Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-22T22:39:24.386Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 July 2014

Robert H. Sanders
Affiliation:
Kapteyn Astronomical Institute, Groningen, The Netherlands
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Dark Matter Problem
A Historical Perspective
, pp. 195 - 201
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahmed, Z.et al. (2009). Search for weakly interacting massive particles with the first five-tower data from the cryogenic dark matter search at the Soudan Underground Laboratory, Phys. Rev. Lett. 102, 011301.CrossRefGoogle ScholarPubMed
Ahronian, F. A., Hofmann, W., Konopelko, A. K. and Voelk, H. J. (1997). The potential of ground based arrays of imaging atmospheric Cherenkov telescopes, Astropart. Phys. 6, 343-368.Google Scholar
Allen, R. J. and Shu, F. H. (1979). The extrapolated central surface brightness of galaxies, Astrophys. J. III, 67-72.Google Scholar
Alpher, R. A., Bethe, H. A., and Gamow, G. (1948). The origin of chemical elements, Phys. Rev. 13, 8034.Google Scholar
Alpher, R. A. and Herman, R. C. (1949). Remarks on the evolution of the expanding Universe, Phys. Rev. 15, 1089–95.CrossRefGoogle Scholar
Anderson, J. D., Laing, P. A., Lau, E. L., Liu, A. S., Nieto, M. M., and Turyshev, S. G. (1998). Indication, from Pioneer 10/11, Galileo, and Ulysses data, of an apparent anomalous, weak, long-range acceleration, Phys. Rev. Lett. 81, 2858–61.CrossRefGoogle Scholar
Aprile, E.et al. 2012. Dark matter results from 225 live days of XENON100 data, Phys. Rev. Lett. 109, 181301.CrossRefGoogle ScholarPubMed
Athanassoula, E. and Sellwood, J. A. (1986). Bi-symmetric instabilities of the Kuz'min/Toomre disc, Mon. Not. Roy. Astron. Soc. 221, 213–32.CrossRefGoogle Scholar
Babcock, H. (1939). The rotation of the Andromeda nebula, Lick Obs. Bull., no. 498, Berkeley, Univ. ofCalif. Press, pp. 41-51.Google Scholar
Bahcall, J. N. and Davis, R. (1976), Solar neutrinos, a scientific puzzle, Science 191, 264-267.CrossRefGoogle ScholarPubMed
Baugh, C. (2006). A primer on hierarchical galaxy formation: the semi-analytical approach, Rep. Prog. Phys. 69, 3101–56.CrossRefGoogle Scholar
Begeman, K. G. (1987). HI rotation curves of spiral galaxies, PhD dissertation, Univ. of Groningen.Google Scholar
Begeman, K. G. (1989). HI rotation curves of spiral galaxies, Astron. Astrophys. 223, 47-60.Google Scholar
Behnke, I. E.et al. (2008) Spin-dependent WIMP limits from a bubble chamber, Science 319, 933–6.CrossRefGoogle ScholarPubMed
Bekenstein, J. D. (2004). Relativistic gravitation theory for the modified Newtonian dynamics paradigm, Phys. Rev. D 10, 083509.Google Scholar
Bekenstein, J. D. and Milgrom, M. (1984). Does the missing mass problem signal the breakdown of Newtonian gravity?, Astrophys. J. 286, 7-14.CrossRefGoogle Scholar
Bekenstein, J. D. and Sanders, R. H. (1994) Gravitational lenses and unconventional gravity theories, Astrophys. J. 429, 480–90.CrossRefGoogle Scholar
Bernabei, R.et al. (2008). First results from DAMA/LIBRA and the combined results with DAMA/Nal, Eur. Phys. J. C56, 333–55.CrossRefGoogle Scholar
Blumenthal, G. R., Faber, S. M., Primack, J. R., and Rees, M. J. (1984). Formation of galaxies and large-scale structure with cold dark matter, Nature 311, 517–25.CrossRefGoogle Scholar
Blumenthal, G. R., Pagels, H., and Primack, J. R. (1982). Galaxy formation by dissipationless particles heavier than neutrinos, Nature 299, 37–8.CrossRefGoogle Scholar
Bond, J. R., Efstathiou, G., and Silk, J. (1980). Massive neutrinos and the large scale structure of the Universe, Phys. Rev. Lett. 45, 1980–4.CrossRefGoogle Scholar
Bond, J. R. and Efstathiou, G. (1984). Cosmic background radiation anisotropies in universes dominated by non-baryonic dark matter, Astrophys. J. 285, L45-L48.CrossRefGoogle Scholar
Bond, J. R. and Szalay, A. S. (1983). The collisionless damping of density fluctuations in an expanding universe, Astrophys. J. 214, 443–68.CrossRefGoogle Scholar
Bondi, H. and Gold, T. (1948). The steady state theory of the expanding Universe, Mon. Not. Roy. Astron. Soc. 108, 252–70.CrossRefGoogle Scholar
Bosma, A. (1978). The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types, PhD dissertation, The University of Groningen.Google Scholar
Bosma, A. (1981). 21-cm line studies of spiral galaxies. II. The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types, Astron. J. 86, 1825–46.CrossRefGoogle Scholar
Broeils, A. H. (1992) Dark and visible matter in spiral galaxies, PhD dissertation, The University of Groningen.Google Scholar
Burbidge, M. E., Burbidge, G. B., Fowler, W. A., and Hoyle, F. (1957). Synthesis of elements in stars, Rev. Mod. Phys. 29, 547-650.CrossRefGoogle Scholar
Casertano, S. (1983). Rotation curve of the edge-on spiral galaxy NGC 5907: disk and halo masses, Mon. Not. RAS 203, 735–7.CrossRefGoogle Scholar
Casertano, S. and van Gorkom, J. (1991). Declining rotation curves -the end of a conspiracy?, Astron. J. 101, 1231–41.CrossRefGoogle Scholar
Chandrasekhar, S. (1941). The time of relaxation of stellar systems, Astrophys. J. 93, 285-304.Google Scholar
Chang, J.et al. (2008). An excess of cosmic ray electrons at energies of 300-800 GeV, Nature 456, 362–5.CrossRefGoogle ScholarPubMed
Clowe, D., Bradac, M., Gonzalez, A. H., Markevitch, M., Randall, S. W., Jones, C., and Zaritsky, D. (2006). A direct empirical proof of the existence of dark matter, Astrophys. J. 648, L109-L113.CrossRefGoogle Scholar
Cowsik, R. and McClelland, J. (1973). Gravity of neutrinos of nonzero mass in astrophysics, Astrophys. J. 180, 7-10.CrossRefGoogle Scholar
de Bernardis, P.et al. (2000). First Results from the BOOMERanG Experiment, Am. Inst. Phys. Conf. Proc. 555, 85-94.Google Scholar
de Lapparent, V., Geller, M. J., and Huchra, J. P. (1986). A slice of the Universe, Astrophys. J. 302, L1-L5.CrossRefGoogle Scholar
Dicke, R. H., Peebles, P. J. E., Roll, P. G., and Wilkinson, D. T. (1965). The cosmic black body radiation, Astrophys. J. 142, 414–9.CrossRefGoogle Scholar
Disney, M. J. (1976). Visibility of galaxies, Nature 263, 573–5.CrossRefGoogle Scholar
Duffy, L. D.et al. (2006). High resolution search for dark matter axions, Phys. Rev. D 14, 012006.Google Scholar
Efstathiou, G. and Bond, J. R. (1986). Microwave background fluctuations and dark matter, Phil. Trans. Roy. Soc. London, Series A, Math. Phys. Sci. 320, 585–94.CrossRefGoogle Scholar
Emden, R. (1907), Gaskugeln, Teubner (Leipzig, Berlin).
Ewen, H. and Purcell, E. (1951). Observations of a line in the galactic radio spectrum; radiation from galactic hydrogen at 1,420 Mc/s, Nature 168, 356.CrossRefGoogle Scholar
Faber, S. M. and Gallagher, J. (1979). Masses and mass-to-light ratios ofgalaxies, Ann. Rev. Astron. Astrophys. 11, 135–87.CrossRefGoogle Scholar
Faber, S. M. and Jackson, R. E. (1976). Velocity dispersions and mass-to-light ratios for elliptical galaxies, Astrophys. J. 204, 668–83.CrossRefGoogle Scholar
Finzi, A. (1963). On the validity of Newton's law at a long distance, Mon. Not. RAS 121, 21-30.Google Scholar
Freeman, K. C. (1970). On the disks ofspiral and S0 Galaxies, Astrophys. J. 160, 811–30.CrossRefGoogle Scholar
Freeman, K. C. and McNamara, G. (2006). In Search of Dark Matter,Springer-Praxis (Berlin).Google Scholar
Friedmann, A. (1922). Uber die Kruemming des Raumes, Z. Phys. 10, 377–38.CrossRefGoogle Scholar
Gaitskell, R. J. (2004). Direct detection of dark matter, Ann. Rev. Nuc. Part. Sci. 54, 315–59.CrossRefGoogle Scholar
Garnavich, P. M.et al. (1998). Constraints on cosmological models from Hubble space telescope observations of high-z supernovae, Astrophys. J. 493, L53-L57.CrossRefGoogle Scholar
Gershtein, S. S. and Zeldovich, Ya. B. (1966). Rest mass of muonic neutrino and cosmology, ZhETF Pis, ma 4, 174–5.Google Scholar
Gott, J. R., Gunn, J. E., Schramm, D. N., and Tinsley, B. M. (1974). An unbound Universe?, Astrophys. J. 194, 543–53.CrossRefGoogle Scholar
Gunn, J. E., Lee, B. W., Lerche, I., Schramm, D. N., and Steigman, G. (1978). Some astrophysical consequences of the existence of a heavy stable neutral lepton, Astrophys. J. 223, 1015–31.CrossRefGoogle Scholar
Hoekstra, H., Franx, M., Kuijken, K., and Squires, G. (1998). Weak lensing analysis of Cl 1358+62 using Hubble space telescope observations, Astrophys. J. 504, 636–60.CrossRefGoogle Scholar
Hohl, F. (1971). Numerical experiments with a disk of stars, Astrophs. J. 168, 343–59.CrossRefGoogle Scholar
Hohl, F. and Hockney, R. W. (1969). A computer model of disks of stars, J. Comp. Phys. 4, 306-312.CrossRefGoogle Scholar
Hoyle, F. (1948). A new model of the expanding Universe, Mon. Not. Roy. Astron. Soc. 108, 372–82.CrossRefGoogle Scholar
Hoyle, F. and Taylor, R. J. (1964). The mystery of the cosmic helium abundance, Nature 204, 1108–10.CrossRefGoogle Scholar
Hu, W. and Sugiyama, N. (1995). Toward understanding the CMB anisotropies and their implications, Phys. Rev. D 51, 2559–630.CrossRefGoogle ScholarPubMed
Jansky, K. G. (1933). Radio waves from outside the Solar System, Nature 132, 66.CrossRefGoogle Scholar
Jones, C. and Forman, W. (1984). The structure of clusters of galaxies observed with Einstein, Astrophys. J. 216, 38-55.Google Scholar
Jungman, G., Kamionkowski, M., and Greist, K. (1996). Supersymmetric dark matter, Phys. Rep. 261, 195-373.Google Scholar
Kahn, F. D. and Woltjer, L. (1959). Intergalactic matter and the galaxy, Astrophys. J. 130, 705–17.CrossRefGoogle Scholar
Kalnajs, A.J. (1983). IAU Symp. 100: Internal Kinematics and Dynamics of Galaxies, ed. E., Athanassoula, Reidel (Dordrecht), p. 87.Google Scholar
Kane, G. (2000). Supersymmetry: Squarks, Photinos and Unveiling the Ultimate Laws of Nature, Perseus Publishing (Cambridge, Mass).Google Scholar
Kent, S. M. (1986). Dark matter in spiral galaxies. I – Galaxies with optical rotation curves, Astron. J. 91, 1301–27.CrossRefGoogle Scholar
Klypin, A., Gottloeber, S., Kravtsov, A. V., and Khokhlov, A. M. (1999). Galaxies in N-body simulations: overcoming the overmerging problem, Astrophys. J. 516, 530–51.CrossRefGoogle Scholar
Klypin, A. A. and Shandarin, S. F. (1983). Three-dimensional formation of large scale structure in the Universe, Mon. Not. RAS 204, 891-907.CrossRefGoogle Scholar
Kuhn, T. S. (1962). The Structure of Scientific Revolutions,Univ. of Chicago Press (Chicago).Google Scholar
Lamaitre, G. (1927). Un Univers homogene' et de rayon croissant rendant des nebuleuses extra-galactique, Ann. Soc. Sci. de Bruxelles A41, 49-59.Google Scholar
Lifshitz, E. M. (1946). On the gravitational instability of the expanding Universe, Journ. Phys. USSR 10, 116–22.Google Scholar
Lin, C. C. and Shu, F. H. (1964). On the spiral structure of disk galaxies, Astrophys. J. 140, 646-655.CrossRefGoogle Scholar
Lynds, R. and Petrosian, V. (1986). Giant luminous arcs in galaxy clusters, Bull. Am. Astron. Soc. 18, 1014.Google Scholar
Mayall, N. (1951). Comparison of rotational motions observed in spirals M 31 and M 33 and in the Galaxy, Pub. Obs. Michigan 10, 19.Google Scholar
McGaugh, S. S. and de Blok, W. J. G. (1998). Testing the hypothesis of modified dynamics with low surface brightness galaxies and other evidence, Astrophys. J. 499, 66-81.Google Scholar
McGaugh, S. S., Schombert, J. M., Bothun, G. D. and de Blok, W. J. G. (2000). The baryonic Tully-Fisher relation, Astrophys. J. 533, L99-L102.CrossRefGoogle ScholarPubMed
Milgrom, M. (1983). A modification of Newtonian dynamics as a possible alternative to the hidden matter hypothesis, Astrophys. J 210, 365–70.CrossRefGoogle Scholar
Milgrom, M. (1984). Isothermal spheres in the modified dynamics, Astrophys. J. 281, 571–6.CrossRefGoogle Scholar
Miller, R. H. and Prendergast, K. H. (1968). Stellar dynamics in a discrete phase space, Astrophys. J., 151, 699-701.CrossRefGoogle Scholar
Miller, R. H., Prendergast, K.H., and Quirk, W. J. (1970). Numerical experiments on spiral structure, Astrophys. J. 161, 903–16.CrossRefGoogle Scholar
Moore, B., Ghigna, S., Governato, R., Lake, G., Quinn, T., and Stadel, J. (1999). Dark matter substructure within galactic halos, Astrophys. J. 534, L19-L22.Google Scholar
Muller, C. A. and Oort, J. H. (1951). Observations of a line in the galactic radio spectrum: the interstellar hydrogen line at 1420 Mc/s and an estimate of galactic rotation, Nature 168, 357.CrossRefGoogle Scholar
Navarro, J. F., Frenk, C. S., and White, S. D. M. (1996). The structure ofcold dark matter halos, Astrophys. J. 463, 563–75.CrossRefGoogle Scholar
Navarro, J. F. and Steinmetz, M. (2000). Dark halo and disk galaxy scaling relations in hierarchical universes, Astrophys. J. 538, 477–88.CrossRefGoogle Scholar
Oort, J. H. (1932). The force exerted by the stellar system in the direction perpendicular to the galactic plane and some related problems, Bull. Astro. Inst. Neth. 6, 289–94.Google Scholar
Oort, J. H. (1960). Note on the determination of Kzand on the mass density near the Sun, Bull. Astro. Inst. Neth. 494, 45-63.Google Scholar
Ostriker, J. P. and Peebles, P. J. E. (1973). A numerical study of flattened galaxies: or can cold galaxies survive, Astrophys. J. 186, 467–80.CrossRefGoogle Scholar
Ostriker, J. P., Peebles, P. J. E. and Yahil, A. (1974). The size and mass of galaxies and the mass of the Universe, Astrophys. J. 193, L1-L4.CrossRefGoogle Scholar
Ostriker, J. P. and Steinhardt, P. J. (1995). The observational case for a low density universe with a non-zero cosmological constant, Nature 311, 600–2.CrossRefGoogle Scholar
Paczynski, B. (1987). Giant luminous arcs discovered in two clusters of galaxies, Nature 325, 572.CrossRefGoogle Scholar
Peebles, P. J. E. (1965). The black-body radiation content of the Universe and the formation of galaxies, Astrophys. J. 142, 1317–25.CrossRefGoogle Scholar
Peebles, P. J. E. (1966). Primordial helium abundance and the primordial fireball II, Astrophys. J. 146, 542–52.CrossRefGoogle Scholar
Peebles, P. J. E. (1968). Recombination of the primeval plasma, Astrophys. J. 153, 1-11.CrossRefGoogle Scholar
Peebles, P. J. E. (1982). Large scale temperature and mass fluctuations due to scale invariant primeval perturbations, Astrophys. J. 263, L1-L5.CrossRefGoogle Scholar
Peebles, P. J. E., Page, L. A., and Partridge, B. (2009). Finding the Big Bang,Cambridge University Press (Cambridge).CrossRefGoogle Scholar
Penzias, A. A. and Wilson, R. W. (1965). A measurement of excess antenna temperature at 4080 Mc/s, Astrophys. J. 142, 419-421.CrossRefGoogle Scholar
Perlmutter, S. (2003). Supernovae, dark energy, and the accelerating universe, Physics Today 56, 53-62.CrossRefGoogle Scholar
Perlmutter, S.et al. (1997). Measurements of the cosmological parameters omega and lambda from high-redshift supernovae, Bull. Am. Astron. Soc. 29, 1351 (see also arXiv.com, astro-ph/9812473).Google Scholar
Perlmutter, S.et al. (1999). Measurements of omega and lambda from 42 high-redshift supernovae, Astrophys. J. 511, 565–86.CrossRefGoogle Scholar
Riess, A.et al. (2009). Observational evidence from suprenovae for an accelerating Universe and a cosmological constant, Astron. J. 116, 1009-1038.Google Scholar
Roberts, M. S. (1975a). Radio observations of neutral hydrogen in galaxies, Stars and stellar systems, Vol. 9 Galaxies and the Universe, 309-358.Google Scholar
Roberts, M. S. (1975b). The rotation curves of galaxies, IAU Symp. 69, The Dynamics of Galaxies, ed. A., Hayli, Reidel (Dordrecht), pp. 331-339.Google Scholar
Roberts, M. S. and Whitehurst, R. N. (1975). The rotation curve and geometry of M31 at large galactocentric distances, Astrophys. J. 201, 327–46.CrossRefGoogle Scholar
Rogstad, D. H. and Shostak, G. S. (1972). Gross properties of five SCD galaxies as determined by 21-centimeter line observations, Astrophys. J. 116, 315–21.CrossRefGoogle Scholar
Rood, H. J. (1965). The dynamics of the Coma cluster of galaxies, PhD dissertation, University of Michigan.Google Scholar
Rubin, V. C., Ford, W. K., Thonnard, N. (1980). Rotational properties of 21 SC galaxies with a large range of luminosities and radii, from NGC 4605 (R = 4 kpc) to UGC 2885 (R = 122 kpc), Astrophys. J. 238, 471–87.CrossRefGoogle Scholar
Sachs, R. K. and Wolfe, A. M. (1967). Perturbations of a cosmological model and angular variations of the microwave background, Astrophys. J. 143, 73-90.Google Scholar
Sadoulet, B. (2007). Particle dark matter in the Universe: at the brink of discovery?, Science 315, 61–3.CrossRefGoogle Scholar
Sancisi, R. (2004). The visible matter - dark matter coupling, IAU Symp. 220, Dark Matter in Galaxies, eds. S. D., Ryder, D. J., Pisano, M. A., Walker, and K. C., Freeman, Astron. Soc.Pac. (San Francisco), pp. 233–40.Google Scholar
Sanders, R. H. (1997). A stratified framework for scalar-tensor theories of modified dynamics, Astrophys. J. 480, 492-502.CrossRefGoogle Scholar
Sanders, R. H. and Verheijen, M. A. W. (1998). Rotation curves of Ursa Major galaxies in the context of modified Newtonian dynamics, Astrophys. J. 503, 97-108.CrossRefGoogle Scholar
Sanders, R. H. and McGaugh, S. S. (2002). Modified Newtonian dynamics as an alternative to dark matter, Ann. Rev. Astron. Astrophys. 40, 263-317.CrossRefGoogle Scholar
Schwarzschild, M. (1954). Mass distribution and mass-luminosity ratios in galaxies, Astron. J. 59, 273–84.CrossRefGoogle Scholar
Schwarzschild, M. and Schwarzschild, B. (1950). A spectroscopic comparison between high and low velocity F dwarfs, Astrophys. J. 112, 248–65.CrossRefGoogle Scholar
Seljak, U. and Zaldarriaga, M. (1996). A line-of-sight integration approach to cosmic microwave background anisotropies, Astrophys. J. 469, 437-444.CrossRefGoogle Scholar
Shectman, S. A., Landy, S. D., Oemler, A., Tucker, D. L., Lin, H., Kirshner, R. P., and Schechter, P. L. (1996). The Las Companas redshift survey, Astrophys. J. 410, 172–88.CrossRefGoogle Scholar
Shostak, G. S. (1973). Aperture synthesis study of neutral hydrogen in NGC 2403 and NGC 4237: II. Discussion, Astron. Astrophys. 24, 411–19.Google Scholar
Shostak, G. S. and Rogstad, D. H. (1973). Aperture synthesis study of neutral hydrogen in NGC 2403 and NGC 4236: I. Observations, Astron. Astrophys. 24, 405–10.Google Scholar
Silk, J. (1967). Fluctuations in the primordial fireball, Nature 215, 1155–6.CrossRefGoogle Scholar
Skordis, C., Mota, D. F., Ferreira, P. G., and Boehm, C. (2006). Large scale structure in Bekenstein's theory of relativistic modified Newtonian dynamics, Phys. Rev. Lett 96, 011301.CrossRefGoogle ScholarPubMed
Smith, S. (1936). The mass of the Virgo cluster, Astrophys. J. 83, 23-30.CrossRefGoogle Scholar
Smoot, G. F.et al. (1992). Structure in the COBE differential microwave radiometer first-year maps, Astrophys. J. 396, L1-L5.CrossRefGoogle Scholar
Soucail, G., Fort, B., Mellier, Y., and Picat, J. P. (1987). A blue ring-like structure in the centerofthe A 370 clusterofgalaxies, Astron. Astrophys. 112, L14-L16.Google Scholar
Spergel, D. N.et al. (2007). Three-year Wilkinson microwave anisotropy probe (WMAP) observations: implications for cosmology, Astrophys. J. Suppl. 110, 377-408.Google Scholar
Steinmetz, M. and Navarro, J. F. (1999). The cosmological origin of the Tully-Fisher relation, Astrophys. J. 513, 555–60.CrossRefGoogle Scholar
Sunyaev, R. A. and Zeldovich, Ya. B. (1970). Small-scale fluctuations of relic radiation, Astrophys. Sp. Sci. 1, 3-19.Google Scholar
Swaters, R. A. (1999). Dark matter in late-type dwarf galaxies, PhD thesis, University of Groningen.Google Scholar
Szalay, A. S. and Marx, G. (1976). Neutrino rest mass from cosmology, Astron. Astrophys. 49, 437–41.Google Scholar
Tonry, J. L.et al. (2003). Cosmological results from high-z supernovae, Astrophys. J. 594, 1-24.CrossRefGoogle Scholar
Tremaine, S. and Gunn, J. E. (1979). The dynamical role of light neutral leptons in cosmology, Phys. Rev. Lett. 42, 407–10.CrossRefGoogle Scholar
Tully, R. B. and Fisher, J. R. (1977). A new method for determining the distances to galaxies, Astron. Astrophys. 54, 661–73.Google Scholar
Uson, J. M. and Wilkinson, D. T. (1982). Search for small scale anisotropy in the cosmic microwave background, Phys. Rev. Lett. 49, 1463–5.CrossRefGoogle Scholar
van Albada, T. S., Bahcall, J. N., Begeman, K., and Sancisi, R. (1985). Distribution of dark matter in the spiral galaxy NGC 3198, Astrophys. J. 295, 305–13.CrossRefGoogle Scholar
van Albada, T. S. and Sancisi, R. (1986). Dark matter in spiral galaxies, Phil. Trans. Roy. Soc. 320, 447–64.CrossRefGoogle Scholar
van de Hulst, H. C., Raimond, E., and van Woerden, H. (1957). Rotation and density distribution of the Andromeda nebula derived from observations of the 21-cm line, Bull. Astr. Inst. Neth. 14, 1-16.Google Scholar
van derKruit, P. C. and Searle, L. E. (1981). Surface photometry ofedge on spiral galaxies. I. A model for the three-dimensional distribution of light in galactic disks, Astron. Astrophys. 95, 105–15.Google Scholar
Verheijen, M. A. W. (2001). The Ursa Major cluster of galaxies. V. HI rotation curve shapes and the Tully-Fisher relations, Astrophys. J. 563, 694-715.CrossRefGoogle Scholar
Vikhlinin, A., Kravtsov, A., Forman, W., Jones, C., Markevitch, M., Murray, S. S. and Van Speybroeck, L. (2006). Chandra sample of nearby relaxed galaxy clusters: mass, gas fraction, and mass-temperature relation, Astrophys. J. 640, 691-709.CrossRefGoogle Scholar
Vittorio, N. and Silk, J. (1984). Fine scale anisotropies of the cosmic background radiation in a Universe dominated by cold dark matter, Astrophys. J. 285, L39-L43.CrossRefGoogle Scholar
Walsh, D., Carswell, R. F. and Weymann, R. J. (1979). 0957 + 561 A, B - Twin quasistellar objects orgravitational lens, Nature 219, 381–4.CrossRefGoogle Scholar
White, S. D. M. (1977). Mass segregation and missing mass in the Coma cluster, Mon. Not. Roy. Astron. Soc. 119, 33-41.Google Scholar
White, S. D. M., Frenk, C. S., and Davis, M. (1983). Clustering in a neutrino dominated Universe, Astrophys. J. 214, L1-L5.Google Scholar
White, S. D. M., Navarro, J. F., Evrard, A. E., and Frenk, C. S. (1993). The baryon content of galaxy clusters: a challenge to cosmological orthodoxy, Nature 366, 429-433.CrossRefGoogle Scholar
Zeldovich, Ya. B. (1977). The theory of the large scale structure of the Universe, Large Scale Structure of the Universe, IAU Symp. 79, eds. M., Longair and J., Einasto, Reidel (Dordrecht), pp. 409-419.Google Scholar
Zeldovich, Ya. B. and Novikov, I. (1983). Relativistic astrophysics Vol. II: The structure and evolution of the Universe, Univ. of Chicago Press(Chicago).Google Scholar
Zwicky, F. (1933). Der Rotverschiebung von extragalaktischen Neblen, Act. Helv. Phys. 6, 110-127.Google Scholar
Zwicky, F. (1937). On masses of nebulae and clusters of nebulae, Astrophys. J. 86, 217-246.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Robert H. Sanders
  • Book: The Dark Matter Problem
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139192309.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Robert H. Sanders
  • Book: The Dark Matter Problem
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139192309.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Robert H. Sanders
  • Book: The Dark Matter Problem
  • Online publication: 05 July 2014
  • Chapter DOI: https://doi.org/10.1017/CBO9781139192309.014
Available formats
×