, Cree, BAC. Treatment of multiple sclerosis: a review. Am J Med 2020; 133: 1380.Google Scholar
Jacobs, LD, Beck, RW, Simon, JH, et al. Intramuscular interferon beta-1a therapy initiated during the first demyelinating event in multiple sclerosis. N Engl J Med 2000; 343: 898.Google Scholar
Kilpatrick, TJ, Soilu-Hanninen, M. New treatments for multiple sclerosis. Aust NZ J Med 1999; 29: 801.Google Scholar
Lucchinetti, C, Brueck, W, Parisi, J, et al. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 2000; 47: 707.Google Scholar
McDonald, WI. Multiple sclerosis: diagnostic optimism. BMJ 1992; 304: 1259.Google Scholar
McDonald, WI, Compston, DAS, Edan, G, et al. Recommended diagnostic criteria for multiple sclerosis: guidelines from the International Panel on the diagnosis of multiple sclerosis. Ann Neurol 2001; 50: 121.Google Scholar
Pender, MP. Recent advances in the understanding, diagnosis and management of multiple sclerosis. Aust NZ J Med 1996; 26:157.Google Scholar
Pender, MP. Multiple sclerosis. Med J Aust 2000; 172: 556.Google Scholar
Pender, MP, Wolfe, NP. Prevention of autoimmune attack and disease progression in multiple sclerosis: current therapies and future prospects. Intern Med J 2002; 32: 554.Google Scholar
PRISMS Study Group. Randomized double-blind placebo-controlled study of interferon beta-1a in relapsing/remitting multiple sclerosis. Lancet 1998; 352: 1498.Google Scholar
Ron, MA, Feinstein, A. Multiple sclerosis and the mind. J Neurol Neurosurg Psychiatry 1992; 55: 1.Google Scholar
Sedal, L, Wilson, IB, McDonald, EA. Current management of relapsing-remitting multiple sclerosis. Intern Med J 2014; 44: 950.Google Scholar
Shaw, C, Chapman, C, Butzkueven, H. How to diagnose multiple sclerosis and what are the pitfalls. Intern Med J 2009; 30: 792.Google Scholar
Thompson, AJ, Banwell, BL, Barkhof, F, et al. Diagnosis of multiple sclerosis: 2017 revisions of the McDonald criteria. Lancet Neurol 2018; 17: 162.Google Scholar
Thompson, AJ, Baranzini, SE, Geurts, J, et al. Multiple sclerosis. Lancet 2018; 391: 1622.Google Scholar
Tyler, KL. Human herpesvirus 6 and multiple sclerosis: the continuing conundrum. J Infect Dis. 2003; 187: 1360.Google Scholar

Bibliography

Dent, KM, Dunn, DM, Niederhausern, AC, et al. Improved molecular diagnosis of dystrophinophies in an unselected clinical cohort. Am J Med 2005; 134: 295.Google Scholar
Gregorevic, P, Chamberlain, JS. Gene therapy for muscular dystrophy: a review of promising progress. Expert Opin Biol Ther 2003; 3: 803.Google Scholar
Griggs, RC, Moxley, RT, Mendell, JR, et al. Duchenne dystrophy: randomized, controlled trial of prednisone (18 months) and azathioprine (12 months). Neurology 1993; 43: 520.Google Scholar
Harper, PS. Myotonic Dystrophy. 3rd edition. London: WB Saunders. 2001.Google Scholar
Hlaing, PM, Scott, IA, Jackson, RV. Dysregulation of calcium metabolism in type 1 myotonic dystrophy. Intern Med J 2019; 49: 1412.Google Scholar
Mankodi, A, Thornton, CA. Myotonic syndromes. Curr Opin Neurol 2002; 15: 545.Google Scholar
Moser, H. Duchenne muscular dystrophy: pathogenetic aspects and genetic prevention. Hum Genet 1984; 66: 17.Google Scholar

Bibliography

Barbato, MP. Poisoning from accidental ingestion of mushrooms. Med J Aust 1993; 158: 842.Google Scholar
Diaz, JH. Evolving global epidemiology, syndromic classification, general management, and prevention of unknown mushroom poisonings. Crit Care Med 2005; 33: 419.Google Scholar
Klein, AS, Hart, J, Brems, JJ, et al. Amanita poisoning: treatment and the role of liver transplantation. Am J Med 1989; 86: 187.Google Scholar
Mitchell, DH. Amanita mushroom poisoning. Annu Rev Med 1980; 31: 51.Google Scholar
Mount, P, Harris, G, Sinclair, R, et al. Acute renal failure following ingestion of wild mushrooms. Intern Med J 2002; 32: 187.Google Scholar
Nicholson, FB, Korman, MG. Death from Amanita poisoning. Aust NZ J Med 1997; 27: 448.Google Scholar
Rumack, BH, Spoerke, DG, eds. Handbook of Mushroom Poisoning: Diagnosis and Treatment. 2nd edition. Boca Raton: CRC Press. 1994.Google Scholar

Bibliography

Berrouschot, J, Baumann, I, Kalischewski, P, et al. Therapy of myasthenic crisis. Crit Care Med 1997; 25: 1228.Google Scholar
Clamon, GH, Evans, WK, Shepherd, FA, et al. Myasthenic syndrome and small cell cancer of the lung: variable response to antineoplastic therapy. Arch Intern Med 1984; 144: 999.Google Scholar
Drachman, DB. Myasthenia gravis. N Engl J Med 1994; 330: 1797.Google Scholar
Gilhus, NE. Myasthenia gravis. N Engl J Med 2016; 375: 2570.Google Scholar
Gilhus, NE, Verschuuren, JJ. Myasthenia gravis: subgroup classification and therapeutic strategies. Lancet Neurol 2015; 14: 1023.Google Scholar
Gracey, DR, Divertie, MB, Howard, FM. Mechanical ventilation for respiratory failure in myasthenia gravis. Mayo Clin Proc 1983; 58: 597.Google Scholar
Gronseth, GS, Bahron, RJ. Practice parameter; thymectomy for auto-immune myasthenia gravis (an evidence-based review). Neurology 2000; 55: 7.Google Scholar
O’Neill, JH, Murray, NM, Newsom-Davis, J. The Lambert-Eaton myasthenic syndrome. Brain 1988; 111: 577.Google Scholar
Segredo, V, Caldwell, J, Matthay, M, et al. Persistent paralysis in critically ill patients after long-term administration of vecuronium. N Engl J Med 1992; 327: 524.Google Scholar
Seybold, ME. Myasthenia gravis: a clinical and basic science review. JAMA 1983; 250: 2516.Google Scholar
Sokoll, M, Gergis, S. Antibiotics and neuromuscular function. Anesthesiology 1981; 55: 148.Google Scholar
Swift, TR. Disorders of neuromuscular transmission other than myasthenia gravis. Muscle Nerve 1981; 4: 334.Google Scholar
Tonner, DR, Schlechte, JA. Neurologic complications of thyroid and parathyroid disease. Med Clin North Am 1993; 77: 251.Google Scholar
Varelas, PN, Chua, HC, Natterman, J, et al. Ventilatory care in myasthenia crisis: assessing the baseline adverse event rate. Crit Care Med 2002; 30: 2663.Google Scholar
Vincent, A, Palace, J, Hilton-Jones, D. Myasthenia gravis. Lancet 2001; 357: 2122.Google Scholar
Wolfe, GI, Kaminski, HJ, Aban, IB, et al. Randomized trial of thymectomy in myasthenia gravis. N Engl J Med 2016; 375: 511.Google Scholar
Wright, EA, McQuillen, MP. Antibiotic-induced neuromuscular blockade. Ann NY Acad Sci 1971; 183: 358.Google Scholar

Bibliography

Boyd, SC, Athan, E, Friedman, MD, et al. Epidemiology, clinical features and diagnosis of Mycobacterium ulcerans in an Australian population. Med J Aust 2012; 196: 341.Google Scholar
O’Brien, DP, Athan, E, Blasdell, K, et al. Tackling the worsening epidemic of Buruli ulcer in Australia in an information void: time for an urgent scientific response. Med J Aust 2018; 208: 287.Google Scholar
WHO. Treatment of Mycobacterium ulcerans Disease (Buruli Ulcer): Guidance for Health Workers. Geneva: WHO. 2012.Google Scholar

Bibliography

Baer, AN. Advances in the therapy of idiopathic inflammatory myopathies. Curr Opin Rheumatol 2006; 18: 236.Google Scholar
Batchelor, PM, Taylor, LP, Thaler, HT, et al. Steroid myopathy in cancer patients. Neurology 1997; 48: 1234.Google Scholar
Bolton, CF. Critical illness polyneuropathy and myopathy. Crit Care Med 2001; 29: 2388.Google Scholar
Chad, DA, Lacomis, D. Critically ill patients with newly acquired weakness: the clinicopathological spectrum. Ann Neurol 1994; 35: 257.Google Scholar
De Jonghe, B, Cook, D, Sharshar, T, et al. Acquired neuromuscular disorders in critically ill patients: a systematic review. Intens Care Med 1998; 24: 1242.Google Scholar
de Letter, M-ACJ, Schmitz, PIM, Visser, LH, et al. Risk factors for the development of polyneuropathy and myopathy in critically ill patients. Crit Care Med 2001; 29: 2281.Google Scholar
Douglass, JA, Tuxen, DV, Horne, M, et al. Myopathy in severe asthma. Am Rev Respir Dis 1992; 146: 157.Google Scholar
Hall, JB, Griffiths, RD, eds. ICU-acquired weakness: proceedings of a round table conference in Brussels, Belgium, March 2009. Crit Care Med 2009; 37: S295.Google Scholar
Hamilton-Craig, I. Statin-associated myopathy. Med J Aust 2001; 175: 486.Google Scholar
Hansen-Flaschen, J. Neuromuscular complications of critical illness. Pulm Perspect 1997; 14(4): 1.Google Scholar
Hund, E. Myopathy in critically ill patients. Chest 1999; 27: 2544.Google Scholar
Joffe, MM, Love, LA, Leff, RL, et al. Drug therapy of idiopathic inflammatory myopathies: predictors of response to prednisone, azathioprine, and methotrexate and a comparison of their efficacy. Am J Med 1993; 94: 379.Google Scholar
Latronico, N. Neuromuscular alterations in the critically ill patient: critical illness myopathy, critical illness neuropathy, or both? Intens Care Med 2003; 29: 1411.Google Scholar
Latronico, N, Fenzi, F, Recupero, D, et al. Critical illness myopathy and neuropathy. Lancet 1996; 347: 1579.Google Scholar
Layzer, RB. McArdle’s disease in the 1980s. N Engl J Med 1985; 312: 370.Google Scholar
Limaye, VS, Blumbergs, P, Roberts-Thomson, PJ. Idiopathic inflammatory myopathies. Intern Med J 2009; 39: 179.Google Scholar
Maramattom, BV, Wijdicks, EFM. Acute neuromuscular weakness in the intensive care unit. Crit Care Med 2006; 34: 2835.Google Scholar
Mastaglia, Phillips BA. Idiopathic inflammatory myopathies: epidemiology, classification and diagnostic criteria. Rheum Dis Clin North Am 2002; 28: 723.Google Scholar
Miller, FW, Schiffenbauer, A. Idiopathic inflammatory myopathies. In: Scientific American Medicine. Rheumatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Nates, JL, Cooper, DJ, Day, B, et al. Acute weakness syndromes in critically ill patients – a reappraisal. Anaesth Intens Care 1997; 25: 502.Google Scholar
Polkey, MI, Moxham, J. Clinical aspects of respiratory muscle dysfunction in the critically ill. Chest 2001; 119: 926.Google Scholar
Rosenson, RS. Current overview of statin-induced myopathy. Am J Med 2004; 116: 408.Google Scholar
Schweickert, WD, Hall, J. ICU-acquired weakness. Chest 2007; 131: 1541.Google Scholar
Segredo, V, Caldwell, JE, Matthay, MA, et al. Persistent paralysis in critically ill patients after long-term administration of vecuronium. N Engl J Med 1992; 327: 524.Google Scholar
Sieb, JP, Gillensen, T. Iatrogenic and toxic myopathies. Muscle Nerve 2003; 27: 142.Google Scholar
Tonner, DR, Schlechte, JA. Neurologic complications of thyroid and parathyroid disease. Med Clin North Am 1993; 77: 251.Google Scholar

Bibliography

Ashton, C, Paramalingam, S, Stevenson, B, et al. Idiopathic inflammatory myopathies: a review. Intern Med J 2021; 51: 845.Google Scholar
Hirschmann, JV. Fungal, bacterial, and viral infections of the skin. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Limaye, VS, Blumbergs, P, Roberts-Thomson, PJ. Idiopathic inflammatory myopathies. Intern Med J 2009; 39: 179.Google Scholar
Mastaglia, FL, Phillips, BA. Idiopathic inflammatory myopathies: epidemiology, classification and diagnostic criteria. Rheum Dis Clin North Am 2002; 28: 723.Google Scholar
Miller, FW. Classification and prognosis of inflammatory muscle disease. Rheum Dis Clin North Am 1994; 20: 811.Google Scholar

Bibliography

Maldonado, F, Tazelaar, HD, Wang, C-W, et al. Yellow nail syndrome. Chest 2008; 134: 375.Google Scholar
Myers, KA, Farquhar, DR. The rational clinical examination: does this patient have clubbing? JAMA 2001; 286: 341.Google Scholar
Nguyen, J, Cotserelis, G. Diseases of the nail unit. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Wolff, K, Goldsmith, L, Katz, S, et al., eds. Fitzpatrick’s Dermatology in General Medicine. 7th edition. New York: McGraw-Hill. 2007.Google Scholar

Bibliography

Borghi, I, Schianchi, T, Meschi, T, et al. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N Engl J Med 2002; 346: 77.Google Scholar
Coe, FL, Parks, JH, Asplin, JR. The pathogenesis and treatment of kidney stones. N Engl J Med 1992; 327: 1141.Google Scholar
Curhan, GC, Willett, WC, Rimm, EB, et al. Family history and risk of kidney stones. J Am Soc Nephrol 1997; 8: 1568.Google Scholar
Hirvonen, T, Pietinen, P, Virtanen, M, et al. Nutrient intake and use of beverages and the risk of kidney stones among male smokers. Am J Epidemiol 1999; 150: 187.Google Scholar
Jackman, SV, Potter, SR, Regan, F, et al. Plain abdominal x-ray versus computerized tomography screening: sensitivity for stone localization after nonenhanced spiral computerized tomography. J Urol 2000; 164: 308.Google Scholar
NIH Consensus Development Panel. Prevention and treatment of kidney stones. JAMA 1988; 260: 977.Google Scholar
Nishiura, JL, Heilberg, IP. Nephrolithiasis. In: Scientific American Medicine. Nephrology. Hamilton: Dekker Medicine. 2020.Google Scholar
Singer, A, Das, S. Cystinuria: a review of the pathophysiology and management. J Urol 1989; 142: 669.Google Scholar
Stewart, C. Nephrolithiasis. Emerg Med Clin North Am 1988; 6: 617.Google Scholar
Wilson, DM. Clinical and laboratory evaluation of renal stone patients. Endocrinol Metab Clin North Am 1990; 19: 773.Google Scholar

Bibliography

Arieff, AI, Guisado, R, Massry, SG, et al. Central nervous system pH in uremia and the effects of hemodialysis. J Clin Invest 1976; 58: 306.Google Scholar
Arieff, AI, Massry, SG, Barrientos, A, et al. Brain water and electrolyte metabolism in uremia: effects of slow and rapid hemodialysis. Kidney Int 1973; 4: 177.Google Scholar
Aronoff, GR, Bennett, WM, Berns, JS, eds. Drug Prescribing in Renal Failure: Dosing Guidelines for Adults. 5th edition. Philadelphia: American College of Physicians. 2007.Google Scholar
Bellomo, R, Kellum, JA, Ronco, C. Defining acute renal failure: physiological principles. Intens Care Med 2004; 30: 33.Google Scholar
Berg, KJ. Nephrotoxicity related to contrast media. Scand J Urol Nephrol 2000; 34: 317.Google Scholar
Caruana, RJ. Heparin free dialysis: comparative data and results in high risk patients. Kidney Int 1987; 31: 1351.Google Scholar
Chandraker, A, ed. Nephrology. In: Scientific American Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Cronin, RE, Kaehny, WD, Miller, PD, et al. Renal cell carcinoma: unusual systemic manifestations. Medicine 1976; 55: 291.Google Scholar
Dossetor, JB. Creatininemia versus uremia: the relative significance of blood urea nitrogen and serum creatinine in azotemia. Ann Intern Med 1966; 65: 1287.Google Scholar
Fraser, CL, Arieff, AI. Nervous system complications of uremia. Ann Intern Med 1988; 109: 143.Google Scholar
Hoitsma, AJ, Wetzels, JFM, Koene, RAP. Drug-induced nephrotoxicity: aetiology, clinical features and management. Drug Safety 1991; 6: 131.Google Scholar
Hruska, KA, Teitelbaum, SL. Renal osteodystrophy. N Engl J Med 1995; 333: 166.Google Scholar
Keshaviah, P, Shapiro, FL. A critical examination of dialysis-induced hypotension. Am J Kidney Dis 1982; 2: 290.Google Scholar
Kincaid-Smith, P. Analgesic abuse and the kidney. Kidney Int 1980; 17: 250.Google Scholar
Koyner, JL. Assessment and diagnosis of renal dysfunction in the ICU. Chest 2012; 141: 1584.Google Scholar
Levey, AS, Bosch, JP, Lewis, JB, et al. A more accurate method to estimate glomerular filtration rate from serum creatinine: a new prediction equation. Ann Intern Med 1999; 130: 461.Google Scholar
Li, PKT, Burdmann, EA, Mehta, RL. Acute kidney injury: global health alert. Intern Med J 2013; 43: 223.Google Scholar
Massry, SG, Glassock, RJ, eds. Textbook of Nephrology. 4th edition. Baltimore: Williams & Wilkins. 2001.Google Scholar
Mathew, T. Recurrence of disease after renal transplantation. Am J Kidney Dis 1988; 12: 85.Google Scholar
Morgan, DB, Dillon, S, Payne, RB. The assessment of glomerular function: creatinine clearance or plasma creatinine? Postgrad Med J 1978; 54: 302.Google Scholar
Raskin, NH, Fishman, RA. Neurologic disorders in renal failure. N Engl J Med 1976; 294: 143.Google Scholar
Ronco, PM, Flahault, A. Drug-induced end-stage renal disease. N Engl J Med 1994; 331: 1711.Google Scholar
Schrier, RW. An odyssey into the milieu interieur: pondering the enigmas. J Am Soc Nephrol 1992; 2: 1549.Google Scholar
Schwartz, WB, Relman, AS. Effects of electrolyte disorders on renal structure and function. N Engl J Med 1967; 276: 383 & 452.Google Scholar
Sherman, RA, Eisinger, RP. The use (and misuse) of urinary sodium and chloride measurements. JAMA 1982; 247: 3121.Google Scholar
Stamm, WE, Hooton, TM. Management of urinary tract infections in adults. N Engl J Med 1993; 329: 1328.Google Scholar
Turner, NN, Lameire, N, Goldsmith, DJ, et al. eds. Oxford Textbook of Clinical Nephrology. 4th edition. Oxford: Oxford University Press. 2015.Google Scholar
Various. Issue number 6 dedicated to acute kidney injury. Intens Care Med 2017; 43: 727.Google Scholar

Bibliography

Martuza, RL, Eldridge, R. Neurofibromatosis 2 (bilateral acoustic neurofibromatosis). N Engl J Med 1988; 318: 684.Google Scholar
Reynolds, RM, Browning, GG, Nawroz, I, et al. Von Recklinghausen’s neurofibromatosis: neurofibromatosis type 1. Lancet 2003; 361: 1552.Google Scholar
Riccardi, VM. Von Recklinghausen’s neurofibromatosis. N Engl J Med 1981; 305: 1617.Google Scholar

Bibliography

Bienvenu, OJ, Neufeld, KJ, Needham, DM. Treatment of four psychiatric emergencies in the intensive care unit. Crit Care Med 2012; 40: 2662.Google Scholar
Caroff, SN, Mann, SC. Neuroleptic malignant syndrome. Med Clin North Am 1993; 77: 185.Google Scholar
Guze, BH, Baxter, LR. Neuroleptic malignant syndrome. N Engl J Med 1985; 313: 163.Google Scholar
Harradine, PG, Williams, SE, Doherty, SR. Neuroleptic malignant syndrome: an underdiagnosed condition. Med J Aust 2001; 174: 593.Google Scholar
Kornhuber, J, Weller, M. Neuroleptic malignant syndrome. Curr Opin Neurol Neurosurg 1994; 7: 353.Google Scholar
Rosenberg, MR, Green, M. Neuroleptic malignant syndrome: review of response to therapy. Ach Intern Med 1989; 149: 1927.Google Scholar
Shaw, A, Mathews, EE. Postoperative neuroleptic malignant syndrome. Anesthesiology 1995; 50: 246.Google Scholar

Bibliography

Arieff, AI, Guisado, R, Massry, SG, et al. Central nervous system pH in uremia and the effects of hemodialysis. J Clin Invest 1976; 58: 306.Google Scholar
Arieff, AI, Massry, SG, Barrientos, A, et al. Brain water and electrolyte metabolism in uremia: effects of slow and rapid hemodialysis. Kidney Int 1973; 4: 177.Google Scholar
Bhardwaj, A, Williams, MA, Hanley, DF, eds. Critical Care of Stroke. In: New Horizons. Baltimore: Williams & Wilkins and SCCM. 1997; 5: no. 4.Google Scholar
Bolton, CF. Sepsis and the systemic inflammatory response syndrome: Neuromuscular manifestations. Crit Care Med 1996; 24: 1408.Google Scholar
Bolton, CF. Neuromuscular conditions in the intensive care unit. Intens Care Med 1996; 22: 841.Google Scholar
Caplan, LR, Brass, LM, DeWitt, LD, et al. Transcranial Doppler ultrasound: present status. Neurology 1990; 40: 696.Google Scholar
Chang, CWJ. Neurologic complications of critical illness and transplantation. Curr Opin Crit Care 1999; 5: 112.Google Scholar
Charness, ME, Simon, RP, Greenberg, DA. Ethanol and the nervous system. N Engl J Med 1989; 321: 442.Google Scholar
Chiappa, KH, Ropper, AH. Evoked potentials in clinical medicine. N Engl J Med 1982; 306: 1140 & 1205.Google Scholar
Ciavarella, D, Wuest, D, Strauss, RG, et al. Management of neurologic disorders. J Clin Apheresis 1993; 8: 242.Google Scholar
Fraser, CL, Arieff, AI. Nervous system complications of uremia. Ann Intern Med 1988; 109: 143.Google Scholar
Ghaoui, R, Clarke, N, Hollingworth, P, et al. Muscle disorders: the latest investigations. Intern Med J 2013; 43: 970.Google Scholar
Hansen-Flaschen, J. Neuromuscular complications of critical illness. Pulm Perspect 1997; 14(4): 1.Google Scholar
Hughes, AJ, Biggs, BA. Parasitic worms of the central nervous system. Intern Med J 2002; 32: 541.Google Scholar
Kelly, BJ, Luce, JM. The diagnosis and management of neuromuscular diseases causing respiratory failure. Chest 1991; 99: 1485.Google Scholar
Kirkman, MA, Citerio, G, Smith, M. The intensive care management of acute ischemic stroke: an overview. Intens Care Med 2014; 40: 640.Google Scholar
Klebanoff, LM, ed. Neurology. In: Scientific American Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Knochel, J. Neuromuscular manifestations of electrolyte disorders. Am J Med 1982; 72: 521.Google Scholar
Lansberg, MG, O’Donnell, MJ, Khatri, P, et al. Antithrombotic and thrombolytic therapy for ischemic stroke. Chest 2012; 141: S601.Google Scholar
Le Roux, P, Menon, DK, Vespa, G, et al. Consensus summary statement of the International Multidisciplinary Consensus Conference on Multimodality Monitoring in Neurocritical Care. Intens Care Med 2014; 40: 1189.Google Scholar
Lyons, MK, Meyer, FB. Cerebrospinal fluid physiology and the management of increased intracranial pressure. Mayo Clin Proc 1990; 65: 684.Google Scholar
Mandel, JL. Dystrophin: the gene and its product. Nature 1989; 339: 584.Google Scholar
Marton, KI, Gean, AD. The spinal tap: a new look at an old test. Ann Intern Med 1986; 104: 840.Google Scholar
McMahon, SB, Kolzenburg, M, Tracey, I, et al. Wall and Melzack’s Textbook of Pain. 6th edition. Edinburgh: Elsevier. 2013.Google Scholar
Mirski, MA, Varelas, PN. Diagnosis and treatment of seizures in the adult intensive care unit. Contemporary Critical Care 2003; 1: 1.Google Scholar
Miller, DH, Raps, EC, eds. Critical Care Neurology. Woburn: Butterworth-Heinemann. 1999.Google Scholar
Moore, PM. Diagnosis and management of isolated angiitis of the central nervous system. Neurology 1989; 39: 167.Google Scholar
Morantz, RA, Walsh, JW, eds. Brain Tumors. New York: Marcel Dekker. 1994.Google Scholar
Moskowitz, MA. The visceral organ brain. Neurology 1991; 41: 182.Google Scholar
Polkey, MI, Moxham, J. Clinical aspects of respiratory muscle dysfunction in the critically ill. Chest 2001; 119: 926.Google Scholar
Raskin, NH, Fishman, RA. Neurologic disorders in renal failure. N Engl J Med 1976; 294: 143.Google Scholar
Rosenberg, RN. Biochemical genetics of neurologic disease. N Engl J Med 1981; 305: 1181.Google Scholar
Rosenberg, RN, ed. Atlas of Clinical Neurology. 4th edition. New York: Springer. 2019.Google Scholar
Schwartzman, RJ, McLellan, TL. Reflex sympathetic dystrophy: a review. Arch Neurol 1987; 44: 555.Google Scholar
Sharshar, T, Citerio, G, Andrews, PJD, et al. Neurological examination of critically ill patients. Intens Care Med 2014; 40: 484.Google Scholar
Strandgaard, S, Paulson, OB. Cerebral autoregulation. Stroke 1984; 15: 413.Google Scholar
Strange, K. Regulation of solute and water balance and cell volume in the central nervous system. J Am Soc Nephrol 1992; 3: 12.Google Scholar
Suarez, JI, Bershad, EM, Rao, CPV, eds. Critical Care Neurology and Neurosurgery. 2nd edition. New York: Springer. 2020.Google Scholar
Swift, TR. Disorders of neuromuscular transmission other than myasthenia gravis. Muscle Nerve 1981; 4: 334.Google Scholar
Tonner, DR, Schlechte, JA. Neurologic complications of thyroid and parathyroid disease. Med Clin North Am 1993; 77: 251.Google Scholar
Torbey, MT, ed. Neurocritical Care. 2nd edition. Cambridge: Cambridge University Press. 2019.Google Scholar
Wijdicks, EFM. Neurologic Complications of Critical Illness. 3nd edition. Oxford: Oxford University Press. 2009.Google Scholar
Zweiman, B, Levinson, AI. Immunologic aspects of neurological and neuromuscular diseases. JAMA 1992; 268: 2918.Google Scholar

Bibliography

Ashbury, AK. Understanding diabetic neuropathy. N Engl J Med 1988; 319: 577.Google Scholar
Bercker, S, Weber-Carstens, S, Deja, M, et al. Critical illness polyneuropathy and myopathy in patients with acute respiratory distress syndrome. Crit Care Med 2005; 33: 711.Google Scholar
Berek, K, Margreiter, J, Willeit, J, et al. Polyneuropathies in critically ill patients: a prospective evaluation. Intens Care Med 1996; 22: 849.Google Scholar
Bleck, TP. The expanding spectrum of critical illness polyneuropathy. Crit Care Med 1996; 24: 1282.Google Scholar
Bolton, CF. Sepsis and the systemic inflammatory response syndrome: neuromuscular manifestations. Crit Care Med 1996; 24: 1408.Google Scholar
Bolton, CF. Critical illness polyneuropathy and myopathy. Crit Care Med 2001; 29: 2388.Google Scholar
Bolton, CF, Gilbert, JJ, Hahn, AF, et al. Polyneuropathy in critically ill patients. J Neurol Neurosurg Psychiatry 1984; 47: 1223.Google Scholar
Bromberg, MB, Feldman, EL, Albers, JW. Chronic inflammatory demyelinating polyradiculoneuropathy. Neurology 1992; 42: 1157.Google Scholar
Chad, DA, Lacomis, D. Critically ill patients with newly acquired weakness: the clinicopathological spectrum. Ann Neurol 1994; 35: 257.Google Scholar
Dalakas, MC, Engel, WK. Chronic relapsing (dysimmune) polyneuropathy: pathogenesis and treatment. Ann Neurol 1981; 9 (suppl.): 134.Google Scholar
Davis, GA, Day, TJ. Peripheral nerve entrapment: how to diagnose and when to refer. Med J Aust 2022; 216: 126.Google Scholar
De Jonghe, B, Cook, D, Sharshar, T, et al. Acquired neuromuscular disorders in critically ill patients: a systematic review. Intens Care Med 1998; 24: 1242.Google Scholar
De Jonghe, B, Sharshar, T, Hopkinson, N, et al. Paresis following mechanical ventilation. Curr Opin Crit Care 2004; 10: 47.Google Scholar
de Letter, M-ACJ, Schmitz, PIM, Visser, LH, et al. Risk factors for the development of polyneuropathy and myopathy in critically ill patients. Crit Care Med 2001; 29: 2281.Google Scholar
Dyck, PJ, Kratz, KM, Karnes, JL, et al. The prevalence by staged severity of various types of diabetic neuropathy, retinopathy, and nephropathy in a population-based cohort: the Rochester Diabetic Neuropathy Study. Neurology 1993; 43: 817.Google Scholar
Fuller, GN, Jacobs, JM, Guiloff, RJ. Nature and incidence of peripheral neuropathy syndromes in HIV infection. J Neurol Neurosurg Psychiatry 1993; 56: 372.Google Scholar
Garnacho-Montero, J, Mandrazo-Osuna, J, Garcia-Garmendia, JL, et al. Critical illness polyneuropathy: risk factors and clinical consequences. Intens Care Med 2001; 27: 1288.Google Scholar
Hall, JB, Griffiths, RD, eds. ICU-acquired weakness: proceedings of a round table conference in Brussels, Belgium, March 2009. Crit Care Med 2009; 37: S295.Google Scholar
Halperin, J, Luft, BJ, Volkman, DJ, et al. Lyme neuroborreliosis: peripheral nervous system manifestations. Brain 1990; 113: 1207.Google Scholar
Hansen-Flaschen, J. Neuromuscular complications of critical illness. Pulmonary Perspectives 1997; 14(4): 1.Google Scholar
Harrison, MS. ‘Epidemic vertigo’ – ‘vestibular neuronitis’: a clinical study. Brain 1962; 85: 613.Google Scholar
Hillbom, M, Wennberg, A. Prognosis of alcoholic peripheral neuropathy. J Neurol Neurosurg Psychiatry 1984; 47: 699.Google Scholar
Hund, EF, Fogel, W, Krieger, D, et al. Critical illness polyneuropathy: clinical findings and outcomes of a frequent cause of neuromuscular weaning failure. Crit Care Med 1996; 24: 1328.Google Scholar
Latronico, N. Neuromuscular alterations in the critically ill patient: critical illness myopathy, critical illness neuropathy, or both? Intens Care Med 2003; 29: 1411.Google Scholar
Latronico, N, Fenzi, F, Recupero, D, et al. Critical illness myopathy and neuropathy. Lancet 1996; 347: 1579.Google Scholar
Leijten, FSS, De Weerd, AW, Poortvliet, DCJ, et al. Critical illness polyneuropathy in multiple organ dysfunction syndrome and weaning from the ventilator. Intens Care Med 1996; 22: 856.Google Scholar
Maramattom, BV, Wijdicks, EFM. Acute neuromuscular weakness in the intensive care unit. Crit Care Med 2006; 34: 2835.Google Scholar
Morantz, RA, Walsh, JW, eds. Brain Tumors. New York: Marcel Dekker. 1994.Google Scholar
Nakamo, KK. The entrapment neuropathies. Muscle Nerve 1978; 1: 264.Google Scholar
Nates, JL, Cooper, DJ, Day, B, et al. Acute weakness syndromes in critically ill patients – a reappraisal. Anaesth Intens Care 1997; 25: 502.Google Scholar
Pestronk, A. Motor neuropathies, motor neuron disorders, and antiglycolipid antibodies. Muscle Nerve 1991; 14: 927.Google Scholar
Polkey, MI, Moxham, J. Clinical aspects of respiratory muscle dysfunction in the critically ill. Chest 2001; 119: 926.Google Scholar
Schweickert, WD, Hall, J. ICU-acquired weakness. Chest 2007; 131: 1541.Google Scholar
Segredo, V, Caldwell, JE, Matthay, MA, et al. Persistent paralysis in critically ill patients after long-term administration of vecuronium. N Engl J Med 1992; 327: 524.Google Scholar
Spies, JM. Cranial and peripheral neuropathies. Med J Aust 2001; 174: 598.Google Scholar
Sweet, WH. The treatment of trigeminal neuralgia (tic douloureux). N Engl J Med 1986; 315: 174.Google Scholar
Tonner, DR, Schlechte, JA. Neurologic complications of thyroid and parathyroid disease. Med Clin North Am 1993; 77: 251.Google Scholar
van Mook, WNKA, Hulsewe-Evers, RPMG. Critical illness polyneuropathy. Curr Opin Crit Care 2002; 8: 302.Google Scholar
Walsh, TS. Pharmacologic therapies for ICU-acquired weakness: a long road ahead. Crit Care Med 2016; 44: 1245.Google Scholar
Williams, AC, Sturman, S, Kelsey, S, et al. The neuropathy of the critically ill. BMJ 1986; 293: 790.Google Scholar
Windebank, AJ, Blexrud, MD, Dyck, PJ, et al. The syndrome of acute sensory neuropathy: clinical features and electrophysiologic and pathologic changes. Neurology 1990; 40: 584.Google Scholar
Zochodne, DW, Bolton, CF, Wells, GA, et al. Critical illness polyneuropathy: A complication of sepsis and multiple organ failure. Brain 1987; 110: 819.Google Scholar

Bibliography

Bain, BJ. Ethnic and sex differences in the total and differential white cell count and platelet count. J Clin Pathol 1996; 49: 664.Google Scholar
Cowburn, AS, Condliffe, AM, Farahi, N, et al. Advances in neutrophil biology: clinical implications. Chest 2008; 134: 606.Google Scholar
Dale, D, Guerry, D, Wewerka, J, et al. Chronic neutropenia. Medicine 1979; 58: 128.Google Scholar
Jones, RN. Contemporary antimicrobial susceptibility patterns of bacterial pathogens commonly associated with febrile patients with neutropenia. Clin Infect Dis 1999; 29: 495.Google Scholar
Klastersky, JA, Meert, A-P. Understanding the risk for infection in patients with neutropenia. Intens Care Med 2016; 42: 268.Google Scholar
Lingaratnam, S, Slavin, MA, Koczwara, B, et al. Introduction to the Australian consensus guidelines for the management of neutropenic fever in adult cancer patients, 2010/2011. Intern Med J 2011; 41 (suppl. 1): 75.Google Scholar
Palmblad, JE, von dem Borne, AE. Idiopathic, immune, infectious, and idiosyncratic neutropenias. Semin Hematol 2002; 39: 113.Google Scholar
Schram, AM, Berliner, N. Nonmalignant disorders of leukocytes. In: Scientific American Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
van der Klauw, MM, Wilson, JH, Stricker, BH. Drug-associated agranulocytosis. Am J Haematol 1998; 57: 206.Google Scholar
Vincent, PC. Drug-induced aplastic anemia and agranulocytosis. Drugs 1986; 31: 52.Google Scholar

Bibliography

Myles, PS, Leslie, K, Silbert, B, et al. A review of the risks and benefits of nitrous oxide in current anaesthetic practice. Anaesth Intens Care 2004; 32: 165.Google Scholar

Bibliography

Brown-Elliott, BA, Brown, JM, Conville, PS, et al. Clinical and laboratory features of Nocardia spp. based on current molecular taxonomy. Clin Microbiol Rev 2006; 19: 259.Google Scholar
Lederman, ER, Crum, NF. A case series and focused review of nocardiosis: clinical and microbiologic aspects. Medicine (Baltimore) 2004; 83: 300.Google Scholar
Lerner, PL. Nocardiosis Clin Infect Dis 1996; 22: 891.Google Scholar
Threlkeld, SC, Hooper, DC. Update on management of patients with Nocardia infection. Curr Clin Top Infect Dis 1997; 17: 1.Google Scholar
Wilson, JW. Nocardiosis: updates and clinical overview. Mayo Clin Proc 2012; 87: 403.Google Scholar

Bibliography

Donnelly, KL, Smith, CI, Schwarzenberg, SJ, et al. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest 2005; 115: 1343.Google Scholar
Huang, TD, Behary, J, Zekry, A. Non-alcoholic fatty liver disease: a review of epidemiology, risk factors, diagnosis and management. Intern Med J 2020; 50: 1038.Google Scholar
Matteoni, CA, Younossi, ZM, Gramlich, T, et al. Nonalcoholic fatty liver disease: a spectrum of clinical pathological severity. Gastroenterology 1999; 116: 1413.Google Scholar
Younossi, Z, Anstee, QM, Marietti, M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018; 15: 11.Google Scholar
Younossi, ZM, Koenig, AB, Abdelatif, D, et al. Global epidemiology of non-alcoholic fatty liver disease: meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64: 73.Google Scholar

Bibliography

Brunt, EM. Nonalcoholic steatohepatitis. Semin Liver Dis 2001; 21: 3.Google Scholar
Sheth, SG, Gordon, FD, Chopra, S. Nonalcoholic steatohepatitis. Ann Intern Med 1997; 126: 137.Google Scholar
Younossi, Z, Anstee, QM, Marietti, M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2018; 15: 11.Google Scholar

Bibliography

Dolin, R, Treanor, JJ, Madore, HP. Novel agents of viral enteritis in humans. J Infect Dis 1987; 155: 365.Google Scholar
Frankhauser, RL, Monroe, SS, Noel, JS, et al. Epidemiologic and molecular trends of Norwalk-like viruses associated with outbreaks of gastroenteritis in the United States. J Infect Dis 2002; 186: 1.Google Scholar
Kapikian, AZ. Overview of viral gastroenteritis. Arch Virol 1996; 12: 7 (suppl.).Google Scholar

Bibliography

Australian Society for the Study of Hypertension in Pregnancy. Management of hypertension in pregnancy: consensus statement. Med J Aust 1993; 158: 700.Google Scholar
Briggs, GG, Freeman, RL, Towers, CV, et al., eds. Drugs in Pregnancy and Lactation. 11th edition. Philadelphia: Lippincott Williams & Wilkins. 2017.Google Scholar
Brooks, DC, Sznyter, LA. Pregnancy. In: Scientific American Surgery, Section VII Special Problems in Perioperative Care, Chapter 11. New York: Scientific American. 1998.Google Scholar
Chestnut, DH. Critical care in obstetric practice. In: Fuhrman, BP, Shoemaker, WC, eds. Critical Care: State of the Art, Chapter 7. Fullerton: Society of Critical Care Medicine. 1989; 121.Google Scholar
Council on Scientific Affairs, American Medical Association. Fetal effects of maternal alcohol use. JAMA 1983; 249: 2517.Google Scholar
Emmerich, J, Thomassin, C, Zureik, M. Contraceptive pills and thrombosis: effects of the French crisis on prescriptions and consequences for medical agencies. J Thromb Haemost 2014; 12: 1388.Google Scholar
Guntupalli, KK, Hall, N, Karnad, DR, et al. Critical illness in pregnancy. Chest 2015; 148: 1093 & 1333.Google Scholar
Henrich, JB, ed. Women’s Health. In: Scientific American Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Hotham, N, Hotham, E. Drugs in breastfeeding. Aust Prescriber 2015; 38: 156.Google Scholar
Jamal, S, Maurer, JR. Pulmonary disease and the menstrual cycle. Pulmonary Perspectives 1994; 11: 3.Google Scholar
Kadir, RA, Davies, J. Hemostatic disorders in women. J Thromb Haemost 2013; 11 (suppl.1): 170.Google Scholar
Kennedy, D. Classifying drugs in pregnancy. Aust Prescriber 2014; 37: 38.Google Scholar
Lim, V, Katz, A, Lindheimer, M. Acid-base regulation in pregnancy. Am J Physiol 1976; 231: 1764.Google Scholar
McLintock, C, James, AH. Obstetric hemorrhage. J Thromb Haemost 2011; 9: 1441.Google Scholar
Middeldorp, S. Thrombosis in women. J Thromb Haemost 2013; 11 (suppl.1): 180.Google Scholar
Newmark, ME, Penry, JK. Catamenial epilepsy: a review. Epilepsia 1980; 21: 281.Google Scholar
Phelan, JP, Pacheco, LD, Foley, MR, et al., eds. Critical Care Obstetrics. 6th edition. Oxford: Wiley. 2018.Google Scholar
Rizk, NW, Kalassian, KG, Gilligan, T, et al. Obstetric complications in pulmonary and critical care medicine. Chest 1996; 110: 791.Google Scholar
Sanson, B-J, Lensing, AWA, Prins, MH, et al. Safety of low-molecular-weight heparin in pregnancy: a systematic review. Thromb Haemost 1999; 81: 668.Google Scholar
Therapeutic Goods administration. Prescribing medicines in pregnancy database. www.tga.gov.au/mode/4012. 2019.Google Scholar
Wood, CE. Menorrhagia: a clinical update. Med J Aust 1996; 165: 510.Google Scholar

Bibliography

Beach, J, Russell, K, Blitz, S, et al. A systematic review of the diagnosis of occupational asthma. Chest 1997; 131: 569.Google Scholar
Bernardo, J, Center, DM. Hypersensitivity pneumonia. Dis Mon 1981; 27: 1.Google Scholar
Berry, G. Environmental mesothelioma incidence, time since exposure to asbestos and level of exposure. Environmetrics 1995; 6: 221.Google Scholar
Chan-Yeung, M, Malo, J-L. Occupational asthma. N Engl J Med 1995; 333: 107.Google Scholar
Cohen, RA, Go, LHT. Artificial stone silicosis: removal from exposure is not enough. Chest 2020; 158: 862.Google Scholar
Davidoff, F. New disease, old story. Ann Intern Med 1998; 129: 327.Google Scholar
Hendrick, D, Beckett, W, Burge, SP, et al., eds. Occupational Disorders of the Lung. Philadelphia: WB Saunders. 2002.Google Scholar
Ho, A, Chan, H, Tse, KS, et al. Occupational asthma due to latex in health care workers. Thorax 1996; 51: 1280.Google Scholar
Hoy, RF, Brims, F. Occupational lung diseases in Australia. Med J Aust 2017; 207: 443.Google Scholar
Malo, JL, Chan-Yeung, M. Occupational asthma. J Allergy Clin Immunol 2001; 108: 317.Google Scholar
Mitchell, CA. Occupational lung disease. Med J Aust 1997; 167: 498.Google Scholar
Nemery, B. Metal toxicity and the respiratory tract. Eur Respir J 1990; 3: 202.Google Scholar
Sack, CS, Vedal, S, Kaufman, JD. Occupational and environmental lung diseases. In: Scientific American Medicine. Pulmonary & Critical Care Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Schwartz, DA. Acute inhalational injury. Occup Med 1987; 2: 297.Google Scholar
Tarlo, SM, Balmes, J, Balkisoon, R, et al. Diagnosis and management of work-related asthma: American College of Chest Physicians Consensus Statement. Chest 2008; 134: suppl.Google Scholar
Taylor, AN, Cullinan, P, Blanc, P, et al., eds. Parkes’ Occupational Lung Disorders. 4th edition. Oxford: Oxford University Press. 2016.Google Scholar
van Kempen, V, Merget, R, Baur, X. Occupational airway sensitizers. Am J Ind Med 2000; 38: 164.Google Scholar

Bibliography

Emmerich, J, Thomassin, C, Zureik, M. Contraceptive pills and thrombosis: effects of the French crisis on prescriptions and consequences for medical agencies. J Thromb Haemost 2014; 12: 1388.Google Scholar

Bibliography

Brinsden, PR, Wada, I, Tan, SL, et al. Diagnosis, prevention and management of ovarian hyperstimulation syndrome. Br J Obstet Gynaecol 1995; 102: 767.Google Scholar
Budev, MM, Arroliga, AC, Falcone, T. Ovarian hyperstimulation syndrome. Crit Care Med 2005; 33 (suppl.): S301.Google Scholar
Golan, A, Ron-El, R, Herman, A, et al. Ovarian hyperstimulation syndrome: an update review. Obstet Gynecol Surv 1989; 44: 430.Google Scholar
Myrianthefs, P, Ladakis, C, Lappas, V, et al. Ovarian hyperstimulation syndrome (OHSS): diagnosis and management. Intens Care Med 2000; 26: 631.Google Scholar
Nelson, SM. Prevention and management of ovarian hyperstimulation syndrome. Thromb Res 2017; 151: S61.Google Scholar
Tassone, M, Kuhn, R, Talbot, JM. Ovarian hyperstimulation syndrome. Aust NZ J Obstet Gynaecol 1997; 37: 5.Google Scholar
Williamson, K, Mushambi, MC. Ovarian hyperstimulation syndrome. Br J Anaesth 1994; 3: 731.Google Scholar

Bibliography

Honarmand, K, Rafay, H, Le, J, et al. A systematic review of risk factors for sleep disruption in critically ill adults. Crit Care Med 2020; 48: 1066.Google Scholar

Bibliography

Becker, C. Diseases of calcium metabolism and metabolic bone disease. In: Scientific American Medicine. Endocrinology & Metabolism. Hamilton: Dekker Medicine. 2020.Google Scholar
Singer, FR. Clinical efficacy of salmon calcitonin in Paget’s disease of bone. Calcif Tissue Int 1991; 49 (suppl. 2): S7.Google Scholar
Singer, FR. Paget’s disease of bone. In: De Groot, LJ, ed. Endocrinology. Philadelphia. 1995; p 1259.Google Scholar
Singer, FR, Minoofar, PN. Bisphosphonates in the treatment of disorders of mineral metabolism. Adv Endocrinol Metab 1995; 6: 259.Google Scholar
Walsh, JP. Paget’s disease of bone. Med J Aust 2004; 181: 262.Google Scholar

Bibliography

Boeck, L, Graf, R, Eggimann, P, et al. Pancreatic stone protein: a marker of organ failure and outcome in ventilator-associated pneumonia. Chest 2011; 140: 925.Google Scholar
De Waele, JJ. Pancreatic stone protein for predicting outcome in peritonitis: limitations and challenges. Crit Care Med 2013; 41: 1150.Google Scholar
Graf, R, Schiesser, M, Reding, T, et al. Exocrine meets endocrine: pancreatic stone protein and regenerating protein – two sides of the same coin. J Surg Res 2006; 133: 113.Google Scholar

Bibliography

Baker, S. Diagnosis and management of acute pancreatitis. Crit Care Resusc 2004; 6: 17.Google Scholar
Baron, TH, Morgan, DE. Acute necrotizing pancreatitis. N Engl J Med 1999; 340: 1412.Google Scholar
Basnayake, C, Ratnam, D. Blood tests for acute pancreatitis. Aust Prescriber 2015; 38: 128.Google Scholar
Berger, HG, Matsuno, S, Cameron, JL, eds. Diseases of the Pancreas. Berlin: Springer. 2008.Google Scholar
Chowdhury, RS, Forsmark, CE. Review article: pancreatic function testing. Aliment Pharmacol Ther 2003; 17: 733.Google Scholar
Dellinger, EP, Tellado, JM, Soto, NE, et al. Early antibiotic treatment for severe acute necrotizing pancreatitis. Ann Surg 2007; 245: 674.Google Scholar
Dervenis, C, Bassi, C. Evidence-based assessment of severity and management of acute pancreatitis. Br J Surg 2000; 87: 257.Google Scholar
Entock, FC, Chong, P, Menezes, N, et al. A randomized study of early nasogastric versus nasojejunal feeding in severe acute pancreatitis. Am J Gastroenterol 2005; 100: 432.Google Scholar
Go, VLW, et al., eds. The Pancreas: Biology, Pathobiology and Diseases. New York: Raven Press. 1993.Google Scholar
Green, PHR, Tall, AR. Drugs, alcohol and malabsorption. Am J Med 1979; 67: 1066.Google Scholar
Hasibeder, WR, Torgersen, C, Rieger, M, et al. Critical care of the patient with acute pancreatitis. Anaesth Intens Care 2009; 37: 190.Google Scholar
Howes, N, Greenhall, W, Stocken, DD, et al. Cationic trypsinogen mutations and pancreatitis. Gastroenterol Clin North Am 2004; 33: 767.Google Scholar
Layer, P, Yamamoto, H, Kalthoff, L, et al. The different courses of early- and late-onset idiopathic and alcoholic chronic pancreatitis. Gastroenterology 1994; 107: 1481.Google Scholar
Malledant, Y, Malbrain, MLNG, Reuter, DA. What’s new in the management of severe acute pancreatitis. Intens Care Med 2015; 41: 1957.Google Scholar
Marshall, JB. Acute pancreatitis: a review with an emphasis on new developments. Arch Intern Med 1993; 153: 1185.Google Scholar
Marshall, JC. Surgical approaches to the management of acute severe necrotizing pancreatitis. Curr Opin Crit Care 1999; 5: 159.Google Scholar
Mitchell, RM, Byrne, M, Baillie, J. Pancreatitis. Lancet 2003; 361: 1447.Google Scholar
Nathens, AB, Curtis, JR, Beale, RJ, et al. Management of the critically ill patient with severe acute pancreatitis. Crit Care Med 2004; 32: 2524.Google Scholar
Nesvaderani, M, Eslick, GD, Cox, MR. Acute pancreatitis: update on management. Med J Aust 2016; 202: 420.Google Scholar
Pastor, CM, Matthay, MA, Frossard, L-L. Pancreatitis-associated acute lung injury: new insights. Chest 2003; 124: 2341.Google Scholar
Rotstein, OD. Surgical approach #1 to severe necrotizing pancreatitis. Curr Opin Crit Care 1999; 5: 160.Google Scholar
Sheth, S, Ketwaroo, G, Freedman, S. Diseases of the pancreas. In: Scientific American Medicine. Gastroenterology. Hamilton: Dekker Medicine. 2020.Google Scholar
Shields, CJ, Winter, DC, Redmond, HP. Lung injury in acute pancreatitis: mechanisms, prevention, and therapy. Curr Opin Crit Care 2002; 8: 158.Google Scholar
Starr, MG. Surgical approach #2 to severe necrotizing pancreatitis. Curr Opin Crit Care 1999; 5: 162.Google Scholar
Steer, ML, Meldolesi, J. The cell biology of experimental pancreatitis. N Engl J Med 1987; 316: 144.Google Scholar
Steer, ML, Waxman, I, Freedman, S. Chronic pancreatitis. N Engl J Med 1995; 332: 1482.Google Scholar
Tattersall, SJN, Apte, MV, Wilson, JS. A fire inside: current concepts in chronic pancreatitis. Intern Med J 2008; 38: 592.Google Scholar
Wyncoll, DL. The management of severe acute necrotizing pancreatitis: an evidence-based review of the literature. Intens Care Med 1999; 25: 146.Google Scholar
Yousaf, M, McCallion, K, Diamond, T. Management of severe acute pancreatitis. Br J Surg 2003; 90: 407.Google Scholar

Bibliography

Lyons, MK, Meyer, FB. Cerebrospinal fluid physiology and the management of increased intracranial pressure. Mayo Clin Proc 1990; 65: 684.Google Scholar

Bibliography

Im, JG, Chang, KH, Reeder, MM. Current diagnostic imaging of pulmonary and cerebral paragonimiasis, with pathological correlation. Semin Roentgenol 1997; 32:301.Google Scholar
Pachucki, CT, Levandowski, RA, Brown, VA, et al. American paragonimiasis treated with praziquantel. N Engl J Med 1984; 311: 582.Google Scholar

Bibliography

Lehane, L. Paralytic shellfish poisoning. Med J Aust 2001; 175: 29.Google Scholar

Bibliography

Cascino, TL. Neurologic complications of systemic cancer. Med Clin North Am 1993; 77: 265.Google Scholar
Clamon, GH, Evans, WK, Shepherd, FA, et al. Myasthenic syndrome and small cell cancer of the lung: variable response to antineoplastic therapy. Arch Intern Med 1984; 144: 999.Google Scholar
Cohen, PR, Kurzrock, R. Sweet’s syndrome and malignancy. Am J Med 1987; 82: 1220.Google Scholar
Cohen, PR, Talpaz, M, Kurzrock, R. Malignancy-associated Sweet’s syndrome: review of the world literature. J Clin Oncol 1988; 6: 1887.Google Scholar
Cronin, RE, Kaehny, WD, Miller, PD, et al. Renal cell carcinoma: unusual systemic manifestations. Medicine 1976; 55: 291.Google Scholar
Hall, TC, ed. Paraneoplastic syndromes. Ann NY Acad Sci 1974; 230: 1.Google Scholar
Jemec, GBE. Hypertrichosis lanuginosa acquisita. Arch Dermatol 1986; 122: 805.Google Scholar
Mallette, LE. The parathyroid polyhormones: new concepts in the spectrum of peptide hormone action. Endocr Rev 1991; 12: 110.Google Scholar
McLean, DI. Cutaneous paraneoplastic syndromes. Arch Dermatol 1986; 122: 765.Google Scholar
O’Neill, JH, Murray, NM, Newsom-Davis, J. The Lambert-Eaton myasthenic syndrome. Brain 1988; 111: 577.Google Scholar
Peterson, K, Rosenblum, MK, Kotanides, H, et al. Paraneoplastic cerebellar degeneration. Neurology 1992; 42: 1931.Google Scholar
Ruther, U, Nunnensiek, C, Bokemeyer, C, eds. Paraneoplastic Syndromes. Basel: Karger. 1998.Google Scholar
Wolff, K, Goldsmith, L, Katz, S, et al., eds. Fitzpatrick’s Dermatology in General Medicine. 7th edition. New York: McGraw-Hill. 2007.Google Scholar

Bibliography

Ariyama, J, Shimada, H, Aono, M, et al. Propofol improves recovery from paraquat acute toxicity in vitro and in vivo. Intens Care Med 2000; 26: 981.Google Scholar
Gawarammana, IB, Buckley, NA. Medical management of paraquat ingestion. Br J Clin Pharmacol 2011; 72: 745.Google Scholar
Lin, JL, Lin-Tan, DT, Chen, KH, et al. Repeated pulse of methylprednisolone and cyclophosphamide with continuous dexamethasone therapy for patients with severe paraquat poisoning. Crit Care Med 2006; 34: 368.Google Scholar
Ng, LL, Naik, RB, Polak, A. Paraquat ingestion with methaemoglobinaemia treated with methylene blue. BMJ 1982; 284: 1445.Google Scholar
Proudfoot, AT, Stewart, MS, Levitt, T, et al. Paraquat poisoning: significance of plasma paraquat concentrations. Lancet 1979; 2: 330.Google Scholar
Senarathna, L, Eddleston, M, Wilks, MF, et al. Prediction of outcome after paraquat poisoning by measurement of paraquat concentration. QJM 2009; 102: 251.Google Scholar
Suzuki, K, Takasu, N, Arita, S, et al. Evaluation of severity indexes of patients with paraquat poisoning. Hum Exp Toxicol 1991; 10: 21.Google Scholar
Vale, JA, Meredith, TJ, Buckley, BM. Paraquat poisoning: clinical features and immediate general management. Hum Toxicol 1987; 6: 41.Google Scholar

Bibliography

Elston, D. Infestations. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Khemasuwan, D, Farver, CF, Mehta, AC. Parasites of the airways. Chest 2014; 145: 883.Google Scholar

Bibliography

Editorial. Paroxysmal nocturnal haemoglobinuria. Lancet 1992; 339: 395.Google Scholar
Henry, DH, Spivak, JL. Clinical use of erythropoietin. Curr Opinion Hematol 1995; 2: 118.Google Scholar
Hillmen, P, Lewis, SM, Bessler, M, et al. Natural history of paroxysmal nocturnal hemoglobinuria. N Engl J Med 1995; 333: 1253.Google Scholar
Krantz, SB. Erythropoietin. Blood 1991; 77: 419.Google Scholar
Young, NS, Meyers, G, Schrezenmeier, H, et al. The management of paroxysmal nocturnal hemoglobinuria: recent advances in diagnosis and treatment and new hope for patients. Semin Hematol 2009; 46: S1.Google Scholar

Bibliography

Eisinger, RS, Islam, S. Caring for people with untreated pectus excavatum. Chest 2020; 157: 590.Google Scholar
Fonkalsrud, EW, Dunn, JC, Atkinson, JB. Repair of pectus excavatum deformities: 30 years of experience in 375 patients. Ann Surg 2000; 231: 443.Google Scholar

Bibliography

Bondeson, J. Phthiriasis: the riddle of the lousy disease. J R Soc Med 1998; 91: 328.Google Scholar
Elston, D. Infestations. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Usha, V, Gopalakrishnan Nair, TV. A comparative study of oral ivermectin and topical permethrin cream in the treatment of scabies. J Am Acad Dermatol 2000: 42: 236.Google Scholar

Bibliography

Ahmed, AR, Spiegelman, Z, Cavacini, LA, et al. Treatment of pemphigus vulgaris with rituximab and intravenous immune globulin. New Engl J Med 2006; 355: 1772.Google Scholar
Bystryn, JC, Jiao, D, Natow, S. Treatment of pemphigus with intravenous immunoglobulin. J Am Acad Dermatol 2002; 47: 358.Google Scholar
Canizares, MJ, Smith, DI, Conners, MS, et al. Successful treatment of mucous membrane pemphigoid with etanercept in 3 patients. Arch Dermatol 2006; 142: 1457.Google Scholar
Jolles, S, Hughes, J, Whittaker, S. Dermatological uses of high-dose intravenous immunoglobulin. Arch Dermatol 1998; 134: 80.Google Scholar
Korman, N. Bullous pemphigoid. J Am Acad Dermatol. 1987; 21: 1089.Google Scholar
Provost, TT. Pemphigus. N Engl J Med 1982; 306: 1224.Google Scholar
Stanley, JR, Amagai, M. Pemphigus, bullous impetigo and staphylococcal scalded skin syndrome. N Engl J Med 2006; 355: 1800.Google Scholar
Turner, MS, Sutton, D, Sauder, DN. The use of plasmapheresis and immunosuppression in the treatment of pemphigus vulgaris. J Am Acad Dermatol 2000; 43: 1058.Google Scholar
Wolff, K, Goldsmith, L, Katz, S, et al., eds. Fitzpatrick’s Dermatology in General Medicine. 7th edition. New York: McGraw-Hill. 2007.Google Scholar

Bibliography

Adler, Y, Charron, P, Imazio, M, et al. Guidelines for the diagnosis and management of pericardial disease. Eur heart J 2015; 36: 2921.Google Scholar
Chiabrando, JG, Bonaventura, A, Vecchie, A, et al. Management of acute and recurrent pericarditis. JACC State-of-the-Art Review. J Am Coll Cardiol 2020; 75: 76.Google Scholar
Imazio, M, Gaita, F, LeWinter, M. Evaluation and treatment of pericarditis: a systematic review. JAMA 2015; 314: 1498.Google Scholar
Lazaros, G, Vlachopoulos, C. Acute pericarditis clinical features and outcome: an update on the latest evidence. Chest 2020; 158: 2262.Google Scholar

Bibliography

Griggs, R, Ptacek, L. The periodic paralysis. Hosp Pract 1992; 27: 123.Google Scholar
Knochel, J. Neuromuscular manifestations of electrolyte disorders. Am J Med 1982; 72: 521.Google Scholar

Bibliography

Pruthi, RK, Tefferi, A. Pernicious anemia revisited. Mayo Clin Proc 1994; 69: 144.Google Scholar
Romain, M, Sviri, S, Linton, DM, et al. The role of vitamin B12 in the critically ill – a review. Anaesth Intens Care 2016; 44: 447.Google Scholar
Wald, NJ, Bower, C. Folic acid, pernicious anaemia, and prevention of neural tube defects. Lancet 1994; 343: 307.Google Scholar

Bibliography

Bagshaw, SM, Stelfox, HT, Iwashyna, TJ, et al. Timing of onset of persistent critical illness: a multi-centre retrospective cohort study. Intens Care Med 2019; 44: 2134.Google Scholar
Darvall, JN, Boonstra, T, Norman, J, et al. Persistent critical illness: baseline characteristics, intensive care course, and cause of death. Crit Care Resusc 2019; 21: 110.Google Scholar
Iwashyna, TJ, Hodgson, CL, Pilcher, D, et al. Towards defining persistent critical illness and other varieties of chronic critical illness. Crit Care Resusc 2015; 17: 215.Google Scholar
Nelson, JE, Cox, CE, Hope, AA, et al. Chronic critical illness. Am J Respir Crit Care Med 2010; 182: 446.Google Scholar
Sakusic, A, Gajic, O. Chronic critical illness: unintended consequence of intensive care medicine. Lancet Respir Med 2016; 4: 531.Google Scholar
Viglianti, EM, Bagshaw, SM, Bellomo, R, et al. Hospital-level variation in the development of persistent critical illness. Intens Care Med 2020; 46: 1567.Google Scholar

Bibliography

Alderazi, Y, Yeh, MW, Robinson, BG, et al. Phaeochromocytoma: current concepts. Med J Aust 2005; 183: 201.Google Scholar
Bravo, EL, Gifford, RW. Pheochromocytoma: diagnosis, localization and management. N Engl J Med 1984; 311: 1298.Google Scholar
Bravo, EL, Tagle, R. Pheochromocytoma: state-of-the-art and future prospects. Endocr Rev 2003; 24: 539.Google Scholar
Daly, PA, Landsberg, L. Phaeochromocytoma: diagnosis and management. Bailliere’s Clin Endocrinol Metab 1992; 6: 143.Google Scholar
Editorial. The function of adrenaline. Lancet 1985; 1: 561.Google Scholar
Golub, MS, Tuck, ML. Diagnostic and therapeutic strategies in pheochromocytoma. Endocrinologist 1992; 2: 101.Google Scholar
Lenders, JW, Pacak, K, Walther, MM, et al. Biochemical diagnosis of pheochromocytoma: which test is best? JAMA 2002; 287: 1427.Google Scholar
Naranjo, J, Dodd, S, Martin, YN. Perioperative management of pheochromocytoma. J Cardiothorac Vasc Anesth 2017; 31: 1427.Google Scholar
Sutton, MG, Sheps, SG, Lie, JT. Prevalence of clinically unsuspected pheochromocytoma. Mayo Clin Proc 1981; 56: 354.Google Scholar
Whalen, RK, Althausen, AF, Daniels, GH. Extra-adrenal pheochromocytoma. J Urol 1992; 147: 1.Google Scholar

Bibliography

Grimes, PE. Melasma: etiologic and therapeutic considerations. Arch Dermatol 1995; 131: 1453.Google Scholar
Grimes, PE. Disorders of pigmentation. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Hendrix, JD, Greer, KE. Cutaneous hyperpigmentation caused by systemic drugs. Int J Dermatol 1992; 31: 458.Google Scholar
Orlow, SJ. Albinism: an update. Semin Cutan Med Surg 1997; 16: 24.Google Scholar
Wolff, K, Goldsmith, L, Katz, S, et al., eds. Fitzpatrick’s Dermatology in General Medicine. 7th edition. New York: McGraw-Hill. 2007.Google Scholar

Bibliography

Masuda, A, Hirota, K, Satone, T, et al. Pink urine during propofol anesthesia. Anesth Analg 1996; 83: 666.Google Scholar

Bibliography

Baylis, PH. Posterior pituitary function in health and disease. Clin Endocrinol Metab 1983; 12: 747.Google Scholar
Bills, DC, Meyer, FB, Laws, ER, et al. A retrospective analysis of pituitary apoplexy. Neurosurgery 1993; 33: 602.Google Scholar
Boonen, E, Van den Berghe, G. Understanding the HPA response to critical illness: novel insights with clinical implications. Intens Care Med 2015; 41: 131.Google Scholar
Burke, CW. The pituitary megatest: outdated? Clin Endocrinol 1992; 36: 133.Google Scholar
Chrousos, GP. The hypothalamic-pituitary-adrenal axis and immune-mediated inflammation. N Engl J Med 1995; 332: 1351.Google Scholar
Dash, RJ, Gupta, V, Suri, S. Sheehan’s syndrome. Aust NZ J Med 1993; 23: 26.Google Scholar
Editorial. Corticosteroids and hypothalamic-pituitary-adrenocortical function. BMJ 1980; 280: 813.Google Scholar
Elster, AD. Modern imaging of the pituitary. Radiology 1993; 187: 1.Google Scholar
Hoffman, DM, Ho, KKY. Growth hormone deficiency in adults: to treat or not to treat. Aust NZ J Med 1999; 29: 342.Google Scholar
Holland, J, Bakker, J, Feelders, RA. What’s new on the HPA axis? Intens Care Med 2015; 41: 1477.Google Scholar
Hurley, DM, Ho, KKY. Pituitary disease in adults. Med J Aust 2004; 180: 419.Google Scholar
Loriaux, DL. The polyendocrine deficiency syndromes. N Engl J Med 1985; 312: 1568.Google Scholar
Magner, JA. Thyroid-stimulating hormone: biosynthesis, cell biology, and bioactivity. Endocrinol Rev 1990; 11: 354.Google Scholar
Melmed, S. Pituitary. In: Scientific American Medicine. Endocrinology & Metabolism. Hamilton: Dekker Medicine. 2020.Google Scholar
Molitch, ME, Russell, EJ. The pituitary ‘incidentaloma’. Ann Intern Med 1990; 112: 925.Google Scholar
Robertson, GL. Physiology of ADH secretion. Kidney Int 1987; 32 (suppl. 21): S20.Google Scholar
Russell, JA, Walley, KR, Singer, J, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med 2008; 358: 877.Google Scholar
Sharshar, T, Carlier, R, Blanchard, A, et al. Depletion of neurohypophyseal content of vasopressin in septic shock. Crit Care Med 2002; 30: 497.Google Scholar
Shupnik, MA, Ridgway, EC, Chin, WW. Molecular biology of thyrotropin. Endocr Rev 1989; 10: 459.Google Scholar
Vance, ML. Hypopituitarism. N Engl J Med 1994; 330: 1651.Google Scholar
Van den Berghe, G, de Zegher, F. Anterior pituitary function during critical illness and dopamine treatment. Crit Care Med 1996; 24: 1580.Google Scholar
Vokes, TJ, Robertson, GL. Disorders of antidiuretic hormone. Endocrinol Metab Clin North Am 1988; 17: 281.Google Scholar

Bibliography

Butler, T. A clinical study of bubonic plague: observations of the 1970 Vietnam epidemic with emphasis on coagulation studies, skin histology and electrocardiograms. Am J Med 1972; 53: 268.Google Scholar
Inglesby, TV, Dennis, DT, Henderson, DA, et al. Plague as a biological weapon: medical and public health management. JAMA 2000; 283: 2281.Google Scholar
Liles, WC. Infections due to brucella, francisella, yersinia pestis, and bartonella. In: Scientific American Medicine. Infectious Disease. Hamilton: Dekker Medicine. 2020.Google Scholar
Von Reyn, CF, Weber, NS, Tempest, B, et al. Epidemiologic and clinical features of an outbreak of bubonic plague in New Mexico. J Infect Dis 1977; 136: 489.Google Scholar
Whitby, M, Ruff, TA, Street, AC, et al. Biological agents as weapons 2: anthrax and plague. Med J Aust 2002; 176: 605.Google Scholar

Bibliography

Couriel, D, Weinstein, R. Complications of therapeutic plasma exchange: a recent assessment. J Clin Apheresis 1994; 9: 1.Google Scholar
Madore, F. Plasmapheresis. In: Scientific American Medicine. Nephrology. Hamilton: Dekker Medicine. 2020.Google Scholar
Reeves, HM, Winters, JL. The mechanisms of action of plasma exchange. Br J Haematol 2014; 164: 342.Google Scholar
Reimann, PM, Mason, PD. Plasmapheresis: technique and complications. Intens Care Med 1990; 16: 3.Google Scholar
Rimmer, E, Houston, BL, Kumar, A, et al. The efficacy and safety of plasma exchange in patients with sepsis and septic shock: a systematic review and meta-analysis. Crit Care 2014; 18: 699.Google Scholar

Bibliography

Cattaneo, M. Inherited platelet-based bleeding disorders. J Thromb Haemost 2003; 1: 1628.Google Scholar
Desborough, MJR, Oakland, KA, Landon, G, et al. Desmopressin for treatment of platelet dysfunction and reversal of antiplatelet agents: a systematic review and meta-analysis of randomized controlled trials. J Thromb Haemost 2017; 15: 263.Google Scholar
Deykin, D. Uremic bleeding. Kidney Int 1983; 24: 698.Google Scholar
Ferrara, JLM. The febrile platelet transfusion reaction: a cytokine shower. Transfusion 1995; 35: 89.Google Scholar
George, JN, Shattil, SJ. The clinical importance of acquired abnormalities of platelet function. N Engl J Med 1991; 324: 27.Google Scholar
Hankey, GJ, Eikelboom, JW. Antiplatelet drugs. Med J Aust 2003; 178: 568.Google Scholar
Lacoste, L, Hung, J, Lam, JY. Acute and delayed antithrombotic effects of alcohol in humans. Am J Cardiol 2001; 87: 82.Google Scholar
Leung, LLK, Zehnder, JL. Platelet disorders. In: Scientific American Medicine. Hematology. Hamilton: Dekker Medicine. 2020.Google Scholar
Marder, VJ, Aird, WC, Bennett, JS, et al., eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. 6th edition. Philadelphia: Lippincott Williams & Wilkins. 2012.Google Scholar
Nurden, AT, Nurden, P. Inherited disorders of platelet function: selected updates. J Thromb Haemost 2015; 13: S2.Google Scholar
Pigozzi, L, Aron, JP, Ball, J, et al. Understanding platelet dysfunction in sepsis. Intens Care Med 2016; 42: 583.Google Scholar
Rice, TW, Wheeler, AP. Coagulopathy in critically ill patient. Part 1: platelet disorders. Chest 2009; 136: 1622.Google Scholar
Sattler, FR, Weitekamp, MR, Ballard, JO. Potential for bleeding with the new beta-lactam antibiotics. Ann Intern Med 1986; 105: 924.Google Scholar
Schafer, AI. Bleeding and thrombosis in the myeloproliferative disorders. Blood 1984; 64: 1.Google Scholar
Yang, Z, Stulz, P, von Segesser, L, et al. Different interactions of platelets with arterial and venous coronary bypass vessels. Lancet 1991; 337: 939.Google Scholar

Bibliography

Bain, BJ. Ethnic and sex differences in the total and differential white cell count and platelet count. J Clin Pathol 1996; 49: 664.Google Scholar
Bombace, NM, Holmes, CE. The platelet contribution to cancer progression. J Thromb Haemost 2011; 9: 237.Google Scholar
Cognasse, F, Garraud, O, Pozzetto, B, et al. How can non-nucleated platelets be so smart? J Thromb Haemost 2016; 14: 794.Google Scholar
Handtke, S, Thiele, T. Large and small platelets — (when) do they differ? J Thromb Haemost 20020; 18: 1256.Google Scholar
Hoylaerts, MF, Vanassche, T, Verhamme, P. Bacterial killing by platelets; making sense of (H)IT. J Thromb Haemost 2018; 16: 1182.Google Scholar
Izzi, B, Bonaccio, M, De Gaetano, G, et al. Learning by counting blood platelets in population studies: survey and perspective a long way after Bizzozero. J Thromb Haemost 2018; 16: 1711.Google Scholar
Jurk, K, Kehrel, BE. Platelets: physiology and biochemistry. Semin Thromb Hemost 2005; 31: 381.Google Scholar
Koenen, RR. The prowess of platelets in immunity and inflammation. Thromb Haemost 2016; 116: 605.Google Scholar
Koupenova, M, Freedman, JE. Platelets: the unsung hero in the immune response. J Thromb Haemost 2015; 13: 268.Google Scholar
Pigozzi, L, Aron, JP, Ball, J, et al. Understanding platelet dysfunction in sepsis. Intens Care Med 2016; 42: 583.Google Scholar
Smyth, SS, McEver, RP, Weyrich, AS, et al. Platelet functions beyond hemostasis. J Thromb Haemost 2009; 7: 1759.Google Scholar

Bibliography

Agrawal, A, Palkar, A, Talwar, A. The multiple dimensions of platypnea-orthodeoxia syndrome: a review. Respir Med 2017; 129: 31.Google Scholar

Bibliography

Davignon, J. Beneficial cardiovascular pleiotropic effects of statins. Circulation 2004; 109: 39.Google Scholar

Bibliography

Belani, CP, ed. International symposium on thoracic malignancies. Chest 1998; 113 (suppl.): 1S.Google Scholar
Cagle, PT, Allen, TC. Pathology of the pleura: what the pulmonologists need to know. Respirolory 2011; 16: 430.Google Scholar
Feller-Kopman, D, Light, R. Pleural disease. N Engl J Med 2018; 378: 1754.Google Scholar
Lerner, AD, Feller-Kopman, D. Disorders of the pleura, mediastinum, and hilum. In: Scientific American Medicine. Pulmonary & Critical Care Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Matin, TN, Gleeson, FV. Interventional radiology of pleural diseases. Respirology 2011; 16: 419.Google Scholar
Muller, NL. Imaging of the pleura. Radiology 1993; 186: 297.Google Scholar
Porcel, JM. Pearls and myths in pleural fluid analysis. Respirology 2011; 16: 44.Google Scholar
Sahn, SA. The pleura. Am Rev Respir Dis 1988; 138: 184.Google Scholar

Bibliography

Alexandrakis, MG, Passam, FH, Kyriakou, DS, et al. Pleural effusions in hematologic malignancies. Chest 2004; 125: 1546.Google Scholar
Alfageme, I, Munoz, F, Pena, N, et al. Empyema of the thorax in adults: etiology, microbiologic findings, and management. Chest 1993; 103: 839.Google Scholar
Bartter, T, Santarelli, R, Akers, SM, et al. The evaluation of pleural effusion. Chest 1994; 106: 1209.Google Scholar
Bates, D, Yang, N, Bailey, M, et al. Prevalence, characteristics, drainage and outcome of radiologically diagnosed pleural effusions in critically ill patients. Crit Care Resusc 2020; 22: 45.Google Scholar
Brogi, E, Gargani, L, Bignami, E, et al. Thoracic ultrasound for pleural effusion in the intensive care unit: a narrative review from diagnosis to treatment. Crit Care 2017; 21: 325.Google Scholar
Cagle, PT, Allen, TC. Pathology of the pleura: what the pulmonologists need to know. Respirolory 2011; 16: 430.Google Scholar
Cerfolio, RJ, Allen, MS, Deschamps, C, et al. Postoperative chylothorax. J Thor Cardiovasc Surg 1996; 112: 1361.Google Scholar
Gunnels, J. Perplexing pleural effusions. Chest 1978; 74: 390.Google Scholar
Jamal, S, Maurer, JR. Pulmonary disease and the menstrual cycle. Pulmonary Perspectives 1994; 11(3): 3.Google Scholar
Joseph, J, Sahn, SA. Thoracic endometriosis syndrome: new observations from an analysis of 110 cases. Am J Med 1996; 100: 164.Google Scholar
Lerner, AD, Feller-Kopman, D. Disorders of the pleura, mediastinum, and hilum. In: Scientific American Medicine. Pulmonary & Critical Care Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Light, RW. Pleural effusions. Med Clin North Am 2011; 95: 1055.Google Scholar
Light, RW, MacGregor, MI, Luchsinger, PC, et al. Pleural effusions: the diagnostic separation of transudates and exudates. Ann Intern Med 1972; 77: 507.Google Scholar
Lynch, TJ. Management of malignant pleural effusions. Chest 1993; 103 (suppl.): S385.Google Scholar
Martinez, FJ, Villanueva, AG, Pickering, R, et al. Spontaneous hemothorax. Medicine 1992; 71: 354.Google Scholar
Matin, TN, Gleeson, FV. Interventional radiology of pleural diseases. Respirology 2011; 16: 419.Google Scholar
Muller, NL. Imaging of the pleura. Radiology 1993; 186: 297.Google Scholar
Porcel, JM. Pearls and myths in pleural fluid analysis. Respirology 2011; 16: 44.Google Scholar
Romero, S, Candela, A, Martin, C, et al. Evaluation of different criteria for the separation of pleural transudates from exudates. Chest 1993; 104: 399.Google Scholar
Ryu, JH, Tomassetti, S, Maldonado, F. Update on uncommon pleural effusions. Respirology 2011; 16: 238.Google Scholar
Sahn, SA. The pleura. Am Rev Respir Dis 1988; 138: 184.Google Scholar
Sahn, SA. Management of complicated parapneumonic effusions. Am Rev Respir Dis 1993; 148: 813.Google Scholar
Shiel, WC, Prete, PE. Pleuropulmonary manifestations of rheumatoid arthritis. Semin Arthritis Rheum 1984; 13: 235.Google Scholar
Taylor, JR, Ryu, J, Colby, TV, et al. Lymphangioleiomyomatosis. N Engl J Med 1990; 323: 1254.Google Scholar
Valentine, VG, Raffin, TA. The management of chylothorax. Chest 1992; 102: 586.Google Scholar
Vaz, MA, Marchi, E, Vargas, FS. Cholesterol in the separation of transudates and exudates. Curr Opin Pulm Med 2001; 7: 183.Google Scholar
Walker-Renard, PB, Vaughan, LM, Sahn, SA. Chemical pleurodesis for malignant pleural effusions. Ann Intern Med 1994; 120: 56.Google Scholar

Bibliography

Cagle, PT, Allen, TC. Pathology of the pleura: what the pulmonologists need to know. Respirolory 2011; 16: 430.Google Scholar
Lerner, AD, Feller-Kopman, D. Disorders of the pleura, mediastinum, and hilum. In: Scientific American Medicine. Pulmonary & Critical Care Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Matin, TN, Gleeson, FV. Interventional radiology of pleural diseases. Respirology 2011; 16: 419.Google Scholar
Muller, NL. Imaging of the pleura. Radiology 1993; 186: 297.Google Scholar
Sahn, SA. The pleura. Am Rev Respir Dis 1988; 138: 184.Google Scholar

Bibliography

Garland, SM, O’Reilly, MA. The risks and benefits of antimicrobial therapy in pregnancy. Drug Safety 1995; 13: 188.Google Scholar
Goodrum, LA. Pneumonia in pregnancy. Semin Perinatol 1997; 21: 276.Google Scholar
Rigby, FB, Pastorek, JG. Pneumonia during pregnancy. Clin Obstet Gynecol 1996; 39: 107.Google Scholar
Riley, L. Pneumonia and tuberculosis in pregnancy. Infect Dis Clin North Am 1997; 11: 119.Google Scholar

Bibliography

Alifano, M, Roth, T, Broet, SC, et al. Catamenial pneumothorax: a prospective study. Chest 2003; 124: 1004.Google Scholar
Andrivet, P, Djedaini, K, Teboul, JL, et al. Spontaneous pneumothorax: comparison of thoracic drainage vs immediate or delayed needle aspiration. Chest 1995; 108: 335.Google Scholar
Baumann, MH. Pneumothorax and air travel – editorial. Chest 2009; 136: 655.Google Scholar
Baumann, MH, Strange, C. Treatment of spontaneous pneumothorax. A more aggressive approach? Chest 1997; 112: 789.Google Scholar
Baumann, MH, Strange, C. The clinician’s perspective on pneumothorax management. Chest 1997; 112: 822.Google Scholar
Baumann, MH, Strange, C, Heffner, JE, et al. Management of spontaneous pneumothorax: an American College of Chest Physicians Delphi Consensus Statement. Chest 2001; 119: 590.Google Scholar
Chen, K-Y, Jerng, J-S, Liao, W-Y, et al. Pneumothorax in the ICU: patient outcomes and prognostic factors. Chest 2002; 122: 678.Google Scholar
Dugan, KC, Laxmanan, B, Murgu, S, et al. Management of persistent air leaks. Chest 2017; 152: 417.Google Scholar
Grotberg, JC, Hyzy, RC, De Cardenas, J, et al. Bronchopleural fistula in the mechanically ventilated patient: a concise review. Crit Care Med 2021; 49: 292.Google Scholar
Haynes, D, Baumann, MH. Pleural controversy: aetiology of pneumothorax. Respirology 2011; 16: 604.Google Scholar
Hazelrigg, SR. Secondary spontaneous pneumothorax: catamenial pneumothorax. Chest 2003; 124: 781.Google Scholar
Henry, M, Arnold, T, Harvey, J, et al. BTS guidelines for the management of spontaneous pneumothorax. Thorax 2003; 58 (suppl.): ii39.Google Scholar
Legras, A, Mansuet-Lupo, A, Rousset-Jablonski, C, et al. Pneumothorax in women of child-bearing age. Chest 2014; 145: 354.Google Scholar
Lerner, AD, Feller-Kopman, D. Disorders of the pleura, mediastinum, and hilum. In: Scientific American Medicine. Pulmonary & Critical Care Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Light, RW. Management of spontaneous pneumothorax. Am Rev Respir Dis 1993; 148: 245.Google Scholar
Light, RW. Pleural controversy: optimal chest tube size for drainage. Respirology 2011; 16: 244.Google Scholar
Manaker, S. Circulating endometrial cells: a diagnostic test for distinguishing catamenial from spontaneous pneumothorax. Chest 2020; 157: 245.Google Scholar
Watt, AG. Spontaneous pneumothorax. Med J Aust 1978; 1: 186.Google Scholar
Woodring, JH, Baker, MD, Stark, P. Pneumothorax ex vacuo. Chest 1996; 110: 1102.Google Scholar
Yarmus, L, Feller-Kopman, D. Pneumothorax in the critically ill patient. Chest 2012; 141: 1098.Google Scholar

Bibliography

Alapat, PM, Zimmerman, JL. Toxicology in the critical care unit. Chest 2008; 133: 1006.Google Scholar
Camporesi, EM. Use of hyperbaric oxygen in critical care. In: Lumb, PD, Shoemaker, WC, eds. Critical Care: State of the Art, Chapter 10. Fullerton: Society of Critical Care Medicine. 1990; p 219.Google Scholar
Chiew, AL, Reith, D, Pomerleau, A, et al. Updated guidelines for the management of paracetamol poisoning in Australia and New Zealand. Med J Aust 2020; 212: 175.Google Scholar
Kales, SN, Christiani, DC. Current concepts: acute chemical emergencies. N Engl J Med 2004; 350: 800.Google Scholar
Levine, M, Brooks, DE, Truitt, CA, et al. Toxicology in the ICU: part I, II & III. Chest 2011; 140: 795, 1072 & 1357.Google Scholar
Ling, L, Clark, RF, Erickson, T, et al., eds. Toxicology Secrets. Philadelphia; Hanley & Belfus. 2001.Google Scholar
Mokhlesi, B, Garinella, PS, Joffe, A, et al. Street drug abuse leading to critical illness. Intens Care Med 2004; 30: 1526.Google Scholar
Mokhlesi, B, Leiken, JB, Murray, P, et al. Adult toxicology in critical care: part I: general approach to the intoxicated patient. Chest 2003; 123: 577.Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Olson, KR, ed. Poisoning & Drug Overdose. 7th edition. New York: McGraw-Hill (Appleton & Lange). 2017.Google Scholar
Rosenstock, L, Cullen, M, Brodkin, C, et al., eds. Textbook of Clinical Occupational and Environmental Medicine. 2nd edition. Philadelphia: Saunders. 2004.Google Scholar
Rossoff, IS, ed. Encyclopedia of Clinical Toxicology. Boca Raton: CRC Press. 2002.Google Scholar
Shannon, MW, Borron, SW, Burns, MJ, eds. Haddad and Winchester’s Clinical Management of Poisoning and Drug Overdose. 4th edition. Philadelphia: WB Saunders. 2007.Google Scholar
True, B-L, Dreisbach, RH, eds. Dreisbach’s Handbook of Poisoning. Boca Raton: CRC Press. 2002.Google Scholar
Trujillo, MH, Guerrero, J, Fragachan, C, et al. Pharmacologic antidotes in critical care medicine: a practical guide for drug administration. Crit Care Med 1998; 26: 377.Google Scholar
Wiegand, TJ, Patel, MM, Olson, KR. Management of poisoning and drug overdose. In: Scientific American Medicine. Interdisciplinary Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Zimmerman, JL. Poisonings and overdoses in the intensive care unit: general and specific management issues. Crit Care Med 2003; 31: 2794.Google Scholar

Bibliography

Fine, PE, Griffiths, UK. Global poliomyelitis eradication: status and implications. Lancet 2007; 369: 1321.Google Scholar
Jiang, P, Faase, JA, Toyoda, H, et al. Evidence for emergence of diverse polioviruses from C-cluster coxsachie A viruses and implications for global poliovirus eradication. Proc Natl Acad Sci USA 2007; 104: 9204.Google Scholar
May, M, Durrheim, D, Roberts, JA, et al. The risks of medical complacency towards poliomyelitis. Med J Aust 2020; 213: 61.Google Scholar
Satcher, D. Polio eradication by the year 2000. JAMA 1999; 281: 221.Google Scholar

Bibliography

Albert, DA, Rimon, D, Silverstein, MD. The diagnosis of poyarteritis nodosa. Arthritis Rheum 1988; 31: 1117.Google Scholar

Bibliography

Kidson, W. Polycystic ovary syndrome: a new direction in treatment. Med J Aust 1998; 169: 537.Google Scholar
Lobo, RA, Carmina, E. The importance of diagnosing the polycystic ovary syndrome. Ann Intern Med 2000; 132:989.Google Scholar
Norman, RJ, Wu, R, Stankiewixz, MT. Polycystic ovary syndrome. Med J Aust 2004; 180: 132.Google Scholar
Pal, L, Keefe, K. Polycystic ovary syndrome. In: Scientific American Medicine. Women’s Health. Hamilton: Dekker Medicine. 2020.Google Scholar
Shorakae, S, Boyle, J, Teede, H. Polycystic ovary syndrome: a common hormonal condition with major metabolic sequelae that physicians should know about. Intern Med J 2014; 44: 720.Google Scholar
Teede, HJ, Misso, ML, Deeks, AA, et al. Assessment and management of polycystic ovary syndrome: summary of an evidence-based guideline. Med J Aust 2011; 195 (suppl.): S65.Google Scholar

Bibliography

Berlin, NI. Polycythemia vera: an update. Semin Hematol 1986; 23: 131.Google Scholar
Broudy, VC. The polycythemias. In: Scientific American Medicine. Hematology. Hamilton: Dekker Medicine. 2020.Google Scholar
Campbell, PJ, Green, AR. The myeloproliferative disorders. N Engl J Med 2006; 355: 2452.Google Scholar
Challoner, T, Briggs, C, Rampling, MW, et al. A study of the haematological and haemorrheological consequences of venesection. Br J Haematol 1986; 62: 671.Google Scholar
Editorial. Pseudopolycythaemia. Lancet 1987; 2: 603.Google Scholar
Gareau, R, Audran, M, Barnes, R, et al. Erythropoietin abuse in athletes. Nature 1996; 380: 113.Google Scholar
Golde, DW, Hocking, WG, Koeffler, HP, et al. Polycythemia: mechanisms and management. Ann Intern Med 1981; 95: 71.Google Scholar
Gordeuk, VR, Sergueeva, AI, Miasnikova, GY, et al. Congenital disorder of oxygen sensing: association of the homozygous Chuvash polycythemia VHL mutation with thrombosis and vascular abnormalities but not tumors. Blood 2004; 103: 3924.Google Scholar
Gruppo Italiano Studio Policitemia. Polycythaemia vera. Ann Intern Med 1995; 123: 656.Google Scholar
Hinshelwood, S, Bench, AJ, Green, AR. Pathogenesis of polycythaemia vera. Blood Rev 1997; 11: 224.Google Scholar
Krantz, SB. Erythropoietin. Blood 1991; 77: 419.Google Scholar
Kwaan, HC, ed. The hyperviscosity syndromes. Semin Thromb Hemost 2003; 29: 433.Google Scholar
Noakes, TD. Tainted glory: doping and athletic performance. N Engl J Med 2004; 351: 847.Google Scholar
Schafer, AI. Bleeding and thrombosis in myeloproliferative disorders. Blood 1984; 64: 1.Google Scholar
Tefferi, A. Myelofibrosis with myeloid metaplasia. N Engl J Med 2000; 342: 1255.Google Scholar
Watts, EJ, Lewis, SM. Spurious polycythaemia. Scand J Haematol 1983; 31: 241.Google Scholar

Bibliography

Hamilton, CR, Shelley, WM, Tumulty, PA. Giant cell arteritis: including temporal arteritis and polymyalgia rheumatica. Medicine 1971; 50: 1.Google Scholar
Hunder, GG, Bloch, DA, Michel, BA, et al. The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum 1990; 33: 1122.Google Scholar
Owen, CE, Buchanan, RRC, Hoi, A. Recent advances in polymyalgia rheumatica. Intern Med J 2015; 45: 1102.Google Scholar
Zilko, PJ. Polymyalgia rheumatica and giant cell arteritis. Med J Aust 1996; 165: 438.Google Scholar

Bibliography

Dalakas, MC. Polymyositis, dermatomyositis, and inclusion-body myositis. N Engl J Med 1991; 325: 1487.Google Scholar
Fathi, M, Lundberg, IE. Interstitial lung disease in polymyositis and dermatomyositis. Curr Opin Rheumatol 2005; 17: 701.Google Scholar
Gerami, P, Schope, JM, McDonald, L, et al. A systematic review of adult-onset clinically amyopathic dermatomyositis (dermatomyositis sine myositis): a missing link within the spectrum of the idiopathic inflammatory myopathies. J Am Acad Dermatol 2006; 54: 597.Google Scholar
Jorizzo, JL. Dermatomyositis; practical aspects. Arch Dermatol 2002; 138: 114.Google Scholar
Limaye, VS, Blumbergs, P, Roberts-Thomson, PJ. Idiopathic inflammatory myopathies. Intern Med J 2009; 39: 179.Google Scholar
Marie, I, Hatron, PY, Levesque, H, et al. Influence of age on characteristics of polymyositis and dermatomyositis in adults. Medicine 1999; 78: 139.Google Scholar
Miller, FW. Classification and prognosis of inflammatory muscle disease. Rheum Dis Clin North Am 1994; 20: 811.Google Scholar
Schwarz, MI. The lung in polymyositis. Clin Chest Med 1998; 19: 701.Google Scholar
Sigurgeirsson, B, Lindelof, B, Edhag, O, et al. Risk of cancer in patients with dermatomyositis or polymyositis. N Engl J Med 1992; 326: 363.Google Scholar
Tazelaar, HD, Viggiano, RW, Pickersgill, J, et al. Interstitial lung disease in polymyositis and dermatomyositis: clinical features and prognosis as correlated with histologic findings. Am Rev Resp Dis 1990; 141: 727.Google Scholar

Bibliography

Anderson, KE, Bloomer, JR, Bonkovsky, H, et al. Recommendations for the diagnosis and treatment of the acute porphyrias. Ann Intern Med 2005; 142: 439.Google Scholar
Anderson, KE, Kappas, A. The porphyrias. In: Scientific American Medicine. Endocrinology & Metabolism. Hamilton: Dekker Medicine. 2020.Google Scholar
Brodie, MJ, Moore, MR, Thompson, GG, et al. Pregnancy and the acute porphyrias. Br J Obstet Gynaec 1977; 84: 726.Google Scholar
Grandchamp, B. Acute intermittent porphyria. Semin Liver Dis 1998; 18: 17.Google Scholar
Kauppinen, R, Mustajoki, P. Prognosis of acute porphyria: occurrence of acute attacks, precipitating factors, and associated diseases. Medicine 1992; 71: 1.Google Scholar
Lamon, JM, Bennett, M, Frykholm, BC, et al. Prevention of acute porphyric attacks by intravenous haematin. Lancet 1978; 2: 492.Google Scholar
Moore, MR. Biochemistry of porphyria. Int J Biochem 1993; 25: 1353.Google Scholar
Mustajoki, P, Heinonen, J. General anesthesia in ‘inducible’ porphyrias. Anesthesiology 1980; 53: 15.Google Scholar
Mustajoki, P, Nordman, Y. Early administration of heme arginate for acute porphyric attacks. Arch Intern Med 1993; 153: 2004.Google Scholar
Puy, H, Gouya, L, Deybach, JC. Porphyrias. Lancet 2010; 375: 924.Google Scholar
Ratnaike, S, Blake, D, Campbell, D, et al. Plasma ferritin levels as a guide to the treatment of porphyria cutanea tarda by venesection. Aust J Dermatol 1988; 29: 3.Google Scholar
Yeung Laiwah, AC, Moore, MR, Goldberg, A. Pathogenesis of acute porphyria. Quart J Med 1987; 63: 377.Google Scholar

Bibliography

Arbogast, BW, Taylor, RN. Molecular Mechanisms of Pre-eclampsia. Berlin: Springer-Verlag. 1997.Google Scholar
Brown, MA, Lowe, SA. Current management of pre-eclampsia. Med J Aust 2009; 190: 3.Google Scholar
Bucher, HC, Guyatt, GH, Cook, RJ, et al. Effect of calcium supplementation on pregnancy-induced hypertension and preeclampsia. A meta-analysis of randomised controlled trials. JAMA 1996; 275: 1113.Google Scholar
Chua, S, Redman, CWG. Are prophylactic anticonvulsants required in severe pre-eclampsia? Lancet 1991; 337: 250.Google Scholar
CLASP (Collaborative Low-dose Aspirin Study in Pregnancy) Collaborative Group. CLASP: a randomised trial of low-dose aspirin for the prevention and treatment of pre-eclampsia among 9364 pregnant women. Lancet 1994; 343: 619.Google Scholar
Cunningham, FG, Grant, NF. Prevention of preeclampsia – a reality? N Engl J Med 1989; 321: 606.Google Scholar
Davison, JM, Shiells, EA, Barron, WM, et al. Changes in the metabolic clearance of vasopressin and plasma vasopressinase throughout human pregnancy. J Clin Invest 1989; 83: 1313.Google Scholar
Dekker, GA, Sibai, B. Primary, secondary, and tertiary prevention of pre-eclampsia. Lancet 2001; 357: 209.Google Scholar
Douglas, KA, Redman, CWG. Eclampsia in the United Kingdom. BMJ 1994; 309: 1395.Google Scholar
Durr, JA, Hoggard, JG, Hunt, JM, et al. Diabetes insipidus in pregnancy associated with abnormally high circulating vasopressinase activity. N Engl J Med 1987; 316: 1070.Google Scholar
Editorial. Are ACE inhibitors safe in pregnancy? Lancet 1989; 2: 482.Google Scholar
Gant, NF, Worley, RJ, Everett, RB, et al. Control of vascular responsiveness during human pregnancy. Kidney Int 1980; 18: 253.Google Scholar
Higby, Suiter CR, Phelps, JY, et al. Normal values of urinary albumin and total protein excretion during pregnancy. Am J Obstet Gynecol 1994; 171: 984.Google Scholar
Hod, T, Cerdeira, AS, Karumanchi, SA. Molecular mechanisms of preeclampsia. Cold Spring Harb Perspect Med 2015; 5: a023473.Google Scholar
Ihle, BU, Long, P, Oats, J. Early onset pre-eclampsia: recognition of underlying renal disease. BMJ 1987; 294: 79.Google Scholar
Leone, M, Einav, S. Severe preeclampsia: what’s new in intensive care? Intens Care Med 2015; 41: 1343.Google Scholar
Lucas, MJ, Leveno, KJ, Cunningham, FG. A comparison of magnesium sulfate with phenytoin for the prevention of eclampsia. N Engl J Med 1995; 333: 201.Google Scholar
Magpie Trial Collaborative Group. Do women with pre-eclampsia, and their babies, benefit from magnesium sulphate? The Magpie Trial: a randomized placebo controlled trial. Lancet 2002; 359: 1877.Google Scholar
Martin, JN, Files, FC, Blake, PG. Plasma exchange for preeclampsia: I. Postpartum use for persistently severe preeclampsia with HELLP syndrome. Am J Obstet Gynecol 1990; 162: 126.Google Scholar
Myatt, L, Webster, RP. Vascular biology of preeclampsia. J Thromb Haemost 2009; 7: 375.Google Scholar
Need, JA. Pre-eclampsia in pregnancies by different fathers: immunological studies. BMJ 1975; 1: 548.Google Scholar
Perry, KG, Martin, JN. Abnormal hemostasis and coagulopathy in preeclampsia and eclampsia. Clin Obstet Gynecol 1992; 35: 338.Google Scholar
Redman, C. Platelets and the beginnings of preeclampsia. N Engl J Med 1990; 323: 478.Google Scholar
Redman, CWG, Roberts, JM. Management of pre-eclampsia. Lancet 1993; 341: 1451.Google Scholar
Roberts, J, Taylor, R, Goldfen, A. Clinical and biochemical evidence of endothelial cell dysfunction in pregnancy syndrome eclampsia. Am J Hypertens 1991; 4: 700.Google Scholar
Sibai, BM, El-Nazer, A, Gonzalez-Ruiz, A. Severe preeclampsia in young primigravid women: subsequent pregnancy outcome and remote prognosis. Am J Obstet Gynecol 1986; 155: 1011.Google Scholar
The Eclampsia Trial Collaborative Group. Which anticonvulsant for women with eclampsia? Evidence from the Collaborative Eclampsia Trial. Lancet 1995; 345: 1455.Google Scholar
Williams, D. Pre-eclampsia and long-term maternal health. Obstet Med 2012; 5: 98.Google Scholar
Williams, DJ, de Swiet, M. The pathophysiology of pre-eclampsia. Intens Care Med 1997; 23: 620.Google Scholar

Bibliography

Al-Kalbani, M, Lapinsky, SE. Prgenancy and risk. Crit Care Med 2020; 48: 765.Google Scholar
Arnout, J, Spitz, B, Wittevrongel, C, et al. High-dose intravenous immunoglobulin treatment of a pregnant patient with an antiphospholipid syndrome. Thromb Haemost 1994; 71: 741.Google Scholar
Australian Society for the Study of Hypertension in Pregnancy. Management of hypertension in pregnancy: consensus statement. Med J Aust 1993; 158: 700.Google Scholar
Barron, WM. The pregnant surgical patient: medical evaluation and management. Ann Intern Med 1984; 101: 683.Google Scholar
Bates, SM, Greer, IA, Pabinger, I, et al. Venous thromboembolism, thrombophilia, antithrombotic therapy, and pregnancy. Chest 2008; 133 (suppl.): 844S.Google Scholar
Battino, D, Granata, T, Binelli, S, et al. Intrauterine growth in the offspring of epileptic mothers. Acta Neurol Scand 1992; 86: 555.Google Scholar
Beeley, L. Adverse effects of drugs in later pregnancy. Clin Obstet Gynaecol 1981; 24: 275.Google Scholar
Bick, RL. Recurrent miscarriage syndrome due to blood coagulation protein/platelet defects: prevalence, treatment and outcome results. Clin Appl Thromb Hemost 2000; 6: 115.Google Scholar
Branch, DW, Scott, JR, Kochenour, NK, et al. Obstetric complications associated with the lupus anticoagulant. N Engl J Med 1985; 313: 1322.Google Scholar
Brenner, B, Conard, J, eds. Women’s issues in thrombophilia. Semin Thromb Hemost 2003; 29: 1.Google Scholar
Briggs, GG, Freeman, RL, Towers, CV, et al., eds. Drugs in Pregnancy and Lactation. 11th edition. Philadelphia: Lippincott Williams & Wilkins. 2017.Google Scholar
Brodie, MJ, Moore, MR, Thompson, GG, et al. Pregnancy and the acute porphyrias. Br J Obstet Gynaec 1977; 84: 726.Google Scholar
Brooks, DC, Sznyter, LA. Pregnancy. In: Scientific American Surgery, Section VII Special Problems in Perioperative Care, Chapter 11. New York: Scientific American. 1998.Google Scholar
Brown, M, Whitworth, J. The kidney in hypertensive pregnancies – victim and villain. Am J Kidney Dis 1992; 20: 427.Google Scholar
Brown, MA, Buddle, ML. Hypertension in pregnancy: maternal and foetal outcomes according to laboratory and clinical features. Med J Aust 1996; 165: 360.Google Scholar
Burrow, GN. The management of thyrotoxicosis in pregnancy. N Engl J Med 1985; 313: 562.Google Scholar
Cheah, S, Gao, Y, Mo, S, et al. Fertility, pregnancy and post partum management after bariatric surgery: a narrative review. Med J Aust 2022; 216: 96.Google Scholar
Chestnut, DH. Critical care in obstetric practice. In: Fuhrman, BP, Shoemaker, WC, eds. Critical Care: State of the Art, Chapter 7. Fullerton: Society of Critical Care Medicine. 1989; 121.Google Scholar
Cope, I. Medicines in pregnancy. Med J Aust 1991; 155: 214.Google Scholar
Council on Scientific Affairs, American Medical Association. Fetal effects of maternal alcohol use. JAMA 1983; 249: 2517.Google Scholar
Cowchock, FS, Reece, EA, Balaban, D, et al. Repeated fetal losses associated with antiphospholipid antibodies. Am J Obstet Gynecol 1992; 166: 1318.Google Scholar
Dansky, LV, Rosenblatt, DS, Andermann, E. Mechanisms of teratogenesis: folic acid and antiepileptic therapy. Neurology 1992; 42 (suppl. 5): 32.Google Scholar
Editorial. Are ACE inhibitors safe in pregnancy? Lancet 1989; 2: 482.Google Scholar
Farmer, JC, ed. Critical illness of pregnancy. Crit Care Med 2005; 33 (suppl.): S248.Google Scholar
Fildes, J, Reed, L, Jones, N, et al. Trauma: the leading cause of maternal death. J Trauma 1992; 32: 643.Google Scholar
Gilbert, GL. Infections in pregnant women. Med J Aust 2002; 176: 229.Google Scholar
Ginsberg, JS, Bates, SM. Management of venous thromboembolism during pregnancy. J Thromb Haemost 2003; 1: 1435.Google Scholar
Ginsberg, JS, Brill-Edwards, P, Johnston, M, et al. Relationship of antiphospholipid antibodies to pregnancy loss in patients with systemic lupus erythematosus. Blood 1992; 80: 975.Google Scholar
Ginsberg, JS, Hirsh, J. Use of antithrombotic agents during pregnancy. Chest 1992; 102 (suppl. 4): 385S.Google Scholar
Greer, IA. Thrombosis in pregnancy: maternal and foetal issues. Lancet 1999; 353: 1258.Google Scholar
Grunfeld, J-P, Pertuiset, N. Acute renal failure in pregnancy. Am J Kidney Dis 1987; 9: 359.Google Scholar
Guntupalli, KK, Hall, N, Karnad, DR, et al. Critical illness in pregnancy. Chest 2015; 148: 1093 & 1333.Google Scholar
Hanly, JG, Gladman, DD, Rose, TH, et al. Lupus pregnancy: a prospective study of placental changes. Arthritis Rheum 1988; 31: 358.Google Scholar
Hayslett, JP. Postpartum renal failure. N Engl J Med 1985; 312: 1556.Google Scholar
Hazelgrove, JF, Price, C, Pappachan, VJ, et al. Multicenter study of obstetric admissions to 14 intensive care units in southern England. Crit Care Med 2001; 29: 770.Google Scholar
Henriquez, DDCA, Bloemenkamp, KWM, Van Der Bom, JG. Management of postpartum haemorrhage: how to improve maternal outcomes? Thromb Haemost 2018; 16: 1523.Google Scholar
Hiilesmaa, VK. Pregnancy and birth in women with epilepsy. Neurology 1992; 42 (suppl. 5): 8.Google Scholar
Homans, DC. Peripartum cardiomyopathy. N Engl J Med 1985; 312: 1432.Google Scholar
Horowitz, MD, Gomez, GA, Santiesteban, R, et al. Acute appendicitis during pregnancy. Arch Surg 1985; 120: 1362.Google Scholar
Hotham, N, Hotham, E. Drugs in breastfeeding. Aust Prescriber 2015; 38: 156.Google Scholar
Imperiale, TF, Petrulis, AS. A meta-analysis of low-dose aspirin for the prevention of pregnancy-induced hypertensive disease. JAMA 1991; 266: 237.Google Scholar
Johns, KR, Morand, EF, Littlejohn, GO. Pregnancy outcome in systemic lupus erythematosus. Aust NZ J Med 1998; 28: 18.Google Scholar
Johnson, MJ. Obstetric complications and rheumatic disease. Rheum Dis Clin North Am 1997; 23: 169.Google Scholar
Jones, WB, Lewis, JL. Integration of surgery and other techniques in the management of trophoblastic malignancy. Obstet Gynecol Clin North Am 1988; 15: 565.Google Scholar
Kaaja, E, Kaaja, R, Hiilesmaa, V. Major malformations in offspring of women with epilepsy. Neurology 2003; 50: 575.Google Scholar
Kennedy, D. Classifying drugs in pregnancy. Aust Prescriber 2014; 37: 38.Google Scholar
Kjellberg, U, Andersson, N-E, Rosen, S, et al. APC resistance and other haemostatic variables during pregnancy and puerperium. Thromb Haemost 1999; 81: 527.Google Scholar
Koch, S, Losche, G, Jager-Roman, E, et al. Major and minor birth malformations and antiepileptic drugs. Neurol 1992; 42 (suppl. 5): 83.Google Scholar
Koshy, M, Burd, L. Management of pregnancy in sickle cell anemia. Hematol Oncol Clin North Am 1991; 5: 585.Google Scholar
Lapinsky, SE. Respiratory care of the critically ill pregnant patient. Curr Opin Crit Care 1996; 3: 1.Google Scholar
Lapinsky, SE. Cardiopulmonary complications of pregnancy. Crit Care Med 2005; 33: 1616.Google Scholar
Laskin, CA, Bombardier, C, Hannah, ME. Prednisolone and aspirin in women with autoantibodies and unexplained recurrent fetal loss. N Engl J Med 1997; 337: 148.Google Scholar
Ledger, WJ. Antibiotics in pregnancy. Clin Obstet Gynaecol 1977; 20: 411.Google Scholar
Lemire, RJ. Neural tube defects. JAMA 1988; 259: 558.Google Scholar
Leung, AS, Millar, LK, Koonings, PP, et al. Perinatal outcome in hypothyroid pregnancies. Obstet Gynecol 1993; 81: 349.Google Scholar
Lim, V, Katz, A, Lindheimer, M. Acid-base regulation in pregnancy. Am J Physiol 1976; 231: 1764.Google Scholar
Lindheimer, MD, Katz, AI. Hypertension in pregnancy. N Engl J Med 1985; 313: 675.Google Scholar
Lockshin, MD. Lupus pregnancy. Clin Rheum Dis 1985; 11: 611.Google Scholar
Loverro, G, Pansini, V, Greco, P, et al. Indications and outcome for intensive care unit admission during puerperium. Arch Gynecol Obstet 2002; 265: 195.Google Scholar
McDonald, CF, Burdon, JGW. Asthma in pregnancy and lactation: a position paper for the Thoracic Society of Australia and New Zealand. Med J Aust 1996; 165: 485.Google Scholar
McLintock, C, James, AH. Obstetric hemorrhage. J Thromb Haemost 2011; 9: 1441.Google Scholar
McPartin, J, Halligan, A, Scott, JM, et al. Accelerated folate breakdown in pregnancy. Lancet 1993; 341: 148.Google Scholar
Oakley, CM. Anticoagulants in pregnancy. Br Heart J 1995; 74: 107.Google Scholar
Oats, JJN (chairman). Annual Report for the Year 2007. Melbourne: Consultative Council on Obstetric and Paediatric Mortality and Morbidity. 2008.Google Scholar
Persellin, RH. The effect of pregnancy on rheumatoid arthritis. Bull Rheum Dis 1977; 27: 922.Google Scholar
Phelan, JP, Pacheco, LD, Foley, MR, et al., eds. Critical Care Obstetrics. 6th edition. Oxford: Wiley. 2018.Google Scholar
Pisani, RJ, Rosenow, EC. Pulmonary edema associated with tocolytic therapy. Ann Intern Med 1989; 110: 714.Google Scholar
Pollock, W, Rose, L, Dennis, C-L. Pregnant and postpartum admissions to the intensive care unit: a systematic review. Intens Care Med 2010; 36: 1465.Google Scholar
Rabinovich, A, Abdul-Kadir, R, Thachil, J, et al. DIC in obstetrics: Diagnostic score, highlights in management, and international registry – communication from the DIC and Women’s Health SSCs of the International Society of Thrombosis and Haemostasis. J Thromb Haemost 2019; 17: 1562.Google Scholar
Rand, JH, Wu, X-X, Andree, HAM, et al. Pregnancy loss in the antiphospholipid-antibody-syndrome – a possible thrombogenic mechanism. N Engl J Med 1997; 337: 154.Google Scholar
Rizk, NW, Kalassian, KG, Gilligan, T, et al. Obstetric complications in pulmonary and critical care medicine. Chest 1996; 110: 791.Google Scholar
Rubin, PC. Beta-blockers in pregnancy. N Engl J Med 1981; 305: 1323.Google Scholar
Sanson, B-J, Lensing, AWA, Prins, MH, et al. Safety of low-molecular-weight heparin in pregnancy: a systematic review. Thromb Haemost 1999; 81: 668.Google Scholar
Schrier, RW. Pathogenesis of sodium and water retention in high-output and low-output cardiac failure, nephrotic syndrome, cirrhosis, and pregnancy. N Engl J Med 1988; 319: 1065 & 1127.Google Scholar
Seely, EW, Ecker, J. Medical complications in pregnancy. In: Scientific American Medicine. Women’s Health. Hamilton: Dekker Medicine. 2020.Google Scholar
Smith, A, Eccles-Smith, J, D’Emden, M, et al. Thyroid disorders in pregnancy and postpartum. Aust Prescriber 2017; 40: 214.Google Scholar
Stirrat, GM. Recurrent miscarriage. Lancet 1990; 336: 673.Google Scholar
Therapeutic Goods administration. Prescribing medicines in pregnancy database. www.tga.gov.au/mode/4012. 2019.Google Scholar
Vasquez, DN, Estenssoro, E, Canales, HS, et al. Clinical characteristics and outcomes of obstetric patients requiring ICU admission. Chest 2007; 131: 718.Google Scholar
Wald, NJ, Bower, C. Folic acid, pernicious anaemia, and prevention of neural tube defects. Lancet 1994; 343: 307.Google Scholar
Yerby, M, Koepsell, T, Darling, J. Pregnancy complications and outcomes in a cohort of women with epilepsy. Epilepsia 1985; 26: 631.Google Scholar
Yerby, MS. Pregnancy and epilepsy. Epilepsia 1991; 32 (suppl. 6): S51.Google Scholar
Yerby, MS, Friel, PN, McCormick, K. Antiepileptic drug disposition during pregnancy. Neurology 1992; 42 (suppl. 5): 12.Google Scholar
Yerby, MS, Leavitt, A, Erickson, DM, et al. Antiepileptics and the development of congenital anomalies. Neurology 1992; 42 (suppl. 5): 132.Google Scholar
Zeeman, GG. Obstetric critical care: a blueprint for improved outcomes. Crit Care Med 2006; 34 (suppl.): S208.Google Scholar
Zwart, JJ, Dupuis, JRO, Richters, A, et al. Obstetric intensive care unit admission: a 2-year nationwide population-based cohort study. Intens Care Med 2010; 36: 256.Google Scholar

Bibliography

Hodgson, D. Of gods and leeches: treatment of priapism in the nineteenth century. J R Soc Med 2003; 96: 562.Google Scholar
Melman, A, Serels, S. Priapism. Int J Impot Res 2000; 12: S133.Google Scholar
Pautler, SE, Brock, GB. Priapism: from Priapus to the present time. Urol Clin North Am 2001; 28: 391.Google Scholar

Bibliography

Afzelius, BA. A human syndrome caused by immotile cilia. Science 1976; 193: 317.Google Scholar
Corbelli, R, Bringolf-Isler, B, Amacher, A, et al. Nasal nitric oxide measurements to screen for primary ciliary dyskinesia. Chest 2004; 126: 1054.Google Scholar
Horani, A, Ferkol, TW. Advances in the genetics of primary ciliary dyskinesia: clinical implications. Chest 2018; 154: 645.Google Scholar
Kennedy, MP, Noone, PG, Cardon, J, et al. Calcium stone lithoptysis in primary ciliary dyskinesia. Respir Med 2007; 101: 76.Google Scholar
Marthin, JK, Mortensen, J, Pressler, T, et al. Pulmonary radioaerosol mucociliary clearance in diagnosis of primary ciliary dyskinesia. Chest 2007; 132: 966.Google Scholar
Mygind, N, Nielsen, MH, Pedersen, M. Kartagener’s syndrome and abnormal cilia. Eur J Respir Dis 1983; 64 (suppl. 127): 1.Google Scholar
Noone, PG, Leigh, MW, Sannuti, A, et al. Primary ciliary dyskinesia: diagnostic and phenotypic features. Am J Respir Crit Care Med 2004; 169: 459.Google Scholar

Bibliography

Hempel, S, Newberry, SJ, Maher, AR, et al. Probiotics for the prevention and treatment of antibiotic-associated diarrhea: a systematic review and meta-analysis. JAMA 2012; 307: 1959.Google Scholar
Ho, KM, Kalgudi, S, Corbett, J-M, et al. Gut microbiota in surgical and critically ill patients. Anaesth Intens Care 2020; 48: 179.Google Scholar
Johnstone, J, Meade, M, Lauzier, F, et al. Effect of probiotics on incident ventilator-associated pneumonia in critically ill patients: a randomized clinical trial. JAMA 2021; 326: 1024.Google Scholar
Manzanares, W, Lemieux, M, Langlois, PL, et al. Probiotic and synbiotic therapy in critical illness: a systematic review and meta-analysis. Crit Care 2016; 19: 262.Google Scholar
Morrow, LE, Wischmeyer, P. Blurred lines: dysbiosis and probiotics in the ICU. Chest 2017; 151: 492.Google Scholar

Bibliography

Chukwuemeka, A, Ko, R, Ralph-Edwards, A. Short-term low-dose propofol anaesthesia associated with severe metabolic acidosis. Anaesth Intens Care 2006; 34: 651.Google Scholar
De Waele, JJ, Hoste, E. Propofol infusion syndrome in a patient with sepsis. Anaesth Intens Care 2006; 34: 676.Google Scholar
Ernest, D, French, C. Propofol infusion syndrome – report of an adult fatality. Anaesth Intens Care 2003; 31: 316.Google Scholar
Fudickar, A, Bein, B, Tonner, PH. Propofol infusion syndrome in anaesthesia and intensive care medicine. Curr Opin Anaesthesiol 2006; 19: 404.Google Scholar
Hempill, S, McMenamin, L, Bellamy, MC, et al. Propofol infusion syndrome: a structured literature review and analysis of published case reports. Br J Anaesth 2019; 122: 448.Google Scholar
Iyer, VN, Hoel, R, Rabinstein, AA. Propofol infusion syndrome in patients with refractory status epilepticus: an 11-year clinical experience. Crit Care Med 2009; 37: 3024.Google Scholar
Krajcova, A, Waldauf, P, Andel, M, et al. Propofol infusion syndrome: a structured review of experimental studies and 153 published case reports. Crit Care 2015; 19: 398.Google Scholar
Masuda, A, Hirota, K, Satone, T, et al. Pink urine during propofol anesthesia. Anesth Analg 1996; 83: 666.Google Scholar
Mizock, BA, Falk, JL. Lactic acidosis in critical illness. Crit Care Med 1992; 20: 80.Google Scholar
Riker, RR, Glisic, EK, Fraser, GL. Propofol infusion syndrome: difficult to recognize, difficult to study. Crit Care Med 2009; 37: 3169.Google Scholar
Vasile, B, Rasulo, F, Candiani, A, et al. The pathophysiology of propofol infusion syndrome: a simple name for a complex syndrome. Intens Care Med 2003; 29: 1417.Google Scholar

Bibliography

Bernard, GR, Vincent, J-L, Laterre, P-F, et al. Efficacy and safety of recombinant human activated protein C for severe sepsis. N Engl J Med 2001; 344: 699.Google Scholar
Bertina, RM, Koeleman, RPC, Koster, T, et al. Mutation in blood coagulation factor V associated with resistance to activated protein C. Nature 1994; 369: 64.Google Scholar
Castoldi, E, Rosing, J. APC resistance: biological basis and acquired influences. J Thromb Haemost 2009; 8: 445.Google Scholar
Dhainaut, J-F, Aird, WC, Esmon, CT, eds. Protein C pathways: bedside to bench. Crit Care Med 2004; 32; suppl.Google Scholar
Dowd, P, Ham, S-W, Naganathan, S, et al. The mechanism of action of vitamin K. Annu Rev Nutr 1995; 15: 419.Google Scholar
Esmon, C. The protein C pathway. Crit Care Med 2000; 28: 556.Google Scholar
Esmon, CT, Johnson, AE, Esmon, NL, et al. Initiation of the protein C pathway. Ann NY Acad Sci 1991; 614: 30.Google Scholar
Hillarp, A, Dahlback, B. Activated protein C resistance. Vessels 1997; 3: 4.Google Scholar
Kisiel, W. Human plasma protein C: isolation, characterization and mechanism of activation by alpha-thrombin. J Clin Invest 1979; 64: 761.Google Scholar
Kjellberg, U, Andersson, N-E, Rosen, S, et al. APC resistance and other haemostatic variables during pregnancy and puerperium. Thromb Haemost 1999; 81: 527.Google Scholar
Koster, T, Rosendaal, FR, de Ronde, H, et al. Venous thrombosis due to poor anticoagulant response to activated protein C. Lancet 1993; 342: 1503.Google Scholar
Mannucci, PM, Franchini, M. Classic thrombophilic gene variants. Thromb Haemost 2015; 114: 885.Google Scholar
Matsuzaka, T, Tanaka, H, Fukuda, M, et al. Relationship between vitamin K dependent coagulation factors and anticoagulants (protein C and protein S) in neonatal vitamin K deficiency. Arch Dis Child 1993; 68: 297.Google Scholar
Papinger, I, Kyrle, PA, Heistinger, M, et al. The risk of thromboembolism in asymptomatic patients with protein C and protein S deficiency. Thromb Haemost 1994; 71: 441.Google Scholar
Rodeghiero, F, Tosetto, A. Activated protein C resistance and factor V Leiden mutation are independent risk factors for venous thromboembolism. Ann Intern Med 1999; 130: 643.Google Scholar
Rose, VL, Kwaan, HC, Williamson, K, et al. Protein C antigen deficiency and warfarin necrosis. Am J Clin Pathol 1986; 86: 653.Google Scholar
Shearer, MJ. Vitamin, K. Lancet 1995; 345: 229.Google Scholar
Smith, OP, White, B, Vaughan, D, et al. Use of protein C concentrate, heparin, and haemodiafiltration in meningococcus-induced purpura fulminans. Lancet 1997; 350: 1590.Google Scholar
Svensson, PJ, Dahlback, B. Resistance to activated protein C as a basis for venous thrombosis. N Engl J Med 1994; 330: 517.Google Scholar
Yan, SB, Helterbrand, JD, Hartman, DL, et al. Low levels of protein C are associated with poor outcome in severe sepsis. Chest 2001; 120: 915.Google Scholar
Zoller, B, Hillarp, A, Dahlback, B. Activated protein C resistance: Clinical implications. Clin Appl Thromb Hemost 1997; 3: 25.Google Scholar

Bibliography

Borgel, D, Gandrille, S, Aiach, M. Protein S deficiency. Thromb Haemost 1997; 78: 351.Google Scholar
Comp, PC. Laboratory evaluation of protein S status. Semin Thromb Haemost 1990; 16: 177.Google Scholar
Comp, PC, Esmon, CT. Recurrent venous thromboembolism in patients with a partial deficiency of protein S. N Engl J Med 1984; 311: 1525.Google Scholar
Dahlback, B. Vitamin K-dependent protein S: beyond the protein C pathway. Semin Thromb Hemost 2018; 44: 176.Google Scholar
Dowd, P, Ham, S-W, Naganathan, S, et al. The mechanism of action of vitamin K. Annu Rev Nutr 1995; 15: 419.Google Scholar
Engesser, L, Broekmans, AW, Briet, E, et al. Hereditary protein S deficiency: clinical manifestations. Ann Intern Med 1987; 106: 677.Google Scholar
Gierula, M, Ahnstrom, J. Anticoagulant protein S – new insights on interactions and functions. J Thromb Haemost 2020; 18: 2801.Google Scholar
Mannucci, PM, Franchini, M. Classic thrombophilic gene variants. Thromb Haemost 2015; 114: 885.Google Scholar
Matsuzaka, T, Tanaka, H, Fukuda, M, et al. Relationship between vitamin K dependent coagulation factors and anticoagulants (protein C and protein S) in neonatal vitamin K deficiency. Arch Dis Child 1993; 68: 297.Google Scholar
Papinger, I, Kyrle, PA, Heistinger, M, et al. The risk of thromboembolism in asymptomatic patients with protein C and protein S deficiency. Thromb Haemost 1994; 71: 441.Google Scholar
Shearer, MJ. Vitamin, K. Lancet 1995; 345: 229.Google Scholar

Bibliography

Vasse, M. Protein, Z, a protein seeking a pathology. Thromb Haemost 2008; 100: 548.Google Scholar

Bibliography

Gosling, P, Czyz, J, Nightingale, P, et al. Microalbuminuria in the intensive care unit: clinical correlates and association with outcomes in 431 patients. Crit Care Med 2006; 34: 2158.Google Scholar
Robinson, RR. Isolated proteinuria in asymptomatic patients. Kidney Int 1980; 18: 395.Google Scholar
Turner, NN, Lameire, N, Goldsmith, DJ, et al. eds. Oxford Textbook of Clinical Nephrology. 4th edition. Oxford: Oxford University Press. 2015.Google Scholar

Bibliography

Poort, SR, Rosendaal, FR, Reitsma, PH, et al. A common genetic variation in the 3’-untranslated region of the prothrombin gene is associated with elevated plasma prothrombin levels and an increase in venous thrombosis. Blood 1996; 88: 3698.Google Scholar

Bibliography

Van Voorhis, WC. Protozoan infections. In: Scientific American Medicine. Infectious Disease. Hamilton: Dekker Medicine. 2020.Google Scholar

Bibliography

Champion, RH. Generalised pruritus. BMJ 1984; 289: 751.Google Scholar
Denman, ST. A review of pruritus. J Am Acad Dermatol 1986; 14: 375.Google Scholar

Bibliography

Greenberg, S, Reiser, IW, Chou, SY, et al. Trimethoprim-sulfamethoxazole induces reversible hyperkalemia. Ann Intern Med 1993; 119: 291.Google Scholar

Bibliography

Bonventre, JV, Leaf, A. Sodium homeostasis: steady states without a set point. Kidney Int 1982; 21: 880.Google Scholar
Colls, BM. Guillain–Barré syndrome and hyponatraemia. Intern Med J 2003; 33: 5.Google Scholar
Dixon, B, Ernest, D. Hyponatraemia in the transurethral resection of prostate syndrome. Anaesth Intens Care 1996; 24: 102.Google Scholar
Spasovski, G, Vanholder, R, Allolio, B, et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Intens Care Med 2014; 40: 320.Google Scholar
Weinberg, LS. Pseudohyponatremia: a reappraisal. Am J Med 1989; 86: 315.Google Scholar

Bibliography

Hinson, FL, Ambrose, NS. Pseudomyxoma peritonei. Br J Surg 1998; 85: 1332.Google Scholar
Moran, BJ, Cecil, TD. The etiology, clinical presentation, and management of pseudomyxoma peritonei. Surg Oncol Clin N Am 2003; 12: 585.Google Scholar

Bibliography

Ponec, RJ, Saunders, MD, Kimmey, MB. Neostigmine for the treatment of acute colonic pseudo-obstruction. N Engl J Med 1999; 341: 137.Google Scholar

Bibliography

Kaplan, RM. Budgies and bugs: our homegrown contribution to pandemics. Med J Aust 2021; 214: 509.Google Scholar
Stewardson, AJ, Grayson, ML. Psittacosis. Infect Dis Clin North Am 2010; 24: 7.Google Scholar

Bibliography

Abel, EA, Lebwohl, M. Psoriasis. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Calvert, HT, Smith, MA, Wells, RS. Psoriasis and the nails. Br J Dermatol 1963; 75: 415.Google Scholar
Dawe, RS, Cameron, H, Yule, S, et al. UV-B phototherapy clears psoriasis through local effects. Arch Dermatol 2002; 138: 1071.Google Scholar
Farber, EM, Nall, ML. The natural history of psoriasis in 5,600 patients. Dermatologica 1974; 148: 1.Google Scholar
Farber, EM, Nall, ML. An appraisal of measures to prevent and control psoriasis. J Am Acad Dermatol 1992; 26: 736.Google Scholar
Fox, BJ, Odom, RB. Papulosquamous diseases: a review. J Am Acad Dermatol 1985; 12: 597.Google Scholar
Ingram, JT. Pustular psoriasis. Arch Dermatol 1958; 77: 314.Google Scholar
Kovitwanichkanont, T, Chong, AH, Foley, P. Beyond skin deep: addressing comorbidities in psoriasis. Med J Aust 2020; 212: 528.Google Scholar
Lebwohl, M. Advances in psoriasis therapy. Dermatol Clin 2000; 18: 13.Google Scholar
Smith, D. Fumaric acid esters for psoriasis: a systematic review. Ir J Med Sci 2017; 186: 161.Google Scholar
Whyte, HJ, Baughman, RD. Acute guttate psoriasis and streptococcal infection. Arch Dermatol 1964; 89: 350.Google Scholar
Wolff, K, Goldsmith, L, Katz, S, et al., eds. Fitzpatrick’s Dermatology in General Medicine. 7th edition. New York: McGraw-Hill. 2007.Google Scholar

Bibliography

Bienvenu, OJ, Neufeld, KJ, Needham, DM. Treatment of four psychiatric emergencies in the intensive care unit. Crit Care Med 2012; 40: 2662.Google Scholar
Black, DW, ed. Psychiatry. In: Scientific American Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Cucci, MD, Chester, KW, Hamilton, LA. Concise definitive review for reinitiation of antidepressants, antipsychotics, and gabapentinoids in ICU patients. Crit Care Med 2022; 50: 665.Google Scholar

Bibliography

Claypool, WD, Rogers, RM, Matuschak, GM. Update on the clinical diagnosis, management, and pathogenesis of pulmonary alveolar proteinosis (phospholipidosis). Chest 1984; 85: 550.Google Scholar
Goldstein, LS, Kavuru, MS, Curtis-McCarthy, P, et al. Pulmonary alveolar proteinosis: clinical features and outcome. Chest 1998; 114: 1357.Google Scholar
Greenhill, SR, Kotton, DN. Pulmonary alveolar proteinosis: a bench-to-bedside story of granulocyte-macrophage colony-stimulating factor dysfunction. Chest 2009; 136: 571.Google Scholar
Jouneau, S, Menard, C, Lederlin, M. Pulmonary alveolar proteinosis. Respirology 2020; 10: 1111.Google Scholar
Michaud, G, Reddy, C, Ernst, A. Whole-lung lavage for pulmonary alveolar proteinosis. Chest 2009; 136: 1678.Google Scholar
Rosen, SH, Castleman, B, Liebow, AA. Pulmonary alveolar proteinosis. N Engl J Med 1958: 258: 1123.Google Scholar
Seymour, JF, Presneill, JJ. Pulmonary alveolar proteinosis: progress in the first 44 years. Am J Respir Crit Care Med 2002; 166: 215.Google Scholar
Seymour, JF, Presneill, JJ, Schoch, OD, et al. Therapeutic efficacy of granulocyte-macrophage colony-stimulating factor in patients with idiopathic acquired alveolar proteinosis. Am J Respir Crit Care Med 2001; 163: 531.Google Scholar
Trapnell, BC, Whitsett, JA, Nakata, K. Pulmonary alveolar proteinosis. N Engl J Med 2003; 349: 2527.Google Scholar

Bibliography

Auger, WR, Channick, RN, Kerr, KM, et al. Evaluation of patients with suspected chronic thromboembolic pulmonary hypertension. Semin Thorac Cardiovasc Surg 1999; 11: 179.Google Scholar
Badesch, DB, Abman, SH, Simonneau, G, et al. Medical therapy for pulmonary arterial hypertension: updated ACCP evidence-based clinical practice guidelines. Chest 2007; 131: 1917.Google Scholar
Barst, RJ, Rubin, LJ, Long, WA, et al. A comparison of continuous intravenous epoprostenol (prostacyclin) with conventional therapy for primary pulmonary hypertension. N Engl J Med 1996; 334: 296.Google Scholar
Bauer, M, Fuhrmann, V, Wendon, J. Pulmonary complications of liver disease. Intens Care Med 2019; 45: 1433.Google Scholar
Budhiraja, R, Hassoun, PM. Portopulmonary hypertension: a tale of two circulations. Chest 2003; 123: 562.Google Scholar
Chin, KM, Channick, RN, Rubin, LJ. Is methamphetamine use associated with idiopathic pulmonary arterial hypertension? Chest 2006; 130: 1657.Google Scholar
Dantzker, DR, Grant, BJB. Pulmonary hypertension. In: Shoemaker, WC, Thompson, WL, eds. Critical Care: State of the Art. Fullerton: Society of Critical Care Medicine. 1983; p F1.Google Scholar
Dartrevelle, P, Fadel, E, Mussor, S, et al. Chronic thromboembolic pulmonary hypertension. Eur Respir J 2004; 23: 637.Google Scholar
Ewert, R, ed. Iloprost in Intensive Care Medicine. Bremen: Uni-Med Verlag. 2006.Google Scholar
Farber, HW, Loscalzo, J. Pulmonary arterial hypertension N Engl J Med 2004; 351: 1655.Google Scholar
Fedullo, PF, Auger, WR, Kerr, KM, et al. Chronic thromboembolic pulmonary hypertension. N Engl J Med 2001; 345: 1465.Google Scholar
Fishman, AP. Aminorex to fen/phen: an epidemic foretold. Circulation 1999; 99: 156.Google Scholar
Fishman, AP. Clinical classification of pulmonary hypertension. Clin Chest Med 2001; 22: 385.Google Scholar
Gabbay, E, Reed, A, Williams, TJ. Assessment and treatment of pulmonary arterial hypertension. Intern Med J 2007; 37: 38.Google Scholar
Gaine, SP, Rubin, LJ. Primary pulmonary hypertension. Lancet 1998; 352: 719.Google Scholar
Gaine, S. Pulmonary hypertension. JAMA 2000; 284: 3160.Google Scholar
Hemnes, AR, Opotowsky, AR, Assad, TR, et al. Features associated with discordance between pulmonary arterial wedge pressure and left ventricular end diastolic pressure in clinical practice: implications for pulmonary hypertension classification. Chest 2019; 154: 1099.Google Scholar
Humbert, M, Sitbon, O, Simonneau, G. Treatment of pulmonary arterial hypertension. N Engl J Med 2004; 351: 1425.Google Scholar
Keogh, AM, McNeil, KD, Williams, T, et al. Pulmonary arterial hypertension: a new era in management. Med J Aust 2003; 178: 564.Google Scholar
Klinger, JR, Elliott, CG, Levine, DJ, et al. Therapy for pulmonary arterial hypertension in adults: update of the CHEST guideline and expert panel report. Chest 2019; 155: 565.Google Scholar
Klok, FA, Delcroix, M, Bogaard, HJ. Chronic thromboembolic pulmonary hypertension from the perspective of the patient with pulmonary embolism. J Thromb Haemost 2018; 16: 1040.Google Scholar
Langleben, D. Endothelin receptor antagonists in the treatment of pulmonary arterial hypertension. Clin Chest Med 2007; 28: 117.Google Scholar
Libby, DM, Briscoe, WA, Boyce, B, et al. Acute respiratory failure in scoliosis or kyphosis: prolonged survival and treatment. Am J Med 1982; 73: 532.Google Scholar
Martin, KB, Klinger, JR, Rounds, SIS. Pulmonary arterial hypertension: new insights and new hope. Respirology 2006; 11: 6.Google Scholar
McGregor, M, Sniderman, A. On pulmonary vascular resistance: the need for more precise definition. Am J Cardiol 1985; 55: 217.Google Scholar
Moll, M, Sardana, M, Farber, HW. Pulmonary hypertension, cor pulmonale, and other pulmonary vascular conditions. In: Scientific American Medicine. Pulmonary & Critical Care Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Naeije, R. Pulmonary vascular resistance: a meaningless variable? Crit Care Med 2003; 29: 526.Google Scholar
Newman, JH. Treatment of primary pulmonary hypertension – the next generation. N Engl J Med 2002; 346: 933.Google Scholar
Newman, JH. Pulmonary hypertension by the method of Paul Wood. Chest 2020; 158: 1164.Google Scholar
Niemann, CU, Mandell, SM. Pulmonary hypertension and liver transplantation. Pulmonary Perspectives 2003; 20(1): 4.Google Scholar
Palevsky, HI, Fishman, AP. The management of primary pulmonary hypertension. JAMA 1991; 265: 1014.Google Scholar
Pengo, V, Lensing, AW, Prins, MH, et al. Incidence of chronic thromboembolic pulmonary hypertension after pulmonary embolism. N Engl J Med 2004; 350: 2257.Google Scholar
Pepke-Zaba, J, Higenbottam, TW, Dinh-Xuan, AT, et al. Inhaled nitric oxide as a cause of selective pulmonary vasodilatation in pulmonary hypertension. Lancet 1991; 338: 1173.Google Scholar
Prasad, S, Wilkinson, J, Gatzoulis, MA. Sildenafil in primary pulmonary hypertension. N Engl J Med 2000; 343: 1342.Google Scholar
Prior, DL, Adamas, H, Williams, TJ. Update on pharmacotherapy for pulmonary hypertension. Med J Aust 2016; 205: 271.Google Scholar
Rich, S. Primary pulmonary hypertension. Prog Cardiovasc Dis 1988; 31: 205.Google Scholar
Rich, S. The current treatment of pulmonary arterial hypertension: time to redefine success. Chest 2006; 130: 1198.Google Scholar
Rich, S, Herskowitz, A, eds. Pulmonary vascular disease: the global perspective. Chest 2010; 6 (suppl.): 1S.Google Scholar
Rich, S, Rubin, L, Walker, AM, et al. Anorexigens and pulmonary hypertension in the United States. Chest 2000; 117: 870.Google Scholar
Robalino, BD, Moodie, DS. Association between pulmonary hypertension and portal hypertension: analysis of its pathophysiology and clinical, laboratory and hemodynamic manifestations. J Am Coll Cardiol 1991; 17: 492.Google Scholar
Roberts, WC. A simple histologic classification of pulmonary arterial hypertension. Am J Cardiol 1986; 58: 385.Google Scholar
Rubin, LJ. Primary pulmonary hypertension. N Engl J Med 1997; 336: 111.Google Scholar
Rubin, LJ, ed. Brenot memorial symposium on the pathogenesis of primary pulmonary hypertension. Chest 1998; 114: no.3 (suppl.).Google Scholar
Rubin, LJ. Therapy of pulmonary hypertension: targeting pathogenic mechanisms with selective treatment delivery. Crit Care Med 2001; 29: 1086.Google Scholar
Rubin, LJ, ed. Diagnosis and management of pulmonary arterial hypertension: ACCP evidence-based clinical practice guidelines. Chest 2004; 126: no.1 (suppl.).Google Scholar
Rubin, LJ, Badesch, DB, Barst, RJ, et al. Bosentan therapy for pulmonary artery hypertension. N Engl J Med 2002; 346: 896.Google Scholar
Runo, JR, Loyd, JE. Primary pulmonary hypertension. Lancet 2003; 361: 1533.Google Scholar
Salvador, ML, Loaiza, CAQ, Padial, LR, et al. Portopulmonary hypertension: prognosis and management in the current treatment era – results from the REHAP registry. Intern Med J 2021; 51: 355.Google Scholar
Shah, SJ, Gomberg-Maitland, M, Thenappan, T, et al. Selective serotonin reuptake inhibitors and the incidence and outcome of pulmonary hypertension. Chest 2009; 136: 694.Google Scholar
Shure, D. Primary pulmonary hypertension – good news and bad. Pulmonary Perspectives 1996; 13(3): 6.Google Scholar
Simonneau, G, Galie, N, Rubin, LJ, et al. Clinical classification of pulmonary hypertension. J Am Coll Cardiol 2004; 43: 5S.Google Scholar
Smith, I. Pulmonary hypertension: an overview for the non-cardiac anaesthetist. In: Riley, R, ed. Australasian Anaesthesia. Melbourne: ANZCA. 2015; p 75.Google Scholar
Taichman, DB, Omelas, J, Chung, L, et al. Pharmacologic therapy for pulmonary arterial hypertension in adults: CHEST guideline and expert panel report. Chest 2014; 146: 449.Google Scholar
Various. 47th annual Thomas L Petty lung conference: cellular and molecular pathobiology of pulmonary hypertension. Chest 2005; 128 (suppl.): 547S.Google Scholar
Versprille, A. Pulmonary vascular resistance: a meaningless variable. Intens Care Med 1984; 10: 51.Google Scholar
Walmrath, D, Schneider, T, Pilch, J, et al. Effects of aerosolized prostacyclin in severe pneumonia. Am J Respir Crit Care Med 1995; 151: 724.Google Scholar
Winter, M-P, Schernthaner, GH, Lang, IM. Chronic complications of venous thromboembolism. J Thromb Haemost 2017; 15: 1531.Google Scholar

Bibliography

Crystal, RG, Bitterman, PB, Rennard, SI, et al. Interstitial lung diseases of unknown cause. N Engl J Med 1984; 310: 154 & 235.Google Scholar
Muller, NL, Miller, RR. Computed tomography of chronic diffuse infiltrative lung disease. Am Rev Respir Dis 1990; 142: 1440.Google Scholar

Bibliography

Baldwin, DR. Development of guidelines for the management of pulmonary nodules. Chest 2015; 148: 1365.Google Scholar
Cruickshank, A, Stieler, G, Ameer, F. Evaluation of the solitary pulmonary nodule. Intern Med J 2019; 49: 306.Google Scholar
Dines, DE, Arms, RA, Bernatz, PE, et al. Pulmonary arteriovenous fistulas. Mayo Clin Proc 1974; 48: 460.Google Scholar
Faughnan, ME, Lui, YW, Wirth, JA, et al. Diffuse pulmonary arteriovenous malformations: characteristics and prognosis. Chest 2000; 117: 31.Google Scholar
Gould, MK, Tang, T, Liu, IL, et al. Recent trends in the identification of incidental pulmonary nodules. Am J Respir Crit Care Med 2015; 192: 1208.Google Scholar
Lee, P, Minai, OA, Mehta, AC, et al. Pulmonary nodules in lung transplant recipients: etiology and outcome. Chest 2004; 125: 165.Google Scholar
Lillington, GA. Management of the solitary pulmonary nodule. Hosp Pract 1993; 28: 41.Google Scholar
MacMahon, H, Naidich, DP, Goo, JM, et al. Guidelines for management of incidental pulmonary nodules detected on CT images: from the Fleischner Society 2017. Radiology 2017; 284: 228.Google Scholar
Ost, D, Fein, A. Evaluation and management of the solitary pulmonary nodule. Am J Respir Crit Care Med 2000; 162: 782.Google Scholar
Patel, VK, Naik, SK, Naidich, DP, et al. A practical algorithmic approach to the diagnosis and management of solitary pulmonary nodules: Parts 1 & 2. Chest 2013; 143: 825 & 840.Google Scholar
Savic, B, Birtel, FJ, Tholen, W, et al. Lung sequestration. Thorax 1979; 34: 96.Google Scholar
Steele, JD. The solitary pulmonary nodule. J Thorac Cardiovasc Surg 1963; 46: 21.Google Scholar
Terry, PB, Barth, KH, Kaufman, SL, et al. Balloon embolization for the treatment of pulmonary arteriovenous fistulas. N Engl J Med 1980; 302: 1189.Google Scholar
Wiener, DC, Wiener, RS. Patient-centred guideline-concordant discussion and management of pulmonary nodules. Chest 2020; 158: 416.Google Scholar
White, RJ, Lynch-Nyhan, A, Terry, P, et al. Pulmonary arteriovenous malformation: techniques and long-term outcome of embolotherapy. Radiology 1988; 169: 663.Google Scholar

Bibliography

Heath, D, Segal, N, Bishop, J. Pulmonary veno-occlusive disease. Circulation 1966; 34: 242.Google Scholar
Holcomb, BW, Loyd, JE, Ely, EW, et al. Pulmonary veno-occlusive disease. Chest 2000; 118: 1671.Google Scholar
Palevsky, HI, Pietra, GG, Fishman, AP. Pulmonary veno-occlusive disease and its response to vasodilator agents. Am Rev Respir Dis 1990; 142: 426.Google Scholar
Palmer, SM, Robinson, LJ, Wand, A, et al. Massive pulmonary edema and death after prostacyclin infusion in a patient with pulmonary veno-occlusive disease. Chest 1998; 113: 237.Google Scholar

Bibliography

Bick, R. Vascular thrombohaemorrhagic disorders: hereditary and acquired. Clin Appl Thromb Hemost 2001; 7: 178.Google Scholar
Cameron, JS. Henoch-Schonlein purpura: clinical presentation. Contrib Nephrol 1984; 40: 246.Google Scholar
Connell, NT. Microangiopathic and vascular disorders. In: Scientific American Medicine. Hematology. Hamilton: Dekker Medicine. 2020.Google Scholar
Stein, RH, Sapadin, AN. Purpura fulminans. Int J Dermatol 2003; 42: 130.Google Scholar
Thachil, J. History of the word ‘purpura’ and its current relevance. J Thromb Haemost 2021; 191: 2381.Google Scholar

Bibliography

Cooper, A, Powell, FC. Pyoderma gangrenosum – a frequently misdiagnosed skin condition. Med J Aust 2013; 199: 382.Google Scholar
Hecker, MS, Lebwohl, MG. Recalcitrant pyoderma gangrenosum: treatment with thalidomide. J Am Acad Dermatol 1998; 38: 490.Google Scholar
Newell, LM, Malkinson, FD. Pyoderma gangrenosum. Arch Dermatol 1982; 118: 769.Google Scholar
Schwaegerle, SM, Bergfeld, WF, Senitzer, D, et al. Pyoderma gangrenosum: A review. J Am Acad Dermatol 1988; 18: 559.Google Scholar
Teagle, A, Hargest, R. Management of pyoderma gangrenosum. J R Soc Med 2014; 107: 228.Google Scholar

Bibliography

Aduan, RP, Fauci, AS, Dale, DC, et al. Factitious fever and self-induced infection. Ann Intern Med 1979; 90: 230.Google Scholar
Aronoff, DM, Neilson, EC. Antipyretics: mechanisms of action and clinical use in fever suppression. Am J Med 2001; 111: 304.Google Scholar
Axelrod, P. External cooling in the management of fever. Clin Infect Dis 2000; 31: S224.Google Scholar
Ben-Chetrit, E, Levy, M. Familial Mediterranean fever. Lancet 1998; 351: 659.Google Scholar
Beresford, RW, Gosbell, IB. Pyrexia of unknown origin: causes, investigation and management. Intern Med J 2016; 46: 1011.Google Scholar
Bernheim, HA, Block, LH, Atkins, E. Fever: pathogenesis, pathophysiology, and purpose. Ann Intern Med 1979; 91: 261.Google Scholar
Blumenthal, I. Fever – concepts old and new. J R Soc Med 1997; 90: 391.Google Scholar
Cunha, BA. Fever in the intensive care unit. Intens Care Med 1999; 25: 648.Google Scholar
Dallimore, J, Ebmeier, S, Thayabaran, D, et al. Effect of active temperature management on mortality in intensive care patients. Crit Care Resusc 2018; 20: 150.Google Scholar
Dinarello, CA, Cannon, JG, Wolff, SM. New concepts on the pathogenesis of fever. Rev Infect Dis 1988; 10: 168.Google Scholar
Drenth, JPH, van der Meer, JWM. Hereditary periodic fever. New Engl J Med 2001; 345: 1748.Google Scholar
Editorial. Familial Mediterranean fever. BMJ 1980; 281: 2.Google Scholar
Eliakim, M, Levy, M, Ehrenfeld, M. Recurrent Polyserositis (Familial Mediterranean Fever, Periodic Disease). Amsterdam: Elsevier. 1981.Google Scholar
Gherardin, A, Sisson, J. Assessing fever in the returned traveller. Aust Prescriber 2012; 35; 10.Google Scholar
Hasday, JD, Garrison, A. Antipyretic therapy in sepsis. Clin Infect Dis 2000; 31: S234.Google Scholar
Jacoby, GA, Swartz, MN. Fever of undetermined origin N Engl J Med 1973; 289: 1407.Google Scholar
Kluger, MJ, Ringler, DH, Anver, MR. Fever and survival. Science 1975; 188: 166.Google Scholar
Knockaert, DC, Vanneste, LJ, Vanneste, SB, et al. Fever of unknown origin in the 1980s. Arch Intern Med 1992; 152: 51.Google Scholar
Laupland, KB. Fever in the critically ill patient. Crit Care Med 2009; 37 (suppl.): S273.Google Scholar
Laupland, KB, Shahpori, R, Kirkpatrick, AW, et al. Occurrence and outcome of fever in critically ill adults. Crit Care Med 2008; 36: 1531.Google Scholar
Lefrant, J-Y, Muller, L, Coussaye, JE, et al. Temperature measurement in intensive care patients: comparison of urinary bladder, oesophageal, rectal, axillary, and inguinal methods versus pulmonary artery core method. Intens Care Med 2003; 29: 414.Google Scholar
Mackowiak, PA. Fever: blessing or curse? A unifying hypothesis. Ann Intern Med 1994; 120: 1037.Google Scholar
Mackowiak, PA. Concepts of fever. Arch Intern Med 1998; 158: 1870.Google Scholar
Mackowiak, PA, LeMaistre, CF. Drug fever: a critical appraisal of conventional concepts. Ann Intern Med 1987; 106: 728.Google Scholar
Marik, PE. Fever in the ICU. Chest 2000; 117: 855.Google Scholar
Musher, DM, Fainstein, V, Young, EJ. Fever patterns: their lack of clinical significance. Arch Intern Med 1979; 139: 1225.Google Scholar
Netea, MG, Kullberg, BJ, Van der Meer, JW. Circulating cytokines as mediators of fever. Clin Infect Dis 2000; 31: S178.Google Scholar
Nimmo, SM, Kennedy, BW, Tullet, WM, et al. Drug-induced hyperthermia. Anaesthesia 1993; 48: 892.Google Scholar
O’Grady, NP, Barie, PS, Bartlett, J, et al. Practice guidelines for evaluating new fever in critically ill adult patients. Crit Care Med 1998; 26: 392.Google Scholar
Olson, KR, Benowitz, NL. Environmental and drug-induced hyperthermia: pathophysiology, recognition and management. Emerg Med Clin North Am 1984; 2: 459.Google Scholar
Petersdorf, RG, Beeson, PB. Fever of unexplained origin. Medicine 1961; 40: 1.Google Scholar
Plaisance, KI, Mackowiak, PA. Antipyretic therapy: physiologic rationale, diagnostic implications, and clinical consequences. Arch Intern Med 2000; 160: 449.Google Scholar
Point/Counterpoint Editorial. Should antipyretic therapy be given routinely to febrile patients in septic shock? Yes or no. Chest 2013; 144: 1096 & 1098.Google Scholar
Rehman, T, deBloisblanc, BP. Persistent fever in the ICU. Chest 2014; 145: 158.Google Scholar
Reny, J-L, Vuagnat, A, Ract, C, et al. Diagnosis and follow-up of infections in intensive care patients: value of C-reactive protein compared with other clinical and biological variables. Crit Care Med 2002; 30: 529.Google Scholar
Roberts, NJ. Impact of temperature elevation on immunologic defenses. Rev Infect Dis 1991; 13: 462.Google Scholar
Robins, HI, Longo, W. Whole body hyperthermia. Intens Care Med 1999; 25: 898.Google Scholar
Rosenberg, J, Pentel, P, Pond, S, et al. Hyperthermia associated with drug intoxication. Crit Care Med 1986; 14: 964.Google Scholar
Saper, CB, Breeder, CD. The neurologic basis of fever. N Engl J Med 1994; 330: 1880.Google Scholar
Shafazand, S, Weinacker, AB. Blood cultures in the critical care unit: improving utilization and yield. Chest 2002; 122: 1727.Google Scholar
Shann, F. Antipyretics in severe sepsis. Lancet 1995; 345: 338.Google Scholar
Simon, HB. Hyperthermia. N Engl J Med 1993; 329: 483.Google Scholar
Simon, HB. Hyperthermia, fever, and fever of undetermined origin. In: Scientific American Medicine. Infectious Diseases. Hamilton: Dekker Medicine. 2020.Google Scholar
Simon, HB, Daniels, GH. Hormonal hyperthermia: endocrinologic causes of fever. Am J Med 1979; 66: 257.Google Scholar
Sohar, E, Gafni, J, Heller, H. Familial Mediterranean fever. Am J Med 1967; 43: 227.Google Scholar
Young, PJ, Nielsen, N, Saxena, M. Fever control. Intens Care Med 2018; 44: 227.Google Scholar
Young, PJ, Prescott, HC. When less is more in the active management of elevated body temperature of ICU patients. Intens Care Med 2019; 45: 1275.Google Scholar

Bibliography

Dempsey, GA, Lyall, HJ, Corke, CF, et al. Pyroglutamic acidemia: a cause of high anion gap metabolic acidosis. Crit Care Med 2000; 28: 1803.Google Scholar
Mo, L, Lliang, DL, Madden, A, et al. A case of delayed onset pyroglutamic acidosis in the sub-acute setting. Intern Med J 2016; 46: 747.Google Scholar

Bibliography

Emergency ID Net Study Group. Appropriateness of rabies postexposure prophylaxis treatment for animal exposures. JAMA 2000; 284: 1001.Google Scholar
Fishbein, DB, Robinson, LE. Rabies (review). N Engl J Med 1993; 329: 1632.Google Scholar
Krebs, JW, Smith, JS, Rupprecht, CE, et al. Mammalian reservoirs and epidemiology of rabies diagnosed in human beings in the United States, 1981–1998. Ann NY Acad Sci 2000; 916: 345.Google Scholar
Warrell, MJ, Warrell, DA. Rabies and other lyssavirus disease. Lancet 2004; 363: 959.Google Scholar

Bibliography

Gross, NJ. Pulmonary effects of radiation injury. Ann Intern Med 1977; 86: 81.Google Scholar
Hanania, AN, Mainwaring, W, Ghebre, Y, et al. Radiation-induced lung injury. Chest 2019; 156: 150.Google Scholar
Ricks, RC, Berger, ME, O’Hara, FM, eds. The Medical Basis for Radiation-Accident Preparedness. Boca Raton: CRC Press. 2002.Google Scholar

Bibliography

Coffman, JD. Raynaud’s phenomenon: an update. Hypertension 1991; 17: 593.Google Scholar
Creager, MA. Peripheral artery diseases. In: Scientific American Medicine. Cardiovascular Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Fries, R, Shariat, K, von Wilmowsky, H, et al. Sildenafil in the treatment of Raynaud’s phenomenon resistant to vasodilator therapy. Circulation 2005; 112: 2980.Google Scholar
Sturgill, MG, Seibold, JR. Rational use of calcium-channel antagonists in Raynaud’s phenomenon. Curr Opin Rheumatol 1998; 10: 584.Google Scholar
Thompson, AE, Pope, JE. Calcium channel blockers for primary Raynaud’s phenomenon: a meta-analysis. Rheumatology 2005; 44: 145.Google Scholar

Bibliography

Mehanna, HM, Moledina, J, Travis, J. Refeeding syndrome: what it is, and how to prevent and treat it. BMJ 2008; 336: 1495.Google Scholar

Bibliography

Amor, B. Reiter’s syndrome. Rheum Dis Clin North Am 1998; 24: 677.Google Scholar
Editorial. Reactive arthritis. BMJ 1980; 281: 311.Google Scholar
Gibofsky, A, Zabriskie, JB. Rheumatic fever and poststreptococcal reactive arthritis. Curr Opin Rheumatol 1995; 7: 299.Google Scholar
Keat, A. Reactive arthritis. Adv Exp Med Biol 1999; 455: 201.Google Scholar
McEwen, C, DiTata, D, Lingg, C, et al. Ankylosing spondylitis and spondylitis accompanying ulcerative colitis, regional enteritis, psoriasis and Reiter’s disease. Arthritis Rheum 1971; 14: 291.Google Scholar
Panush, RS, Paraschiv, D, Dorff, RE. The tainted legacy of Hans Reiter. Semin Arthritis Rheumatol 2003; 32: 231.Google Scholar
Winblad, S. Arthritis associated with Yersinia enterocolitica infections. Scand J Infect Dis 1975; 7: 191.Google Scholar

Bibliography

Spach, D, Liles, W, Campbell, G, et al. Tick-borne diseases in the United States. N Engl J Med 1993; 329: 936.Google Scholar

Bibliography

Bell, SP, Frankel, A, Brown, EA. Cholesterol emboli syndrome – uncommon or unrecognized? J R Soc Med 1997; 90: 543.Google Scholar
Corwin, HL, Korbet, SM, Schwartz, MM. Clinical correlates of eosinophiluria. Arch Intern Med 1985; 145: 1097.Google Scholar
Crosby, RL, Miller, PD, Schrier, RW. Traumatic renal artery thrombosis. Am J Med 1986; 81: 890.Google Scholar
Lessman, RK, Johnson, SF, Coburn, JW, et al. Renal artery embolism. Ann Intern Med 1978; 89: 477.Google Scholar
Peat, DS, Mathieson, PW. Cholesterol emboli may mimic systemic vasculitis. BMJ 1996; 313: 546.Google Scholar
Smith, MC, Ghose, MK, Henry, AR. The clinical spectrum of renal cholesterol embolization. Am J Med 1981; 71: 174.Google Scholar
Turner, NN, Lameire, N, Goldsmith, DJ, et al. eds. Oxford Textbook of Clinical Nephrology. 4th edition. Oxford: Oxford University Press. 2015.Google Scholar

Bibliography

Amis, ES, Cronan, JJ, Yoder, IC, et al. Renal cysts: curios and caveats. Urol Radiol 1982; 4: 199.Google Scholar
Gabow, PA. Autosomal dominant polycystic disease. N Engl J Med 1993; 329: 332.Google Scholar
Harris, PC, Torres, VE. Polycystic kidney disease. Annu Rev Med 2009; 60: 321.Google Scholar
Ishikawa, I. Acquired cystic disease: mechanisms and manifestations. Semin Nephrol 1991; 11: 671.Google Scholar
Rangan, GK, Tchan, MC, Tong, A, et al. Recent advances in autosomal-dominant polycystic kidney disease. Intern Med J 2016; 46: 883.Google Scholar
Turner, NN, Lameire, N, Goldsmith, DJ, et al. eds. Oxford Textbook of Clinical Nephrology. 4th edition. Oxford: Oxford University Press. 2015.Google Scholar

Bibliography

Kamel, KS, Briceno, LF, Sanchez, MI, et al. A new classification for renal defects in net acid secretion. Am J Kidney Dis 1997; 29: 136.Google Scholar
Turner, NN, Lameire, N, Goldsmith, DJ, et al. eds. Oxford Textbook of Clinical Nephrology. 4th edition. Oxford: Oxford University Press. 2015.Google Scholar
Unwin, RJ, Capasso, G. The renal tubular acidosis. J R Soc Med 2001; 94: 221.Google Scholar

Bibliography

Cronin, RE, Kaehny, WD, Miller, PD, et al. Renal cell carcinoma: unusual systemic manifestations. Medicine 1976; 55: 291.Google Scholar
Llach, F. Hypercoagulability, renal vein thrombosis, and other thrombotic complications of the nephrotic syndrome. Kidney Int 1985; 28: 429.Google Scholar
Llach, F, Papper, S, Massry, SG. The clinical spectrum of renal vein thrombosis: acute and chronic. Am J Med 1980; 69: 819.Google Scholar

Bibliography

Bellomo, R, Hilton, A. The ATHOS-3 trial, angiotensin II and the three musketeers. Crit Care Resusc 2017; 19: 3.Google Scholar
Curry, SC, Arnold-Capell, P. Nitroprusside, nitroglycerin, and angiotensin-converting enzyme inhibitors. Crit Care Clin 1991; 7: 555.Google Scholar
Harel, Z, Gilbert, C, Wald, R, et al. The effect of combination treatment with aliskrein and blockers of the renin-angiotensin system on hyperkalaemia and acute kidney injury: systematic review and meta-analysis. BMJ 2012; 344: 42.Google Scholar
Khanna, A, English, SW, Wang, XS, et al. Angiotensin II for the treatment of vasodilatory shock. New Engl J Med 2017; 377: 419.Google Scholar
Melby, JC. Diagnosis of hyperaldosteronism. Endocrinol Metab Clin North Am 1991; 20: 247.Google Scholar
Oparil, S, Haber, E. The renin-angiotensin system. N Engl J Med 1974; 291: 389 & 446.Google Scholar
Pitt, B, Segal, R, Martinez, FA, et al. Randomised trial of losartan versus captopril in patients over 65 with heart failure (Evaluation of Losartan in the Elderly Study, ELITE). Lancet 1997; 349: 747.Google Scholar
Quinn, SJ, Williams, GH. Regulation of aldosterone secretion. Ann Rev Physiol 1988; 50: 409.Google Scholar
Stoll, M, Steckelings, UM, Paul, M, et al. The angiotensin AT2-receptor mediates inhibition of cell proliferation in coronary endothelial cells. J Clin Invest 1995; 95: 651.Google Scholar
Williams, GH. Hyporeninemic hypoaldosteronism. N Engl J Med 1986; 314: 1041.Google Scholar

Bibliography

Abraham, E, Terada, L, eds. Acute lung injury. Chest 1999; 116 (suppl. 1).Google Scholar
Albertson, TE, Walby, WF, Derlet, RW. Stimulant-induced pulmonary toxicity. Chest 1995; 108: 1140.Google Scholar
Bascom, R, Bromberg, PA, Costa, DL, et al. Health effects of outdoor pollution. Am J Respir Crit Care Med 1996; 153: 3 & 477.Google Scholar
Berger, AJ, Mitchell, RA, Severinghaus, JW. Regulation of respiration. N Engl J Med 1977; 297: 92, 138 & 194.Google Scholar
Cade, JF, Pain, MCF. Essentials of Respiratory Medicine. Oxford: Blackwell. 1988.Google Scholar
Caruana-Montaldo, B, Gleeson, K, Zwillich, CW. The control of breathing in clinical practice. Chest 2000; 117: 205.Google Scholar
Chang, DW, White, GC, Waugh, J, et al. Respiratory Critical Care. Sudbury: Jones & Bartlett Learning. 2020.Google Scholar
Craddock, PR, Fehr, J, Brigham, KL, et al. Complement and leukocyte-mediated pulmonary dysfunction in hemodialysis. N Engl J Med 1977; 296: 769.Google Scholar
Davidson, C, Treacher, D, eds. Respiratory Critical Care. London: Arnold. 2002.Google Scholar
Editorial. Polycythaemia due to hypoxaemia: advantage or disadvantage? Lancet 1989; 2: 20.Google Scholar
Gardner, WN. The pathophysiology of hyperventilation disorders. Chest 1996; 109: 516.Google Scholar
Goldstein, RA, Rohatgi, PK, Bergofsky, EH, et al. Clinical role of bronchoalveolar lavage in adults with pulmonary disease. Am Rev Respir Dis 1990; 142: 481.Google Scholar
Green, M. Air pollution and health. BMJ 1995; 311: 401.Google Scholar
Heffner, JE, Harley, RA, Schabel, SI. Pulmonary reactions from illicit substance abuse. Clin Chest Med 1990; 11: 151.Google Scholar
Hughes, M, Black, R, eds. Advanced Respiratory Critical Care. Oxford: Oxford University Press. 2011.Google Scholar
Irwin, RS, ed. Managing cough as a defense mechanism and as a symptom: a consensus panel report of the American College of Chest Physicians. Chest 1998; 114: no.2 (suppl.).Google Scholar
Jamal, S, Maurer, JR. Pulmonary disease and the menstrual cycle. Pulm Perspect 1994; 11(3): 3.Google Scholar
Kopec, SE, Irwin, RS, Umali-Torres, CB, et al. The postpneumonectomy state. Chest 1998; 114: 1158.Google Scholar
Kryger, M, Bode, F, Antic, R, et al. Diagnosis of obstruction of the upper and central airways. Am J Med 1976; 61: 85.Google Scholar
Leatherman, JW, Davies, SF, Hoidal, JR. Alveolar hemorrhage syndromes: diffuse microvascular lung hemorrhage in immune and idiopathic disorders. Medicine 1984; 63: 343.Google Scholar
Leatherman, JW, Mcdonald, FM, Niewohner, DE. Fluid-containing bullae in the lung. South Med J 1985; 78: 708.Google Scholar
McGregor, M, Sniderman, A. On pulmonary vascular resistance: the need for more precise definition. Am J Cardiol 1985; 55: 217.Google Scholar
Nemery, B. Metal toxicity and the respiratory tract. Eur Respir J 1990; 3: 202.Google Scholar
Parsons, PE. Respiratory failure as a result of drugs, overdoses, and poisonings. Clin Chest Med 1994; 15: 93.Google Scholar
Ray, CS, Sue, DY, Bray, G, et al. Effects of obesity on respiratory function. Am Rev Respir Dis 1983; 128: 501.Google Scholar
Savic, B, Birtel, FJ, Tholen, W, et al. Lung sequestration. Thorax 1979; 34: 96.Google Scholar
Schatz, M, Wasserman, S, Patterson, R. Eosinophils and immunologic lung disease. Med Clin North Am 1981; 65: 1055.Google Scholar
Schraufnagel, DE, Balmes, JR, Cowl, CT, et al. Air pollution and noncommunicable diseases. Chest 2019; 155: 409.Google Scholar
Sugarbaker, DJ, ed. Multimodality therapy of chest malignancies – update ‘96. Chest 1997; 112: 181S.Google Scholar
Terry, PB, Barth, KH, Kaufman, SL, et al. Balloon embolization for the treatment of pulmonary arteriovenous fistulas. N Engl J Med 1980; 302: 1189.Google Scholar
Trulock, EP. Lung transplantation. Am J Respir Crit Care Med 1997; 155: 789.Google Scholar
Versprille, A. Pulmonary vascular resistance: a meaningless variable. Intens Care Med 1984; 10: 51.Google Scholar
Wahidi, MM, Herth, FJF, Chen, A, et al. State of the art: interventional pulmonology. Chest 2020; 157: 724.Google Scholar
Walmrath, D, Schneider, T, Pilch, J, et al. Effects of aerosolized prostacyclin in severe pneumonia. Am J Respir Crit Care Med 1995; 151: 724.Google Scholar
Weinhouse, GL, ed. Pulmonary & Critical Care Medicine. In: Scientific American Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
White, RJ, Lynch-Nyhan, A, Terry, P, et al. Pulmonary arteriovenous malformation: techniques and long-term outcome of embolotherapy. Radiology 1988; 169: 663.Google Scholar
Winterbauer, RH, Belic, N, Moores, KD. Clinical interpretation of bilateral hilar adenopathy. Ann Intern Med 1973; 78: 65.Google Scholar
Wohl, MEB, Chernick, V. Bronchiolitis. Am Rev Respir Dis 1978; 118: 759.Google Scholar
Wright, BA, Jeffrey, PH. Lipoid pneumonia. Semin Respir Infect 1990; 5: 314.Google Scholar
Wu, T-C, Tashkin, DP, Djahed, B, et al. Pulmonary hazards of smoking marijuana as compared with tobacco. N Engl J Med 1988; 318: 347.Google Scholar

Bibliography

Allen, RP, Picchieti, D, Hening, WA, et al. Restless legs syndrome: diagnostic criteria, special considerations, and epidemiology. Sleep Med 2003; 4: 101.Google Scholar
Earley, CJ. Clinical practice: restless legs syndrome. N Engl J Med 2003; 348: 2103.Google Scholar
O’Keefe, ST. Restless legs syndrome: a review. Arch Intern Med 1996; 156: 243.Google Scholar
Telstad, W, Sorensen, O, Larsen, S, et al. Treatment of the restless legs syndrome with carbamazepine. BMJ 1984; 288: 444.Google Scholar
Thyagarajan, D. Restless legs syndrome. Aust Prescriber 2008; 31: 90.Google Scholar

Bibliography

Hinchey, J, Chaves, C, Appignani, B, et al. A reversible posterior leukoencephalopathy syndrome. N Engl J Med 1996; 334: 494.Google Scholar
Marinella, MA, Markert, RJ. Reversible posterior leucoencephalopathy syndrome associated with anticancer drugs. Intern Med J 2009; 39: 826.Google Scholar
Servillo, G, Bifulco, F, De Robertis, E, et al. Posterior reversible encephalopathy syndrome in intensive care medicine. Intens Care Med 2007; 33: 230.Google Scholar
Stott, VL, Hurrell, MA, Anderson, TJ. Reversible posterior leukoencephalopathy syndrome: a misnomer revisited. Intern Med J 2005; 35: 83.Google Scholar

Bibliography

Atkins, JN, Haponik, EF. Reye’s syndrome in the adult patient. Am J Med 1979; 67: 672.Google Scholar
Reye, RDK, Morgan, G, Baral, J. Encephalopathy and fatty degeneration of the viscera: a disease entity in children. Lancet 1963; 2: 749.Google Scholar
Sarnaik, AP. Reye’s syndrome: hold the obituary. Crit Care Med 1999; 27: 1674.Google Scholar

Bibliography

de Meijer, AR, Fikkers, BG, de Keijzer, MH, et al. Serum creatine kinase as predictor of clinical course in rhabdomyolysis. Intens Care Med 2003; 29: 1121.Google Scholar
Gabow, PA, Kaehny, WD, Kelleher, SP. The spectrum of rhabdomyolysis. Medicine 1982; 61: 141.Google Scholar
Holt, SG, Moore, KP. Pathogenesis and treatment of renal dysfunction in rhabdomyolysis. Intens Care Med 2001; 27: 803.Google Scholar
Knochel, JP. Rhabdomyolysis and myoglobinuria. Semin Nephrol 1981; 1: 75.Google Scholar
Lappalainen, H, Tiula, E, Uotila, L, et al. Elimination kinetics of myoglobin and creatine kinase in rhabdomyolysis; implications for follow-up. Crit Care Med 2002; 30: 2212.Google Scholar
Miller, FW. Classification and prognosis of inflammatory muscle disease. Rheum Dis Clin North Am 1994; 20: 811.Google Scholar
Warren, JD, Blumbergs, PC, Thompson, PD. Rhabdomyolysis: a review. Muscle Nerve 2002; 25: 332.Google Scholar
Zimmerman, JL, Shen, MC. Rhabdomyolysis. Chest 2013; 144: 1058.Google Scholar

Bibliography

Ahern, MJ, Smith, MD. Rheumatoid arthritis. Med J Aust 1997; 166: 156.Google Scholar
Firestein, G, Budd, R, Gabriel, SE, et al. Firestein & Kelley’s Textbook of Rheumatology. 11th edition. Philadelphia: Elsevier. 2020.Google Scholar
Fox, DA, ed. Rheumatology. In: Scientific American Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Gibofsky, A, Zabriskie, JB. Rheumatic fever and poststreptococcal reactive arthritis. Curr Opin Rheumatol 1995; 7: 299.Google Scholar
Hamerman, D. The biology of osteoarthritis. N Engl J Med 1989; 320: 1322.Google Scholar
Hruska, KA, Teitelbaum, SL. Renal osteodystrophy. N Engl J Med 1995; 333: 166.Google Scholar
Jowsey, J. Metabolic Disease of Bone. Philadelphia: WB Saunders. 1977.Google Scholar
Klippel, JH, ed. Primer on the Rheumatic Diseases. 13th edition. New York: Springer. 2008.Google Scholar
Littlejohn, GO. Fibromyalgia syndrome. Med J Aust 1996; 165: 387.Google Scholar
Mandell, BF, ed. Acute Rheumatologic and Immunological Diseases: Management of the Critically Ill Patient. New York: Marcell Dekker. 1994.Google Scholar
Miller, FW. Classification and prognosis of inflammatory muscle disease. Rheum Dis Clin North Am 1994; 20: 811.Google Scholar
Mills, PR, Sturrock, RD. Clinical associations between arthritis and liver disease. Ann Rheum Dis 1982; 41: 295.Google Scholar
Parniapour, M, Nordin, M, Skovron, ML, et al. Environmentally induced disorders of the musculoskeletal system. Med Clin North Am 1990; 74: 347.Google Scholar
Posen, S. Paget’s disease: current concepts. Aust NZ J Surg 1992; 62: 17.Google Scholar
Prockop, DJ. Mutations in collagen genes as a cause of connective-tissue diseases. N Engl J Med 1992; 326: 540.Google Scholar
Rodan, GA. Introduction to bone biology. Bone 1992; 13: 53.Google Scholar
Shiel, WC, Prete, PE. Pleuropulmonary manifestations of rheumatoid arthritis. Semin Arthritis Rheum 1984; 13: 235.Google Scholar
Simon, LS, Mills, JA. Drug therapy: nonsteroidal antiinflammatory drugs. N Engl J Med 1980; 302: 1179 & 1237.Google Scholar

Bibliography

Blanton, LS. Infections due to rickettsia and related organisms. In: Scientific American Medicine. Infectious Diseases. Hamilton: Dekker Medicine. 2020.Google Scholar
Caron, F, Meurice, JC, Ingrand, P, et al. Acute Q fever pneumonia. Chest 1998; 114: 808.Google Scholar
Francis, JR, Robson, JM. Q fever: more common than we think, and what this means for prevention. Med J Aust 2019; 210: 305.Google Scholar
Kempschreur, LM, Dekker, S, Hagenaars, JC, et al. Identification of risk factors for chronic Q fever. Emerg Infect Dis 2012; 18: 563.Google Scholar
Marmion, B. Q fever: the long journey to control by vaccination. Med J Aust 2007; 186: 164.Google Scholar
Raoult, D, Tissot-Dupont, H, Foucault, C, et al. Q fever 1985–1998: clinical and epidemiologic features of 1,383 infections. Medicine (Baltimore) 2000; 79: 109.Google Scholar
Sloan-Gardner, TS, Massey, PD, Hutchinson, P, et al. Trends and risk factors for human Q fever in Australia, 1991–2014. Epidemiol Infect 2017; 145: 787.Google Scholar
Spach, D, Liles, W, Campbell, G, et al. Tick-borne diseases in the United States. N Engl J Med 1993; 329: 936.Google Scholar
Watt, G, Parola, P. Scrub typhus and tropical rickettsioses. Curr Opin Infect Dis 2003; 16: 429.Google Scholar
Winkler, HH. Rickettsia species. Annu Rev Microbiol 1990; 44: 131.Google Scholar

Bibliography

Barber, B, Denholm, JT, Spelman, D. Ross River virus. Aust Family Physician 2009; 38: 586.Google Scholar
Mylonas, A, Brown, A, Carthew, T, et al. Natural history of Ross River-induced epidemic polyarthritis. Med J Aust 2002; 177: 356.Google Scholar

Bibliography

Peterson, HB, Walker, CK, Kahn, JG, et al. Pelvic inflammatory disease: key treatment issues and options. JAMA 1991; 266: 2605.Google Scholar
Rice, PA, Schachter, J. Pathogenesis of pelvic inflammatory disease: what are the questions? JAMA 1991; 265: 2587.Google Scholar
Webster, DP, Schneider, CN, Cheche, S, et al. Differentiating acute appendicitis from pelvic inflammatory disease in women of child-bearing age. Am J Emerg Med 1993; 11: 569.Google Scholar

Bibliography

Ahmadzai, H, Huang, S, Steinfort, C, et al. Sarcoidosis: a state of the art review from the Thoracic Society of Australia and New Zealand. Med J Aust 2018; 208: 499.Google Scholar
Baughman, RP, Culver, DA, Judson, MA. A concise review of pulmonary sarcoidosis. Am J Respir Crit Care Med 2011; 183: 573.Google Scholar
Baughman, RP, Drent, M, Kavuru, M, et al. Infliximab therapy in patients with chronic sarcoidosis and pulmonary involvement. Am J Respir Crit Care Med 2006; 174: 795.Google Scholar
Baughman, RP, Judson, MA, Teirstein, AS, et al. Thalidomide for chronic sarcoidosis. Chest 2002; 1222: 227.Google Scholar
Baughman, RP, Scholand, MB. Sarcoidosis. In: Scientific American Medicine. Pulmonary & Critical Care Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Conron, M, Young, C, Beynon, H. Calcium metabolism in sarcoidosis and its clinical implications. Rheumatology 2000; 39: 707.Google Scholar
Crouser, ED, Maier, LA, Wilson, KC, et al. Diagnosis and detection of sarcoidosis: an official American Thoracic Society clinical practice guideline. Am J Respir Crit Care Med 2020; 201: 26.Google Scholar
Drake, WP, Pei, Z, Pride, DT, et al. Molecular analysis of sarcoidosis tissues for mycobacterium species DNA. Emerg Infect Dis 2002; 8: 1334.Google Scholar
Gardner, DG. Hypercalcemia and sarcoidosis – another piece of the puzzle falls into place. Am J Med 2001; 110: 736.Google Scholar
Gibson, GJ, Prescott, RJ, Muers, MF, et al. British Thoracic Society Sarcoidosis Study: Effects of long term corticosteroid treatment. Thorax 1996; 51: 238.Google Scholar
Judson, MA. Extrapulmonary sarcoidosis. Semin Respir Crit Care Med 2007; 28: 83.Google Scholar
Judson, MA. The diagnosis of sarcoidosis. Clin Chest Med 2008; 29: 415.Google Scholar
Judson, MA, Thompson, BW, Rabin, DL, et al. The diagnostic pathway to sarcoidosis. Chest 2003; 123: 406.Google Scholar
Lodha, S, Sanchez, M, Prystowsky, S. Sarcoidosis of the skin: a review for the pulmonologist. Chest 2009; 136: 583.Google Scholar
Morgenthau, AS, Ianuzzi, MC. Recent advances in sarcoidosis. Chest 2011; 139: 174.Google Scholar
Newman, LS. Beryllium disease and sarcoidosis: clinical and laboratory links. Sarcoidosis 1995; 12: 7.Google Scholar
Newman, LS, Rose, CS, Maier, LA. Sarcoidosis. N Engl J Med 1997; 336: 1224.Google Scholar
Patterson, KC, Chen, ES. The pathogenesis of pulmonary sarcoidosis and implications for treatment. Chest 2018; 153: 1432.Google Scholar
Polychronopoulos, VS, Prakash, UBS. Airway involvement in sarcoidosis. Chest 2009; 136: 1371.Google Scholar
Reich, JM. What is sarcoidosis? Chest 2003; 124: 367.Google Scholar
Selroos, O, Astra Draco, AB. Glucocorticosteroids and pulmonary sarcoidosis. Thorax 1996; 51: 229.Google Scholar
Statement on sarcoidosis. Joint Statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG). Am J Respir Crit Care Med 1999; 160: 736.Google Scholar
Thomas, PD, Hunninghake, GW. Current concepts of the pathogenesis of sarcoidosis. Am Rev Respir Dis 1987; 135: 747.Google Scholar
Valevre, D, Prasse, A, Nunes, H, et al. Sarcoidosis. Lancet 2014; 383: 1155.Google Scholar
Winterbauer, RH, Belic, N, Moores, KD. Clinical interpretation of bilateral hilar adenopathy. Ann Intern Med 1973; 78: 65.Google Scholar
Wyser, CP, van Schalkwyk, EM, Alheit, B, et al. Treatment of progressive pulmonary sarcoidosis with cyclosporin A. Am J Respir Crit Care Med 1997; 156: 1371.Google Scholar

Bibliography

Bierman, WF, Wetsteyn, JC, van Gool, T. Presentation and diagnosis of imported schistosomiasis: relevance of eosinophilia, microscopy for ova, and serology. J Travel Med 2005; 12: 9.Google Scholar
Hiatt, RA, Sotomayor, ZR, Sanchez, G, et al. Factors in the pathogenesis of acute schistosomiasis mansoni. J Infect Dis 1979; 139: 659.Google Scholar

Bibliography

Cheung, PP, Dorai Raj, AK. Nephrogenic fibrosing dermopathy: a new clinical entity mimicking scleroderma. Intern Med J 2007; 37: 139.Google Scholar
Cowper, SE, Robin, HS, Steinberg, SM, et al. Scleromyxedema-like cutaneous disease in renal-dialysis patients. Lancet 2000; 356: 1000.Google Scholar
Donohoe, J. Scleroderma and the kidney. Kidney 1992; 41: 462.Google Scholar
Englert, HJ, Manolios, N. Systemic sclerosis: new hope for an unyielding disease. Med J Aust 2009; 191: 365.Google Scholar
Evans, PC, Lambert, N, Maloney, S, et al. Long-term fetal microchimerism in peripheral blood mononuclear cell subsets in healthy women and women with scleroderma. Blood 1999; 93: 2033.Google Scholar
Hissaria, P, Lester, S, Hakendorf, P, et al. Survival in scleroderma: results from the population-based South Australian register. Intern Med J 2011; 41: 381.Google Scholar
Phillips, K. Scleroderma and related disorders. In: Scientific American Medicine. Rheumatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Rasaratnam, I, Ryan, PFJ. Systemic sclerosis and the inflammatory myopathies. Med J Aust 1997; 166: 322.Google Scholar
Sahhar, J, Littlejohn, G, Conron, M. Fibrosing alveolitis in systemic sclerosis. Intern Med J 2004; 34: 626.Google Scholar
Silver, RM, Miller, KS, Kinsella, MB, et al. Evaluation and management of scleroderma lung disease using bronchoalveolar lavage. Am J Med 1990; 88: 470.Google Scholar
Sinnathurai, P, Schrieber, L. Treatment of Raynaud phenomenon in systemic sclerosis. Intern Med J 2013; 43: 476.Google Scholar
Steen, VD. The lung in systemic sclerosis. J Clin Rheumatol 2005; 11: 40.Google Scholar
Steen, VD, Medger, TA. Long-term outcomes of scleroderma renal crisis Ann Intern Med 2000; 133: 600.Google Scholar
Tan, FK, Arnett, FC. Genetic factors in the etiology of systemic sclerosis and Raynaud phenomenon. Curr Opin Rheumatol 2000; 12: 511.Google Scholar

Bibliography

Morrow, JD, Margolies, GR, Rowland, J, et al. Evidence that histamine is the causative toxin of scombroid-fish poisoning. N. Engl J Med 1991; 324: 716.Google Scholar

Bibliography

Jones, AR, Kumareswaran, K. The scourge of C. Med J Aust 2018; 209: 62.Google Scholar
Levavasseur, M, Becquart, C, Pape, E, et al. Severe scurvy: an underestimated disease. Eur J Clin Nutr 2015; 69: 1076.Google Scholar
Wallerstein, RO, Wallerstein, RO Jr. Scurvy. Semin Hematol 1976; 13: 211.Google Scholar

Bibliography

Alhazzini, W, Jacobi, J, Sindi, A, et al. The effect of selenium therapy on mortality in patients with sepsis syndrome: a systematic review and meta-analysis of randomized controlled trials. Crit Care Med 2013; 41: 1555.Google Scholar
Angstwurm, MW, Engelmann, L, Zimmermann, T, et al. Selenium in intensive care (SIC): results of a prospective randomized placebo-controlled multiple-center study in patients with severe systemic inflammatory response syndrome, sepsis and septic shock. Crit Care Med 2007; 35: 118.Google Scholar
Barceloux, DG. Selenium. J Toxicol Clin Toxicol 1999; 37: 145.Google Scholar
Bar-Or, D, Garrett, RE. Is low plasma selenium concentration a true reflection of selenium deficiency and redox status in critically ill patients? Crit Care Med 2011; 39: 2000.Google Scholar
Berger, MM, Cavadini, C, Chiolero, R, et al. Copper, selenium and zinc status and balances after major trauma. J Trauma 1996; 40: 103.Google Scholar
Brawley, OW, Barnes, S, Parnes, H. The future of prostate cancer prevention. Ann NY Acad Sci 2001; 952: 145.Google Scholar
Daniels, LA. Selenium: does selenium status have health outcomes beyond overt deficiency? Med J Aust 2004; 180: 373.Google Scholar
Diplock, AT, Chaudhry, FA. The relationship of selenium biochemistry to selenium-responsive disease in man. In: Prasad, AS, ed. Essential and Toxic Trace Elements in Human Health and Disease. New York: Liss. 1988, p 211.Google Scholar
Forceville, X. Selenium and the ‘free’ electron. Intens Care Med 2001; 27: 16.Google Scholar
Heyland, DK, Dhaliwal, R, Suchner, U, et al. Antioxidant nutrients: a systematic review of trace elements and vitamins in the critically ill patient. Intens Care Med 2005; 31: 327.Google Scholar
Levander, OA, Burk, RF. ASPEN research workshop on selenium in clinical nutrition. JPEN 1986; 10: 545.Google Scholar
Rayman, MP. The importance of selenium to human health. Lancet 2000; 356: 233.Google Scholar
Valenta, J, Brodska, H, Drabek, T, et al. High-dose selenium substitution in sepsis: a prospective randomized clinical trial. Intens Care Med 2011; 37: 808.Google Scholar

Bibliography

Bienvenu, OJ, Neufeld, KJ, Needham, DM. Treatment of four psychiatric emergencies in the intensive care unit. Crit Care Med 2012; 40: 2662.Google Scholar
Bodner, RA, Lynch, T, Lewis, L, et al. Serotonin syndrome. Neurology 1995; 45: 219.Google Scholar
Boyer, EW, Shannon, M. The serotonin syndrome. N Engl J Med 2005; 352: 1112.Google Scholar
Chan, BSH, Graudins, A, Whyte, IM, et al. Serotonin syndrome resulting from drug interactions. Med J Aust 1998; 169: 523.Google Scholar
Gillman, PK. Serotonin syndrome: history and risk. Fundam Clin Pharmacol 1998; 12: 482.Google Scholar
Gillman, PK. The serotonin syndrome and its treatment. J Psychopharmacol 1999; 13: 100.Google Scholar
Isbister, GK, Buckley, NA, Whyte, IM. Serotonin toxicity: a practical approach to diagnosis and treatment. Med J Aust 2007; 187: 361.Google Scholar
Jones, D, Story, DA. Serotonin syndrome and the anaesthetist. Anaesth Intens Care 2005; 33: 181.Google Scholar
Lappin, RI, Auchincloss, EL. Treatment of the serotonin syndrome with cyproheptadine. N Engl J Med 1994; 331: 1021.Google Scholar
Mills, KC. Serotonin syndrome: a clinical update. Crit Care Clin 1997; 13: 763.Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Sternbach, H. The serotonin syndrome. Am J Psych 1991; 148:705.Google Scholar

Bibliography

Low, RH, Zhang, Q, McGowan, S, et al. An overview of the serpin superfamily. Genome Biol 2006; 7: 216.Google Scholar

Bibliography

Chan-Yeung, M, Yu, WC. Outbreak of severe acute respiratory syndrome in Hong Kong Special Administrative Region. BMJ 2003; 326: 850.Google Scholar
Christian, MD, Poutanen, SM, Loutfy, MR, et al. Severe acute respiratory distress syndrome. Clin Infect Dis 2004; 38: 1420.Google Scholar
Ksiazek, TG, Erdman, D, Goldsmith, CS, et al. A novel coronavirus associated with severe acute respiratory syndrome. N Engl J Med 2003; 348: 1953.Google Scholar
Li, W, Shi, Z, Yu, M, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science 2005; 310: 676.Google Scholar
Manocha, S, Walley, KR, Russell, JA. Severe acute respiratory distress syndrome (SARS): a critical care perspective. Crit Care Med 2003; 31: 2684.Google Scholar
Peiris, M, Anderson, L, Osterhaus, ADME, et al., eds. Severe Acute Respiratory Syndrome: A Clinical Guide. Oxford: Blackwell. 2005.Google Scholar
Poutanen, SM, Low, DE, Henry, B, et al. Identification of severe acute respiratory syndrome in Canada. N Engl J Med 2003; 348: 1995.Google Scholar
Sprung, CL, Cohen, R, Adini, B, eds. Recommendations and standard operating procedures for intensive care unit and hospital preparations for an influenza epidemic or mass disaster. Summary report of the European Society of Intensive Care Medicine’s Task Force for intensive care unit triage during an influenza epidemic or mass disaster. Intens Care Med 2010; 36 (suppl. 1): S1.Google Scholar
Tan, TK. How severe acute respiratory syndrome (SARS) affected the Department of Anaesthesia at Singapore General Hospital. Anaesth Intens Care 2004; 32: 394.Google Scholar
Tomlinson, B, Cockram, C. SARS: experience at Prince of Wales Hospital, Hong Kong. Lancet 2003; 361: 1486.Google Scholar
Tsang, K, Zhong NS. SARS: pharmacotherapy. Respirology 2003; 8: S25.Google Scholar
Weinstein, RA. Planning for epidemics – the lessons of SARS. New Engl J Med 2004; 350: 2332.Google Scholar

Bibliography

Doll, DC, List, AF. Myelodysplastic syndromes. Semin Oncol 1992; 19: 1.Google Scholar
Jacobs, A. Primary acquired sideroblastic anaemia. Br J Haematol 1986; 64: 415.Google Scholar

Bibliography

Hansen, A, Lipsky, PE, Dorner, T. New concepts in the pathogenesis of Sjogren’s syndrome: many questions, fewer answers. Curr Opin Rheumatol 2003; 15: 563.Google Scholar
Kassan, SS, Moutsopoulos, HM. Clinical manifestations and early diagnosis of Sjogren’s syndrome. Arch Intern Med 2004; 164: 1275.Google Scholar
Lee, AS, Scofield, H, Hammitt, KM, et al. Consensus guidelines for evaluation and management of pulmonary disease in Sjogren’s. Chest 2021; 159: 683.Google Scholar
Parambil, JG, Myers, JL, Lindell, RM, et al. Interstitial lung disease in primary Sjogren syndrome. Chest 2006; 130: 1489.Google Scholar
Patel, R, Shahane, A. The epidemiology of Sjogren’s syndrome. Clin Epidemiol 2014; 6: 247.Google Scholar
Vivino, FB. Sjogren’s syndrome: clinical aspects. Clin Immunol 2017; 182: 48.Google Scholar

Bibliography

Schindewolf, M, Kroll, H, Ackermann, H, et al. Heparin-induced non-necrotizing skin lesions: rarely associated with heparin-induced thrombocytopenia. J Thromb Haemost 2010; 8: 1486.Google Scholar

Bibliography

Lebwohl, M. Cutaneous manifestations of systemic diseases. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar

Bibliography

Aldrich, MS. Narcolepsy. Neurology 1992; 42 (suppl.): 34.Google Scholar
Benjafield, AV, Ayas, NT, Eastwood, PR, et al. Estimation of the global prevalence and burden of obstructive sleep apnoea: a literature-based analysis. Lancet Respir Med 2019; 7: 687.Google Scholar
Bradley, TD, Floras, JS. Obstructive sleep apnoea and its cardiovascular consequences. Lancet 2009; 373: 82.Google Scholar
Burwell, CS, Robin, ED, Whaley, RD, et al. Extreme obesity associated with alveolar hypoventilation: a Pickwickian syndrome. Am J Med 1956; 21: 811.Google Scholar
Canto, RG, Zwillich, CW. Central sleep apnea. Pulmonary Perspectives 1993; 10(3): 4.Google Scholar
Casey, KR, Cantillo, KO, Brown, LK. Sleep-related hypoventilation/hypoxemic syndromes. Chest 2007; 131: 1936.Google Scholar
Chan, ASL, Phillips, CL, Cistulli, PA. Obstructive sleep apnoea – an update. Intern Med J 2010; 40: 102.Google Scholar
Chan, CS, Grunstein, RR, Bye, PT, et al. Obstructive sleep apnea with severe chronic airflow limitation. Am Rev Respir Dis 1989; 140: 1274.Google Scholar
Cherniack, NS, Longobardo, GS. Cheyne–Stokes breathing: instability in physiologic control. N Engl J Med 1973; 288: 952.Google Scholar
Chishti, A, Batchelor, AM, Bullock, RE, et al. Sleep-related breathing disorders following discharge from intensive care. Intens Care Med 2000; 26: 426.Google Scholar
Chokroverty, S. Sleep disorders. In: Scientific American Medicine. Neurology, Psychiatry. Hamilton: Dekker Medicine. 2020.Google Scholar
Douglas, JA, Chai-Coetzer, cl, McEvoy, D, et al. Guidelines for sleep studies in adults: a position statement of the Australasian Sleep Association. Sleep Med 2017; 36: S2.Google Scholar
Dyken, ME, Afifi, AK, Lin-Dyken, DC. Sleep-related problems in neurologic diseases. Chest 2012; 141: 528.Google Scholar
Eastwood, PR, Malhotra, A, Palmer, LJ, et al. Obstructive sleep apnoea: from pathogenesis to treatment: current controversies and future directions. Respirology 2010; 15: 587.Google Scholar
Eckert, DJ, Jordan, AS, Merchia, P, et al. Central sleep apnea: pathophysiology and treatment. Chest 2007; 131: 595.Google Scholar
Exar, EN, Collop, NA. The upper airway resistance syndrome. Chest 1999; 115: 1127.Google Scholar
Fishman, AP, Goldring, RM, Turino, GM. General alveolar hypoventilation: a syndrome of respiratory and cardiac failure in patients with normal lungs. Q J Med 1966; 35: 261.Google Scholar
Flemons, WW. Obstructive sleep apnea. N Engl J Med 2002; 347: 498.Google Scholar
Hamilton, GS, Solin, P, Naughton, MT. Obstructive sleep apnoea and cardiovascular disease. Intern Med J 2004; 34: 420.Google Scholar
Holt, NR, Downey, G, Naughton, MT. Perioperative considerations in the management of obstructive sleep apnoea. Med J Aust 2019; 211: 326.Google Scholar
Hudgel, DW, Thanakitcharu, S. Pharmacologic treatment of sleep-disordered breathing. Am J Respir Crit Care Med 1998; 158: 691.Google Scholar
Ingbar, DH, Gee, JBL. Pathophysiology and treatment of sleep apnea. Annu Rev Med 1985; 36: 369.Google Scholar
Javaheri, S, Javaheri, S. Update on persistent excessive daytime sleepiness in OSA. Chest 2020; 158: 776.Google Scholar
Johns, MW. A new method for measuring daytime sleepiness: the Epworth sleepiness scale. Sleep 1991; 14: 540.Google Scholar
Jordan, AS, McSharry, DG, Malhotra, A. Adult obstructive sleep apnoea. Lancet 2014; 383: 736.Google Scholar
Kales, A, Vela-Bueno, A, Kales, JD. Sleep disorders: sleep apnea and narcolepsy. Ann Intern Med 1987; 106: 434.Google Scholar
Kessler, R, Chaouat, A, Schinkewitch, P, et al. The obesity-hypoventilation syndrome revisited. Chest 2001; 120: 369.Google Scholar
Khan, Z, Trotti, LM. Central disorders of hypersomnolence. Chest 2015; 148: 262.Google Scholar
Krachman, SL, D’Alonzo, GE, Griner, JG. Sleep in the intensive care unit. Chest 1995; 107: 1713.Google Scholar
Kushida, CA, ed. Obstructive Sleep Apnea (2 volumes). Boca Raton: CRC Press LLC. 2007.Google Scholar
Lang, AO, ed. Sleep Apnea Syndrome Research Focus. New York: Nova Science. 2007.Google Scholar
Levenson, JC, Kay, DB, Buysse, DJ. The pathophysiology of insomnia. Chest 2015; 147: 1179.Google Scholar
Mansfield, DR, McEvoy, RD, eds. Sleep disorders: a practical guide for Australian health care practitioners. Med J Aust 2013; 199 (suppl. 8): S1.Google Scholar
McEvoy, RD, Antic, NA, Heeley, E, et al. CPAP for prevention of cardiovascular events in obstructive sleep apnea. N Engl J Med 2016; 375: 919.Google Scholar
McNicholas, WT. Sleep apnoea and driving risk. Eur Respir J 1999; 13: 1225.Google Scholar
McNicholas, WT, Philipson, EA. Breathing Disorders in Sleep. London: WB Saunders. 2002.Google Scholar
McNicholas, WT, Ryan, S. Obstructive sleep apnoea syndrome: translating science to clinical practice. Respirology 2006; 136: 144.Google Scholar
Mohammadieh, A, Sutherland, K, Cistulli, PA. Sleep disordered breathing: management update. Intern Med J 2017; 47: 1241.Google Scholar
Mokhlesi, B, Tulaimat, A. Recent advances in obesity hypoventilation syndrome. Chest 2008; 132: 1322.Google Scholar
Naughton, M, Pierce, R. Snoring, Sleep Apnoea and Other Sleep Problems. 2nd edition. Spring Hill: Australian Lung Foundation. 2000.Google Scholar
Neill, AM, McEvoy, RD. Obstructive sleep apnoea and other sleep breathing disorders. Med J Aust 1997; 167: 376.Google Scholar
O’Keefe, ST. Restless legs syndrome: a review. Arch Intern Med 1996; 156: 243.Google Scholar
Overeem, S, Mignor, E, Van, Dijk, et al. Narcolepsy: clinical features, new pathophysiologic insights and future prospects. J Clin Neurophysiol 2001; 18: 78.Google Scholar
Pack, AI. Obstructive sleep apnea. Adv Intern Med 1994; 39: 517.Google Scholar
Pack, AI. Sleep Apnea: Pathogenesis, Diagnosis, and Treatment. Lung Biology in Health & Disease – Volume 166. New York: Marcel Dekker. 2002.Google Scholar
Parish, JM. Sleep-related problems in common medical conditions. Chest 2009; 135: 563.Google Scholar
Patil, SP, Schneider, H, Schwartz, AR, et al. Adult obstructive sleep apnea: pathophysiology and diagnosis. Chest 2007; 132: 325.Google Scholar
Phillips, B. Sleep apnea and public health. Pulmonary Perspectives 2005; 22 (4): 1.Google Scholar
Phillips, B, Naughton, MT. Obstructive Sleep Apnea. Basel: Health Press. 2004.Google Scholar
Powell, NB, Riley, RW, Robinson, A. Surgical management of obstructive sleep apnea syndrome. Clin Chest Med 1998; 19: 77.Google Scholar
Ray, CS, Sue, DY, Bray, G, et al. Effects of obesity on respiratory function. Am Rev Respir Dis 1983; 128: 501.Google Scholar
Riley, RW, Powell, NB. Maxillofacial surgery and obstructive sleep apnea syndrome. Otolaryngol Clin North Am 1990; 23: 809.Google Scholar
Saunders, NA, Sullivan, CE, eds. Sleep and Breathing. Lung Biology in Health and Disease, Vol 21. New York: Marcel Dekker. 1984.Google Scholar
Severinghaus, JW, Mitchell, RA. Ondine’s curse – failure of respiratory center automaticity while awake. Clin Res 1962; 10: 122.Google Scholar
Schmickl, CN, Landry, SA, Orr, JE, et al. Acetazolamide for OSA and central sleep apnea: a comprehensive systematic review and meta-analysis. Chest 2020; 158: 2632.Google Scholar
Strohl, KP, Redline, S. Nasal CPAP therapy, upper airway muscle activation, and obstructive sleep apnea. Am Rev Respir Dis 1986; 134: 555.Google Scholar
Strollo, PJ, Rogers, RM. Obstructive sleep apnea. N Engl J Med 1996; 334: 99.Google Scholar
Strollo, PJ, Soose, RJ, Maurer, JT, et al. Upper-airway stimulation for obstructive sleep apnea. N Engl J Med 2014; 370: 139.Google Scholar
Sullivan, CE, Issa, FG, Berthon-Jones, M, et al. Reversal of obstructive sleep apnoea by continuous positive airway pressure applied through the nares. Lancet 1981; 1: 862.Google Scholar
Venkateshiah, SB, Collop, NA. Sleep and sleep disorders in the hospital. Chest 2012; 141: 1337.Google Scholar
Young, T, Palta, M, Dempsey, J, et al. The occurrence of sleep-disordered breathing among middle-aged adults. N Engl J Med 1993; 328: 1230.Google Scholar
Weingarten, JA, Collop, NA. Air travel: effects of sleep deprivation and jet lag. Chest 2013; 144: 1394.Google Scholar
Worsnop, C, Pierce, R, McEvoy, RD. Obstructive sleep apnoea. Aust NZ J Med 1998; 28: 421.Google Scholar

Bibliography

Chan, MM, Chan, MM, Mengshol, JA, et al. Octreotide. Chest 2013; 114: 1937.Google Scholar
Lamberts, SW, van der Lely, AJ, de Herder, WW, et al. Octreotide. N Engl J Med 1996; 334: 246.Google Scholar

Bibliography

Bohnsack, JF, Brown, EJ. The role of the spleen in resistance to infection. Annu Rev Med 1986; 37: 49.Google Scholar
Rose, WF. The spleen as a filter. N Engl J Med 1987; 317: 704.Google Scholar

Bibliography

Kahn, MA, ed. Spondyloarthropathies. Curr Opin Rheumatol 1994; 6: 351.Google Scholar
Khan, MA. Update on spondyloarthropathies. Ann Intern Med 2002; 136: 896.Google Scholar
Maksymowych, WP. Seronegative spondyloarthritis. In: Scientific American Medicine. Rheumatology. Hamilton: Dekker Medicine. 2020.Google Scholar
McEwen, C, DiTata, D, Lingg, C, et al. Ankylosing spondylitis and spondylitis accompanying ulcerative colitis, regional enteritis, psoriasis and Reiter’s disease. Arthritis Rheum 1971; 14: 291.Google Scholar
Reveille, JD. HLA-B27 and the seronegative spondyloarthropathies. Am J Med Sci 1998; 316: 239.Google Scholar
Reveille, JD, Arnett, FC. Spondyloarthritis: update on pathogenesis and management. Am J Med 2005; 118: 592.Google Scholar
Robinson, PC, Benham, H. Advances in classification, basic mechanisms and clinical science in ankylosing spondylitis and axial spondyloarthritis. Intern Med J 2015; 45: 127.Google Scholar
Sheehan, NJ. The ramifications of HLA-B27. J R Soc Med 2004; 97: 10.Google Scholar
Stafford, L, Youssef, PP. Spondyloarthropathies: a review. Intern Med J 2002; 32: 40.Google Scholar

Bibliography

Herbland, A, El Zein, I, Valentino, R, et al. Star fruit poisoning is potentially life-threatening in patients with moderate chronic renal failure. Intens Care Med 2009; 35: 1459.Google Scholar

Bibliography

Beutler, E, Gelbart, T. Glucocerebrosidase (Gaucher disease). Hum Mutat 1996; 8: 207.Google Scholar
Charrow, J, Esplin, JA, Gribble, TJ, et al. Gaucher disease: recommendations on diagnosis, evaluation and monitoring. Arch Intern Med 1998; 158: 1754.Google Scholar
Meikle, PJ, Hopwood, JJ, Clague, AE, et al. Prevalence of lysosomal storage disorders. JAMA 1999; 281: 249.Google Scholar
Various. Treatable lysosomal storage diseases in the advent of disease-specific therapy. Intern Med J 2020; 50 (suppl 4).Google Scholar
Wenger, DA, Copploa, S, Liu, SL. Insights into the diagnosis and treatment of lysosomal storage diseases. Arch Neurol 2003; 60: 322.Google Scholar

Bibliography

Burlet, N, Reginster, JY. Strontium ranelate: the first dual acting treatment for postmenopausal osteoporosis. Clin Orthop Relat Res 2006; 443: 55.Google Scholar
Friedland, J. Local and systemic radiation for palliation of metastatic disease. Urol Clin North Am 1999; 26: 391.Google Scholar
O’Donnell, S, Cranney, A, Wells, GA, et al. Strontium ranelate for preventing and treating postmenopausal osteoporosis. Cochrane Database Syst Rev 2006; 4: CD005326.Google Scholar

Bibliography

Ball, CM, Featherstone, PJ. Pharmacological treatment of shock – strychnine. Anaesth Intens Care 2017; 45: 3.Google Scholar

Bibliography

Doolittle, J, Walker, P, Mills, T, et al. Hyperhidrosis: an update on prevalence and severity in the United States. Arch Dermatol Res 2016; 308: 743.Google Scholar
Nawrocki, S, Cha, J. The etiology, diagnosis, and management of hyperhidrosis: a comprehensive review. J Am Acad Dermatol 2019; 81: 657 & 669.Google Scholar
Quinton, P. Physiology of sweat secretion. Kidney Int 1987; 2 (suppl. 21): S102.Google Scholar

Bibliography

Adrogue, HJ, Madias, NE. Hyponatremia. N Engl J Med 2000; 342: 1581.Google Scholar
Barnes, A, Li, JYZ, Gleadle, JM. Lack of appropriate investigations in making a diagnosis of syndrome of inappropriate antidiuretic syndrome. Intern Med J 2017; 47: 336.Google Scholar
Berl, T. Treating hyponatremia: damned if we do and damned if we don’t. Kidney Int 1990; 37: 1006.Google Scholar
Fazekas, AS, Funk, G-C, Klobassa, DS, et al. Evaluation of 36 formulas for calculating plasma osmolality. Intens Care Med 2013; 39: 302.Google Scholar
Goudie, AM, Tunstall-Pedoe, DS, Kerins, M, et al. Exercise-induced hyponatraemia after a marathon: case series. J R Soc Med 2006; 99: 363.Google Scholar
Madhusoodanan, S, Bogunovi, OJ, Moise, D, et al. Hyponatraemia associated with psychotropic medications: a review of the literature and spontaneous reports. Adverse Drug React Toxicol Rev 2002; 21: 17.Google Scholar
Noakes, TD. Overconsumption of fluids by athletes. BMJ 2003; 327: 113.Google Scholar
Robertson, GL. Physiology of ADH secretion. Kidney Int 1987; 32 (suppl. 21): S20.Google Scholar
Rose, BD. New approach to disturbances in the plasma sodium concentration. Am J Med 1986; 81: 1033.Google Scholar
Spasovski, G, Vanholder, R, Allolio, B, et al. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Intens Care Med 2014; 40: 320.Google Scholar
Sterns, RH. Severe symptomatic hyponatremia: treatment and outcome. Ann Intern Med 1987; 107: 656.Google Scholar
Vokes, TJ, Robertson, GL. Disorders of antidiuretic hormone. Endocrinol Metab Clin North Am 1988; 17: 281.Google Scholar

Bibliography

Augenbraun, M. Syphilis and the nonvenereal treponematoses. In: Scientific American Medicine. Infectious Diseases. Hamilton: Dekker Medicine. 2020.Google Scholar
Hook, EW, Marra, CM. Acquired syphilis. N Engl J Med 1992; 326: 1060.Google Scholar
Read, PJ, Donovan, B. Clinical aspects of adult syphilis. Intern Med J 2012; 42: 614.Google Scholar

Bibliography

Lemire, RJ. Neural tube defects. JAMA 1988; 259: 558.Google Scholar
Milunsky, A, Ulcickas, M, Rothman, K, et al. Maternal heat exposure and neural tube defects. JAMA 1992; 268: 882.Google Scholar
Paul, KS, Lye, RH, Strang, FA, et al. Arnold-Chiari malformation. J Neurosurg 1983; 58: 183.Google Scholar
Wald, NJ, Bower, C. Folic acid, pernicious anaemia, and prevention of neural tube defects. Lancet 1994; 343: 307.Google Scholar

Bibliography

Craddock, PR, Fehr, J, Brigham, KL, et al. Complement and leukocyte-mediated pulmonary dysfunction in hemodialysis. N Engl J Med 1977; 296: 769.Google Scholar
Davies, D. Ankylosing spondylitis and lung fibrosis. Q J Med 1972; 41: 395.Google Scholar
Marik, P, Varon, J. The obese patient in the ICU. Chest 1998; 113: 492.Google Scholar
Matthay, RA, Schwarz, MI, Petty, TL. Pulmonary manifestations of systemic lupus erythematosus. Medicine 1975; 54: 397.Google Scholar
Ray, CS, Sue, DY, Bray, G, et al. Effects of obesity on respiratory function. Am Rev Respir Dis 1983; 128: 501.Google Scholar
Segal, AM, Calabrese, LH, Muzaffar, A, et al. The pulmonary manifestations of systemic lupus erythematosus. Semin Arthritis Rheum 1985; 14: 202.Google Scholar
Shiel, WC, Prete, PE. Pleuropulmonary manifestations of rheumatoid arthritis. Semin Arthritis Rheum 1984; 13: 235.Google Scholar

Bibliography

Connelly, K, Morand, EF. Systemic lupus erythematosus: a clinical update. Intern Med J 2021; 51: 1219.Google Scholar
Contreras, G, Pardo, V, Leclerrcq, B, et al. Sequential therapies for proliferative lupus nephritis. N Engl J Med 2004; 350: 971.Google Scholar
Doherty, NE, Siegel, RJ. Cardiovascular manifestations of systemic lupus erythematosus. Am Heart J 1985; 110: 1257.Google Scholar
Durcan, L, O’Dwyer, T, Petri, M. Management strategies and future directions for systemic lupus erythematosus in adults. Lancet 2019; 393: 2332.Google Scholar
Ginsberg, JS, Brill-Edwards, P, Johnston, M, et al. Relationship of antiphospholipid antibodies to pregnancy loss in patients with systemic lupus erythematosus. Blood 1992; 80: 975.Google Scholar
Golder, V, Hoi, A. Systemic lupus erythematosus: an update. Med J Aust 2017; 206: 215.Google Scholar
Hanly, JG, Gladman, DD, Rose, TH, et al. Lupus pregnancy: a prospective study of placental changes. Arthritis Rheum 1988; 31: 358.Google Scholar
Johns, KR, Morand, EF, Littlejohn, GO. Pregnancy outcome in systemic lupus erythematosus. Aust NZ J Med 1998; 28: 18.Google Scholar
Kirou, KA, Lockshin, MD. Systemic lupus erythematosus. In: Scientific American Medicine. Rheumatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Lee, LS, Chase, PH. Drug-induced systemic lupus erythematosus. Semin Arthritis Rheum 1975; 5: 83.Google Scholar
Lockshin, MD. Lupus pregnancy. Clin Rheum Dis 1985; 11: 611.Google Scholar
Matthay, RA, Schwarz, MI, Petty, TL. Pulmonary manifestations of systemic lupus erythematosus. Medicine 1975; 54: 397.Google Scholar
Rahman, A, Isenberg, DA. Systemic lupus erythematosus. N Engl J Med 2008; 358: 929.Google Scholar
Rasaratnam, I, Ryan, PFJ. Systemic lupus erythematosus. Med J Aust 1997; 166: 266.Google Scholar
Reeves, GEM. Update on the immunology, diagnosis and management of systemic lupus erythematosus. Intern Med J 2004; 34: 338.Google Scholar
Segal, AM, Calabrese, LH, Muzaffar, A, et al. The pulmonary manifestations of systemic lupus erythematosus. Semin Arthritis Rheum 1985; 14: 202.Google Scholar
Steinberg, AD. The treatment of lupus nephritis. Kidney Int 1986; 30: 769.Google Scholar
Tan, EM, Cohen, AS, Fries, JF, et al. The 1982 revised criteria for the classification of systemic lupus erythematosus. Arthritis Rheum 1982; 25: 1271.Google Scholar
Weening, JJ, D’Agan, VD, Schwartz, MM, et al. The classification of glomerlonephritis in systemic lupus erythematosus revisited. Kidney Int 2004; 65: 521.Google Scholar

Bibliography

Boland, TA, Lee, VH, Bleck, TP. Stress-induced cardiomyopathy. Crit Care Med 2015; 43: 686.Google Scholar
Connelly, KA, MacIsaac, AI, Jelinek, VM. Stress, myocardial infarction, and the ‘tako-tsubo’ phenomenon. Heart 2004; 90: e52.Google Scholar
Dote, K, Sato, H, Tateishi, H, et al. [Myocardial stunning due to simultaneous multivessel coronary spasms. [Japanese] J Cardiol 1991; 21: 203.Google Scholar
Park, JH, Kang, SJ, Song, JK, et al. Left ventricular apical ballooning due to severe physical stress in patients admitted to the medical ICU. Chest 2005; 128: 296.Google Scholar
Pernicova, I, Garg, S, Bourantas, CV, et al. Takotsubo cardiomyopathy: a review of the literature. Angiology 2010; 61: 166.Google Scholar
Samardhi, H, Raffel, OC, Savage, M, et al. Takotsubo cardiomyopathy: an Australian single centre experience with medium term follow-up. Intern Med J 2012; 42: 35.Google Scholar
Samuels, MA, The brain-heart connection. Circulation 2007; 116: 77.Google Scholar
Sharkey, SW, Windenburg, DC, Lesser, JR, et al. Natural history and expansive clinical profile of stress (tako-tsubo) cardiomyopathy. J Am Coll Cardiol 2010; 55: 333.Google Scholar

Bibliography

Edsall, G. Problems in the immunology and control of tetanus. Med J Aust 1976; 2: 216.Google Scholar
Gaber, T A-Z K, Mannemela, S. Botulinum toxin for muscle spasm after tetanus. J R Soc Med 2005; 98: 63.Google Scholar
Tidyman, M, Prichard, JG, Deamer, RL, et al. Adjunctive use of dantrolene in severe tetanus. Anesth Analg 1985; 64: 538.Google Scholar

Bibliography

Nora, JJ. Causes of congenital heart disease: old and new modes, mechanisms, and models. Am Heart J 1993; 125: 1409.Google Scholar
Wilson, NJ, Neutze, JM. Adult congenital heart disease: principles and management guidelines. Aust NZ J Med 1993; 23: 498 & 697.Google Scholar

Bibliography

Akca, S, Haji-Michael, P, de Mendonca, A, et al. Time course of platelet counts in critically ill patients. Crit Care Med 2002; 30: 753.Google Scholar
Aster, RH, Bougie, DW. Drug-induced immune thrombocytopenia. N Engl J Med 2007; 357: 904.Google Scholar
Aster, RH, Curtis, BR, McFarland, JG, et al. Drug-induced immune thrombocytopenia: pathogenesis, diagnosis, and management. J Thromb Haemost 2009; 7: 911.Google Scholar
Balduini, CL, Savoia, A, Seri, M. Inherited thrombocytopenias frequently diagnosed in adults. J Thromb Haemost 2013; 11: 1006.Google Scholar
Beutler, E. Platelet transfusions: the 20,000/μL trigger. Blood 1993; 81: 1411.Google Scholar
Chong, BH. Heparin-induced thrombocytopenia. J Thromb Haemost 2003; 1: 1471.Google Scholar
Cines, DB, Blanchette, VS. Immune thrombocytopenic purpura. N Engl J Med 2002; 346: 995.Google Scholar
Ferrara, JLM. The febrile platelet transfusion reaction: a cytokine shower. Transfusion 1995; 35: 89.Google Scholar
George, JN. Thrombotic thrombocytopenic purpura. N Engl J Med 2006; 354: 1927.Google Scholar
George, JN, El-Harake, M, Raskob, GE. Chronic idiopathic thrombocytopenic purpura. N Engl J Med 1994; 331: 1207.Google Scholar
Handtke, S, Thiele, T. Large and small platelets – (when) do they differ? J Thromb Haemost 20020; 18: 1256.Google Scholar
Haznedaroglu, IC, Goker, H, Turgut, M, et al. Thrombopoietin as a drug: biologic expectations, clinical realities, and future directions. Clin Appl Thromb Hemost 2002; 8: 193.Google Scholar
Hui, P, Cook, DJ, Lim, W, et al. The frequency and clinical significance of thrombocytopenia complicating critical illness. Chest 2011; 139: 271.Google Scholar
Italiano, JE, Shivdasani, A. Megakaryocytes and beyond: the birth of platelets. J Thromb Haemost 2003; 1: 1174.Google Scholar
Marder, VJ, Aird, WC, Bennett, JS, et al., eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. 6th edition. Philadelphia: Lippincott Williams & Wilkins. 2012.Google Scholar
Moake, JL. Thrombotic microangiopathies. N Engl J Med 2002; 347: 589.Google Scholar
Mueller-Eckhardt, C. Post-transfusion purpura. Br J Haematol 1986; 64: 419.Google Scholar
Papadopoulos, J, Kane-Gill, S, Cooper, B, eds. Identification and prevention of common adverse drug events in the intensive care unit. Crit Care Med 2010; 36: 6 (suppl.).Google Scholar
Payne, BA, Pierre, RV. Pseudothrombocytopenia: a laboratory artifact with potentially serious consequences. Mayo Clin Proc 1984; 59: 123.Google Scholar
Pene, F, Benoit, DD. Thrombocytopenia in the critically ill: considering pathophysiology rather than looking for a magic threshold. Intens Care Med 2013; 39: 1656.Google Scholar
Rice, TW, Wheeler, AP. Coagulopathy in critically ill patient. Part 1: platelet disorders. Chest 2009; 136: 1622.Google Scholar
Selleng, K, Warkentin, TE, Greinacher, A. Heparin-induced thrombocytopenia in intensive care patients. Crit Care Med 2007; 35: 1165.Google Scholar
Thiolliere, F, Serre-Serpin, AF, Reignier, J, et al. Epidemiology and outcome of thrombocytopenic patients in the intensive care unit: results of a prospective multicenter study. Intens Care Med 2013; 39: 1460.Google Scholar
Various. Drug-induced thrombocytopenia. Chest 2005; 127(2): suppl.Google Scholar
Warkentin, TE, Greinacher, A, eds. Heparin-Induced Thrombocytopenia. 5th edition. London: CRC Press. 2012.Google Scholar
Warkentin, TE, Greinacher, A, Koster, A, et al. Treatment and prevention of heparin-induced thrombocytopenia: ACCP evidence-based clinical practice guidelines Chest 2008; 133 (suppl.): 340S.Google Scholar
Warkentin, TE, Levine, MN, Hirsh, J, et al. Heparin-induced thrombocytopenia in patients treated with low-molecular-weight heparin or unfractionated heparin. N Engl J Med 1995; 332: 1330.Google Scholar
Warkentin, TE, Sheppard, J-AI, Heels-Ansdell, D, et al. Heparin-induced thrombocytopenia in medical surgical critical illness. Chest 2013; 144: 848.Google Scholar
Williamson, DR, Albert, M, Heels-Ansdell, D, et al. Thrombocytopenia in critically ill patients receiving thromboprophylaxis. Chest 2013; 144: 1207.Google Scholar
Yang, Z, Stulz, P, von Segesser, L, et al. Different interactions of platelets with arterial and venous coronary bypass vessels. Lancet 1991; 337: 939.Google Scholar

Bibliography

Anagrelide Study Group. Anagrelide, a therapy for thrombocythemic states. Am J Med 1992; 92: 69.Google Scholar
Bentley, MA, Taylor, KM, Wright, SJ. Essential thrombocythaemia. Med J Aust 1999; 171: 210.Google Scholar
Layzer, RB. Hot feet: erythromelalgia and related disorders. J Child Neurol 2001; 16: 199.Google Scholar
Kurzrock, R, Cohen, PR. Erythromelalgia: review of clinical characteristics and pathophysiology. Am J Med 1991; 91: 416.Google Scholar
Marder, VJ, Aird, WC, Bennett, JS, et al., eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. 6th edition. Philadelphia: Lippincott Williams & Wilkins. 2012.Google Scholar
Michiels, JJ, ed. Platelet-dependent vascular complications and bleeding symptoms in essential thrombocythemia and polycythemia vera. Semin Thromb Hemost 1997; 23: 333.Google Scholar
Michiels, JJ, Abels, J, Steketee, J, et al. Erythromelalgia caused by platelet mediated arteriolar inflammation and thrombosis in thrombocythemia. Ann Intern Med 1985; 102: 466.Google Scholar
Sroren, EC, Tefferi, A. Long-term use of anagrelide in young patients with essential thrombocythemia. Blood 2001; 97: 863.Google Scholar
Tefferi, A, Elliott, M, Solberg, L, et al. New drugs in essential thrombocythemia and polycythemia vera. Blood Rev 1997; 11: 1.Google Scholar

Bibliography

Leung, LLK. Thrombotic disorders. In: Scientific American Medicine. Hematology. Hamilton: Dekker Medicine. 2020.Google Scholar
Marder, VJ, Aird, WC, Bennett, JS, et al., eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. 6th edition. Philadelphia: Lippincott Williams & Wilkins. 2012.Google Scholar
Winter, M-P, Schernthaner, GH, Lang, IM. Chronic complications of venous thromboembolism. J Thromb Haemost 2017; 15: 1531.Google Scholar

Bibliography

Conway, EM. Thrombomodulin and its role in inflammation. Semin Immunopathol 2012; 34: 107.Google Scholar
Maruyama, I. Recombinant thrombomodulin and activated protein C in the treatment of disseminated intravascular coagulation. Thromb Haemost 1999; 82: 718.Google Scholar
Saito, H, Maruyama, I, Shimazaki, S, et al. Efficacy and safety of recombinant human soluble thrombomodulin (ART-123) in disseminated intravascular coagulation: results of a phase III randomized double-blind clinical trial. J Thromb Haemost 2007; 5: 31.Google Scholar
Valeriani, E, Squizzato, A, Gallo, A, et al. Efficacy and safety of recombinant human soluble thrombomodulin in patients with sepsis-associated coagulopathy: a systematic review and meta-analysis. J Thromb Haemost 2020; 18: 1618.Google Scholar
Vincent, JL, Francois, B, Zabolotskikh, I, et al. Effect of recombinant human soluble thrombomodulin on mortality in patients with sepsis-associated coagulopathy: the SCARLET randomized clinical trial. JAMA 2019; 321: 1993.Google Scholar
Yamakawa, K, Fujimi, S, Mohri, T, et al. Treatment effects of recombinant human soluble thrombomodulin in patients with severe sepsis: a historical control study. Crit Care 2011; 15: R123.Google Scholar

Bibliography

Baglin, T. Unraveling the thrombophilia paradox: from hypercoagulability to the prothrombotic state. J Thromb Haemost 2009; 8: 228.Google Scholar
Bick, RL, Kaplan, H. Syndromes of thrombosis and hypercoagulability: congenital and acquired thrombophilias. Clin Appl Thromb Hemost 1998; 4: 25.Google Scholar
Brenner, B, Conard, J, eds. Women’s issues in thrombophilia. Semin Thromb Hemost 2003; 29: 1.Google Scholar
Casini, A, Neerman-Arbez, M, Ariens, RA, et al. Dysfibrinogenemia: from molecular anomalies to clinical manifestations and management. J Thromb Haemost 2015; 13: 909.Google Scholar
Cattaneo, M. Hyperhomocysteinemia, atherosclerosis and thrombosis. Thromb Haemost 1999; 81: 165.Google Scholar
de Moerloose, P, Bounameaux, HR, Mannucci, PM. Screening tests for thrombophilic patients: which tests, for which patient, by whom, when, and why? Semin Thromb Hemost 1998; 24: 321.Google Scholar
den Heijer, M, Rosendaal, FR, Blom, HJ, et al. Hyperhomocystinemia and venous thrombosis: a meta-analysis. Thromb Haemost 1998; 80: 874.Google Scholar
Franchini, M, Mannucci, PM. ABO blood group and thrombotic vascular disease. Thromb Haemost 2014; 112: 1103.Google Scholar
Franchini, M, Martinelli, I, Mannucci, PM. Uncertain thrombophilia markers. Thromb Haemost 2016; 115: 25.Google Scholar
Franco, RF, Reitsma, PH, Lourenco, D, et al. Factor XIII val34leu is a genetic factor involved in the aetiology of venous thrombosis. Thromb Haemost 1999; 81: 676.Google Scholar
Harbin, MM, Lutsey, PL. May-Thurner syndrome: history of understanding and need for defining population prevalence. J Thromb Haemost 2020; 18: 534.Google Scholar
Hirsh, J, Guyatt, G, Albers, GW, et al., eds. Antithrombotic and thrombolytic therapy: ACCP evidence-based clinical practice guidelines (8th edition). Chest 2008; 133: no. 6 (suppl.).Google Scholar
Iba, T, Levy, JH, Levi, M, et al. Coagulopathy of coronavirus disease 2019. Crit Care Med 2020; 48: 1358.Google Scholar
Kearon, C, Crowther, M, Hirsh, J, et al. Management of patients with hereditary hypercoagulable disorders. Annu Rev Med 2000; 51: 169.Google Scholar
Khan, S, Dickerman, JD. Hereditary thrombophilia. Thromb J 2006; 4: 15.Google Scholar
Lane, DA, Mannucci, PM, Bauer, KA, et al. Inherited thrombophilia. Thromb Haemost 1996; 76: 651.Google Scholar
Leung, LLK. Thrombotic disorders. In: Scientific American Medicine. Hematology. Hamilton: Dekker Medicine. 2020.Google Scholar
Mannucci, PM, Franchini, M. Classic thrombophilic gene variants. Thromb Haemost 2015; 114: 885.Google Scholar
Marder, VJ, Aird, WC, Bennett, JS, et al., eds. Hemostasis and Thrombosis: Basic Principles and Clinical Practice. 6th edition. Philadelphia: Lippincott Williams & Wilkins. 2012.Google Scholar
May, R, Thurner, J. The cause of predominantly sinistral occurrence of thrombosis in the pelvic veins. Angiology 1957; 8: 419.Google Scholar
Miletich, JP, Prescott, SM, White, R, et al. Inherited predisposition to thrombosis. Cell 1993; 72: 477.Google Scholar
Oldenburg, J, Schwaab, R. Molecular biology of blood coagulation. Semin Thromb Hemost 2001; 27: 313.Google Scholar
Prins, MH, Hirsh, J. A critical review of the evidence supporting a relationship between impaired fibrinolytic activity and venous thromboembolism. Arch Intern Med 1991; 151: 1721.Google Scholar
Sacher, RA, ed. Thrombophilia: a forum on diagnosis and management in obstetrics, gynecology and surgery. Semin Thromb Hemost 1998; 24: suppl. 1.Google Scholar
Winter, M, Gallimore, M, Jones, DW. Should factor XII assays be included in thrombophilia screening? Lancet 1995; 346: 52.Google Scholar

Bibliography

Fox, LC, Cohney, SJ, Kausman, JY, et al. Consensus opinion on diagnosis and management of thrombotic microangiopathy in Australia and New Zealand. Intern Med J 2018; 48: 624.Google Scholar

Bibliography

Azoulay, E, Bauer, PR, Mariotte, E, et al. Expert statement on the ICU management of patients with thrombotic thrombocytopenic purpura. Intens Care Med 2019; 45: 1518.Google Scholar
Bell, WR, Braine, HG, Ness, PM, et al. Improved survival of thrombotic thrombocytopenic purpura-hemolytic uremic syndrome: clinical experience in 108 patients. N Engl J Med 1991; 325: 398.Google Scholar
Blombery, P, Kivivali, L, Pepperell, D, et al. Diagnosis and management of thrombotic thrombocytopenic purpura (TTP) in Australia. Intern Med J 2016; 46: 71.Google Scholar
Cines, DB, Konkle, BA, Furlan, M. Thrombotic thrombocytopenic purpura: a paradigm shift? Thromb Haemost 2000; 84: 528.Google Scholar
Editorial. TTP – desperation, empiricism, progress. N Engl J Med 1991; 325: 426.Google Scholar
George, JN. Thrombotic thrombocytopenic purpura. N Engl J Med 2006; 354: 1927.Google Scholar
Hovinger, JAK, Heeb, SR, Skowronska, M, et al. Pathophysiology of thrombotic thrombocytopenic purpura and hemolytic uremic syndrome. J Thromb Haemost 2018; 16: 618.Google Scholar
ISTH guidelines for the diagnosis and treatment of thrombotic thrombocytopenic purpura. J Thromb Haemost 2020; 18: 2486 & 2496.Google Scholar
Mannucci, PM. Thrombotic thrombocytopenic purpura: a simpler diagnosis at last? Thromb Haemost 1999; 82: 1380.Google Scholar
Mannucci, PM. Understanding organ dysfunction in thrombotic thrombocytopenic purpura. Intens Care Med 2015; 41: 715.Google Scholar
Mariotte, E, Blet, A, Galicier, L, et al. Unresponsive thrombotic thrombocytopenic purpura in critically ill patients. Intens Care Med 2013; 39: 1272.Google Scholar
Moake, JL, Rudy, CK, Troll, JH, et al. Unusually large plasma factor VIII: von Willebrand factor multimers in chronic relapsing thrombotic thrombocytopenic purpura. N Engl J Med 1982; 307: 1432.Google Scholar
Sadler, JE. Von Willebrand factor, ADAMTS-13, and thrombotic thrombocytopenic purpura. Blood 2008; 112: 11.Google Scholar
Saha, M, McDaniel, JK, Zheng, XL. Thrombotic thrombocytopenic purpura: pathogenesis, diagnosis and potential novel therapeutics. J Thromb Haemost 2017; 15: 1889.Google Scholar
Schleinitz, N, Ebbo, M, Mazodier, K, et al. Rituximab as preventative therapy of a clinical relapse in TTP with ADAMTS 13 inhibitor. Am J Hematol 2007; 82: 417.Google Scholar
Scully, M, Cataland, S, Coppo, P, et al. Consensus on the standardization of terminology in thrombotic thrombocytopenic purpura and related thrombotic microangiopathies. J Thromb Haemost 2017; 15: 312.Google Scholar
Scully, M, Cataland, S, Peyvandi, F, et al. Caplacizumab for acquired thrombotic thrombocytopenic purpura. N Engl J Med 2019; 380: 335.Google Scholar
Tsai, HM, Lian, ECY. Antibodies to von Willebrand factor-cleaving protease in acute thrombotic thrombocytopenic purpura. N Engl J Med 1998; 339: 1585.Google Scholar
VeyradierA, Meyer D. Thrombotic thrombocytopenic purpura and its diagnosis. J Thromb Haemost 2005; 3: 2420.Google Scholar
Zheng, XL. The standard of care for immune thrombotic thrombocytopenic purpura today. J Thromb Haemost 2021; 191: 1864.Google Scholar
Zheng, X, Chung, D, Takayama, TK, et al. Structure of von Willebrand factor-cleaving protease (ADAMTS13), a metalloprotease involved in thrombotic thrombocytopenic purpura. J Biol Chem 2001; 276: 41059.Google Scholar

Bibliography

Ladenson, PW. Hypothyroidism and thyrotoxicosis. In: Scientific American Medicine. Endocrinology & Metabolism. Hamilton: Dekker Medicine. 2020.Google Scholar
Mortimer, R. Thyroid function tests. Aust Prescriber 2011; 34: 12.Google Scholar

Bibliography

Graves, SR, Stenos, J. Tick-borne infectious diseases in Australia. Med J Aust 2017; 206: 320.Google Scholar

Bibliography

Burnham, JP, Kollef, MH. Understanding toxic shock syndrome. Intens Care Med 2015; 41: 1707.Google Scholar
Cone, LA, Woodard, DR, Schlievert, PM, et al. Clinical and bacteriologic observations of a toxic shock-like syndrome due to Streptococcus pyogenes. N Engl J Med 1987; 317: 146.Google Scholar
Davis, JP, Chesney, PJ, Wand, PJ, et al. Toxic-shock syndrome: epidemiologic features, recurrence, risk factors, and prevention. N Engl J Med 1980; 303: 1429.Google Scholar
Fronhoffs, S, Luyken, J, Steuer, K, et al. The effect of C1-esterase inhibitor in definite and suspected streptococcal toxic shock syndrome. Intens Care Med 2000; 26: 1566.Google Scholar
Kain, KC, Schulzer, M, Chow, AW. Clinical spectrum of nonmenstrual toxic shock syndrome (TSS): comparison with menstrual TSS by multivariate discriminant analysis. Clin Infect Dis 1993; 16: 100.Google Scholar
Langmuir, AD, Worthen, TD, Solomon, J, et al. The Thucydides syndrome: a new hypothesis for the cause of the plague of Athens. N Engl J Med 1985; 313: 1027.Google Scholar
Schlievert, PM, MacDonald, KL. Toxic Shock Syndrome. 2nd ed. Philadelphia: WB Saunders.1998.Google Scholar
Seal, DV. Necrotizing fasciitis. Curr Opin Infect Dis 2001; 14: 127.Google Scholar
Stevens, DL. Streptococcal toxic-shock syndrome: spectrum of disease, pathogenesis, and new concepts in treatment. Emerg Infect Dis 1995; 1: 3.Google Scholar
Stevens, DL, Tanner, MH, Winship, J, et al. Severe group A streptococcal infections associated with a toxic shock-like syndrome and scarlet fever toxin. N Engl J Med 1989; 321: 1.Google Scholar

Bibliography

Joiner, KA, Dubremetz, JF. Toxoplasma gondii: a protozoan for the nineties. Infect Immun 1993; 61: 1169.Google Scholar
McCabe, R, Remington, JS. Toxoplasmosis. N Engl J Med 1988; 318: 313.Google Scholar
Wong, S, Remington, JS. Toxoplasmosis in pregnancy. Clin Infect Dis 1994; 18: 853.Google Scholar

Bibliography

Barceloux, DG. Cobalt. J Toxicol Clin Toxicol 1999; 37: 201.Google Scholar
Barceloux, DG. Molybdenum. J Toxicol Clin Toxicol 1999; 37: 231.Google Scholar
Barceloux, DG. Nickel. J Toxicol Clin Toxicol 1999; 37: 239.Google Scholar
Barceloux, DG. Vanadium. J Toxicol Clin Toxicol 1999; 37: 265Google Scholar
Berger, MM, Cavadini, C, Chiolero, R, et al. Influence of large intakes of trace elements on recovery after major burns. Nutrition 1994; 10: 327.Google Scholar
Casaer, MP, Bellomo, R. Micronutrient deficiency in critical illness: an invisible foe? Intens Care Med 2019; 45: 1136.Google Scholar
Chandra, RK. Effect of vitamin and trace-element supplementation on immune responses and infection in elderly patients. Lancet 1992; 340: 1124.Google Scholar
Elia, M. Changing concepts of nutrient requirements in disease: implications for artificial nutritional support. Lancet 1995; 345: 1279.Google Scholar
Fleming, CR. Trace element metabolism in adult patients requiring total parenteral nutrition. Am J Clin Nutr 1989; 49: 573.Google Scholar
Heyland, DK, Dhaliwal, R, Suchner, U, et al. Antioxidant nutrients: a systematic review of trace elements and vitamins in the critically ill patient. Intens Care Med 2005; 31: 327.Google Scholar
Mertz, W. The essential trace elements. Science 1981; 213: 1332.Google Scholar
Prasad, AS, ed. Essential and Toxic Trace Elements in Human Health and Disease. New York: Liss. 1988.Google Scholar
Shenkin, A. Vitamin and essential trace element recommendations during intravenous therapy: theory and practice. Proc Nutr Soc 1986; 45: 383.Google Scholar
Simmer, K, Thompson, RPH. Trace elements. In: Cohen, RD, Lewis, B, Alberti, KGMM, Denman, AM, eds. The Metabolic and Molecular Basis of Acquired Disease. London: Baillere Tindall. 1990, p 670.Google Scholar
Singer, P, Manzanares, W, Berger, MM. What’s new in trace elements? Intens Care Med 2018; 44: 643.Google Scholar
Supplement. The trace elements: their role and function in nutritional support. Nutrition 1995; 2: no.1.Google Scholar

Bibliography

Barton, RN. Trauma and its metabolic products. Br Med Bull 1985; 41: 3.Google Scholar
Blaisdell, FW, Holcroft, JW, eds. Scientific American Surgery Handbook of Trauma. New York: Scientific American. 1999.Google Scholar
Green, DR. Trauma and the immune response. Immunol Today 1988; 9: 253.Google Scholar
Frayn, KN. Hormonal control of metabolism in trauma and sepsis. Clin Endocrinol 1986: 24: 577.Google Scholar
Moore, EE, Cogbill, TH, Malagoni, MA, et al. Scaling systems for organ specific injuries. Curr Opin Crit Care 1996; 2: 450.Google Scholar
Nelson, LD, ed. New advances in the care of critically injured patients. New Horizons: The Science and Practice of Acute Medicine 1999; 7: 1.Google Scholar
Smith, RM, Giannoudis, PV. Trauma and the immune response. J R Soc Med 1998; 91: 417.Google Scholar
Wisner, DH. Current priorities in the management of multiple injury. Curr Opin Crit Care 1996; 2: 463.Google Scholar

Bibliography

Spahn, DR, Bouillon, B, Duranteau, J, et al. The European guideline on management of major bleeding and coagulopathy following trauma: fifth edition. Crit Care 2019; 23: 98.Google Scholar

Bibliography

Fildes, J, Reed, L, Jones, N, et al. Trauma: the leading cause of maternal death. J Trauma 1992; 32: 643.Google Scholar
Knudson, MM. Acute abdominal injuries during pregnancy. Curr Opin Crit Care 1996; 2: 469.Google Scholar
Magriples, U, Chan, DW, Bruzek, D, et al. Thrombomodulin: a new marker for placental abruption. Thromb Haemost 1999; 81: 32.Google Scholar
Pearlman, MD, Tintinalli, JE, Lorenz, RP. Blunt trauma during pregnancy. N Engl J Med 1990; 323: 1609.Google Scholar
Sorensen, VJ, Bivins, BA, Obeid, FN, et al. Management of general surgical emergencies in pregnancy. Am Surg 1990; 56: 245.Google Scholar
Trauma Service. Trauma Guidelines Booklet. Melbourne: Royal Melbourne Hospital. 2011.Google Scholar
Weinberg, L, Steele, RG, Pugh, R, et al. The pregnant trauma patient. Anaesth Intens Care 2005; 33: 167.Google Scholar

Bibliography

Blumberg, HM, Leonard, MK, Jasmer, RM. Update on the treatment of tuberculosis and latent tuberculosis infection. JAMA 2005; 293: 2776.Google Scholar
Catanzaro, A. How to increase the accuracy of the diagnosis of tuberculosis. Pulmonary Perspectives 2004; 21(2): 1.Google Scholar
Darby, J, Black, J, Buising, K. Interferon-gamma release assays and the diagnosis of tuberculosis: have they found their place? Intern Med J 2014; 44: 624.Google Scholar
Davies, PDO. The challenge of tuberculosis. J R Soc Med 2003; 96: 262.Google Scholar
Davies, PDO, De Cock, KM, Leese, J, et al. Tuberculosis 2000. J R Soc Med 1996; 89: 431.Google Scholar
Donoghue, HD, Spigelman, M, Greenblatt, CL, et al. Tuberculosis: from prehistory to Robert Koch, as revealed by ancient DNA. Lancet Infect Dis 2004; 4: 584.Google Scholar
Fordham von Reyn, C. Correcting the record on BCG before we license new vaccines against tuberculosis. J R Soc Med 2017; 110: 428.Google Scholar
Frieden, TR, Sterling, TR, Munsiff, SS, et al. Tuberculosis: a review. Lancet 2003; 362: 887.Google Scholar
Keal, JL, Davies, PDO. Tuberculosis: a forgotten plague? J R Soc Med 2011; 104: 182.Google Scholar
Lancet Conference. The challenge of tuberculosis: statements on global control and prevention. Lancet 1995; 346: 809.Google Scholar
Lawn, SD, Zumla, AI. Tuberculosis. Lancet 2011; 378: 57.Google Scholar
Madkour, MM, ed. Textbook of Tuberculosis. Berlin: Springer-Verlag. 2003.Google Scholar
Milburn, H. Key issues in the diagnosis and management of tuberculosis. J R Soc Med 2007; 100: 134.Google Scholar
Millard, FJC. The rising incidence of tuberculosis. J R Soc Med 1996; 89: 497.Google Scholar
Ormerod, P, Campbell, J, Novelli, V. Chemotherapy and management of tuberculosis in the United Kingdom: recommendations 1998. Thorax 1998; 53: 536.Google Scholar
Parr, JB, Leonard, MK, Blumberg, HM. Tuberculosis. In: Scientific American Medicine. Infectious Diseases. Hamilton: Dekker Medicine. 2020.Google Scholar
Reichman, LB, Tanne, JH. Timebomb: The Global Epidemic of Multi-Drug-Resistant Tuberculosis. New York: McGraw-Hill. 2002.Google Scholar
Snider, DE, La Montagne, JR. The neglected global tuberculosis problem. J Infect Dis 1994; 169: 1189.Google Scholar
Snider, DE, Roper, WL. The new tuberculosis. N Engl J Med 1992; 326: 703.Google Scholar

Bibliography

Crino, PB, Nathanson, KL, Henske, EP. The tuberous sclerosis complex. N Engl J Med 2006; 355: 1345.Google Scholar
Critchley, M, Earle, C. Tubero-sclerosis and allied conditions. Brain 1932; 55: 311.Google Scholar
Curatolo, P, Bombardieri, R, Jozwiak, S. Tuberous sclerosis. Lancet 2008; 372: 657.Google Scholar
Lenoir, S, Grenier, P, Brauner, MW, et al. Pulmonary lymphangiomyomatosis and tuberous sclerosis: comparison of radiographic and thin-section CT findings. Radiology 1990; 175: 329.Google Scholar
Liu, H-J, Krymskaya, VP, Henske, EP. Immunotherapy for lymphangioleiomyomatosis and tuberous sclerosis: progress and future directions. Chest 2019; 156: 1062.Google Scholar
McCormack, FX. Lymphangioleiomyomatosis: a clinical update. Chest 2008; 133: 507.Google Scholar

Bibliography

Abraham, PA, Keane, WF. Glomerular and interstitial disease induced by nonsteroidal anti-inflammatory drugs. Am J Nephrol 1984; 4: 1.Google Scholar
Appel, GB, Bhat, P, Canetta, P. Tubulointerstitial diseases. In: Scientific American Medicine. Nephrology. Hamilton: Dekker Medicine. 2020.Google Scholar
Corwin, HL, Korbet, SM, Schwartz, MM. Clinical correlates of eosinophiluria. Arch Intern Med 1985; 145: 1097.Google Scholar
Fored, CM, Ejerblad, E, Lindblad, P, et al. Acetaminophen, aspirin, and chronic renal failure. N Engl J Med 2001; 345: 1801.Google Scholar
Hoitsma, AJ, Wetzels, JFM, Koene, RAP. Drug-induced nephrotoxicity: aetiology, clinical features and management. Drug Safety 1991; 6: 131.Google Scholar
Kincaid-Smith, P. Analgesic abuse and the kidney. Kidney Int 1980; 17: 250.Google Scholar
Linton, AL, Clark, WF, Driedger, AA, et al. Acute interstitial nephritis due to drugs. Ann Intern Med 1980; 93: 735.Google Scholar
Neilson, EG. Pathogenesis and therapy of interstitial nephritis. Kidney Int 1989; 35: 1257.Google Scholar
Ronco, PM, Flahault, A. Drug-induced end-stage renal disease. N Engl J Med 1994; 331: 1711.Google Scholar
Rossert, J. Drug-induced acute interstitial nephritis. Kidney Int 2001; 60: 804.Google Scholar
Turner, NN, Lameire, N, Goldsmith, DJ, et al. eds. Oxford Textbook of Clinical Nephrology. 4th edition. Oxford: Oxford University Press. 2015.Google Scholar

Bibliography

Arrambide, K, Toto, RD. Tumor lysis syndrome. Semin Nephrol 1993; 13: 273.Google Scholar
Barton, JC. Tumor lysis syndrome in nonhematopoietic neoplasms. Cancer 1989; 64: 738.Google Scholar
Coiffier, B, Mounier, N, Bologna, S, et al. Efficacy and safety of rasburicase (recombinant urate oxidase) for the prevention and treatment of hyperuricemia during induction chemotherapy of aggressive non-Hodgkin’s lymphoma. J Clin Oncol 2003; 21: 4402.Google Scholar
Howard, SC, Jones, DP, Pui, C-H. The tumor lysis syndrome N Engl J Med 2011; 364: 1844.Google Scholar
McCurdy, MT, Shanholtz, CB. Oncologic emergencies. Crit Care Med 2012; 40: 2212.Google Scholar
Zafrani, L, Canet, E, Darmon, M. Understanding tumor lysis syndrome. Intens Care Med 2019; 45: 1608.Google Scholar

Bibliography

Pezaro, C, Woo, HH, Davis, ID. Prostate cancer: measuring PSA. Intern Med J 2014; 44: 433.Google Scholar
Smith, RA, Cokkinides, V, Brooks, D, et al. Cancer screening in the United States, 2010: a review of current American Cancer Society guidelines and issues in cancer screening. CA: A Cancer Journal for Clinicians 2010; 60: 99.Google Scholar
Sturgeon, CM, Lai, LC, Duffy, MJ. Serum tumour markers: how to order and interpret them, BMJ 2010; 339: 852.Google Scholar

Bibliography

Chu, W-M. Tumor necrosis factor. Cancer Lett 2013; 328: 222.Google Scholar
Jani, M, Dixon, WG, Chinoy, H. Drug safety and immunogenicity of tumour necrosis factor inhibitors. Rheumatology 2018; 57: 1896.Google Scholar
Kalliolias, GD, Ivashkiv, LB. TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nature Rev Rheum 2015; 12: 49.Google Scholar
Lundy, SK, Gizinski, A, Fox, DA. Introduction to clinical immunology: overview of immune response, autoimmune conditions, and immunosuppressive therapeutics for rheumatic diseases. In: Scientific American Medicine. Allergy & Immunology. Hamilton: Dekker Medicine. 2020.Google Scholar
Monaco, C, Nanchahal, J, Taylor, P, et al. Anti-TNF therapy: past, present and future. Int Immunol 2015; 27: 55.Google Scholar
Old, LJ. Tumor necrosis factor. Sci Am 1988; 258: 59.Google Scholar
Udalova, I, Monaco, C, Nanchahal, J, et al. Anti-TNF therapy. Microbiol Spectr 2016; 4: 4.Google Scholar

Bibliography

Hornick, RB, Greisman, SE, Woodward, TE, et al. Typhoid fever. N Engl J Med 1970; 283: 686 & 739.Google Scholar
Parry, CM. Typhoid fever. Curr Infect Dis Rep 2004; 6: 27.Google Scholar
Rabsch, W, Tschape, H, Baumler, AJ. Non-typhoidal salmonellosis: emerging problems. Microbes Infect 2001; 3: 237.Google Scholar

Bibliography

Antoon, JW, Miller, RL. Aphthous ulcer – a review of the literature on etiology, pathogenesis, diagnosis, and treatment. JAMA 1980; 101: 803.Google Scholar
Wolff, K, Goldsmith, L, Katz, S, et al., eds. Fitzpatrick’s Dermatology in General Medicine. 7th edition. New York: McGraw-Hill. 2007.Google Scholar

Bibliography

Chen, JR, Khan, DA. Urticaria and angioedema. In: Scientific American Medicine. Allergy & Immunology. Hamilton: Dekker Medicine. 2020.Google Scholar
Denburg, JA. Basophil and mast cell lineage in vitro and in vivo. Blood 1992; 79: 846.Google Scholar
Dowd, PM. Cold-related disorders. Prog Dermatol 1987; 21: 1.Google Scholar
Ekenstam, E, Callen, JP. Cutaneous leukocytoclastic vasculitis. Arch Dermatol 1984; 120: 484.Google Scholar
Fine, J. Mastocytosis. Int J Dermatol 1980; 19: 117.Google Scholar
Gibson, LE. Cutaneous vasculitis: approach to diagnosis and systemic associations. Mayo Clin Proc 1990; 65: 221.Google Scholar
Greaves, M. Chronic urticaria. J Allergy Clin Immunol 2000; 105: 664.Google Scholar
Greaves, MW. Pathology and classification of urticaria. Immunol Allergy Clin North Am 2014; 34: 1.Google Scholar
Hoffman, HM, Wright, FA, Broide, DH, et al. Identification of a locus on chromosome 1q44 for familial cold urticaria. Am J Hum Genet 2000; 66: 1693.Google Scholar
Katelaris, C. Treatment of urticaria. Aust Prescriber 2001; 24: 124.Google Scholar
Lewis, RA. Mastocytosis. J Allergy Clin Immunol 1984; 74: 755.Google Scholar
Mehregan, RD, Hall, MJ, Gibson, LE. Urticarial vasculitis: a histopathologic and clinical review of 72 cases. J Am Acad Dermatol 1992; 26: 441.Google Scholar
Milner, JD. PLAID: a syndrome of complex patterns of disease and unique phenotypes. J Clin Immunol 2015; 35: 527.Google Scholar
Monroe, EW. Urticarial vasculitis: an updated review. J Am Acad Dermatol 1981; 5: 88.Google Scholar
Pardanini, A. Systemic mastocytosis in adults: 2019 update on diagnosis, risk stratification and management. Am J Hematol 2019; 94: 363.Google Scholar
Philpott, H, Kette, F, Hissaria, P, et al. Chronic urticaria: the autoimmune paradigm. Intern Med J 2008; 38: 852.Google Scholar
Singleton, R, Halverstam, CP. Diagnosis and management of cold urticaria. Cutis 2016; 97: 59.Google Scholar
Taylor, JS, Erkek, E. Latex allergy: diagnosis and management. Dermatol Ther 2004; 17: 289.Google Scholar
Trevisonno, J, Balram, B, Netchiporouk, E, et al. Physical urticaria: review on classification, triggers and management with special focus on prevalence including a meta-analysis. Postgrad Med 2015; 127: 565.Google Scholar
Wolff, K, Goldsmith, L, Katz, S, et al., eds. Fitzpatrick’s Dermatology in General Medicine. 7th edition. New York: McGraw-Hill. 2007.Google Scholar

Bibliography

Trivedi, A, Katelaris, C. The use of biologic agents in the management of uveitis. Intern Med J 2019; 49: 1352.Google Scholar

Bibliography

Zawab, A, Carmody, J. Safe use of sodium valproate. Aust Prescriber 2014; 37: 124.Google Scholar

Bibliography

Bozier, J, Chivers, EK, Chapman, DG, et al. The evolving landscape of e-cigarettes: a systematic review of recent evidence. Chest 2020; 157: 1362.Google Scholar
Hajek, P, Phillips-Waller, A, Przulj, D, et al. A randomized trial of e-cigarettes versus nicotine-replacement therapy. N Engl J Med 2019; 380: 629.Google Scholar
Hartnett, KP, Kite-Powell, A, Patel, MT, et al. Syndromic surveillance for e-cigarette or vaping product use-associated lung injury. N Engl J Med 2020; 382: 766.Google Scholar
Jonas, AM, Raj, R. Vaping-related acute parenchymal lung injury: a systematic review. Chest 2020; 158: 1555.Google Scholar
Kiernan, E, Click, ES, Melstrom, P, et al. A brief overview of the national outbreak of e-cigarette, or vaping, product use-associated lung injury and the primary causes. Chest 2021; 159: 426.Google Scholar
Kligerman, SJ, Kay, FU, Raptis, CA, et al. CT findings and patterns of e-cigarette or vaping product use-associated lung injury. Chest 2021; 160: 1492.Google Scholar
Shao, XM, Fang, ZT. Severe acute toxicity of inhaled nicotine and e-cigarettes: seizures and cardiac arrhythmia. Chest 2020; 157: 506.Google Scholar
Werner, AK, Koumans, EH, Chatham-Stephens, K, et al. Hospitalizations and deaths associated with EVALI. N Engl J Med 2020; 382: 1589.Google Scholar

Bibliography

Chaves, SS, Gargiullo, P, Zhang, JX, et al. Loss of vaccine-induced immunity to varicella over time. N Engl J Med 2007; 356: 1121.Google Scholar
Cohen, JI. Herpes zoster, N Engl J Med 2013; 369: 255.Google Scholar
Cohen, JI, Brunell, PA, Straus, SE, et al. Recent advances in varicella-zoster virus infection. Ann Intern Med 1999; 130: 922.Google Scholar
Dwyer, DE, Cunningham, AL. Herpes simplex and varicella-zoster virus infections. Med J Aust 2002; 177: 267.Google Scholar
Gilden, DH, Kleinschmidt-DeMasters, BK, LaGuardia, JJ, et al. Neurologic complications of reactivation of varicella-zoster virus. N Engl J Med 2000; 342: 636.Google Scholar
Oxman, MN, Levin, MJ, Johnson, GR, et al. A vaccine to prevent herpes zoster and postherpetic neuralgia in older patients. N Engl J Med 2005; 352: 2271.Google Scholar
Straus, SE, Ostrove, JM, Inchauspe, G, et al. Varicella-zoster virus infections: biology, natural history, treatment, and prevention. Ann Intern Med 1988; 108: 221.Google Scholar
Strassels, SA, Sullivan, SD. Clinical and economic considerations of vaccination against varicella. Pharmacotherapy 1997; 17: 133.Google Scholar
Watson, CP. A new treatment for postherpetic neuralgia. N Engl J Med 2000; 343: 1563.Google Scholar

Bibliography

Arend, WP, Michel, BA, Bloch, DA, et al. The American College of Rheumatology 1990 criteria for the classification of Takayasu arteritis. Arthritis Rheum 1990; 33: 1129.Google Scholar
Booher, AM, Eagle, KA. Diseases of the aorta. In: Scientific American Medicine. Cardiovascular Medicine. Hamilton: Dekker Medicine. 2020.Google Scholar
Bourrillon, A. Kawasaki’s disease: multiple and various aspects. Arch Pediatr 2008; 15: 825.Google Scholar
Calabrese, L, Dune, G, Lie, J. Vasculitis in the central nervous system. Arthritis Rheum 1997; 40: 1189.Google Scholar
Carter, MJ, Shankar-Hari, M, Tibby, SM. Paediatric inflammatory multisystem syndrome temporally-associated with SARS-CoV-2 infection: an overview. Intens Care Med 2021; 47: 90.Google Scholar
Coffman, JD. Raynaud’s phenomenon: an update. Hypertension 1991; 17: 593.Google Scholar
Conn, DL. Update on systemic necrotizing vasculitis. Mayo Clin Proc 1989; 64: 535.Google Scholar
Feldstein, LR, Rose, EB, Horwitz, SM, et al. Multisystem inflammatory syndrome in US children and adolescents. N Engl J Med 2020; 383: 334.Google Scholar
Frankel, SK, Cosgrove, GP, Fischer, A, et al. Update in the diagnosis and management of pulmonary vasculitis. Chest 2006; 129: 452.Google Scholar
Gatenby, PA. Vasculitis - diagnosis and treatment. Aust NZ J Med 1999; 29: 662.Google Scholar
Gatenby, PA. Anti-neutrophil cytoplasmic antibody-associated systemic vasculitis: nature or nurture? Intern Med J 2012; 42: 351.Google Scholar
Gibson, LE. Cutaneous vasculitis: approach to diagnosis and systemic associations. Mayo Clin Proc 1990; 65: 221.Google Scholar
Hamilton, CR, Shelley, WM, Tumulty, PA. Giant cell arteritis: including temporal arteritis and polymyalgia rheumatica. Medicine 1971; 50: 1.Google Scholar
Han, RK, Sinclair, B, Newman, A, et al. Recognition and management of Kawasaki disease. CMAJ 2000; 162: 807.Google Scholar
Hunder, GG, Bloch, DA, Michel, BA, et al. The American College of Rheumatology 1990 criteria for the classification of giant cell arteritis. Arthritis Rheum 1990; 33: 1122.Google Scholar
Jayne, DRW, Davies, MJ, Cox, CJV, et al. Treatment of systemic vasculitis with pooled intravenous immunoglobulin. Lancet 1991; 337: 1137.Google Scholar
Jennette, JC, Falk, RJ. Small-vessel vasculitis. N Engl J Med 1997; 337: 1512.Google Scholar
Jennette, JC, Falk, RJ, Andrassy, K, et al. Nomenclature of systemic vasculitides: proposal of an international consensus conference. Arthritis Rheum 1994; 37: 187.Google Scholar
Kerr, GS, Hallahan, CW, Giordano, J, et al. Takayasu arteritis. Ann Intern Med 1994; 120: 919.Google Scholar
Lie, JT. Classification and immunodiagnosis of vasculitis: a new solution or promises unfulfilled? J Rheumatol 1988 15: 728.Google Scholar
Lupi-Herrera, E, Sanchez-Torres, G, Marcushamer, J, et al. Takayasu’s arteritis: clinical study of 107 cases. Am Heart J 1997; 93: 94.Google Scholar
Mehregan, RD, Hall, MJ, Gibson, LE. Urticarial vasculitis: a histopathologic and clinical review of 72 cases. J Am Acad Dermatol 1992; 26: 441.Google Scholar
Moore, PM. Diagnosis and management of isolated angiitis of the central nervous system. Neurology 1989; 39: 167.Google Scholar
Numano, F, Kobayashi, Y. Takayasu arteritis: beyond pulselessness. Intern Med 1999; 38: 226.Google Scholar
Oz, MC, Brener, BJ, Buda, JA, et al. A ten-year experience with bacterial aortitis. J Vasc Surg 1989; 10: 439.Google Scholar
Riphagen, S, Gomez, X, Gonzales-Martinez, C, et al. Hyperinflammatory shock in children during COVID-19 pandemic. Lancet 2020; 395: 1607.Google Scholar
Royle, J, Williams, K, Elliott, E, et al. Kawasaki disease in Australia, 1993–95. Arch Dis Child 1998; 78: 33.Google Scholar
Savage, COS, Harper, L, Adu, D. Primary systemic vasculitis. Lancet 1997; 349: 553.Google Scholar
Sheikhzadeh, A, Tettenborn, I, Noohi, F, et al. Occlusive thromboaortopathy (Takayasu disease): clinical and angiographic features and a brief review of literature. Angiology 2002; 53: 29.Google Scholar
Szer, I. Henoch–Schonlein purpura: when and how to treat. J Rheumatol 1996; 23: 1661.Google Scholar
Villa-Forte, A, Mandell, BF. Systemic vasculitis syndromes. In: Scientific American Medicine. Rheumatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Zilko, PJ. Polymyalgia rheumatica and giant cell arteritis. Med J Aust 1996; 165: 438.Google Scholar

Bibliography

Gordon, AC, Russell, JA, Walley, KR, et al. The effects of vasopressin on acute kidney injury in septic shock. Intens Care Med 2010; 36: 83.Google Scholar
Holmes, CL, Patel, BM, Russell, JA, et al. Physiology of vasopressin relevant to management of septic shock. Chest 2001; 120: 989.Google Scholar
Russell, JA, Walley, KR, Singer, J, et al. Vasopressin versus norepinephrine infusion in patients with septic shock. N Engl J Med 2008; 358: 877.Google Scholar

Bibliography

Fetter, M. Assessing vestibular function: which test, when? J Neurol 2000; 247: 335.Google Scholar
Furman, JM, Cass, SP. Benign paroxysmal positional vertigo N Engl J Med 1999; 341: 1590.Google Scholar
Harrison, MS. ‘Epidemic vertigo’ – ‘vestibular neuronitis’: a clinical study. Brain 1962; 85: 613.Google Scholar
Rivlin, W, Habershon, C, Tsang, BK-T, et al. Practical approach to vertigo: a synthesis of the emerging evidence. Intern Med J 2022; 52: 356.Google Scholar
Strupp, M, Zingler, VC, Arbusow, V, et al. Methylprednisolone, valacyclovir, or the combination for vestibular neuritis. N Engl J Med 2004; 351: 354.Google Scholar
Tsang, BKT, Chen, ASK, Paine, M. Acute evaluation of the acute vestibular syndrome: differentiating posterior circulation stroke from acute peripheral vestibulopathies. Intern Med J 2017; 47: 1352.Google Scholar

Bibliography

Katz, SI, Hall, RP, Lawlwy, TJ, et al. Dermatitis herpetiformis: the skin and the gut. Ann Intern Med 1980; 93: 857.Google Scholar
Levitt, J, Czernik, A, Koo, B. Vesiculobullous diseases. In: Scientific American Medicine. Dermatology. Hamilton: Dekker Medicine. 2020.Google Scholar
Sehgal, VN, Gangwani, OP. Fixed drug eruption: current concepts. Int J Dermatol 1987; 26: 67.Google Scholar
Wolff, K, Goldsmith, L, Katz, S, et al., eds. Fitzpatrick’s Dermatology in General Medicine. 7th edition. New York: McGraw-Hill. 2007.Google Scholar

Bibliography

Howard, CR. Viral hemorrhagic fevers: properties and prospects for treatment and prevention. Antiviral Res 1984; 4: 169.Google Scholar

Bibliography

Amrein, K, Oudemans-van, Straaten, Berger, MM. Vitamin therapy in critically ill patients: focus on thiamine, vitamin C and vitamin D. Intens Care Med 2018; 44: 1940.Google Scholar
Anderson, JJB, Toverud, SU. Diet and vitamin D: a review with an emphasis on human function. J Nutr Biochem 1994; 5: 58.Google Scholar
Casaer, MP, Bellomo, R. Micronutrient deficiency in critical illness: an invisible foe? Intens Care Med 2019; 45: 1136.Google Scholar
Chandra, RK. Effect of vitamin and trace-element supplementation on immune responses and infection in elderly patients. Lancet 1992; 340: 1124.Google Scholar
DeLuca, HF. Vitamin D metabolism and function. Arch Intern Med 1978; 138: 836.Google Scholar
Heyland, DK, Dhaliwal, R, Suchner, U, et al. Antioxidant nutrients: a systematic review of trace elements and vitamins in the critically ill patient. Intens Care Med 2005; 31: 327.Google Scholar
Kennedy, M. The vitamin epidemic: what is the evidence for harm or value? Intern Med J 2018; 40: 901.Google Scholar
Ordonez-Moran, P, Larriba, MJ, Pendas-Franco, N, et al. Vitamin D and cancer: an update of in vitro and in vivo data. Front Biosci 2005; 10: 2723.Google Scholar
Shearer, MJ. Vitamin, K. Lancet 1995; 345: 229.Google Scholar
Shenkin, A. Vitamin and essential trace element recommendations during intravenous therapy: theory and practice. Proc Nutr Soc 1986; 45: 383.Google Scholar
Thomas, MK, Lloyd-Jones, DM, Thadhani, RI, et al. Hypovitaminosis D in medical inpatients. N Engl J Med 1998; 338: 777.Google Scholar

Bibliography

Romain, M, Sviri, S, Linton, DM, et al. The role of vitamin B12 in the critically ill – a review. Anaesth Intens Care 2016; 44: 447.Google Scholar

Bibliography

Carr, AC, Shaw, GM, Fowler, AA, et al. Ascorbate-dependent vasopressor synthesis: a rationale for vitamin C administration in severe sepsis and septic shock? Crit Care 2015; 19: 418.Google Scholar
Fuji, T, Luethi, N, Young, PJ, et al. Effect of vitamin C, hydrocortisone, and thiamine vs hydrocortisone alone on time alive and vasopressor support among patients with septic shock: the VITAMINS randomized clinical trial. JAMA 2020; 323: 423.Google Scholar
Hooper, MH, Hager, DN. Understanding vitamin C in critical illness: focus on dose, route, and disease. Crit Care Med 2019; 47: 867.Google Scholar
Long, CL, Maull, KI, Krishnan, RS, et al. Ascorbic acid dynamics in the seriously ill and injured. J Surg Res 2003; 109: 144.Google Scholar
Marik, PE. Vitamin C for the treatment of sepsis: the scientific rationale. Pharmacol Ther 2018; 189: 63.Google Scholar
Marik, P, Khangora, V, Rivera, R, et al. Hydrocortisone, vitamin C, and thiamine for the treatment of severe sepsis and septic shock: a retrospective before-after study. Chest 2017; 151: 1229.Google Scholar
McNamara, R, Deane, A, Anstey, J, et al. Understanding the rationale for parenteral ascorbate (vitamin C) during an acute inflammatory reaction: a biochemical perspective. Crit Care Resusc 2018; 20: 174.Google Scholar
Mohammed, BM, Fisher, BJ, Kraskauskas, D, et al. Vitamin C: a novel regulator of neutrophil extracellular trap formation. Nutrients 2013; 5: 3131.Google Scholar
Moskowitz, A, Huang, DT, Hou, PC, et al. Effect of ascorbic acid, corticosteroids, and thiamine on organ injury in septic shock: the ACTS randomized clinical trial. JAMA 2020; 324: 642.Google Scholar
Oudemans-van Straaten, HM, Elbers, PW, Spoelstra-de Man, AME. How to give vitamin C a cautious but fair chance in severe sepsis. Chest 2017; 151: 1199.Google Scholar
Putzu, A, Daems, A-M, Lopez-Delgado, JC, et al. The effect of vitamin C on clinical outcome in critically ill patients: a systematic review with meta-analysis of randomized clinical trials. Crit Care Med 2018; 47: 774.Google Scholar
Yanase, F, Fujii, T, Naorungroj, T, et al. Harm of high-dose vitaimin C therapy in adult patients: a scoping review. Crit Care Med 2020;Google Scholar

Bibliography

Amrein, K, Christopher, KB, McNally, JD. Understanding vitamin D deficiency in intensive care patients. Intens Care Med 2015; 41: 1961.Google Scholar
Anderson, JJB, Toverud, SU. Diet and vitamin D: a review with an emphasis on human function. J Nutr Biochem 1994; 5: 58.Google Scholar
Cancer Council of Australia, in conjunction with the Australasian College of Dermatologists, the Australian and New Zealand Bone and Mineral Society, the Endocrine Society of Australia and Osteoporosis Australia. Position statement: sun exposure and vitamin D – risks and benefits. 2016. http://wiki.cancer.org.au/policy/Position_statement_-_Risks_and_benefits_of_sun_exposureGoogle Scholar
DeLuca, HF. Vitamin D metabolism and function. Arch Intern Med 1978; 138: 836.Google Scholar
Ginde, AA, Brower, RG, Caterino, JM, et al. Early high-dose vitamin D3 for critically ill, vitamin D-deficient patients. N Engl J Med 2019; 381: 2529.Google Scholar
Joshi, D, Center, JR, Eisman, JA. Vitamin D deficiency in adults. Aust Prescriber 2010; 33: 103.Google Scholar
Lai, JKC, Lucas, RM, Banks, E, et al. Variability in vitamin D assays impairs clinical assessment of vitamin D status. Intern Med J 2012; 42: 43.Google Scholar
Lee, P, Eisman, JA, Center, JR. Vitamin D deficiency in critically ill patients. N Engl J Med 2009; 360: 1912.Google Scholar
Moromizato, T, Litonjua, AA, Braun, AB, et al. Association of low serum 25-hydroxyvitamin D levels and sepsis in the critically ill. Crit Care Med 2014; 42: 97.Google Scholar
Ordonez-Moran, P, Larriba, MJ, Pendas-Franco, N, et al. Vitamin D and cancer: an update of in vitro and in vivo data. Front Biosci 2005; 10: 2723.Google Scholar
Reid, IR, Bolland, MJ. Controversies in medicine: the role of calcium and vitamin D supplements in adults. Med J Aust 2019; 211: 468.Google Scholar
Truswell, AS. Vitamin D and tuberculosis. Med J Aust 2013; 199: 641.Google Scholar

Bibliography

Berkner, KL, Runge, KW. The physiology of vitamin K nutriture and vitamin K-dependent protein function in atherosclerosis. J Thromb Haemost 2004; 2: 2118.Google Scholar
Dam, H. The antihaemorrhagic vitamin of the chick: occurrence and chemical nature. Nature 1935; 135: 652.Google Scholar
Dowd, P, Ham, S-W, Naganathan, S, et al. The mechanism of action of vitamin K. Annu Rev Nutr 1995; 15: 419.Google Scholar
Hasific, S, Ovrehus, KA, Gerke, O, et al. Extent of arterial calcification by conventional vitamin K antagonist treatment. PLoS ONE 2020; 15: e0241450.Google Scholar
Lerner, RG, Aronow, WS, Sekhri, A, et al. Warfarin use and the risk of valvular calcification. J Thromb Haemost 2009; 7: 2023.Google Scholar
Presnell, SR, Stafford, DW. The vitamin K-dependent carboxylase. Thromb Haemost 2002; 87: 937.Google Scholar
Shearer, MJ. Vitamin, K. Lancet 1995; 345: 229.Google Scholar
Stafford, DW. The vitamin K cycle. J Thromb Haemost 2005; 3: 1873.Google Scholar
Stenflo, J, Fernlund, P, Egan, W, et al. Vitamin K dependent modifications of glutamic acid residues in prothrombin. Proc Natl Acad Sci 1974; 71: 2730.Google Scholar
Tie, J-K, Stafford, DW. Structural and functional insights into enzymes of the vitamin K cycle. J Thromb Haemost 2016; 14: 236.Google Scholar
Yang, Y, Liu, T, Zhao, J, et al. Warfarin-related nephropathy: prevalence, risk factors and prognosis. Int J Cardiol 2014; 176: 1297.Google Scholar

Bibliography

Bloom, AL. Von Willebrand factor: clinical features of inherited and acquired disorders. Mayo Clin Proc 1991; 66: 743.Google Scholar
Lenting, PJ, Casari, C, Christophe, OD, et al. Von Willebrand factor: the old, the new and the unknown. J Thromb Haemost 2012; 10: 2428.Google Scholar
Michiels, JJ, ed. Diagnosis and management of congenital von Willebrand’s disease. Semin Thromb Hemost 2002; 28: 109.Google Scholar
Mohri, H. Acquired von Willebrand syndrome: features and management. Am J Hematol 2006; 81: 616.Google Scholar
Oldenburg, J, Schwaab, R. Molecular biology of blood coagulation. Semin Thromb Hemost 2001; 27: 313.Google Scholar
Patmore, S, Dhami, SPS, O’Sullivan, JM. Von Willebrand factor and cancer: metastasis and coagulopathies. J Thromb Haemost 2020; 18: 2444.Google Scholar
Sadler, JE, Budde, U, Eikenboom, JCJ, et al. Update on the pathophysiology and classification of von Willebrand disease. J Thromb Haemost 2006; 4: 2103.Google Scholar
Sadler, JE, Mannucci, PM, Berntorp, E, et al. Impact, diagnosis and treatment of von Willebrand disease. Thromb Haemost 2000; 84: 160.Google Scholar
Seaman, CD, Yabes, J, Comer, DM, et al. Does deficiency of von Willebrand factor protect against cardiovascular disease? Analysis of a national discharge register. J Thromb Haemost 2015; 13: 1999.Google Scholar
Veyradier, A, Jenkins, CSP, Fressinaud, E, et al. Acquired von Willebrand syndrome: from pathophysiology to management. Thromb Haemost 2000; 84: 175.Google Scholar
Vincentelli, A Susen, S, Le Tourneau, T, et al. Acquired von Willebrand syndrome in aortic stenosis. N Engl J Med 2003; 349: 343.Google Scholar

Bibliography

Bardin, PG, Van Eeden, SF, Moolman, JA, et al. Organophosphate and carbamate poisoning. Ann Intern Med 1994; 154: 1433.Google Scholar
Dunn, MA, Sidell, FR. Progress in medical defense against nerve agents. JAMA 1989; 262: 649.Google Scholar
Eddleston, M, Szinicz, L, Eyer, P, et al. Oximes in acute organophosphorus pesticide poisoning: a systematic review of clinical trials. Quart J Med 2002; 95: 275.Google Scholar
Emad, A, Rezaian, GR. The diversity of the effects of sulfur mustard gas inhalation on respiratory system 10 years after a single heavy exposure. Chest 1997; 112: 734.Google Scholar
Kvetan, V, Farmer, JC, et al., eds. Critical care medicine for disasters, terrorism, and military conflict. Crit Care Med 2005; 33 (1, suppl.).Google Scholar
Leikin, JB, Thomas, RG, Walter, FG, et al. A review of nerve agents for the critical care physician. Crit Care Med 2002; 30: 2346.Google Scholar
Marrs, TC. Organophosphate poisoning. Pharmacol Ther 1993; 58: 51.Google Scholar
Mokhlesi, B, Leikin, JB, Murray, P, et al. Adult toxicology in critical care: part II: specific poisonings. Chest 2003; 123: 897.Google Scholar
Nozaki, H, Aikawa, N, Shinozawa, Y, et al. Sarin poisoning in Tokyo subway. Lancet 1995; 345: 980.Google Scholar
Rickett, DL, Glenn, JF, Houston, WE. Medical defense against nerve agents: new directions. Milit Med 1987; 152: 35.Google Scholar
Sidell, FR, Borak, J. Chemical warfare agents. Ann Emerg Med 1992; 21: 865.Google Scholar
Smythies, J. Nerve gas antidotes. J R Soc Med 2004; 97: 32.Google Scholar
Tafuri, J, Roberts, J. Organophosphate poisoning. Ann Emerg Med 1987; 16: 193.Google Scholar
Vedder, EB. The Medical Aspects of Chemical Warfare. Baltimore: Williams & Wilkins. 1925.Google Scholar
Zimmerman, JL. Poisonings and overdoses in the intensive care unit: general and specific management issues. Crit Care Med 2003; 31: 2794.Google Scholar

Bibliography

Hamilton, D, Harris, MD, Foweraker, J, et al. Waterhouse–Friderichsen syndrome as a result of non-meningococcal infection. J Clin Pathol 2004; 57: 208.Google Scholar
Vella, A, Nippoldt, TB, Morris, JC. Adrenal hemorrhage: a 25-year experience at the Mayo Clinic. Mayo Clin Proc 2001; 76: 161.Google Scholar

Bibliography

Aries, PM, Lamprecht, P, Gross, WL. Biological therapies: new treatment options for ANCA-associated vasculitis? Expert Opin Biol Ther 2007; 7: 521.Google Scholar
Beaty, MW, Toro, J, Sorbara, L, et al. Cutaneous lymphomatoid granulomatosis: correlation of clinical and biological features. Am J Surg Pathol 2001; 25: 1111.Google Scholar
Cordier, JF, Valeyre, D, Gullevin, L, et al. Pulmonary Wegener’s granulomatosis. Chest 1990; 97: 906.Google Scholar
European Vasculitis Study Group. A mulicenter randomized trial of cyclophosphamide versus azathioprine during remission in ANCA-associated systemic vasculitis. Arthritis Rheum 1999; 42 (suppl.): 225.Google Scholar
Falk, RJ, Jennett, JC. Wegener’s granulomatosis, systemic vasculitis, and antineutrophil cytoplasmic autoantibodies. Annu Rev Med 1991; 42: 459.Google Scholar
Fauci, AS, Haynes, BF, Costa, J, et al. Lymphomatoid granulomatosis. N Engl J Med 1982; 306: 68.Google Scholar
Frankel, SK, Cosgrove, GP, Fischer, A, et al. Update in the diagnosis and management of pulmonary vasculitis. Chest 2006; 129: 452.Google Scholar
Gatenby, PA. Anti-neutrophil cytoplasmic antibody-associated systemic vasculitis: nature or nurture? Intern Med J 2012; 42: 351.Google Scholar
Gomez-Puerta, JA, Hernandez-Rodriguez, J, Lopez-Soto, A, et al. Antineutrophil cytoplasmic antibody-associated vasculitides and respiratory disease. Chest 2009; 136: 1101.Google Scholar
Hagen, EC, Ballieux, BEPB, van Es, LA, et al. Antineutrophil cytoplasmic autoantibodies: a review of the antigens involved, the assays, and the clinical and possible pathogenetic consequences. Blood 1993; 81: 1996.Google Scholar
Hoffman, G. Treatment of Wegener’s granulomatosis: time to change the standard of care? Arthritis Rheum 1997; 40: 2099.Google Scholar
Hoffman, GS, Specks, U. Antineutrophil cytoplasmic antibodies. Arthritis Rheum 1998; 41: 1521.Google Scholar
Kallenberg, C, Brouwer, E, Weening, J, et al. Anti-neutrophil cytoplasmic antibodies: current diagnostic and pathophysiological potential. Kidney Int 1994; 46: 1.Google Scholar
Ricketti, AJ, Greenberger, PA, Mintzer, RA, et al. Allergic bronchopulmonary aspergillosis. Arch Intern Med 1983; 143: 1553.Google Scholar
Rosen, MJ. Dr Friedrich Wegener and the ACCP, revisited. Chest 2007; 132: 1723.Google Scholar
Salama, AD. Pathogenesis and treatment of ANCA-associated systemic vasculitis. J R Soc Med 1999; 92: 456.Google Scholar
Schuyler, MR. Allergic bronchopulmonary aspergillosis. Clin Chest Med 1983; 4: 15.Google Scholar

Bibliography

Doherty, MJ, Watson, NF, Uchino, K, et al. Diffusion abnormalities in patients with Wernicke encephalopathy. Neurology 2002; 58: 655.Google Scholar
Harper, CG, Giles, M, Finlay-Jones, R. Clinical signs in the Wernicke-Korsakoff complex. J Neurol Neurosurg Psychiatry 1986; 49: 341.Google Scholar
Kopelman, MD. The Korsakoff syndrome. Br J Psychiatry 1995; 166: 154.Google Scholar
Latt, N, Dore, G. Thiamine in the treatment of Wernicke encephalopathy in patients with alcohol use disorders. Intern Med J 2014; 44: 911.Google Scholar
Reuler, JB, Girard, DE, Cooney, TG. Wernicke’s encephalopathy. N Engl J Med 1985; 312: 1035.Google Scholar

Bibliography

Campbell, GL, Marfin, AA, Lanciotti, RS, et al. West Nile virus. Lancet Infect Dis 2002; 2: 519.Google Scholar
Hayes, EB, Sejvar, JJ, Zaki, SR, et al. Virology, pathology and clinical manifestations of West Nile virus disease. Emerg Infect Dis 2005; 11: 1174Google Scholar
Solomon, T, Ooi, MH, Beasley, DW, et al. West Nile encephalitis. BMJ 2003; 326: 865.Google Scholar

Bibliography

Relman, DA, Schmidt, TM, MacDermott, RP, et al. Identification of the uncultured bacillus of Whipple’s disease. N Engl J Med 1992; 327: 293.Google Scholar
Swartz, MN. Whipple’s disease: past, present and future. N Engl J Med 2000; 342: 648.Google Scholar

Bibliography

Callego, C, Korf, BR. Practice of genetics in clinical medicine. In: Scientific American Medicine. Human Genetics. Hamilton: Decker Medicine. 2021.Google Scholar

Bibliography

Monath, TP. Yellow fever: a medically neglected disease. Rev Infect Dis 1987; 9: 165.Google Scholar
Robertson, SE, Hull, BP, Tomori, O, et al. Yellow fever: a decade of reemergence. JAMA 1996; 276: 1157.Google Scholar

Bibliography

Haug, CJ, Kieny, MP, Murgue, B. The Zika challenge. N Engl J Med 2016; 374: 1801.Google Scholar
Ong, CW. Zika virus: an emerging infectious threat. Intern Med J 2016; 46: 525.Google Scholar
Petersen, LR, Jamieson, DJ, Powers, AM, et al. Zika virus. N Engl J Med 2016; 374: 1552.Google Scholar

Bibliography

Barceloux, DG. Zinc. J Toxicol Clin Toxicol 1999; 37: 279.Google Scholar
Berger, MM, Cavadini, C, Chiolero, R, et al. Copper, selenium and zinc status and balances after major trauma. J Trauma 1996; 40: 103.Google Scholar
McClain, C, Soutor, C, Zieve, L. Zinc deficiency: a complication of Crohn’s disease. Gastroenterology 1980; 78: 272.Google Scholar
Prasad, AS. Clinical spectrum and diagnostic aspects of human zinc deficiency. In: Prasad, AS, ed. Essential and Toxic Trace Elements in Human Health and Disease. New York: Liss. 1988, p 3.Google Scholar

Bibliography

Wolfe, MM, Jensen, RT. Zollinger-Ellison syndrome: current concepts in diagnosis and management. N Engl J Med 1987; 317: 1200.Google Scholar

Bibliography

Meslin, F-X. Global aspects of emerging and potential zoonoses: a WHO perspective. Emerg Infect Dis 1997; 3: 2.Google Scholar
Morse, S, Mazet, J, Woolhouse, M, et al. Prediction and prevention of the next pandemic zoonosis. Lancet 2012; 380: 1956.Google Scholar
Petersen, LR, Gubler, DJ, Kuritzkes, DR. Viral zoonoses. In: Scientific American Medicine. Infectious Diseases. Hamilton: Dekker Medicine. 2020.Google Scholar
Quammen, D. Spillover: Animal Infections and the Next Human Pandemic. New York: Norton. 2012.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Dictionary
  • J. F. Cade, University of Melbourne
  • Book: Critical Care Compendium
  • Online publication: 05 May 2023
  • Chapter DOI: https://doi.org/10.1017/9781009237451.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Dictionary
  • J. F. Cade, University of Melbourne
  • Book: Critical Care Compendium
  • Online publication: 05 May 2023
  • Chapter DOI: https://doi.org/10.1017/9781009237451.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Dictionary
  • J. F. Cade, University of Melbourne
  • Book: Critical Care Compendium
  • Online publication: 05 May 2023
  • Chapter DOI: https://doi.org/10.1017/9781009237451.002
Available formats
×