Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-22T15:00:28.888Z Has data issue: false hasContentIssue false

3 - The stability of disk galaxies: the dark-halo solution

Published online by Cambridge University Press:  05 July 2014

Robert H. Sanders
Affiliation:
Kapteyn Astronomical Institute, Groningen, The Netherlands
Get access

Summary

Building disk galaxies: too hot to be real

In the early 1960s, computing power, measured either in terms of calculations per unit time or rapid access memory capacity, appeared to undergo an enormous, almost discontinuous, leap forward. This development resulted primarily from the replacement of vacuum tubes by transistors, and now, viewed on the timescale of a century, we know that it is only one segment of an exponential curve describing the time evolution of computing power – a phenomenon encapsulated in the famous Moore's law: by any means of measuring it, computing power doubles every two years. With respect to theoretical astrophysics, this meant that by 1960 it had become practical to apply electronic computing machines in the numerical solution of complex problems such as solving for the structure and evolution of stars or the transfer of radiation at various wavelengths through stellar atmospheres.

By mid-decade several innovative astrophysicists and dynamicists were considering the computer solution of the Newtonian N-body problem where N was considerably larger than a few – in fact, on the order of 100000. The problem is straightforward: set up a system of particles each with a prescribed mass, calculate the Newtonian gravitational field generated by these particles, and then let them move under the influence of this force field for a short interval of time. Of course, after this interval, because the particles have rearranged themselves, the force has to be recalculated before the particles are moved further.

Type
Chapter
Information
The Dark Matter Problem
A Historical Perspective
, pp. 26 - 37
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×