Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-22T08:42:36.015Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 June 2012

Shun-ichiro Karato
Affiliation:
Yale University, Connecticut
Get access
Type
Chapter
Information
Deformation of Earth Materials
An Introduction to the Rheology of Solid Earth
, pp. 412 - 451
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, H. I. (1990) Atomic mechanisms of diffusional nucleation and growth and comparisons with their counterparts in shear transformations. Metallurgical Transactions A 24, 241–276.CrossRefGoogle Scholar
Abe, Y. (1997) Thermal and chemical evolution of terrestrial magma ocean. Physics of Earth and Planetary Interiors 100, 27–39.CrossRefGoogle Scholar
Adams, B. L., Wright, S. I., and Kunze, K. (1993) Orientation imaging: the emergence of a new microscopy. Metallurgical Transactions A 24, 819–831.CrossRefGoogle Scholar
Agee, C. B. (1993) Petrology of the mantle transition zone. Annual Review of Earth and Planetary Sciences 21, 19–42.CrossRefGoogle Scholar
Aines, R. D. and Rossman, G. R. (1984) The hydrous component in garnets: pyralsites. American Mineralogist 69, 1116–1126.Google Scholar
Aizawa, Y., Yoneda, A., Katsura, T., Ito, E., Saito, T., and Suzuki, I. (2004) Temperature derivatives of elastic moduli of MgSiO3 perovskite. Geophysical Research Letters 31, 10.1029/2003GL018762.CrossRefGoogle Scholar
Akaogi, M., Ito, E., and Navrotsky, A. (1989) Olivine-modified spinel–spinel transitions in the system Mg2SiO4–Fe2SiO4: calorimetric measurements, thermochemical calculation, and geophysical application. Journal of Geophysical Research 94, 15,671–15 685.CrossRefGoogle Scholar
Aki, K. (1968) Seismological evidence for the existence of soft thin layers in the upper mantle under Japan. Journal of Geophysical Research 73, 585–594.CrossRefGoogle Scholar
Aki, K., Christoffersson, A., and Husebye, F. S. (1977) Determination of three-dimensional seismic structure of the lithosphere. Journal of Geophysical Research 82, 277–296.CrossRefGoogle Scholar
Aki, K. and Kaminuma, K. (1963) Phase velocity of Love waves in Japan (part 1): Love waves from the Aleutian shock of March 1957. Bulletin of Earthquake Research Institute 41, 243–259.Google Scholar
Aki, K. and Richards, P. G. (2002) Quantitative Seismology. University Science Books.Google Scholar
Akimoto, S., Akaogi, M., Kawada, K., and Nishizawa, O. (1976) Mineralogic distribution of iron in the upper half of the transition zone in the Earth's mantle. In The Geophysics of the Pacific Ocean Basin and Its Margin, pp. 399–405. American Geophysical Union.Google Scholar
Akulov, N. S. (1964) On dislocation kinetics. Acta Metallurgica 12, 1195–1196.CrossRefGoogle Scholar
Alfé, D., Gillan, M. J., and Price, G. D. (2002a) Composition and temperature of Earth's core constrained by combining ab-initio calculations and seismic data. Earth and Planetary Science Letters 95, 91–98.CrossRefGoogle Scholar
Alfé, D., Price, G. D., and Gillan, M. J. (2000) Constraints on the composition of the Earth's core from ab-initio calculations. Nature 405, 172–175.CrossRefGoogle ScholarPubMed
Alfé, D., Price, G. D., and Gillan, M. J. (2002b) Ab initio chemical potentials of solid and liquid alloys and the chemistry of the Earth's core. Journal of Chemical Physics 116, 7127–7136.CrossRefGoogle Scholar
Allègre, C. J. and Turcotte, D. L. (1986) Implications of a two-component marble-cake mantle. Nature 323, 123–127.CrossRefGoogle Scholar
Allen, F. M., Smith, B. K., and Buseck, P. R. (1987) Direct observation of dissociated dislocations in garnet. Science 238, 1695–1697.CrossRefGoogle ScholarPubMed
Amadeo, R. J. and Ghoniem, N. M. (1988) A review of experimental observations and theoretical models of dislocation cells and subgrains. Res Mechanica 23, 137–160.Google Scholar
Amin, K. E., Mukherjee, A. K., and Dorn, J. E. (1970) A universal law for high-temperature diffusion controlled transient creep. Journal of Mechanics and Physics of Solids 18, 413–426.CrossRefGoogle Scholar
Anand, L., Kim, K. H., and Shawki, T. G. (1987) Onset of shear localization in viscoplastic solids. Journal of Mechanics and Physics of Solids 35, 407–429.CrossRefGoogle Scholar
Anderson, D. L. (1979) The deep structure of continents. Journal of Geophysical Research 84, 7555–7560.CrossRefGoogle Scholar
Anderson, D. L. (1987a) A seismic equation of state II. Shear properties and thermodynamics of the lower mantle. Physics of Earth and Planetary Interiors 45, 307–323.CrossRefGoogle Scholar
Anderson, D. L. (1987b) Thermally induced phase changes, lateral heterogeneity of the mantle, continental roots, and deep slab anomalies. Journal of Geophysical Research 92, 13,968–13 980.CrossRefGoogle Scholar
Anderson, D. L. and Bass, J. D. (1986) Transition region of the Earth's upper mantle. Nature 320, 321–328.CrossRefGoogle Scholar
Anderson, D. L. and Given, J. W. (1982) Absorption band Q model for the Earth. Journal of Geophysical Research 87, 3893–3904.CrossRefGoogle Scholar
Anderson, D. L. and Minster, J. B. (1979) The frequency dependence of Q in the Earth and implications for mantle rheology and Chandler wobble. Geophysical Journal of Royal Astronomical Society 58, 431–440.CrossRefGoogle Scholar
Anderson D. L., Sammis C. G., and Phinney R. A. (1969) Brillouin scattering – A new geophysical tool. In The Application of Modern Physics to the Earth and Planetary Interiors (ed. Runcorn, S. K.), pp. 465–477. Wiley-Interscience.Google Scholar
Anderson, D. L., Tanimoto, T., and Zhang, Y. (1992) Plate tectonics and hotspots – the third dimension. Science 256, 1645–1651.CrossRefGoogle ScholarPubMed
Anderson, O. L. (1968) Comments on the negative pressure dependence of the shear modulus found in some oxides. Journal of Geophysical Research 73, 7707–7712.CrossRefGoogle Scholar
Anderson, O. L. (1996) Equation of State of Solids for Geophysics and Ceramic Sciences. Oxford University Press.Google Scholar
Anderson O. L. (2002) The three-dimensional phase diagram of iron. In Earth's Core: Dynamics, Structure, Rotation (ed. Dehant, V., Creager, K. C., Karato, S., and Zatman, S.), pp. 83–103. American Geophysical Union.Google Scholar
Anderson O. L. and Isaak D. G. (1995) Elastic constants of mantle minerals at high temperature. In Mineral Physics & Crystallography (ed. Ahrens, T. J.), pp. 64–97. American Geophysical Union.CrossRefGoogle Scholar
Anderson, O. L. and Liebermann, R. C. (1970) Equations for elastic constants and their pressure derivatives for three cubic lattices and some geophysical applications. Physics of Earth and Planetary Interiors 3, 61–85.CrossRefGoogle Scholar
Ando, J., Shibata, Y., Okajima, Y., Kanagawa, K., and Furusho, M. (2001) Striped iron zoning of olivine induced by dislocation creep in deformed olivine. Nature 414, 893–895.CrossRefGoogle ScholarPubMed
Ando K. (1989) Self-diffusion in oxides. In Rheology of Solids and of the Earth (ed. Karato, S. and Toriumi, M.), pp. 57–82. Oxford University Press.Google Scholar
Andrade, E. N. d. C. (1910) On the viscous flow in metals and allies phenomena. Proceedings of the Royal Society of London A 84, 1–12.CrossRefGoogle Scholar
Andrault, D., Fiquet, G., Guyot, F., and Hanfland, M. (1998) Pressure-induced Landau-type transition in stishovite. Science 282, 720–724.CrossRefGoogle ScholarPubMed
Ardell, A. J. (1997) Harper–Dorn creep – Prediction of the dislocation network theory of high temperature deformation. Acta Materialia 45, 2971–2981.CrossRefGoogle Scholar
Argon A. S. (1973) Stability of plastic deformation. In The Inhomogeneity of Plastic Deformation (ed. Reed-Hill, R. E.), pp. 161–189. American Society of Metals.Google Scholar
Artemieva, I. M. (2006) Global 1° × 1° thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution. Tectonophysics 416, 245–277.CrossRefGoogle Scholar
Arzi, A. A. (1978) Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44, 173–184.CrossRefGoogle Scholar
Arzt, E., Ashby, M. F., and Verrall, R. A. (1983) Interface controlled diffusional creep. Acta Metallurgica 31, 1977–1989.CrossRefGoogle Scholar
Ashby, M. F. (1969) On interface reaction-control of Nabarro–Herring creep and sintering. Scripta Metallurgica 3, 837–842.CrossRefGoogle Scholar
Ashby, M. F. (1970) The deformation of plastically non-homogeneous crystals. Philosophical Magazine 21, 399–424.CrossRefGoogle Scholar
Ashby, M. F. (1972) A first report on deformation-mechanism maps. Acta Metallurgica 20, 887–897.CrossRefGoogle Scholar
Ashby M. F. and Brown A. M. (1982) Flow in polycrystals and the scaling of mechanical properties. In Deformation of Polycrystals: Mechanisms and Microstructures (ed. Hansen, N., Horsewell, A., Leffers, T., and Lilholt, H.), pp. 1–13. RISØ National Laboratory.Google Scholar
Ashby, M. F., Edward, G. H., Davenport, J., and Verrall, R. A. (1978) Application of bound theorems for creeping solids and their application to large strain diffusional flow. Acta Metallurgica 26, 1379–1388.CrossRefGoogle Scholar
Ashby, M. F. and Verrall, R. A. (1973) Diffusion accommodated flow and superplasticity. Acta Metallurgica 21, 149–163.CrossRefGoogle Scholar
Atkinson, H. V. (1988) Theories of normal grain growth in pure single phase systems. Acta Metallurgica 36, 469–491.CrossRefGoogle Scholar
Auten, T. A., Davis, L. A., and Gordon, R. B. (1973) Hydrostatic pressure and the mechanical properties of NaCl polycrystals. Philosophical Magazine 28, 335–341.CrossRefGoogle Scholar
Auten, T. A., Radcliffe, S. V., and Gordon, R. B. (1976) Flow stress of MgO single crystals compressed along [100] at high hydrostatic pressure. Journal of the American Ceramic Society 59, 40–42.CrossRefGoogle Scholar
Lallemant, Avé H. G. (1978) Experimental deformation of diopside and websterite. Tectonophysics 48, 1–27.CrossRefGoogle Scholar
Lallemant, Avé H. G. and Carter, N. L. (1970) Syntectonic recrystallization of olivine and modes of flow in the upper mantle. Geological Society of America Bulletin 81, 2203–2220.CrossRefGoogle Scholar
Lallemant, Avé H. G., Mercier, J.-C. C., and Carter, N. L. (1980) Rheology of the upper mantle: inference from peridotite xenoliths. Tectonophysics 70, 85–114.CrossRefGoogle Scholar
Backus, G. E. (1962) Long wave elastic anisotropy produced by horizontal layering. Journal of Geophysical Research 67, 4427–4440.CrossRefGoogle Scholar
Bai, Q., Mackwell, S. J., and Kohlstedt, D. L. (1991) High temperature creep of olivine single crystals 1. Mechanical results for buffered samples. Journal of Geophysical Research 96, 2441–2463.CrossRefGoogle Scholar
Bai, Y. L. (1982) Thermo-plastic instability in simple shear. Journal of Mechanics and Physics of Solids 30, 195–207.CrossRefGoogle Scholar
Bamford, D. (1977) Pn velocity anisotropy in a continental upper mantle. Geophysical Journal of Royal Astronomical Society 57, 397–429.CrossRefGoogle Scholar
Barrat, J.-L. and Hansen, J.-P. (2003) Basic Concepts for Simple and Complex Liquids. Cambridge University Press.CrossRefGoogle Scholar
Bass J. D. (1995) Elasticity of minerals, glasses, and melts. In Mineral Physics and Crystallography: a Handbook of Physical Constants (ed. Ahrens, T. J.), pp. 46–63. American Geophysical Union.CrossRefGoogle Scholar
Bass, J. D., Weidner, D. J., Hamaya, N., Ozima, M., and Akimoto, S. (1984) Elasticity of the olivine and spinel polymorphs of Ni2SiO4. Physics and Chemistry of Minerals 10, 261–272.CrossRefGoogle Scholar
Beauchesne, S. and Poirier, J.-P. (1989) Creep of barium titanate perovskite: a contribution to a systematic approach to the viscosity of the lower mantle. Physics of Earth and Planetary Interiors 55, 187–199.CrossRefGoogle Scholar
Beauchesne, S. and Poirier, J.-P. (1990) In search of systematics for the viscosity of perovskite: creep of potassium tantalate and niobate. Physics of Earth and Planetary Interiors 61, 182–198.CrossRefGoogle Scholar
Becker, T. W., Kellogg, J. B., and O'Connell, R. J. (1999) Thermal constraints on the survival of primitive blobs in the lower mantle. Earth and Planetary Science Letters 171, 351–365.CrossRefGoogle Scholar
Beghein, C. and Trampert, J. (2003a) Probability density functions for radial anisotropy: implications for the upper 1200 km of the mantle. Earth and Planetary Science Letters 217, 151–162.CrossRefGoogle Scholar
Beghein, C. and Trampert, J. (2003b) Robust normal mode constraints on inner-core anisotropy from model space search. Science 299, 552–555.CrossRefGoogle Scholar
Behrmann, J. H. and Mainprice, D. (1987) Deformation mechanisms in a high temperature quartz–feldspar mylonite: evidence for superplastic flow in the lower continental crust. Tectonophysics 140, 297–305.CrossRefGoogle Scholar
Béjina, F., Jaoul, O., and Liebermann, R. C. (1999) Activation volume of Si diffusion in San Carlos olivine: implications for upper mantle rheology. Journal of Geophysical Research 104, 25,529–25 542.CrossRefGoogle Scholar
Bell, D. R. and Rossman, G. R. (1992) Water in Earth's mantle: the role of nominally anhydrous minerals. Science 255, 1391–1397.CrossRefGoogle ScholarPubMed
Bell, D. R., Rossman, G. R., Maldener, J., Endisch, D., and Rauch, F. (2003) Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum. Journal of Geophysical Research 108, 10.1029/2001JB000679.CrossRefGoogle Scholar
Bell, T. H. and Etheridge, M. A. (1973) Microstructures of mylonites and their descriptive terminology. Lithos 6, 337–348.CrossRefGoogle Scholar
Ismail, Ben W. and Mainprice, D. (1998) An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy. Tectonophysics 296, 145–157.CrossRefGoogle Scholar
Benn, K. and Allard, B. (1989) Preferred mineral orientations related to magmatic flow in ophiolite layered gabbros. Journal of Petrology 30, 925–946.CrossRefGoogle Scholar
Bennington, K. O. (1963) Some crystal growth features of sea ice. Journal of Glaciology 4, 669–688.CrossRefGoogle Scholar
Benz, H. and Vidale, J. E. (1993) Sharpness of upper-mantle discontinuities determined from high-frequency reflections. Nature 365, 147–150.CrossRefGoogle Scholar
Beran A. and Libowitzky E. (2006) Water in natural mantle minerals II: olivine, garnet and accessary minerals. In Water in Nominally Anhydrous Minerals (ed. Keppler, H. and Smyth, J. R.), pp. 169–191. Mineralogical Society of America.Google Scholar
Berckhemer, H., Kampfmann, W., Aulbach, E., and Schmeling, H. (1982) Shear modulus and Q of forsterite and dunite near partial melting from forced oscillation experiments. Physics of Earth and Planetary Interiors 29, 30–41.CrossRefGoogle Scholar
Bercovici, D. (2003) The generation of plate tectonics from mantle convection. Earth and Planetary Science Letters 205, 107–121.CrossRefGoogle Scholar
Bercovici D. and Karato S. (2002) Some theoretical concepts of shear localization in the lithosphere. In Plastic Deformation of Minerals and Rocks (ed. Karato, S. and Wenk, H.-R.), pp. 387–420. American Mineralogical Society.Google Scholar
Bercovici, D. and Karato, S. (2003) Whole mantle convection and transition-zone water filter. Nature 425, 39–44.CrossRefGoogle ScholarPubMed
Bercovici, D. and Ricard, Y. (2003) Energetics of two-phase model of lithospheric damage, shear localization and plate-boundary formation. Geophysical Journal International 152, 1–16.CrossRefGoogle Scholar
Bercovici, D. and Ricard, Y. (2005) Tectonic plate generation and two-phase damage: void growth versus grain-size reduction. Journal of Geophysical Research 110, 10.1029/2004JB003181.CrossRefGoogle Scholar
Bercovici, D., Ricard, Y., and Schubert, G. (2001a) A two-phase model for compaction and damage 1. General theory. Journal of Geophysical Research 106, 8887–8906.CrossRefGoogle Scholar
Bercovici, D., Ricard, Y., and Schubert, G. (2001b) A two-phase model for compaction and damage 3. Applications to shear localization and plate boundary formation. Journal of Geophysical Research 106, 8925–8939.CrossRefGoogle Scholar
Bergman, M. I. (1997) Measurements of elastic anisotropy due to solidification texturing and the implications for the Earth's inner core. Nature 389, 60–63.CrossRefGoogle Scholar
Bergman, M. I. (1998) Estimates of the Earth's inner core grain size. Geophysical Research Letters 25, 1593–1596.CrossRefGoogle Scholar
Berthe, D., Choukrouse, P., and Jegouzo, P. (1979) Orthogneiss, mylonite and non coaxial deformation of granite: the example of the South American shear zone. Journal of Structural Geology 1, 31–42.CrossRefGoogle Scholar
Bethe, H. A. (1935) Statistical theory of superlattice. Proceedings of the Royal Society of London A 150, 552–575.CrossRefGoogle Scholar
Bhattacharya, J., Shearer, P. M., and Masters, G. (1993) Inner core attenuation for short-period PKP (BC) versus PKP (DF) waveforms. Geophysical Journal International 114, 1–11.CrossRefGoogle Scholar
Bilde-Sorenson, J. B. and Smith, D. A. (1994) Comment on ‘Refutation of the relationship between denuded zones and diffusional creep’. Scripta Metallurgica et Material 30, 383–386.CrossRefGoogle Scholar
Billen, M. I. and Gurnis, M. (2001) A low viscosity wedge in subduction zones. Earth and Planetary Science Letters 193, 227–236.CrossRefGoogle Scholar
Billen, M. I., Gurnis, M., and Simons, M. (2003) Multiscale dynamics of the Tonga–Kermadec subduction zone. Geophysical Journal International 153, 359–388.CrossRefGoogle Scholar
Billien, M., Lébeque, J.-J., and Trampert, J. (2000) Global maps of Rayleigh wave attenuation for periods between 40 and 150 seconds. Geophysical Research Letters 27, 3619–3622.CrossRefGoogle Scholar
Bina, C. B. and Helffrich, G. (1994) Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. Journal of Geophysical Research 99, 15,853–15 860.CrossRefGoogle Scholar
Birch, F. (1952) Elasticity and constitution of the Earth's interior. Journal of Geophysical Research 57, 227–286.CrossRefGoogle Scholar
Birch, F. (1961) The velocity of compressional waves in rocks to 10 kilobars, Part 2. Journal of Geophysical Research 66, 2199–2224.CrossRefGoogle Scholar
Birch, F. (1964) Density and composition of mantle and core. Journal of Geophysical Research 69, 4377–4388.CrossRefGoogle Scholar
Blacic J. D. (1972) Effects of water in the experimental deformation of olivine. In Flow and Fracture of Rocks (ed. Heard, H. C., Borg, I. Y., Carter, N. L., and Raleigh, C. B.), pp. 109–115. American Geophysical Union.CrossRefGoogle Scholar
Blacic, J. D. (1975) Plastic-deformation mechanisms of quartz: the effect of water. Tectonophysics 27, 271–294.CrossRefGoogle Scholar
Blackman, D. K. and Kendall, J.-M. (1997) Sensitivity of teleseismic body waves to mineral texture and melt in the mantle beneath a mid-ocean ridge. Philosophical Transactions of Royal Society of London A 355, 217–231.CrossRefGoogle Scholar
Bloomfield, J. P. and Covey-Crump, S. J. (1993) Correlating mechanical data with microstructural observations in deformation experiments on synthetic two-phase aggregates. Journal of Structural Geology 15, 1007–1019.CrossRefGoogle Scholar
Bloss, F. D. (1971) Crystallography and Crystal Chemistry. Holt, Reinhart and Winston, Inc.Google Scholar
Blum, J. and Shen, Y. (2004) Thermal, hydrous, and mechanical states of the mantle transition zone beneath southern Africa. Earth and Planetary Science Letters 217, 367–378.CrossRefGoogle Scholar
Blum, W., Eisenlohr, P. and Breutinger, F. (2002) Understanding creep – A review. Metallurgical and Materials Transactions A 33, 291–303.CrossRefGoogle Scholar
Boland J. N. and Tullis T. E. (1986) Deformation behaviour of wet and dry clinopyroxenite in the brittle to ductile transition region. In Mineral and Rock Deformation: Laboratory Studies (ed. Hobbs, B. E. and Heard, H. C.), pp. 35–50. American Geophysical Union.CrossRefGoogle Scholar
Bolfan-Casanova, N. (2005) Water in the Earth's mantle. Mineralogical Magazine 69, 229–257.CrossRefGoogle Scholar
Bolfan-Casanova, N., Keppler, H., and Rubie, D. C. (2000) Water partitioning between nominally anhydrous minerals in the MgO-SiO2-H2O system up to 24 GPa: implications for the distribution of water in the Earth's mantle. Earth and Planetary Science Letters 182, 209–221.CrossRefGoogle Scholar
Bolfan-Casanova, N., Keppler, H., and Rubie, D. C. (2003) Water partitioning at 660 km depth and evidence for very low water solubility in magnesium silicate perovskite. Geophysical Research Letters 30, 10.1029/2003GL017182.CrossRefGoogle Scholar
Bolfan-Casanova, N., Mackwell, S. J., Keppler, H., McCammon, C., and Rubie, D. C. (2002) Pressure dependence of H solubility in magnesiowüstite up to 25 GPa: implications for the storage of water in the Earth's lower mantle. Geophysical Research Letters 29, 89–1/89–4.CrossRefGoogle Scholar
Bons, P. D. and Cox, S. J. D. (1994) Analogue experiments and numerical modelling on the relation between microgeometry and flow properties of polyphase materials. Materials Science and Engineering A 175, 237–245.CrossRefGoogle Scholar
Bons, P. D. and Brok, B. (2000) Crystallographic preferred orientation development by dissolution–precipitation creep. Journal of Structural Geology 22, 1713–1722.CrossRefGoogle Scholar
Bons, P. D. and Urai, J. L. (1994) Experimental deformation of two-phase rock analogues. Materials Science and Engineering A 175, 221–229.CrossRefGoogle Scholar
Borch, R. S. and Green, H. W. II. (1987) Dependence of creep in olivine on homologous temperature and its implication for flow in the mantle. Nature 330, 345–348.CrossRefGoogle Scholar
Borch, R. S. and Green, H. W. II. (1989) Deformation of peridotite at high pressure in a new molten cell: comparison of traditional and homologous temperature treatments. Physics of Earth and Planetary Interiors 55, 269–276.CrossRefGoogle Scholar
Born, M. (1940) On the stability of crystal lattice, 1. Proceedings of Cambridge Philosophical Society 36, 160–165.CrossRefGoogle Scholar
Born, M. and Huang, K. (1954) Dynamical Theory of Crystal Lattice. Clarendon Press.Google Scholar
Bouchez, J. L., Lister, G. S., and Nicolas, A. (1983) Fabric asymmetry and shear sense in movement zones. Geologische Rundschau 72, 401–419.CrossRefGoogle Scholar
Boullier, A. M. and Gueguen, Y. (1975) SP-mylonites: origin of some mylonites by superplastic flow. Contributions to Mineralogy and Petrology 50, 93–104.CrossRefGoogle Scholar
Boysen, H., Dorner, B., Frey, F. A., and Grimm, H. (1980) Dynamic structure determination of two interacting modes at the M-point in α- and β-quartz by inelastic neutron scattering. Journal of Physics C: Solid State Physics 13, 6127–6146.CrossRefGoogle Scholar
Braithwaite, J. S., Wright, K., and Catlow, C. R. A. (2003) A theoretical study of the energetics and IR frequencies of hydroxyl defects in forsterite. Journal of Geophysical Research 108, 10.1029/2002JB002126.CrossRefGoogle Scholar
Braun, J., Cherny, J., Poliakov, A. N. B., et al. (1999) A simple parameterization of strain localization in the ductile regime due to grain size reduction: a case study for olivine. Journal of Geophysical Research 104, 25,167–25 181.CrossRefGoogle Scholar
Brennan, B. J. and Stacey, F. D. (1977) Frequency dependence of elasticity of rock – test of seismic velocity dispersion. Nature 268, 220–222.CrossRefGoogle Scholar
Breuer, D. and Spohn, T. (1995) Possible flushing instability in mantle convection at the Archean–Proterozoic transition. Nature 378, 608–610.CrossRefGoogle Scholar
Brodholt, J. P. and Refson, K. (2000) An ab initio study of hydrogen in forsterite and a possible mechanism for hydrolytic weakening. Journal of Geophysical Research 105, 18,977–18 982.CrossRefGoogle Scholar
Bromiley, G. D., Keppler, H., McCammon, C., Bromiley, F. A., and Jacobsen, S. B. (2004) Hydrogen solubility and speciation in natural, gem quality chromian diopside. American Mineralogist 89, 941–949.CrossRefGoogle Scholar
Brook, R. J. (1969) Pore-grain boundary interactions and grain growth. Journal of the American Ceramic Society 52, 65–67.Google Scholar
Brookes, C. A., O'Neill, J. B., and Redfern, B. A. W. (1971) Anisotropy in the hardness of single crystals. Proceedings of the Royal Society of London A 322, 73–88.CrossRefGoogle Scholar
Brown, A. M. and Ashby, M. F. (1980) Correlations for diffusion constants. Acta Metallurgica 28, 1085–1101.CrossRefGoogle Scholar
Brown, J. M. and McQueen, R. G. (1980) Melting of iron under shock conditions. Geophysical Research Letters 7, 533–536.CrossRefGoogle Scholar
Brown J. M. and McQueen R. G. (1982) The equation of state for iron and the Earth's core. In High-Pressure Research in Geophysics (ed. Akimoto, S. and Manghnani, M. H.), pp. 611–623. Reidel.CrossRefGoogle Scholar
Brown, J. M. and Shankland, T. J. (1981) Thermodynamic parameters in the Earth as determined from seismic profiles. Geophysical Journal of Royal Astronomical Society 66, 579–596.CrossRefGoogle Scholar
Brown, L. M. (1961) Mobile charged dislocations in ionic crystals. Physica Status Solidi 1, 585–599.CrossRefGoogle Scholar
Bruhn, D. F. and Casey, M. (1997) Texture development in experimentally deformed two-phase aggregates of calcite and anhydrite. Journal of Structural Geology 19, 909–925.CrossRefGoogle Scholar
Bruhn, D. F., Olgaard, D. L., and Dell'Angelo, L. N. (1999) Evidence for enhanced deformation in two-phase rocks: experiments on the rheology of calcite–anhydrite aggregates. Journal of Geophysical Research 104, 707–724.CrossRefGoogle Scholar
Budianski B. and O'Connell R. J. (1980) Bulk dissipation in heterogeneous media. In Solid Earth Geophysics and Geotechnology (ed. Nasser, S. N.), pp. 1–10. American Society of Mechanical Engineering.Google Scholar
Buffett, B. A. (1997) Geodynamic estimates of the viscosity of the Earth's inner core. Nature 388, 571–573.CrossRefGoogle Scholar
Buffett, B. A. and Bloxham, J. (2000) Deformation of Earth's inner core by electromagnetic forces. Geophysical Research Letters 27, 4001–4004.CrossRefGoogle Scholar
Buffett, B. A., Garnero, E. J., and Jeanloz, R. (2000) Sediments at the top of Earth's core. Science 290, 1338–1342.CrossRefGoogle ScholarPubMed
Bunge, H.-J. (1982) Texture Analysis in Materials Science – Mathematical Methods. Butterworth.Google Scholar
Bunge, H.-P., Ricard, Y., and Matas, J. (2001) Non-adiabaticity in mantle convection. Geophysical Research Letters 28, 879–882.CrossRefGoogle Scholar
Burns, R. G. (1970) Mineralogical Applications of Crystal Field Theory. Cambridge University Press.Google Scholar
Burton, B. and Reynolds, G. L. (1994) In defense of diffusional creep. Materials Science and Engineering A 191, 135–141.CrossRefGoogle Scholar
Bussod G. Y. and Christie J. C. (1991) Textural development and melt topology in spinel lherzolite experimentally deformed at hypersolidus conditions. In Orogenic Lherzolites and Mantle Processes (ed. Menzies, M. A., Dupuy, C., and Nicolas, A.), pp. 17–39. Oxford University Press.Google Scholar
Bussod, G. Y., Katsura, T., and Rubie, D. C. (1993) The large volume multi-anvil press as a high P–T deformation apparatus. Pure and Applied Geophysics 141, 579–599.CrossRefGoogle Scholar
Byerlee, J. D. (1978) Friction of rocks. Pure and Applied Geophysics 116, 615–626.CrossRefGoogle Scholar
Bystricky, M. and Mackwell, S. J. (2001) Creep of dry clinopyroxene aggregates. Journal of Geophysical Research 106, 13,443–13 454.CrossRefGoogle Scholar
Cadek, O. and Fleitout, L. (2003) Effect of lateral viscosity variation in the top 300 km on the geoid and dynamic topography. Geophysical Journal International 152, 566–580.CrossRefGoogle Scholar
Cadek, O. and Berg, A. (1998) Radial profile of temperature and viscosity in the Earth's mantle inferred from the geoid and lateral seismic structure. Earth and Planetary Science Letters 164, 607–615.CrossRefGoogle Scholar
Cahn, J. W. and Balluffi, R. W. (1979) On diffusional mass tranport in polycrystals containing stationary or migrating boundaries. Scripta Metallurgica 13, 499–502.CrossRefGoogle Scholar
Cahn, J. W. and Fullman, R. L. (1956) On the use of lineal analysis for obtaining particle size distribution functions in opaque samples. Transaction of AIME 206, 610–612.Google Scholar
Callen, H. B. (1960) Thermodynamics. John Wiley and Sons.Google Scholar
Campbell, I. H. and Taylor, S. R. (1983) No water, no granites – no oceans, no continents. Geophysical Research Letters 10, 1061–1064.CrossRefGoogle Scholar
Cannon R. M. and Coble R. L. (1975) Review of diffusional creep of Al2O3. In Deformation of Ceramic Materials (ed. Bradt, R. C. and Tressler, R. E.), pp. 61–100. Plenum Press.CrossRefGoogle Scholar
Cannon, R. M. and Langdon, T. G. (1988) Creep of ceramics, Part 2. An examination of flow mechanisms. Journal of Materials Science 23, 1–20.CrossRefGoogle Scholar
Cannon, W. R. and Sherby, O. D. (1973) Third-power stress dependence in creep of polycrystalline nonmetals. Journal of the American Ceramic Society 56, 157–160.CrossRefGoogle Scholar
Caristan, Y. (1982) The transition from high-temperature creep to fracture in Maryland diabase. Journal of Geophysical Research 887, 6781–6790.CrossRefGoogle Scholar
Carlson, R. W., Shirey, S. B., Pearson, D. G., and Boyd, F. R. (1994) The mantle beneath continents. Carnegie Institution of Washington, Yearbook 93, 109–117.Google Scholar
Carmichael, I. S. E., Turner, F. J., and Verhoogen, J. (1974) Igneous Petrology. McGraw-Hill.Google Scholar
Carpenter, M. A. (2006) Elastic properties of minerals and the influence of phase transitions. American Mineralogist 91, 229–246.CrossRefGoogle Scholar
Carter, C. H. Jr., Stone, C. A., and Davis, R. F. (1980) High-temperature, multi-atmosphere, constant stress compression creep apparatus. Review of Scientific Instruments 51, 1352–1357.CrossRefGoogle Scholar
Carter, N. L. and Lallemant, Avé H. G. (1970) High temperature deformation of dunite and peridotite. Geological Society of America Bulletin 81, 2181–2202.CrossRefGoogle Scholar
Cathles, L. M. (1975) The Viscosity of the Earth's Mantle. Princeton University Press.Google Scholar
Chaix, C. and Lasalmonie, A. (1981) Transformation induced plasticity in titanium. Res Mechanica 2, 241–249.Google Scholar
Chaklader, A. C. D. (1963) Deformation of quartz crystals at the transformation temperature. Nature 197, 791–792.CrossRefGoogle Scholar
Chakraborty, S. and Ganguly, J. (1992) Cation diffusion in aluminosilicate garnets: experimental determination in spessartine–almandine diffusion couples, evaluation of effective binary diffusion coefficients, and applications. Contributions to Mineralogy and Petrology 111, 74–86.CrossRefGoogle Scholar
Chang, R. (1961) Dislocation relaxation phenomena in oxide crystals. Journal of Applied Physics 32, 1127–1132.CrossRefGoogle Scholar
Chen, G., Miletich, R., Mueller, K., and Spetzler, H. A. (1997) Shear and compressional mode measurements with GHz interferometry and velocity-composition systematics for the purope–almandine solid solution series. Physics of the Earth and Planetary Interiors 99, 273–287.CrossRefGoogle Scholar
Chen, I.-W. (1982) Diffusional creep of two-phase materials. Acta Metallurgica 30, 1655–1664.CrossRefGoogle Scholar
Chen, I.-W. and Argon, A. S. (1979) Steady state power-law creep in heterogeneous alloys with coarse microstructures. Acta Metallurgica 27, 785–791.CrossRefGoogle Scholar
Chen, I.-W. and Argon, A. S. (1981) Creep cavitation in 304 steel. Acta Metallurgica 29, 1321–1333.CrossRefGoogle Scholar
Chen, J., Inoue, T., Weidner, D. J., Wu, Y., and Vaughan, M. T. (1998) Strength and water weakening of mantle minerals, olivine, wadsleyite and ringwoodite. Geophysical Research Letters 25, 575–578.CrossRefGoogle Scholar
Chen, J., Inoue, T., Yurimoto, H., and Weidner, D. J. (2002a) Effect of water on olivine–wadsleyite phase boundary in the (Mg, Fe)2SiO4 system. Geophysical Research Letters 29, 10.1029/2001GRL014429.CrossRefGoogle Scholar
Chen, J., Li, L., Weidner, D. J., and Vaughan, M. T. (2004) Deformation experiments using synchrotron X-rays: in situ stress and strain measurements at high pressure and temperature. Physics of Earth and Planetary Interiors 143–144, 347–356.CrossRefGoogle Scholar
Chen, J., Weidner, D. J., and Vaughan, M. T. (2002b) Strength of Mg0.9Fe0.1SiO3 perovskite at high pressure and temperature. Nature 419, 824–826.CrossRefGoogle Scholar
Chen, W. K. and Peterson, N. L. (1973) Cation diffusion, semiconductivity and nonstoichiometry in (Co, Ni)O crystals. Journal of Physics and Chemistry of Solids 34, 1093–1108.CrossRefGoogle Scholar
Chen, W.-P. and Molnar, P. (1983) Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal structure and mechanical properties of the lithosphere. Journal of Geophysical Research 88, 4183–4214.CrossRefGoogle Scholar
Chester, F. M. (1988) The brittle–ductile transition in a deformation-mechanism map for halite. Tectonophysics 154, 125–136.CrossRefGoogle Scholar
Chevrot, S. (2000) Multichannel analysis of shear wave splitting. Journal of Geophysical Research 105, 21,579–21 590.CrossRefGoogle Scholar
Chevrot, S. and Hilst, R. D. (2003) On the effects of a dipping axis of symmetry on shear wave splitting measurements in a transversely isotropic medium. Geophysical Journal International 152, 497–505.CrossRefGoogle Scholar
Chiang, Y.-M. and Takagi, T. (1990) Grain-boundary chemistry of barium titanate and strontium titanate: I. High-temperature equilibrium space charge. Journal of American Ceramic Society 73, 3278–3285.CrossRefGoogle Scholar
Chinh, N. Q., Horvath, G., Horita, Z., and Langdon, T. G. (2004) A new constitutive relationship for the homogeneous deformation of metals over a wide range of strain. Acta Materialia 52, 3555–3563.CrossRefGoogle Scholar
Chopra, P. N. and Paterson, M. S. (1981) The experimental deformation of dunite. Tectonophysics 78, 453–573.CrossRefGoogle Scholar
Chopra, P. N. and Paterson, M. S. (1984) The role of water in the deformation of dunite. Journal of Geophysical Research 89, 7861–7876.CrossRefGoogle Scholar
Christensen, N. I. and Lundquist, S. M. (1982) Pyroxene orientations within the upper mantle. Geological Society of America Bulletin 93, 279–288.2.0.CO;2>CrossRefGoogle Scholar
Christensen U. R. (1989) Mantle rheology, constitution and convection. In Mantle Convection (ed. Peltier, W. R.), pp. 595–655. Gordon and Breach.Google Scholar
Christensen, U. R. and Hofmann, A. W. (1994) Segregation of subducted oceanic crust in the convecting mantle. Journal of Geophysical Research 99, 19,867–19 884.CrossRefGoogle Scholar
Chung, D. H. (1972) Birch's law: why is it so good?Science 177, 261–263.CrossRefGoogle ScholarPubMed
Clinard, F. W. and Sherby, O. D. (1964) Strength of iron during allotropic transformation. Acta Metallurgica 12, 911–919.CrossRefGoogle Scholar
Coble, R. L. (1963) A model for boundary-diffusion controlled creep in polycrystalline materials. Journal of Applied Physics 34, 1679–1682.CrossRefGoogle Scholar
Cocks, A. C. F. and Gill, S. P. A. (1996) A variational approach to two dimensional grain growth – I. Theory. Acta Materialia 44, 4765–4775.CrossRefGoogle Scholar
Colombo, L., Kataoka, T., and Li, J. C. M. (1982) Movement of edge dislocations in KCl by large electric fields. Philosophical Magazine A 46, 211–215.CrossRefGoogle Scholar
Cooper R. F. (2002) Seismic wave attenuation: energy dissipation in viscoelastic crystalline solids. In Plastic Deformation of Minerals and Rocks (ed. Karato, S. and Wenk, H.-R.), pp. 253–290. Mineralogical Society of America.Google Scholar
Cooper R. F. and Kohlstedt D. L. (1982) Interfacial energies in the olivine–basalt system. In High Pressure Research in Geophysics (ed. Akimoto, S. and Manghnani, M. H.), pp. 217–228. Center for Academic Publication.CrossRefGoogle Scholar
Cooper, R. F. and Kohlstedt, D. L. (1986) Rheology and structure of olivine–basalt partial melts. Journal of Geophysical Research 91, 9315–9323.CrossRefGoogle Scholar
Cooper, R. F., Kohlstedt, D. L., and Chyung, K. (1989) Solution-precipitation enhanced creep in solid–liquid aggregates which displays a non-zero dihedral angle. Acta Metallurgica 37, 1759–1771.CrossRefGoogle Scholar
Cordier P. (2002) Dislocations and slip systems of mantle minerals. In Plastic Deformation of Minerals and Rocks (ed. Karato, S. and Wenk, H.-R.), pp. 137–179. American Mineralogical Society.Google Scholar
Cordier, P. and Doukhan, J.-C. (1989) Water solubility in quartz and its influence on ductility. European Journal of Mineralogy 1, 221–237.CrossRefGoogle Scholar
Cordier, P. and Doukhan, J. C. (1995) Plasticity and dissociation of dislocations in water-poor quartz. Philosophical Magazine A 72, 497–514.CrossRefGoogle Scholar
Cordier, P., Ungar, T., Zsoldos, L., and Tichy, G. (2004) Dislocation creep in MgSiO3 perovskite at conditions of the Earth's uppermost lower mantle. Nature 428, 837–840.CrossRefGoogle ScholarPubMed
Cormier, V. F. and Li, X.-D. (2002) Frequency-dependent seismic attenuation in the inner core, 2. A scattering and fabric interpretation. Journal of Geophysical Research 107, 10.1029/2002JB001796.CrossRefGoogle Scholar
Cormier, V. F., Xu, L., and Choy, G. L. (1998) Seismic attenuation of the inner core: viscoelastic or stratigraphic?Geophysical Research Letters 25, 4019–4022.CrossRefGoogle Scholar
Cottrell, A. H. (1953) Dislocations and Plastic Flow in Crystals. Clarendon Press.Google Scholar
Cottrell, A. H. (1964) The Mechanical Properties of Matter. Wiley.Google Scholar
Covey-Crump, S. J. and Rutter, E. H. (1989) Thermally-induced grain growth of calcite marbles on Naxos Island, Greece. Contributions to Mineralogy and Petrology 101, 69–86.CrossRefGoogle Scholar
Crampin, S. (1978) Seismic waves propagating through a cracked solid: polarization as a possible dilatancy diagnostic. Geophysical Journal of Royal Astronomical Society 53, 467–496.CrossRefGoogle Scholar
Crampin, S. (1981) A review of wave motion in anisotropic and cracked elastic-media. Wave Motion 3, 343–391.CrossRefGoogle Scholar
Crampin, S. (1984) An introduction to wave propagation in anisotropic media. Geophysical Journal of Royal Astronomical Society 76, 17–28.CrossRefGoogle Scholar
Creager K. C. (2000) Inner core anisotropy and rotation. In Earth's Deep Interior: Mineral Physics and Tomography (ed. Karato, S., Forte, A. M., Liebermann, R. C., Masters, G., and Stixrude, L.), pp. 89–114. American Geophysical Union.CrossRefGoogle Scholar
Dahlen, F. A. and Tromp, J. (1998) Theoretical Global Seismology. Princeton University Press.Google Scholar
Davies, G. F. (1974) Elasticity, crystal structure and phase transitions. Earth and Planetary Science Letters 22, 339–346.CrossRefGoogle Scholar
Davis, L. A. and Gordon, R. B. (1968) Pressure dependence of the plastic flow stress of alkali halide single crystals. Journal of Applied Physics 39, 3885–3897.CrossRefGoogle Scholar
Bresser, J. H. P., Peach, C. J., Reijs, J. P. J., and Spiers, C. J. (1998) On dynamic recrystallization during solid state flow: effects of stress and temperature. Geophysical Research Letters 25, 3457–3460.CrossRefGoogle Scholar
Bresser, J. H. P., Heege, J. H., and Spiers, C. J. (2001) Grain size reduction by dynamic recrystallization: can it result in major rheological weakening?International Journal of Earth Sciences 90, 28–45.CrossRefGoogle Scholar
Groot, S. R. and Mazur, P. (1962) Non-Equilibrium Thermodynamics. North-Holland.Google Scholar
Jong, M. and Rathenau, G. W. (1959) Mechanical properties of iron and some iron alloys while undergoing allotropic transformations. Acta Metallurgica 7, 246–253.CrossRefGoogle Scholar
Jong, M. and Rathenau, G. W. (1961) Mechanical properties of an iron carbon alloy during allotropic transformation. Acta Metallurgica 11, 714–720.CrossRefGoogle Scholar
Debayle, E., Kennett, B. L. N., and Priestley, K. (2005) Global azimuthal seismic anisotropy and the unique plate-motion deformation of Australia. Nature 433, 509–512.CrossRefGoogle Scholar
Demouchy, S., Deloule, E., Frost, D. J., and Keppler, H. (2005) Pressure and temperature-dependence of water solubility in iron-free wadsleyite. American Mineralogist 90, 1084–1091.CrossRefGoogle Scholar
Dennis, P. F. (1984) Oxygen self-diffusion in quartz under hydrothermal conditions. Journal of Geophysical Research 89, 4047–4057.CrossRefGoogle Scholar
Derby, B. and Ashby, M. F. (1987) On dynamic recrystallization. Scripta Metallurgica 21, 879–884.CrossRefGoogle Scholar
Deschamps, F., Snieder, R., and Trampert, J. (2001) The relative density-to-shear velocity scaling in the uppermost mantle. Physics of Earth and Planetary Interiors 124, 193–211.CrossRefGoogle Scholar
Deschamps, F. and Trampert, J. (2003) Mantle tomography and its relation to temperature and composition. Physics of the Earth and Planetary Interiors 140, 277–291.CrossRefGoogle Scholar
Deschamps, F., Trampert, J., and Snieder, R. (2002) Anomalies of temperature and iron in the uppermost mantle inferred from gravity data and tomographic models. Physics of Earth and Planetary Interiors 129, 245–264.CrossRefGoogle Scholar
Deuss, A. and Woodhouse, J. H. (2002) A systematic search for mantle discontinuities using SS-precursors. Geophysical Research Letters 29, 10.1029/2002GL014768.CrossRefGoogle Scholar
Deuss, A. and Woodhouse, J. H. (2004) The nature of the Lehmann discontinuity from its seismological Clapeyron slope. Earth and Planetary Science Letters 225, 295–304.CrossRefGoogle Scholar
Dhalenne, G., Dechamps, M., and Revcolevschi, A. (1982) Relative energies of < 011 > tilt boundaries in NiO. Journal of the American Ceramic Society 65, 611–612.CrossRefGoogle Scholar
Dick, H. J. B. and Sinton, J. M. (1979) Compositional layering in alpine peridotites: evidence for pressure solution creep in the mantle. Journal of Geology 87, 403–416.CrossRefGoogle Scholar
Dieterich, J. H. (1978) Time-dependent friction and mechanism of stick-slip. Pure and Applied Geophysics 116, 790–806.CrossRefGoogle Scholar
Dimos, D., Wolfensteine, J., and Kohlstedt, D. L. (1988) Kinetic demixing and decomposition of multicomponent oxides due to a nonhydrostatic stress. Acta Metallurgica 36, 1543–1552.CrossRefGoogle Scholar
Dingley, D. J. and Randle, V. (1992) Microtexture determination by electron back-scatter diffraction. Journal of Materials Sciences 27, 4545–4566.CrossRefGoogle Scholar
Doherty, R. D., Hughes, D. A., Humphreys, F. J., et al. (1997) Current issues in recrystallization: a review. Materials Science and Engineering A 238, 219–274.CrossRefGoogle Scholar
Doin, M., Fleitout, L., and Christensen, U. R. (1997) Mantle convection and stability of depleted and undepleted continental lithosphere. Journal of Geophysical Research 102, 2771–2787.CrossRefGoogle Scholar
Doukhan, J.-C. and Paterson, M. S. (1986) Solubility of water in quartz. Bulletin Mineralogie 109, 193–198.Google Scholar
Doukhan, J.-C. and Trépied, L. (1985) Plastic deformation of quartz single crystals. Bulletin Mineralogie 108, 97–123.Google Scholar
Dresen, G., Wang, Z., and Bai, Q. (1996) Kinetics of grain growth in anorthite. Tectonophysics 258, 251–262.CrossRefGoogle Scholar
Drury, M. R. and Fitz Gerald, J. D. (1996) Grain boundary melt films in an experimentally deformed olivine–pyroxene rock: implications for melt distribution in upper mantle rocks. Geophysical Research Letters 23, 701–704.CrossRefGoogle Scholar
Drury M. R. and Fitz Gerald J. D. (1998) Mantle rheology: insights from laboratory studies of deformation and phase transition. In The Earth's Mantle: Composition, Structure and Evolution (ed. Jackson, I.), pp. 503–559. Cambridge University Press.CrossRefGoogle Scholar
Drury, M. R., Humphreys, F. J. and White, S. H. (1985) Large strain deformation studies using polycrystalline magnesium as a rock analogue, part II: dynamic recrystallization mechanisms at high temperature. Physics of the Earth and Planetary Interiors 40, 208–222.CrossRefGoogle Scholar
Drury, M. R. and Urai, J. (1990) Deformation-related recrystallization processes. Tectonophysics 172, 235–253.CrossRefGoogle Scholar
Drury, M. R. and Roermund, H. L. M. (1989) Fluid assisted recrystallization in upper mantle peridotite xenoliths from kimberlite. Journal of Petrology 30, 133–152.CrossRefGoogle Scholar
Drury, M. R., Vissers, R. L. M., Wal, D., and Hoogerduin Strating, E. H. (1991) Shear localization in upper mantle peridotites. Pure and Applied Geophysics 137, 439–460.CrossRefGoogle Scholar
Duclos, R., Doukhan, N., and Escaig, B. (1978) High-temperature creep behaviour of nearly stoichiometric alumina spinel. Journal of Materials Science 13, 1740–1748.CrossRefGoogle Scholar
Duffy T. S. and Ahrens T. H. (1992) Lateral variation in lower mantle seismic velocity. In High-Pressure Research: Application to Earth and Planetary Sciences (ed. Syono, Y. and Manghnani, M. H.), pp. 197–205. Terra Scientific Publishers.CrossRefGoogle Scholar
Duffy, T. S., Shen, G., Heinz, D. L., Shu, J., Ma, Y., Mao, H.-K., Hemley, R. J., and Singh, A. K. (1999) Lattice strain in gold and rhenium under nonhydrostatic compression to 37 GPa. Physical Review B 60, 15,063–15,073.CrossRefGoogle Scholar
Duffy, T. S., Zha, C.-S., Downs, R. T., Mao, H.-K., and Hemley, R. J. (1995) Elasticity of forsterite to 16 GPa and the composition of the upper mantle. Nature 378, 170–173.CrossRefGoogle Scholar
Dupas-Bruzek, C., Sharp, T. G., Rubie, D. C., and Durham, W. B. (1998) Mechanisms of transformation and deformation in Mg1.8Fe0.2SiO4 olivine and wadsleyite under non-hydrostatic stress. Physics of Earth and Planetary Interiors 108, 33–48.CrossRefGoogle Scholar
Durek, J. J. and Ekström, G. (1995) Evidence of bulk attenuation in the asthenosphere from recordings of the Bolivia earthquake. Geophysical Research Letters 22, 2309–2312.CrossRefGoogle Scholar
Durek, J. J. and Romanowicz, B. (1999) Inner core anisotropy inferred by direct inversion of normal mode spectra. Geophysical Journal International 139, 599–622.CrossRefGoogle Scholar
Durham, W. B., Goetze, C., and Blake, B. (1977) Plastic flow of oriented single crystals of olivine, 2. Observations and interpretations of the dislocation structure. Journal of Geophysical Research 82, 5755–5770.CrossRefGoogle Scholar
Durham, W. B. and Stern, L. A. (2001) Rheological properties of water ice – Applications to satellites of the outer planets. Annual Review of Earth and Planetary Sciences 29, 295–330.CrossRefGoogle Scholar
Durham W. B., Weidner D. J., Karato S., and Wang Y. (2002) New developments in deformation experiments at high pressure. In Plastic Deformation of Minerals and Rocks (ed. Karato, S. and Wenk, H.-R.), pp. 21–49. Mineralogical Society of America.Google Scholar
Durinck, J., Legris, A., and Cordier, P. (2005a) Influence of crystal chemistry on ideal plastic shear anisotropy in forsterite: first principles calculations. American Mineralogist 90, 1072–1077.CrossRefGoogle Scholar
Durinck, J., Legris, A., and Cordier, P. (2005b) Pressure sensitivity of olivine slip systems: first-principle calculations of generalised stacking faults. Physics and Chemistry of Minerals 32, 646–654.CrossRefGoogle Scholar
Duval, P., Ashby, M. F., and Anderman, I. (1978) Anelastic behaviour of polycrystalline ice. Journal of Glaciology 21, 621–628.CrossRefGoogle Scholar
Duval, P., Ashby, M. F., and Anderman, I. (1983) Rate-controlling processes in the creep of polycrystalline ice. Journal of Physical Chemistry 87, 4066–4074.CrossRefGoogle Scholar
Duyster, J. and Stöckhert, B. (2001) Grain boundary energies in olivine derived from natural microstructures. Contributions to Mineralogy and Petrology 140, 567–576.CrossRefGoogle Scholar
Dziewonski, A. M. (1984) Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. Journal of Geophysical Research 89, 5929–5952.CrossRefGoogle Scholar
Dziewonski, A. M. and Anderson, D. L. (1981) Preliminary reference Earth model. Physics of Earth and Planetary Interiors 25, 297–356.CrossRefGoogle Scholar
Dziewonski, A. M., Hager, B. H., and O'Connell, R. J. (1977) Large-scale heterogeneities in the lower mantle. Journal of Geophysical Research 82, 239–255.CrossRefGoogle Scholar
Edington, J. W., Melton, K. N., and Cutler, C. P. (1976) Superplasticity. Progress in Materials Sciences 21, 63–170.Google Scholar
Edmond, J. M. and Paterson, M. S. (1972) Volume changes during the deformation of rocks at high pressures. International Journal of Rock Mechanics and Mining Sciences 9, 161–182.CrossRefGoogle Scholar
Ehrenfest, P. (1933) Phase conversions in a general and enhanced sense, classified according to the specific singularities of the thermodynamic potential. Proceedings of the Koninklijke Akademie van Wetenschappen te Amsterdam 36, 153–157.Google Scholar
Einstein, A. (1906) A new determination of molecular dimensions. Annalen der Physik 19, 289–306.CrossRefGoogle Scholar
Elliott, D. (1973) Diffusion flow laws in metamorphic rocks. Geological Society of America Bulletin 84, 2645–2664.2.0.CO;2>CrossRefGoogle Scholar
Engdahl, E. R., Hilst, R. D., and Buland, R. P. (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bulletin of Seismological Society of America 88, 722–743.Google Scholar
Escaig, B. (1968) Sur le glissement dévie des dislocations dans la structure cubique à faces centrées. Journal de Physique 29, 225–239.CrossRefGoogle Scholar
Eshelby J. D. (1956) The continuum theory of lattice defects. In Solid State Physics, Vol. 3 (ed. Seitz, F. and Turnbull, D.), pp. 79–144. Academic Press.Google Scholar
Eshelby, J. D. (1957) The determination of the elastic strain field of an ellipsoidal inclusion and related problems. Proceedings of the Royal Society of London, Ser. A 241, 376–396.CrossRefGoogle Scholar
Eshelby, J. D., Newey, C. W. A., and Pratt, P. L. (1958) Charged dislocations and the strength of ionic crystals. Philosophical Magazine 3, 75–89.CrossRefGoogle Scholar
Estrin, Y. and Kubin, L. (1986) Local strain hardening and nonuniformity of plastic deformation. Acta Metallurgica 34, 2455–2464.CrossRefGoogle Scholar
Estrin, Y. and Kubin, L. P. (1988) Plastic instabilities: classification and physical mechanisms. Res Mechanica 23, 197–221.Google Scholar
Estrin, Y. and Kubin, L. P. (1991) Plastic instabilities: phenomenology and theory. Materials Science and Engineering A 137, 125–134.CrossRefGoogle Scholar
Etchecopar, A. and Visseur, G. (1987) A 3-D kinematic model of fabric development in polycrystalline aggregates: comparisons with experimental and natural examples. Journal of Structural Geology 9, 705–717.CrossRefGoogle Scholar
Etheridge, M. A., Wall, V. J., and Vernon, R. H. (1983) The role of fluid phase during regional metamorphism and deformation. Journal of Metamorphic Geology 1, 205–226.CrossRefGoogle Scholar
Evans B., Fredrich J. T., and Wong T.-F. (1990) The brittle–ductile transition in rocks: recent experimental and theoretical progress. In The Brittle–Ductile Transition in Rocks: the Heard Volume (ed. Duba, A. G., Durham, W. B., Handin, J. W., and Wang, H. F.), pp. 1–20. American Geophysical Union.CrossRefGoogle Scholar
Evans, B. and Goetze, C. (1979) Temperature variation of hardness of olivine and its implication for polycrystalline yield stress. Journal of Geophysical Research 84, 5505–5524.CrossRefGoogle Scholar
Evans, B., Renner, J. and Hirth, G. (2001) A few remarks on the kinetics of static grain growth in rocks. International Journal of Earth Sciences 90, 88–103.CrossRefGoogle Scholar
Evans B. and Wong T.-F. (1985) Shear localization in rocks induced by tectonic deformation. In Mechanics of Geomaterials (ed. Bazant, Z.), pp. 189–210. John Wiley & Sons.Google Scholar
Eyring, H. (1935) The activated complex and the absolute rate of chemical reaction. Chemical Review 17, 65–82.CrossRefGoogle Scholar
Fan, D., Chen, L.-Q., and Chen, S.-P. P. (1998) Numerical simulation of Zener pinning with growing second-phase particle. Journal of the American Ceramic Society 81, 526–531.CrossRefGoogle Scholar
Fantozzi, G., Esnouf, C., Benoit, W., and Ritchie, I. G. (1982) Internal friction and microdeformation due to the intrinsic properties of dislocations: the Bordoni relaxation. Progress in Materials Sciences 27, 311–451.CrossRefGoogle Scholar
Farber, D. L., Williams, Q., and Ryerson, F. J. (2000) Divalent cation diffusion in Mg2SiO4 spinel (ringwoodite), β phase (wadsleyite), and olivine: implications for the electrical conductivity of the mantle. Journal of Geophysical Research 105, 513–529.CrossRefGoogle Scholar
Farver, J. R. and Yund, R. A. (1991) Oxygen diffusion in quartz: dependence on temperature and water fugacity. Chemical Geology 90, 55–70.CrossRefGoogle Scholar
Faul, U. H. (2001) Melt retention and segregation beneath mid-ocean ridges. Nature 410, 920–923.CrossRefGoogle ScholarPubMed
Faul, U. H., Gerald, Fitz J. D., and Jackson, I. (2004) Shear-wave attenuation and dispersion in melt-bearing olivine polycrystals II. Microstructural interpretation and seismological implications. Journal of Geophysical Research 109, 10.1029/2003JB002407.CrossRefGoogle Scholar
Faul, U. H. and Jackson, I. (2005) The seismological signature of temperature and grain size variations in the upper mantle. Earth and Planetary Science Letters 234, 119–134.CrossRefGoogle Scholar
Faul, U. H., Toomey, D. R., and Waff, H. S. (1994) Intergranular basaltic melt is distributed in thin, elongated inclusions. Geophysical Research Letters 21, 29–32.CrossRefGoogle Scholar
Fearn, D. R., Loper, D. E., and Roberts, P. H. (1981) Structure of the Earth's inner core. Nature 292, 232–233.CrossRefGoogle Scholar
Fischer, K. M. and Wiens, D. G. (1996) The depth of mantle anisotropy beneath the Tonga subduction zone. Earth and Planetary Science Letters 142, 253–260.CrossRefGoogle Scholar
Flanagan, M. P. and Shearer, P. M. (1998) Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors. Journal of Geophysical Research 103, 2673–2692.CrossRefGoogle Scholar
Flanagan, M. P. and Wiens, D. A. (1994) Radial upper mantle attenuation structure of inactive back arc basins from differential shear wave attenuation measurements. Journal of Geophysical Research 99, 15,469–15 485.CrossRefGoogle Scholar
Flesh, L. M., Li, B., and Liebermann, R. C. (1998) Sound velocities of polycrystalline MgSiO3-orthopyroxene to 10 GPa at room temperature. American Mineralogist 83, 444–450.CrossRefGoogle Scholar
Flinn, D. (1962) On folding during three-dimensional progressive deformation. Geological Society of London, Quaternary Journal 118, 385–433.CrossRefGoogle Scholar
Flynn, C. P. (1968) Atomic migration in monoatomic crystals. Physical Review 171, 682–698.CrossRefGoogle Scholar
Flynn, C. P. (1972) Point Defects and Diffusion. Oxford University Press.Google Scholar
Foreman, A. J., Jawson, M. A., and Wood, J. K. (1951) Factors controlling dislocation width. Proceedings of Physical Society A 64, 156–163.CrossRefGoogle Scholar
Forsyth, D. W. (1975) The early structural evolution and anisotropy of the oceanic upper mantle. Geophysical Journal of Royal Astronomical Society 43, 103–162.CrossRefGoogle Scholar
Forsyth, D. W. (1985) Subsurface loading and estimates of the flexural rigidity of continental lithosphere. Journal of Geophysical Research 90, 12,623–12 632.CrossRefGoogle Scholar
Forsyth D. W. (1992) Geophysical constraints on mantle flow and melt generation beneath mid-ocean ridge. In Mantle Flow and Melt Generation at Mid-Ocean Ridges (ed. Morgan, J. P., Blackman, D. K., and Sinton, J. M.), pp. 1–66. American Geophysical Union.CrossRefGoogle Scholar
Forte A. M. (2000) Seismic–geodynamic constraints on mantle flow: implications for layered convection, mantle viscosity, and seismic anisotropy in the deep mantle. In Earth's Deep Interior: Mineral Physics and Seismic Tomography (ed. Karato, S., Forte, A. M., Liebermann, R. C., Masters, G., and Stixrude, L.), pp. 3–36. American Geophysical Union.CrossRefGoogle Scholar
Forte, A. M., Dziewonski, A. M., and O'Connell, R. J. (1994) Continent–ocean chemical heterogeneity in the mantle based on seismic tomography. Science 268, 386–388.CrossRefGoogle Scholar
Forte, A. M. and Mitrovica, J. X. (1996) New inferences of mantle viscosity from joint inversion of long-wavelength mantle convection and post-glacial rebound data. Geophysical Research Letters 23, 1147–1150.CrossRefGoogle Scholar
Forte, A. M. and Mitrovica, J. X. (2001) Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature 410, 1049–1056.CrossRefGoogle ScholarPubMed
Forte, A. M., Woodward, R. L., and Dziewonski, A. M. (1994) Joint inversion of seismic and geodynamic data for models of three-dimensional mantle heterogeneity. Journal of Geophysical Research 99, 21,857–21 877.CrossRefGoogle Scholar
French, J. D., Zhao, J., Harmer, M. P., Chan, H. M., and Miller, G. A. (1994) Creep of duplex microstructures. Journal of the American Ceramic Society 77, 2857–2865.CrossRefGoogle Scholar
Fressengas, C. and Molinari, A. (1987) Instability and localization of plastic flow in shear at high strain rate. Journal of Mechanics and Physics of Solids 35, 185–211.CrossRefGoogle Scholar
Freund, F. and Wengeler, H. (1982) The infrared spectrum of OH-compensated defect sites in C-doped MgO and CaO single crystals. Journal of Physics and Chemistry of Solids 43, 129–145.CrossRefGoogle Scholar
Frisillo, A. L. and Barsch, G. R. (1972) Measurement of single-crystal elastic constants of bronzite as a function of pressure and temperature. Journal of Geophysical Research 77, 6360–6384.CrossRefGoogle Scholar
Frost, D. J., Liebske, C., Langenhorst, F., et al. (2004) Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature 428, 409–412.CrossRefGoogle ScholarPubMed
Frost, D. J. and Wood, B. J. (1997a) Experimental measurements of the fugacity of CO2 and graphite/diamond stability from 35 to 77 kbar at 925 to 1650 °C. Geochimica et Cosmochimica Acta 61, 1565–1574.CrossRefGoogle Scholar
Frost, D. J. and Wood, B. J. (1997b) Experimental measurements of the properties of H2O–CO2 mixtures at high pressures and temperatures. Geochimica et Cosmochimica Acta 61, 3301–3309.CrossRefGoogle Scholar
Frost, H. J. and Ashby, M. F. (1982) Deformation Mechanism Maps. Pergamon Press.Google Scholar
Fuchs, K. (1983) Recently formed elastic anisotropy and petrological models for the continental subcrustal lithosphere in southern Germany. Physics of Earth and Planetary Interiors 31, 93–118.CrossRefGoogle Scholar
Fujimura, A., Endo, S., Kato, M., and Kumazawa, M. (1981) Preferred orientation of β-Mn2GeO4. Programme and Abstracts, The Japan Seismological Society, 185.Google Scholar
Fujino, K., Nakazaki, H., Momoi, H., Karato, S., and Kohlstedt, D. L. (1992) TEM observation of dissociated dislocations with b = [010] in naturally deformed olivine. Physics of Earth and Planetary Interiors 78, 131–137.CrossRefGoogle Scholar
Fukao, Y., Obayashi, M., Inoue, H., and Nenbai, M. (1992) Subducting slabs stagnant in the mantle transition zone. Journal of Geophysical Research 97, 4809–4822.CrossRefGoogle Scholar
Fukao, Y., To, A., and Obayashi, M. (2003) Whole mantle P wave tomography using P and PP-P data. Journal of Geophysical Research 108, 10.1029/2001JB000989.CrossRefGoogle Scholar
Fukao, Y., Widiyantoro, R. D. S., and Obayashi, M. (2001) Stagnant slabs in the upper and lower mantle transition zone. Review of Geophysics 39, 291–323.CrossRefGoogle Scholar
Funamori, N., Yagi, T., and Uchida, T. (1994) Deviatoric stress measurement under uniaxial compression by a powder X-ray diffraction method. Journal of Applied Physics 75, 4327–4331.CrossRefGoogle Scholar
Furusho, M. and Kanagawa, K. (1999) Reaction-induced strain localization in a lherzolite mylonite from the Hidaka metamorphic belt of central Hokkaido, Japan. Tectonophysics 313, 411–432.CrossRefGoogle Scholar
Gaherty, J. B. (2001) Seismic evidence for hotspot-induced buoyant flow beneath the Reykjanes ridge. Science 293, 1645–1647.CrossRefGoogle ScholarPubMed
Gaherty, J. B. and Jordan, T. H. (1995) Lehmann discontinuity as the base of an anisotropic layer beneath continent. Science 268, 1468–1471.CrossRefGoogle Scholar
Gaherty, J. B., Jordan, T. H., and Gee, L. S. (1996) Seismic structure of the upper mantle in a central Pacific corridor. Journal of Geophysical Research 101, 22 291–22 309.CrossRefGoogle Scholar
Gaherty, J. B., Kato, M., and Jordan, T. H. (1999) Seismological structure of the upper mantle: a regional comparison of seismic layering. Physics of Earth and Planetary Interiors 110, 21–41.CrossRefGoogle Scholar
Gandin, C.-A., Rappaz, M., West, D., and Adams, B. L. (1995) Grain texture evolution during the columnar growth of dendritic alloys. Metallurgical Materials Transaction A 26, 1543–1551.CrossRefGoogle Scholar
Gannarelli, C. M. S., Alfé, D., and Gillan, M. J. (2005) The axial ratio of hcp iron at the conditions of the Earth's inner core. Physics of Earth and Planetary Interiors 152, 67–77.CrossRefGoogle Scholar
Garnero, E. J. (2000) Heterogeneity of the lowermost mantle. Annual Review of Earth and Planetary Sciences 28, 509–537.CrossRefGoogle Scholar
Garnero, E. J. (2004) A new paradigm for Earth's core–mantle boundary. Science 304, 834–836.CrossRefGoogle Scholar
Garnero, E. J. and Jeanloz, R. (2000) Fuzzy patches on the Earth's core–mantle boundary?Geophysical Research Letters 27, 2777–2780.CrossRefGoogle Scholar
Garnero, E. J., Maupin, V., Lay, T., and Fouch, M. J. (2004) Variable azimuthal anisotropy in Earth's lowermost mantle. Science 306, 259–261.CrossRefGoogle ScholarPubMed
Garnero E. J., Revenaugh J., Williams Q., Lay T., and Kellogg L. H. (1998) Ultralow velocity zone at the core–mantle boundary. In The Core–Mantle Boundary Regions (ed. Gurnis, M. E. W. M., Knittle, E. and Fuffett, B. A.), pp. 319–334. American Geophysical Union.CrossRefGoogle Scholar
Garofalo, F. (1965) Fundamentals of Creep and Creep-Rupture in Metals. MacMillan.Google Scholar
Gay, N. C. (1968) Pure shear and simple shear deformation of inhomogeneous viscous fluids. 1. Theory. Tectonophysics 5, 211–234.CrossRefGoogle Scholar
Getting, I. C., Dutton, S. J., Burnley, P. C., Karato, S., and Spetzler, H. A. (1997) Shear attenuation and dispersion in MgO. Physics of Earth and Planetary Interiors 99, 249–257.CrossRefGoogle Scholar
Getting, I. C. and Kennedy, G. C. (1970) Effect of pressure on the EMF of chromel–alumel and platinum–platinum 10% rhodium thermocouples. Journal of Applied Physics 41, 4552–4562.CrossRefGoogle Scholar
Ghose S. (1985) Lattice dynamics, phase transitions and soft modes. In Microscopic to Macroscopic (ed. Kiefer, S. W. and Navrotsky, A.), pp. 127–163. Mineralogical Society of America.Google Scholar
Gill, S. P. A. and Cocks, A. C. F. (1996) A variational approach to two dimensional grain growth – II. numerical results. Acta mater 44, 4777–4789.CrossRefGoogle Scholar
Gilman J. J. (1985) Hardness test: a mechanical microprobe. In Science of Hardness Testing (ed. Westbrook, J. H. and Conrad, H.), pp. 51–74. American Society for Metals.Google Scholar
Gilman, M. J. (1981) The volume of formation of defects in ionic crystals. Philosophical Magazine A 43, 301–312.CrossRefGoogle Scholar
Glansdorff, P. and Prigogine, I. (1971) Thermodynamic Theory of Stability, Structure and Fluctuation. John Wiley & Sons.Google Scholar
Gleason, G. C. and Tullis, J. (1995) A flow law for dislocation creep of quartz aggregates determined with the molten slat cell. Tectonophysics 247, 1–23.CrossRefGoogle Scholar
Goetze, C. and Evans, B. (1979) Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophysical Journal of Royal Astronomical Society 59, 463–478.CrossRefGoogle Scholar
Goldsby, D. L. and Kohlstedt, D. L. (2001) Superplastic deformation of ice: experimental observations. Journal of Geophysical Research 106, 11,017–11,030.CrossRefGoogle Scholar
Gordon, R. B. (1965) Diffusion creep in the Earth's mantle. Journal of Geophysical Research 70, 2413–2418.CrossRefGoogle Scholar
Gordon, R. B. (1971) Observation of crystal plasticity under high pressure with application to the Earth's mantle. Journal of Geophysical Research 76, 1248–1254.CrossRefGoogle Scholar
Gordon, R. S. (1973) Mass transport in the diffusional creep of ionic solids. Journal of the American Ceramic Society 65, 147–152.CrossRefGoogle Scholar
Gordon, R. S. and Terwillinger, G. R. (1972) Transient creep in Fe-doped polycrystalline MgO. Journal of the American Ceramic Society 55, 450–455.CrossRefGoogle Scholar
Gottstein G. and Mecking H. (1985) Recrystallization. In Preferred Orientation in Deformed Metals and Rocks (ed. Wenk, H.-R.), pp. 183–232. Academic Press.Google Scholar
Grand, S. (1994) Mantle shear structure beneath Americas and surrounding oceans. Journal of Geophysical Research 99, 11,591–11 621.CrossRefGoogle Scholar
Green D. H. and Falloon, T. J. (1998) Pyrolite: a Ringwood concept and its current expression. In The Earth's Mantle (ed. Jackson, I.), pp. 311–378. Cambridge University Press.CrossRefGoogle Scholar
Green, H. W. II. (1984) “Pressure solution” creep: some causes and mechanisms. Journal of Geophysical Research 89, 4313–4318.CrossRefGoogle Scholar
Green, H. W. II. (1970) Diffusional flow in polycrystalline materials. Journal of Applied Physics 41, 3899–3902.CrossRefGoogle Scholar
Green, H. W. II. and Borch, R. S. (1987) The pressure dependence of creep. Acta Metallurgica 35, 1301–1305.CrossRefGoogle Scholar
Green, H. W. II. and Houston, H. (1995) The mechanics of deep earthquakes. Annual Review of Earth and Planetary Sciences 23, 169–213.CrossRefGoogle Scholar
Greenwood, G. W. (1994) Denuded zones and diffusional creep. Scripta Metallurgica et Material 30, 1527–1530.CrossRefGoogle Scholar
Greenwood, G. W. and Johnson, R. H. (1965) The deformation of metals under small stresses during phase transformations. Proceedings of the Royal Society of London A 238, 403–422.CrossRefGoogle Scholar
Gribb, T. T. and Cooper, R. F. (1998) Low-frequency shear attenuation in polycrystalline olivine: grain boundary diffusion and the physical significance of the Andrade model for viscoelastic rheology. Journal of Geophysical Research 103, 27,267–27 279.CrossRefGoogle Scholar
Gribb, T. T. and Cooper, R. F. (2000) The effect of an equilibrated melt phase on the shear creep and attenuation behavior of polycrystalline olivine. Geophysical Research Letters 27, 2341–2344.CrossRefGoogle Scholar
Griggs, D. T. (1967) Hydrolytic weakening of quartz and other silicates. Geophysical Journal of Royal Astronomical Society 14, 19–31.CrossRefGoogle Scholar
Griggs, D. T. (1974) A model of hydrolytic weakening in quartz. Journal of Geophysical Research 79, 1653–1661.CrossRefGoogle Scholar
Griggs D. T. and Baker D. W. (1969) The origin of deep-focus earthquakes. In Properties of Matter Under Unusual Conditions (ed. Marks, H. and Feshbach, S.), pp. 23–42. Interscience.Google Scholar
Griggs, D. T. and Blacic, J. D. (1965) Quartz: anomalous weakness of synthetic crystals. Science 147, 292–295.CrossRefGoogle ScholarPubMed
Grimmer, H. (1979) The distribution of disorientation angles if all relative orientations of neighbouring grains are equally probable. Scripta Metallurgica 13, 161–164.CrossRefGoogle Scholar
Grüneisen, E. (1912) Theories des festen Zustands einatomiger elemente. Annalen der Physik, Berlin 39, 257–306.CrossRefGoogle Scholar
Gu, Y. J., Dziewonski, A. M., and Agee, C. B. (1998) Global de-correlation of the topography of transition zone discontinuities. Earth and Planetary Science Letters 157, 57–67.CrossRefGoogle Scholar
Gu, Y. J., Dziewonski, A. M., and Ekström, G. (2001) Preferential detection of the Lehmann discontinuity beneath continents. Geophysical Research Letters 28, 4655–4658.CrossRefGoogle Scholar
Gu, Y. J., Dziewonski, A. M., and Ekström, G. (2003) Simultaneous inversion for mantle velocity and topography of transition zone discontinuities. Geophysical Journal International 154, 559–583.CrossRefGoogle Scholar
Gubbins, D., Alfé, D., Masters, G., Price, G. D., and Gillan, M. J. (2003) Can the Earth's dynamo run on heat alone?Geophysical Journal International 155, 609–622.CrossRefGoogle Scholar
Gueguen, Y., Darot, M., Mazot, P., and Woirgard, J. (1989) Q− 1 of forsterite single crystals. Physics of Earth and Planetary Interiors 55, 254–258.CrossRefGoogle Scholar
Gueguen, Y. and Mercier, J. M. (1973) High attenuation and low velocity zone. Physics of Earth and Planetary Interiors 7, 39–46.CrossRefGoogle Scholar
Gueguen, Y. and Palciauskas, V. (1994) Introduction to the Physics of Rocks. Princeton University Press.Google Scholar
Guillopé, M. and Poirier, J.-P. (1979) Dynamic recrystallization during creep of single-crystalline halite: an experimental study. Journal of Geophysical Research 84, 5557–5567.CrossRefGoogle Scholar
Gung, Y. and Romanowicz, B. (2004) Q tomography of the upper mantle using three-component long-period waveforms. Geophysical Journal International 157, 813–830.CrossRefGoogle Scholar
Gung, Y., Romanowicz, B., and Panning, M. (2003) Global anisotropy and the thickness of continents. Nature 422, 707–711.CrossRefGoogle ScholarPubMed
Gutenberg, B. (1926) Untersuchen zur Frage, bis zu welcher Tiefe die Erde kristallin ist. Zeitschrift für Geophisik 2, 24–29.Google Scholar
Gutenberg, B. (1948) On the layer of relatively low wave velocity at a depth of about 80 kilometers. Bulletin of Seismological Society of America 35, 117–130.Google Scholar
Gutenberg, B. (1954) Low-velocity layers in the Earth's mantle. Bulletin of Seismological Society of America 65, 337–348.CrossRefGoogle Scholar
Haasen, P. (1979) Kink formation and migration as dependent on the Fermi level. Journal de Physique C 6, 111–116.Google Scholar
Hacker, B. R., Gnos, E., Ratschbacher, L., et al. (2000) Hot and dry lower crustal xenoliths from Tibet. Science 287, 2463–2466.CrossRefGoogle Scholar
Hager, B. H. (1984) Subducted slabs and the geoid: constraints on mantle rheology and flow. Journal of Geophysical Research 89, 6003–6015.CrossRefGoogle Scholar
Hager B. H. and Clayton R. W. (1989) Constraints on the structure of mantle convection using seismic observations, flow models and the geoid. In Mantle Convection (ed. Peltier, W. R.), pp. 657–763. Gordon and Breach.Google Scholar
Haggerty, S. E. and Sautter, V. (1990) Ultra deep (> 300 km) ultramafic, upper mantle xenoliths. Science 248, 993–996.CrossRefGoogle Scholar
Hall, C. E. and Parmentier, E. M. (2002) The influence of grain size evolution on a composite dislocation–diffusion creep rheology. Journal of Geophysical Research.Google Scholar
Hammond, W. C. and Humphreys, E. D. (2000a) Upper mantle seismic wave velocity: effects of realistic partial melt distribution. Journal of Geophysical Research 105, 10,987–10 999.CrossRefGoogle Scholar
Hammond, W. C. and Humphreys, E. D. (2000b) Upper mantle seismic wave velocity: effects of realistic partial melt geometries. Journal of Geophysical Research 105, 10,975–10 986.CrossRefGoogle Scholar
Handy, M. R. (1989) Deformation regimes and the rheological evolution of fault zones in the lithosphere: the effects of pressure, temperature, grain size and time. Tectonophysics 163, 119–152.CrossRefGoogle Scholar
Handy, M. R. (1994) Flow laws for rocks containing two non-linear viscous phases: a phenomenological approach. Journal of Structural Geology 16, 287–301.CrossRefGoogle Scholar
Handy, M. R. and Brun, J. P. (2004) Seismicity, structure and strength of the continental lithosphere. Earth and Planetary Science Letters 223, 427–441.CrossRefGoogle Scholar
Harper, J. and Dorn, J. E. (1957) Viscous creep of aluminium near its melting temperature. Acta Metallurgica 5, 654–665.CrossRefGoogle Scholar
Harren, S. V., Dève, H. E., and Asaro, R. J. (1988) Shear band formation in plane strain compression. Acta Metallurgica 36, 2435–2480.CrossRefGoogle Scholar
Harrison, R. J. and Redfern, S. A. T. (2002) The influence of transformation twins on the seismic-frequency elastic and anelastic properties of perovskite: dynamical mechanical analysis of single crystal LaAlO3. Physics of the Earth and Planetary Interiors 134, 253–272.CrossRefGoogle Scholar
Hart, E. W. (1967) Theory of tensile test. Acta Metallurgica 15, 351–355.CrossRefGoogle Scholar
Hart, E. W. (1970) A phenomenological theory for plastic deformation of polycrystalline metals. Acta Metallurgica 18, 599–610.CrossRefGoogle Scholar
Hartmann, W. K. (1999) Moons and Planets. Wadsworth Publishers.Google Scholar
Hashida, T. (1989) Three-dimensional seismic attenuation structure beneath the Japanese islands and its tectonic and thermal implications. Tectonophysics 159, 163–180.CrossRefGoogle Scholar
Hashin, Z. and Shtrikman, S. (1963) A variational approach to the theory of the elastic behavior of multiphase materials. Journal of Mechanics and Physics of Solids 11, 127–140.CrossRefGoogle Scholar
Haskell, N. A. (1935a) The motion of a viscous fluid under a surface load. Physics 6, 265–269.CrossRefGoogle Scholar
Haskell, N. A. (1935b) The motion of a viscous fluid under a surface load. Part II. Physics 7, 56–61.CrossRefGoogle Scholar
Haskell, N. A. (1937) The viscosity of the asthenosphere. American Journal of Science 33, 22–28.CrossRefGoogle Scholar
Hazen, R. M. and Finger, L. W. (1979) Bulk modulus–volume relationship for cation–anion polyhedra. Journal of Geophysical Research 84, 6723–6728.CrossRefGoogle Scholar
Heard, H. C., Borg, I. Y., Carter, N. L., and Raleigh, C. B. (1972) Flow and Fracture of Rocks. American Geophysical Union.CrossRefGoogle Scholar
Heard H. C. and Kirby S. H. (1981) Activation volume for steady-state creep in polycrystalline CsCl: cesium chloride structure. In Mechanical Behavior of Crustal Rocks (ed. Carter, N. L., Friedman, M., Logan, J. M., and Stearns, O. W.), pp. 83–91. American Geophysical Union.CrossRefGoogle Scholar
Heggie, M. and Jones, R. (1986) Models of hydrolytic weakening in quartz. Philosophical Magazine, A 53, L65–L70.CrossRefGoogle Scholar
Heinz, D. L., Jeanloz, R., and O'Connell, R. J. (1982) Bulk attenuation in a polycrystalline Earth. Journal of Geophysical Research 87, 7772–7778.CrossRefGoogle Scholar
Helffrich, G. (2000) Topography of the transition zone discontinuities. Review of Geophysics 38, 141–158.CrossRefGoogle Scholar
Herring, C. (1950) Diffusional viscosity of a polycrystalline solid. Journal of Applied Physics 21, 437–445.CrossRefGoogle Scholar
Hess, H. H. (1964) Seismic anisotropy of the uppermost mantle under oceans. Nature 203, 629–631.CrossRefGoogle Scholar
Hier-Majumder, S., Anderson, I. M., and Kohlstedt, D. L. (2005a) Influence of protons on Fe–Mg interdiffusion in olivine. Journal of Geophysical Research 110, 10.1029/2004JB003292.CrossRefGoogle Scholar
Hier-Majumder, S., Leo, P. H., and Kohlstedt, D. L. (2004) On grain boundary wetting during deformation. Acta Materialia 52, 3425–3433.CrossRefGoogle Scholar
Hier-Majumder, S., Mei, S., and Kohlstedt, D. L. (2005b) Water weakening of clinopyroxene in diffusion creep regime. Journal of Geophysical Research 110, 10.1029/2004JB003414.CrossRefGoogle Scholar
Higo, Y., Inoue, T., Irifune, T., and Yurimoto, H. (2001) Effect of water on the spinel–postspinel transformation in Mg2SiO4. Geophysical Research Letters 28, 3505–3508.CrossRefGoogle Scholar
Hill, R. (1952) The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society, London A 65, 349–354.CrossRefGoogle Scholar
Hill, R. (1958) A general theory of uniqueness and stability of elastic–plastic models. Journal of Mechanics and Physics of Solids 6, 236–249.CrossRefGoogle Scholar
Hill, R. (1965) A self consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids 13, 213–222.CrossRefGoogle Scholar
Hill, R. I., Campbell, I. H., Davies, G. F., and Griffiths, R. W. (1992) Mantle plumes and continental tectonics. Science 256, 186–193.CrossRefGoogle ScholarPubMed
Hillert, M. (1965) On the theory of normal and abnormal grain growth. Acta Metallurgica 13, 227–238.CrossRefGoogle Scholar
Hippertt, J. F. and Hongn, F. D. (1998) Deformation mechanisms in the mylonite/ultramylonite transition. Journal of Structural Geology 20, 1435–1448.CrossRefGoogle Scholar
Hiraga, T., Anderson, I. M., and Kohlstedt, D. L. (2004) Grain-boundaries as reservoirs of incompatible elements in the Earth's mantle. Nature 427, 699–703.CrossRefGoogle ScholarPubMed
Hiraga, T., Anderson, I. M., Zimmerman, M. E., Mei, S., and Kohlstedt, D. L. (2002) Structure and chemistry of grain boundaries in deformed, olivine + basalt and partially molten lherzolite aggregates: evidence of melt-free grain boundaries. Contributions to Mineralogy and Petrology 144, 163–175.CrossRefGoogle Scholar
Hirsch, P. B. (1979) A mechanism for the effect of doping on dislocation mobility. Journal de Physique C 6, 117–121.Google Scholar
Hirth G. (2002) Laboratory constraints on the rheology of the upper mantle. In Plastic Deformation of Minerals and Rocks, Vol. 51 (ed. Karato, S. and Wenk, H.-R.), pp. 97–120. Mineralogical Society of America.Google Scholar
Hirth, G. and Kohlstedt, D. L. (1995a) Experimental constraints on the dynamics of partially molten upper mantle: deformation in the diffusion creep regime. Journal of Geophysical Research 100, 1981–2001.CrossRefGoogle Scholar
Hirth, G. and Kohlstedt, D. L. (1995b) Experimental constraints on the dynamics of partially molten upper mantle: deformation in the dislocation creep regime. Journal of Geophysical Research 100, 15,441–15 450.CrossRefGoogle Scholar
Hirth, G. and Kohlstedt, D. L. (1996) Water in the oceanic upper mantle – implications for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters 144, 93–108.CrossRefGoogle Scholar
Hirth G. and Kohlstedt D. L. (2003) Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. In Inside the Subduction Factory (ed. Eiler, J. E.), pp. 83–105. American Geophysical Union.CrossRefGoogle Scholar
Hirth, G., Teyssier, C., and Dunlop, D. J. (2001) An evaluation of quartzite flow law based on comparisons between experimentally and naturally deformed rocks. International Journal of Earth Sciences 90, 77–87.CrossRefGoogle Scholar
Hirth, G. and Tullis, J. (1992) Dislocation creep regimes in quartz aggregates. Journal of Structural Geology 14, 145–159.CrossRefGoogle Scholar
Hirth, J. P. and Lothe, J. (1982) Theory of Dislocations. Krieger Publishing Company.Google Scholar
Hitchings, R. S., Paterson, M. S., and Bitmead, J. (1989) Effects of iron and magnetite additions in olivine–pyroxene rheology. Physics of Earth and Planetary Interiors 55, 277–291.CrossRefGoogle Scholar
Hobbs, B. E. (1968) Recrystallization of single crystal of quartz. Tectonophysics 6, 353–401.CrossRefGoogle Scholar
Hobbs, B. E. (1981) The influence of metamorphic environment upon the deformation of minerals. Tectonophysics 78, 335–383.CrossRefGoogle Scholar
Hobbs, B. E. (1983) Constraints on the mechanism of deformation of olivine imposed by defect chemistry. Tectonophysics 92, 35–69.CrossRefGoogle Scholar
Hobbs, B. E. (1984) Point defect chemistry of minerals under hydrothermal environment. Journal of Geophysical Research 89, 4026–4038.CrossRefGoogle Scholar
Hobbs B. E. (1985) The geological significance of microfabric analysis. In Preferred Orientation in Deformed Metals and Rocks: an Introduction to Modern Texture Analysis (ed. Wenk, H.-R.), pp. 463–484. Academic Press.Google Scholar
Hobbs B. E., McLaren A. C., and Paterson M. S. (1972) Plasticity of single crystals of quartz. In Flow and Fracture of Rocks (ed. Heard, H. C., Borg, I. Y., Carter, N. L., and Raleigh, C. B.), pp. 29–53. American Geophysical Union.CrossRefGoogle Scholar
Hobbs, B. E., Means, W. D., and Williams, P. F. (1976) The Outline of Structural Geology. Addison & Wiley.Google Scholar
Hobbs B. E., Mulhaus H.-B., and Ord A. (1990) Instability, softening and localization of deformation. In Deformation Mechanisms, Rheology and Tectonics (ed. Knipe, R. J. and Rutter, E. H.), pp. 143–165. The Geological Society.Google Scholar
Hobbs, B. E. and Ord, A. (1988) Plastic instabilities: implications for the origin of intermediate and deep focus earthquakes. Journal of Geophysical Research 89, 10,521–10 540.CrossRefGoogle Scholar
Hobbs, B. E., Ord, A., and Teyssier, C. (1986) Earthquakes in the ductile regime. Pure and Applied Geophysics 124, 310–336.CrossRefGoogle Scholar
Hoff, N. J. (1954) Approximate analysis of structures in the presence of moderately large creep deformations. Quarterly Journal of Applied Mathematics 12, 49–55.CrossRefGoogle Scholar
Hofmann, A. W. (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–228.CrossRefGoogle Scholar
Hollomon, J. H. (1947) The mechanical equation of state. Trans. AIME 171, 535–545.Google Scholar
Holness, M. B. (1993) Temperature and pressure dependence of quartz-aqueous fluid dihedral angles: the control of absorbed H2O on the permeability of quartzites. Earth and Planetary Science Letters 117, 363–377.CrossRefGoogle Scholar
Holt, D. L. (1970) Dislocation cell formation in metals. Journal of Applied Physics 41, 3197–3201.CrossRefGoogle Scholar
Holtzman, B. K., Groebner, N. J., Zimmerman, M. E., Ginsberg, S. B., and Kohlstedt, D. L. (2003a) Stress-driven melt segregation in partially molten rocks. Geochemistry, Geophysics, Geosystems 4, 10.1029/2001GC000258.CrossRefGoogle Scholar
Holtzman, B. K., Kohlstedt, D. L., and Phipps Morgan, J. (2005) Viscous energy dissipation and strain partitioning in partially molten rocks. Journal of Petrology 46, 2569–2592.CrossRefGoogle Scholar
Holtzman, B. K., Kohlstedt, D. L., Zimmerman, M. E., et al. (2003b) Melt segregation and strain partitioning: implications for seismic anisotropy and mantle flow. Science 301, 1227–1230.CrossRefGoogle Scholar
Honda, S., Yuen, D. A., Balachandar, S., and Reuteler, D. (1993) Three-dimensional instabilities of mantle convection with multiple phase transitions. Science 259, 1308–1311.CrossRefGoogle ScholarPubMed
Horn, R. G., Smith, D. T., and Haller, W. (1989) Surface forces and viscosity of water measured between silica sheets. Chemical Physics Letters 162, 404–408.CrossRefGoogle Scholar
Houlier, B., Cheraghmakni, M., and Jaoul, O. (1990) Silicon diffusion in San Carlos olivine. Physics of Earth and Planetary Interiors 62, 329–340.CrossRefGoogle Scholar
Houlier, B., Jaoul, O., Abel, F., and Liebermann, R. C. (1988) Oxygen and silicon diffusion in natural olivine at T = 1300 °C. Physics of Earth and Planetary Interiors 50, 240–250.CrossRefGoogle Scholar
Huang, X., Xu, Y., and Karato, S. (2005) Water content of the mantle transition zone from the electrical conductivity of wadsleyite and ringwoodite. Nature 434, 746–749.CrossRefGoogle ScholarPubMed
Hutchinson, J. W. (1976) Bounds and self-consistent estimates for creep of polycrystalline materials. Proceedings of the Royal Society of London A 348, 101–127.CrossRefGoogle Scholar
Hutchinson, J. W. (1977) Creep and plasticity of hexagonal polycrystals as related to single crystal slip. Metallurgical Transactions A 8, 1465–1469.CrossRefGoogle Scholar
Ingrin, J. and Skogby, H. (2000) Hydrogen in nominally anhydrous upper-mantle minerals: concentration levels and implications. European Journal of Mineralogy 12, 543–570.CrossRefGoogle Scholar
Inoue, T., Yurimoto, H., and Kudoh, Y. (1995) Hydrous modified spinel, Mg1.75SiH0.5O4: a new water reservoir in the mantle transition zone. Geophysical Research Letters 22, 117–120.CrossRefGoogle Scholar
Irifune T. and Ringwood A. E. (1987) Phase transformations in primitive MORB and pyrolyte composition to 25 GPa and some geophysical implications. In High-Pressure Research in Mineral Physics (ed. Manghnani, M. H. and Syono, Y.), pp. 231–242. American Geophysical Union.Google Scholar
Isaak, D. G. (1992) High-temperature elasticity of iron-bearing olivines. Journal of Geophysical Research 97, 1871–1885.CrossRefGoogle Scholar
Ishii, M. and Dziewonski, A. M. (2002) The innermost inner core of the earth: evidence for a change in anisotropic behavior at the radius of about 300 km. Proceedings of American Academy of Arts and Sciences 99, 14,026–14,030.Google ScholarPubMed
Ishii, M. and Tromp, J. (1999) Normal mode and free-air gravity constraints on lateral variation in density of Earth's mantle. Science 285, 1231–1236.CrossRefGoogle Scholar
Ita, J. and Cohen, R. E. (1997) Effects of pressure on diffusion and vacancy formation in MgO from nonempirical free-energy integration. Physical Review Letters 79, 3198–3201.CrossRefGoogle Scholar
Ito, E. and Katsura, T. (1989) A temperature profile of the mantle transition zone. Geophysical Research Letters 16, 425–428.CrossRefGoogle Scholar
Ito, Y. and Toriumi, M. (2007) Pressure effect on self-diffusion in periclase (MgO) by molecular dynamics. Journal of Geophysical Research, in press.CrossRefGoogle Scholar
Iyer, H. M. and Hirahara, K. (1993) Seismic Tomography: Theory and Practice. Chapman and Hall.Google Scholar
Jackson, I. (1998) Elasticity, composition and temperature of the Earth's lower mantle: a reappraisal. Geophysical Journal International 134, 291–311.CrossRefGoogle Scholar
Jackson I. (2000) Laboratory measurements of seismic wave dispersion and attenuation: recent progress. In Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale (ed. Karato, S., Forte, A. M., Liebermann, R. C., Masters, G., and Stixrude, L.), pp. 265–289. American Geophysical Union.CrossRefGoogle Scholar
Jackson, I., Faul, U. H., Gerald, Fitz J. D., and Tan, B. (2004a) Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 1. Specimen fabrication and mechanical testing. Journal of Geophysical Research 109, 10.1029/2003JB002406.CrossRefGoogle Scholar
Jackson, I., Gerald, Fitz J. D., Faul, U. H., and Tan, B. H. (2002) Grain-size sensitive seismic-wave attenuation in polycrystalline olivine. Journal of Geophysical Research 107, 10.1029/2002JB001225.CrossRefGoogle Scholar
Jackson, I., Fitz Gerald, J. D., and Kokkonen, H. (2000a) High-temperature viscoelastic relaxation in iron and its implications for the shear modulus and attenuation of the Earth's inner core. Journal of Geophysical Research 105, 23,605–23 634.CrossRefGoogle Scholar
Jackson I. and Niesler H. (1982) The elasticity of periclase to 3 GPa and some geophysical implications. In High-Pressure Research in Geophysics (ed. Akimoto, S. and Manghnani, M. H.), pp. 93–113. Center for Academic Publications, Japan.CrossRefGoogle Scholar
Jackson, I. and Paterson, M. S. (1987) Shear modulus and internal friction of calcite rocks at seismic frequencies. Physics of Earth and Planetary Interiors 45, 349–367.CrossRefGoogle Scholar
Jackson, I. and Paterson, M. S. (1993) A high-pressure, high-temperature apparatus for studies of seismic wave dispersion and attenuation. Pure and Applied Geophysics 141, 445–466.CrossRefGoogle Scholar
Jackson, I., Paterson, M. S., and Fitz Gerald, J. D. (1992) Seismic wave dispersion and attenuation in Åheim dunite. Geophysical Journal International 108, 517–534.CrossRefGoogle Scholar
Jackson, J. A. (2002a) Faulting, flow, and strength of the continental lithosphere. International Geological Review 11, 39–61.CrossRefGoogle Scholar
Jackson, J. A. (2002b) Strength of the continental lithosphere: time to abandon the jelly sandwich?GSA Today 12, 4–10.2.0.CO;2>CrossRefGoogle Scholar
Jackson, J. M., Sinogeikin, S. V., and Bass, J. D. (2000b) Sound velocities and elastic properties of γ-Mg2SiO4 to 873 K by Brillouin spectroscopy. American Mineralogist 85, 296–303.CrossRefGoogle Scholar
Jackson, J. M., Zhang, J., and Bass, J. D. (2004b) Sound velocities and elasticity of aluminous MgSiO3 perovskite: implications for aluminium heterogeneity in Earth's lower mantle. Geophysical Research Letters 31, 10.1029/2004GL019918.CrossRefGoogle Scholar
Jacobsen S. D. (2006) Effect of water on the equation of state of nominally anhydrous minerals. In Water in Nominally Anhydrous Minerals (ed. Keppler, H. and Smyth, J. R.), pp. 321–342. Mineralogical Society of America.Google Scholar
Jagoutz, E., Palme, H., Baddenhausen, H., et al. (1979) The abundances of major, minor, and trace elements in the Earth's mantle as derived from primitive ultramafic nodules. Proceedings of 10th Lunar and Planetary Science Conference, 2031–2050.Google Scholar
Jaoul, O. (1990) Multicomponent diffusion and creep in olivine. Journal of Geophysical Research 95, 17631–17642.CrossRefGoogle Scholar
Jaoul, O. and Houlier, B. (1983) Study of 18O diffusion in magnesium orthosilicate by nuclear micro analysis. Journal of Geophysical Research 88, 613–624.CrossRefGoogle Scholar
Jaoul O., Poumellec M., Froidevaux C., and Havette A. (1981) Silicon diffusion in forsterite: a new constraint for understanding mantle deformation. In Anelasticity in the Earth (ed. Stacey, F. D., Paterson, M. S., and Nicolas, A.). American Geophysical Union.CrossRefGoogle Scholar
Jaoul O., Sautter V., and Abel F. (1991) Nuclear microanalysis: a powerful tool for measuring low atomic diffusivity with mineralogical applications. In Diffusion, Atomic Ordering, and Mass Transport (ed. Ganguly, J.), pp. 198–220. Springer-Verlag.CrossRefGoogle Scholar
Jaroslow, G. E., Hirth, G., and Dick, H. J. B. (1996) Abyssal peridotite mylonites: implications for grain-size sensitive flow and strain localization in the oceanic lithosphere. Tectonophysics 256, 17–37.CrossRefGoogle Scholar
Jessel, M. W. (1988a) Simulation of fabric development in recrystallizing aggregates – I. Description of the model. Journal of Structural Geology 10, 771–778.CrossRefGoogle Scholar
Jessel, M. W. (1988b) Simulation of fabric development in recrystallizing aggregates – II. Example model runs. Journal of Structural Geology 10, 779–793.CrossRefGoogle Scholar
Jesser, W. A. and Kuhlmann-Wilsdorf, D. (1972) The flow stress and dislocation structure of nickel deformed at very high pressure. Materials Science and Engineering 9, 111–117.CrossRefGoogle Scholar
Ji, S., Wang, Z., and Wirth, R. (2001) Bulk flow strength of forsterite–enstatite composites as a function of forsterite content. Tectonophysics 341, 69–93.CrossRefGoogle Scholar
Ji, S. and Zhao, P. (1993) Flow laws of multiphase rocks calculated from experimental data on the constituent phases. Earth and Planetary Science Letters 117, 181–187.CrossRefGoogle Scholar
Jin, D., Karato, S., and Obata, M. (1998) Mechanisms of shear localization in the continental lithosphere: inference from the deformation microstructures of peridotites from the Ivrea zone, northern Italy. Journal of Structural Geology 20, 195–209.CrossRefGoogle Scholar
Jin, Z. M., Green, H. W. II., and Zhou, Y. (1994) Melt topology in partially molten mantle peridotite during ductile deformation. Nature 372, 164–167.CrossRefGoogle Scholar
Jin, Z. M., Zhang, J., Green, H. W. II., and Jin, S. (2001) Eclogite rheology: implications for subducting lithosphere. Geology 29, 667–670.2.0.CO;2>CrossRefGoogle Scholar
Joesten, R. (1983) Grain growth and grain-boundary diffusion in quartz from the Christmas Mountains (Texas) contact aurole. American Journal of Science 283, 233–254.Google Scholar
Johnson, W. C. (1984) On the elastic stabilization of precipitates against coarsening under applied load. Acta Metallurgica 32, 465–475.CrossRefGoogle Scholar
Johnson, W. C. and Cahn, J. W. (1984) Elastically induced shape bifurcations of inclusions. Acta Metallurgica 32, 1925–1933.CrossRefGoogle Scholar
Johnson, W. C. and Schmalzried, H. (1992) Gibbs–Duhem and Clausius–Clapeyron type equations for elastically stressed crystals. Acta Metallurgica et Materialia 40, 2337–2342.CrossRefGoogle Scholar
Johnston, W. G. (1962) Yield points and delay times in single crystals. Journal of Applied Physics 33, 2716–2730.CrossRefGoogle Scholar
Johnston, W. G. and Gilman, J. J. (1959) Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals. Journal of Applied Physics 30, 129–144.CrossRefGoogle Scholar
Jones, R. (1980) The structure of kinks on the 90° partial in silicon and a ‘strain-bond model’ for dislocation motion. Philosophical Magazine B 42, 213–219.CrossRefGoogle Scholar
Jordan, P. G. (1987) The deformation behaviour of bimineralic limestone–halite aggregates. Tectonophysics 135, 185–197.CrossRefGoogle Scholar
Jordan, P. G. (1988) The rheology of polymineralic rocks: an approach. Geologiches Rundschau 77, 285–294.CrossRefGoogle Scholar
Jordan, T. H. (1975) The continental tectosphere. Review of Geophysics and Space Physics 13, 1–12.CrossRefGoogle Scholar
Jordan, T. H. (1981) Continents as a chemical boundary layer. Philosophical Transactions of the Royal Society of London A 301, 359–373.CrossRefGoogle Scholar
Jung, H. and Karato, S. (2001a) Effect of water on the size of dynamically recrystallized grains in olivine. Journal of Structural Geology 23, 1337–1344.CrossRefGoogle Scholar
Jung, H. and Karato, S. (2001b) Water-induced fabric transitions in olivine. Science 293, 1460–1463.CrossRefGoogle Scholar
Jung, H., Katayama, I., Jiang, Z., Hiraga, T., and Karato, S. (2006) Effects of water and stress on the lattice preferred orientation in olivine. Tectonophysics 421, 1–22.CrossRefGoogle Scholar
Kamb, W. B. (1961) The thermodynamic theory of non-hydrostatically stressed solids. Journal of Geophysical Research 66, 259–271.CrossRefGoogle Scholar
Kamb W. B. (1972) Experimental recrystallization of ice under stress. In Flow and Fracture of Rocks (ed. Heard, H. C., Borg, I. Y., Carter, N. L., and Raleigh, C. B.), pp. 211–241. American Geophysical Union.CrossRefGoogle Scholar
Kaminski, E. (2002) The influence of water on the development of lattice preferred orientation in olivine aggregates. Geophysical Research Letters 29, 17-1/17-4.CrossRefGoogle Scholar
Kaminski, E. and Ribe, N. M. (2001) A kinematic model for dynamic recrystallization and texture development in olivine polycrystals. Earth and Planetary Science Letters 189, 253–267.CrossRefGoogle Scholar
Kaminski, E., Ribe, N. M., and Browaeys, J. T. (2004) D-rex, a program for calculation of seismic anisotropy due to crystal lattice preferred orientation in the convective upper mantle. Geophysical Journal International 158, 744–752.CrossRefGoogle Scholar
Kamiya, S. and Kobayashi, Y. (2000) Seismological evidence for the presence of serpentinized wedge mantle. Geophysical Research Letters 27, 819–822.CrossRefGoogle Scholar
Kampfmann, W. and Berckhemer, H. (1985) High temperature experiments on the elastic and anelastic behaviour of magmatic rocks. Physics of Earth and Planetary Interiors 40, 223–247.CrossRefGoogle Scholar
Kanamori, H. and Anderson, D. L. (1977) Importance of physical dispersion in surface wave and free oscillation problems: review. Review of Geophysics and Space Physics 15, 105–112.CrossRefGoogle Scholar
Kanamori, H. and Press, F. (1970) How thick is the lithosphere?Nature 226, 330–331.CrossRefGoogle ScholarPubMed
Kaneshima, S. (1990) Origin of crustal anisotropy: shear wave splitting studies in Japan. Journal of Geophysical Research 95, 11,121–11 133.CrossRefGoogle Scholar
Kaneshima, S. and Helffrich, G. (1999) Dipping low-velocity layer in the mid-mantle: evidence for geochemical heterogeneity. Science 283, 1888–1891.CrossRefGoogle Scholar
Kanzaki, H. (1957) Point defects in face-centred cubic lattice – I. Distortion around defects. Journal of Physics and Chemistry of Solids 2, 24–36.CrossRefGoogle Scholar
Karato, S. (1977) Rheological Properties of Materials Composing the Earth's Mantle. Ph.D., University of Tokyo.Google Scholar
Karato, S. (1978) The concentration minimum of point defects under high pressures and the viscosity of the lower mantle. Programme and Abstracts, The Seismological Society of Japan 1, D31.Google Scholar
Karato, S. (1981a) Pressure dependence of diffusion in ionic solids. Physics of Earth and Planetary Interiors 25, 38–51.CrossRefGoogle Scholar
Karato, S. (1981b) Rheology of the lower mantle. Physics of Earth and Planetary Interiors 24, 1–14.CrossRefGoogle Scholar
Karato, S. (1984) Grain-size distribution and rheology of the upper mantle. Tectonophysics 104, 155–176.CrossRefGoogle Scholar
Karato, S. (1986) Does partial melting reduce the creep strength of the upper mantle?Nature 319, 309–310.CrossRefGoogle Scholar
Karato, S. (1987a) Scanning electron microscope observation of dislocations in olivine. Physics and Chemistry of Minerals 14, 245–248.CrossRefGoogle Scholar
Karato S. (1987b) Seismic anisotropy due to lattice preferred orientation of minerals: kinematic or dynamic? In High-Pressure Research in Geophysics (ed. Manghnani, M. H. and Syono, Y.), pp. 455–471. American Geophysical Union.Google Scholar
Karato, S. (1988) The role of recrystallization in the preferred orientation in olivine. Physics of Earth and Planetary Interiors 51, 107–122.CrossRefGoogle Scholar
Karato S. (1989a) Defects and plastic deformation in olivine. In Rheology of Solids and of the Earth (ed. Karato, S. and Toriumi, M.), pp. 176–208. Oxford University Press.Google Scholar
Karato, S. (1989b) Grain growth kinetics in olivine aggregates. Tectonophysics 155, 255–273.CrossRefGoogle Scholar
Karato, S. (1989c) Plasticity-crystal structure systematics in dense oxides and its implications for creep strength of the Earth's deep interior: a preliminary result. Physics of Earth and Planetary Interiors 55, 234–240.CrossRefGoogle Scholar
Karato, S. (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347, 272–273.CrossRefGoogle Scholar
Karato, S. (1992) On the Lehmann discontinuity. Geophysical Research Letters 19, 2255–2258.CrossRefGoogle Scholar
Karato, S. (1993a) Importance of anelasticity in the interpretation of seismic tomography. Geophysical Research Letters 20, 1623–1626.CrossRefGoogle Scholar
Karato, S. (1993b) Inner core anisotropy due to the magnetic field-induced preferred orientation of iron. Science 262, 1708–1711.CrossRefGoogle Scholar
Karato, S. (1995) Effects of water on seismic wave velocities in the upper mantle. Proceedings of the Japan Academy 71, 61–66.CrossRefGoogle Scholar
Karato, S. (1997a) On the separation of crustal component from subducted oceanic lithosphere near the 660 km discontinuity. Physics of Earth and Planetary Interiors 99, 103–111.CrossRefGoogle Scholar
Karato S. (1997b) Phase transformations and rheological properties of mantle minerals. In Earth's Deep Interior (ed. Crossley, D.), pp. 223–272. Gordon and Breach.Google Scholar
Karato, S. (1998a) A dislocation model of seismic wave attenuation and velocity dispersion and microcreep of the solid Earth: Harold Jeffreys and the rheology of the solid Earth. Pure and Applied Geophysics 153, 239–256.CrossRefGoogle Scholar
Karato S. (1998b) Effects of pressure on plastic deformation of polycrystalline solids: some geological applications. In High Pressure Research in Materials Sciences (ed. Wentzcovitch, R. M., Hemley, R. J., Neillis, W. J., and Yu, P. Y.), pp. 3–14. Materials Research Society.Google Scholar
Karato S. (1998c) Micro-physics of post glacial rebound (In Dynamics of the Ice Age Earth ed. Wu, P.), pp. 351–364. Trans. Tech.Google Scholar
Karato, S. (1998d) Seismic anisotropy in the deep mantle, boundary layers and geometry of mantle convection. Pure and Applied Geophysics 151, 565–587.CrossRefGoogle Scholar
Karato, S. (1998e) Some remarks on seismic anisotropy in the D″ layer. Earth, Planets, Space 50, 1019–1028.CrossRefGoogle Scholar
Karato, S. (1999) Seismic anisotropy of the Earth's inner core resulting from flow induced by Maxwell stress. Nature 402, 871–873.CrossRefGoogle Scholar
Karato, S. (2000) Dynamics and anisotropy of the Earth's inner core. Proceedings of Japan Academy B 76, 1–6.CrossRefGoogle Scholar
Karato, S. (2003a) Dynamic Structure of the Deep Earth: an Interdisciplinary Approach. Princeton University Press.Google Scholar
Karato, S. (2003b) Mapping water content in Earth's upper mantle. In Inside the Subduction Factory (ed. Eiler, J. E.), pp. 135–152. American Geophysical Union.Google Scholar
Karato S. (2006a) Influence of hydrogen-related defects on the electrical conductivity and plastic deformation of mantle minerals: a critical review. In Earth's Deep Water Cycle (ed. Jacobsen, S. D. and Lee, S.), pp. 113–129. American Geophysical Union.CrossRefGoogle Scholar
Karato S. (2006b) Remote sensing of hydrogen in Earth's mantle. In Water in Nominally Anhydrous Minerals (ed. Keppler, H. and Smyth, J. R.), pp. 343–375. Mineralogical Society of America.Google Scholar
Karato S. (2007) Microscopic models for the influence of hydrogen on physical and chemical properties of minerals. In Superplume: Beyond Plate Tectonics (ed. Yuen, D. A., Maruyama, S., Karato, S., and Windley, B. F.), 321–355. Springer-Verlag.CrossRefGoogle Scholar
Karato, S., Bercovici, D., Leahy, G., Richard, G., and Jing, Z. (2006) Transition zone water filter model for global material circulation: where do we stand? In Earth's Deep Water Cycle (ed. Jacobsen, S. D. and Lee, S.), pp. 289–313. American Geophysical Union.Google Scholar
Karato, S., Dupas-Bruzek, C., and Rubie, D. C. (1998) Plastic deformation of silicate spinel under the transition zone conditions of the Earth. Nature 395, 266–269.CrossRefGoogle Scholar
Karato, S., Ito, E., and Fujino, K. (1990) Plasticity of MgSiO3 perovskite: the results of microhardness tests on single crystals. Geophysical Research Letters 17, 13–16.CrossRefGoogle Scholar
Karato, S. and Jung, H. (1998) Water, partial melting and the origin of seismic low velocity and high attenuation zone in the upper mantle. Earth and Planetary Science Letters 157, 193–207.CrossRefGoogle Scholar
Karato, S. and Jung, H. (2003) Effects of pressure on high-temperature dislocation creep in olivine polycrystals. Philosophical Magazine A 83, 401–414.CrossRefGoogle Scholar
Karato, S. and Karki, B. B. (2001) Origin of lateral heterogeneity of seismic wave velocities and density in Earth's deep mantle. Journal of Geophysical Research 106, 21,771–21 783.CrossRefGoogle Scholar
Karato, S. and Lee, K.-H. (1999) Stress–strain distribution in deformed olivine aggregates: inference from microstructural observations and implications for texture development. 12th International Conference on Textures of Materials, 1546–1555.Google Scholar
Karato, S. and Li, P. (1992) Diffusion creep in the perovskite: implications for the rheology of the lower mantle. Science 255, 1238–1240.CrossRefGoogle ScholarPubMed
Karato, S. and Murthy, V. R. (1997) Core formation and chemical equilibrium in the Earth I. Physical considerations. Physics of Earth and Planetary Interiors 100, 61–79.CrossRefGoogle Scholar
Karato, S., Paterson, M. S., and Fitz Gerald, J. D. (1986) Rheology of synthetic olivine aggregates: influence of grain-size and water. Journal of Geophysical Research 91, 8151–8176.CrossRefGoogle Scholar
Karato, S., Riedel, M. R., and Yuen, D. A. (2001) Rheological structure and deformation of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes. Physics of Earth and Planetary Interiors 127, 83–108.CrossRefGoogle Scholar
Karato, S. and Rubie, D. C. (1997) Toward experimental study of plastic deformation under deep mantle conditions: a new multianvil sample assembly for deformation experiments under high pressures and temperatures. Journal of Geophysical Research 102, 20,111–20 122.CrossRefGoogle Scholar
Karato, S. and Sato, H. (1982) The effect of oxygen partial pressure on the dislocation recovery in olivine: a new constraint on creep mechanisms. Physics of Earth and Planetary Interiors 28, 312–319.CrossRefGoogle Scholar
Karato, S. and Spetzler, H. A. (1990) Defect microdynamics in minerals and solid state mechanisms of seismic wave attenuation and velocity dispersion in the mantle. Review of Geophysics 28, 399–421.CrossRefGoogle Scholar
Karato, S., Toriumi, M., and Fujii, T. (1980) Dynamic recrystallization of olivine single crystals during high temperature creep. Geophysical Research Letters 7, 649–652.CrossRefGoogle Scholar
Karato, S., Wang, Z., Liu, B., and Fujino, K. (1995a) Plastic deformation of garnets: systematics and implications for the rheology of the mantle transition zone. Earth and Planetary Science Letters 130, 13–30.CrossRefGoogle Scholar
Karato, S. and Wu, P. (1993) Rheology of the upper mantle: a synthesis. Science 260, 771–778.CrossRefGoogle ScholarPubMed
Karato, S., Zhang, S., and Wenk, H.-R. (1995b) Superplasticity in Earth's lower mantle: evidence from seismic anisotropy and rock physics. Science 270, 458–461.CrossRefGoogle Scholar
Karki, B. B., Stixrude, L., Clark, S. J., et al. (1997) Structure and elasticity of MgO at high pressure. American Mineralogist 82, 635–639.CrossRefGoogle Scholar
Karki, B. B., Stixrude, L., and Wentzcovitch, R. M. (2001) High-pressure elastic properties of major materials of Earth's mantle from first principles. Review of Geophysics 39, 507–534.CrossRefGoogle Scholar
Kataoka, T., Colombo, L., and Li, J. C. M. (1983) Dislocation charges in pure and Ca2 +-doped KCl in the temperature range from 82 to 294 K. Radiation Effects 75, 227–234.CrossRefGoogle Scholar
Kataoka, T., Colombo, L., and Li, J. C. M. (1984a) Direct measurements of dislocation charges in Ca2 +-doped KCl by using large electric fields. Philosophical Magazine A 49, 395–407.CrossRefGoogle Scholar
Kataoka, T., Colombo, L., and Li, J. C. M. (1984b) Dislocation charges in Ca2 +-doped KCl. Effects of impurity concentration and temperature. Philosophical Magazine A 49, 409–423.CrossRefGoogle Scholar
Katayama, I., Hirose, K., Yurimoto, H., and Nakashima, S. (2003) Water solubility in majorite garnet in subducting oceanic crust. Geophysical Research Letters 30, 10.1029/2003GL018127.CrossRefGoogle Scholar
Katayama, I., Jung, H., and Karato, S. (2004) New type of olivine fabric at modest water content and low stress. Geology 32, 1045–1048.CrossRefGoogle Scholar
Katayama, I. and Karato, S. (2006) Effects of temperature on the B- to C-type fabric transition in olivine. Physics of the Earth and Planetary Interiors 157, 33–45.CrossRefGoogle Scholar
Katayama, I. and Karato, S. (2007) The role of water and iron content on the rheological contrast between garnet and olivine. Physics of the Earth and Planetary Interiors, submitted.Google Scholar
Katayama, I. and Nakashima, S. (2003) Hydroxyl in clinopyroxene from the deep subducted crust: evidence for H2O transport into the mantle. American Mineralogist 88, 229–234.CrossRefGoogle Scholar
Kato, T. and Kumazawa, M. (1985) Garnet phase of MgSiO3 filling the pyroxene–ilmenite gap at very high temperature. Nature 316, 803–805.CrossRefGoogle Scholar
Katsura, T., Mayama, N., Shouno, K., et al. (2001) Temperature derivatives of elastic moduli of (Mg0.91, Fe0.09)2SiO4 modified spinel. Physics of Earth and Planetary Interiors 124, 163–166.CrossRefGoogle Scholar
Katz, R. F., Spiegelman, M., and Holtzman, B. (2006) The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676–679.CrossRefGoogle ScholarPubMed
Kaula, W. M. (1964) Tidal dissipation by solid friction and the resulting orbital evolution. Review of Geophysics 2, 661–685.CrossRefGoogle Scholar
Kawakatsu, H. and Niu, F. (1995) Seismic evidence for the 920-km discontinuity in the mantle. Nature 371, 301–305.CrossRefGoogle Scholar
Kawamoto, T., Hertig, R. J., and Holloway, J. R. (1996) Experimental evidence for a hydrous transition zone in Earth's early mantle. Earth and Planetary Science Letters 142, 587–592.CrossRefGoogle Scholar
, T. S. (1947) Experimental evidence of the viscous behavior of grain boundaries in metals. Physical Review 71, 533–546.CrossRefGoogle Scholar
Kekulawala, K. R. S. S., Paterson, M. S., and Boland, J. N. (1978) Hydrolytic weakening in quartz. Tectonophysics 46, T1–T6.CrossRefGoogle Scholar
Kekulawala K. R. S. S., Paterson M. S., and Boland J. N. (1981) An experimental study of the role of water in quartz deformation. In Mechanical Behavior of Crustal Rocks: the Handin Volume (ed. Carter, N. L., Friedman, M., Logan, J. M., and Stearns, D. W.), pp. 49–60. American Geophysical Union.CrossRefGoogle Scholar
Kelemen, P. B., Hirth, G., Shimizu, N., Spiegelman, M., and Dick, H. J. B. (1997) A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philosophical Transactions of the Royal Society of London 355, 283–318.CrossRefGoogle Scholar
Kellogg, L. H., Hager, B. H., and Hilst, R. D. (1999) Compositional stratification in the deep mantle. Science 283, 1881–1884.CrossRefGoogle ScholarPubMed
Kelly, A., Tyson, W. R., and Cottrell, A. H. (1967) Ductile and brittle crystals. Philosophical Magazine 15, 567–586.CrossRefGoogle Scholar
Kendall, J.-M. and Silver, P. G. (1996) Constraints from seismic anisotropy on the nature of the lowermost mantle. Nature 381, 409–412.CrossRefGoogle Scholar
Kendall J.-M. and Silver P. G. (1998) Investigating causes of D″ anisotropy. In The Core–Mantle Boundary Region (ed. Gurnis, M. E. W. M., Knittle, E. and Buffett, B. A.), pp. 97–118. American Geophysical Union.CrossRefGoogle Scholar
Kennett, B. L. N., Engdahl, E. R., and Buland, R. P. (1995) Constraints on seismic wave velocities in the Earth from travel times. Geophysical Journal International 122, 108–124.CrossRefGoogle Scholar
Keppler, H., Wiedenbeck, M., and Shcheka, S. S. (2003) Carbon solubility in olivine and the mode of carbon storage in the Earth's mantle. Nature 424, 414–416.CrossRefGoogle ScholarPubMed
Keyes R. W. (1963) Continuum models of the effect of pressure on activated processes. In Solids Under Pressure (ed. Paul, W. and Warschauer, D. M.), pp. 71–91. McGraw-Hill.Google Scholar
Khisina, N. R., Wirth, R., Andrut, M., and Ukhanov, A. V. (2001) Extrinsic and intrinsic mode of hydrogen occurrence in natural olivines: FTIR and TEM investigation. Physics and Chemistry of Minerals 28, 291–301.Google Scholar
Kido, M. and Cadek, O. (1997) Inferences of viscosity from the oceanic geoid: indication of a low viscosity zone below the 660-km discontinuity. Earth and Planetary Science Letters 151, 125–137.CrossRefGoogle Scholar
King, S. D. (1995a) Radial models of mantle viscosity: results from a genetic algorithm. Geophysical Journal International 122, 725–734.CrossRefGoogle Scholar
King, S. D. (1995b) The viscosity structure of the mantle. Review of Geophysics 33, 11–17.CrossRefGoogle Scholar
Kingery, W. D. (1974a) Plausible concepts necessary and sufficient for interpretation of ceramic grain-boundary phenomena: I. Grain-boundary characteristics, structure, and electrostatic potential. Journal of the American Ceramic Society 57, 1–8.CrossRefGoogle Scholar
Kingery, W. D. (1974b) Plausible concepts necessary and sufficient for interpretation of ceramic grain-boundary phenomena: II. Solute segregation, grain-boundary diffusion, and general discussion. Journal of the American Ceramic Society 57, 74–83.CrossRefGoogle Scholar
Kingery, W. D., Bowen, H. K., and Uhlmann, D. R. (1976) Introduction to Ceramics. John Wiley & Sons.Google Scholar
Kinsland, G. L. and Bassett, W. A. (1977) Strength of MgO and NaCl polycrystals to confining pressures of 250 kbar at 25 °C. Journal of Applied Physics 48, 978–985.CrossRefGoogle Scholar
Kirby, S. H. (1977) The effects of the α–β phase transformation on the creep properties of hydrolytically-weakened synthetic quartz. Geophysical Research Letters 4, 97–100.CrossRefGoogle Scholar
Kitamura, M., Kondoh, S., Morimoto, N., et al. (1987) Planar OH-bearing defects in mantle olivine. Nature 328, 143–145.CrossRefGoogle Scholar
Kitamura, M., Matsuda, H., and Morimoto, N. (1986) Direct observation of the Cottrell atmosphere in olivine. Proceedings of Japan Academy 62, 149–152.CrossRefGoogle Scholar
Kittel, C. (1986) Introduction to Solid State Physics. John Wiley & Sons.Google Scholar
Kliewer, K. L. and Koehler, J. S. (1965) Space charge in ionic crystals. I. General approach with application to NaCl. Physical Review 140, A1226–A1240.CrossRefGoogle Scholar
Kneller, E. A., Keken, P. E., Karato, S., and Park, J. (2005) B-type olivine fabric in the mantle wedge: insights from high-resolution non-Newtonian subduction zone models. Earth and Planetary Science Letters 237, 781–797.CrossRefGoogle Scholar
Kocks, U. F. (1970) The relation between polycrystal deformation and single crystal deformation. Metallurgical Transactions 1, 1121–1143.CrossRefGoogle Scholar
Kocks, U. F., Argon, A. S., and Ashby, M. F. (1975) Thermodynamics and kinetics of slip. Progress in Materials Sciences 19, 1–288.Google Scholar
Kocks, U. F., Jonas, J. J., and Mecking, H. (1979) The development of strain-rate gradients. Acta Metallurgica 27, 419–432.CrossRefGoogle Scholar
Kocks, U. F., Tomé, C. N., and Wenk, H.-R. (1998) Texture and Anisotropy. Cambridge University Press.Google Scholar
Kogiso, T., Hirose, K., and Takahashi, E. (1998) Melting experiments on homogeneous mixtures of peridotites and basalts: application to the genesis of ocean island basalts. Earth and Planetary Science Letters 162, 45–61.CrossRefGoogle Scholar
Kohlstedt D. L. (2002) Partial melting and deformation. In Plastic Deformation of Minerals and Rocks, Vol. 51 (ed. Karato, S. and Wenk, H.-R.), pp. 121–135. Mineralogical Society of America.Google Scholar
Kohlstedt D. L. (2006) The role of water in high-temperature rock deformation. In Water in Nominally Anhydrous Minerals (ed. Keppler, H. and Smyth, J. R.), pp. 377–396. Mineralogical Society of America.Google Scholar
Kohlstedt, D. L., Evans, B., and Mackwell, S. J. (1995) Strength of the lithosphere: constraints imposed by laboratory measurements. Journal of Geophysical Research 100, 17 587–17 602.CrossRefGoogle Scholar
Kohlstedt, D. L. and Goetze, C. (1974) Low-stress, high-temperature creep in olivine single crystals. Journal of Geophysical Research 79, 2045–2051.CrossRefGoogle Scholar
Kohlstedt, D. L., Goetze, C., and Durham, W. B. (1976) A new technique for decorating dislocations in olivine. Science 191, 1945–1046.CrossRefGoogle ScholarPubMed
Kohlstedt, D. L., Keppler, H., and Rubie, D. C. (1996) Solubility of water in the α, β and γ phases of (Mg, Fe)2SiO4. Contributions to Mineralogy and Petrology 123, 345–357.CrossRefGoogle Scholar
Kohlstedt, D. L. and Mackwell, S. J. (1998) Diffusion of hydrogen and intrinsic point defects in olivine. Zeitschrift für Phisikalische Chemie 207, 147–162.CrossRefGoogle Scholar
Kohlstedt D. L. and Mackwell S. J. (1999) Solubility and diffusion of ‘water’ in silicates. In Microscopic Properties and Processes in Minerals (ed. Wright, K. and Catlow, R.), pp. 539–559. Kluwer Academic Publishers.CrossRefGoogle Scholar
Kohlstedt, D. L. and Weathers, M. S. (1980) Deformation-induced microstructures, paleopiezometers, and differential stresses in deeply eroded fault zones. Journal of Geophysical Research 85, 6269–6285.CrossRefGoogle Scholar
Kolsky, H. (1956) The propagation of stress pulses in viscoelastic solids. Philosophical Magazine 1, 693–710.CrossRefGoogle Scholar
Korenaga, J. (2005) Firm mantle plumes and the nature of the core–mantle region. Earth and Planetary Science Letters 232, 29–37.CrossRefGoogle Scholar
Korenaga, J. (2007) Thermal cracking and the deep hydration of oceanic lithosphere: a key to the generation of plate tectonics? Journal of Geophysical Research 112, 10.1029/2006JB004502.CrossRefGoogle Scholar
Krajewski, P. E., Jones, J. W., and Allison, J. E. (1995) The effect of particle reinforcement on the creep behavior of single-phase aluminum. Metallurgical Materials Transactions A 26, 3107–3118.CrossRefGoogle Scholar
Kronenberg, A. K., Kirby, S. H., and Aines, R. D. (1986) Solubility and diffusional uptake of hydrogen in quartz at high water pressures: implications for hydrolytic weakening. Journal of Geophysical Research 91, 12 723–12 744.CrossRefGoogle Scholar
Kronenberg, A. K. and Tullis, J. (1984) Flow strength of quartz aggregates: grain size and pressure effects due to hydrolytic weakening. Journal of Geophysical Research 89, 4281–4297.CrossRefGoogle Scholar
Kubin L. P. (1993) Dislocation patterning. In Materials Science and Technology, Vol. 6 (ed. Cahn, R. W., Haasen, P., and Kramer, E. J.), pp. 137–190. VCH.Google Scholar
Kubo, T., Ohtani, E., Kato, T., Shinmei, T., and Fujino, K. (1998) Effects of water on the α–β transformation kinetics in San Carlos olivine. Science 281, 85–87.CrossRefGoogle ScholarPubMed
Kubo, T., Ohtani, E., Kato, T., et al. (2000) Formation of metastable assemblages and mechanisms of the grain-size reduction in the postspinel transformation of Mg2SiO4. Geophysical Research Letters 27, 807–810.CrossRefGoogle Scholar
Kumazawa M. (1974) On the relation between plastic flow properties and elastic wave velocities. In Flow of Solids: From Earth to Crystals (ed. Uyeda, S.), pp. 246–262. Tokai University Press.Google Scholar
Kurishita, H., Yoshinaga, H., and Nakashima, H. (1989) The high temperature deformation mechanism in pure metals. Acta Metallurgica 37, 499–505.CrossRefGoogle Scholar
Kurz, W. and Fischer, D. J. (1998) Fundamentals of Solidification. Trans Tech.Google Scholar
Kushiro, I. (1975) On the nature of silicate melt and its significance in magma genesis: regularities in the shift of the liquidus boundaries involving olivine. American Journal of Science 275, 411–431.CrossRefGoogle Scholar
Kushiro, I. (1976) Viscosities of basalt and andesite melts at high pressures. Journal of Geophysical Research 81, 6351–6356.CrossRefGoogle Scholar
Labrosse, S., Poirier, J.-P., and Mouel, J.-L. (2001) The age of the inner core. Physics of Earth and Planetary Interiors 190, 111–123.CrossRefGoogle Scholar
Lager, G. A., Armbruster, T., Rotella, F. J., and Rossman, G. R. (1989) The OH substitution in garnets: X-ray and neutron diffraction, infrared and geometric-modelling studies. American Mineralogist 74, 840–851.Google Scholar
Lakki, A., Schaller, R., Carry, C., and Benoit, W. (1998) High temperature anelastic and viscoelastic deformation of fine-grained MgO-doped Al2O3. Acta Materialia 46, 689–700.CrossRefGoogle Scholar
Lambeck K. and Johnston P. (1998) The viscosity of the mantle: evidence from analyses of glacial-rebound phenomena. In The Earth's Mantle (ed. Jackson, I.), pp. 461–502. Cambridge University Press.CrossRefGoogle Scholar
Landau, L. D. and Lifshitz, E. M. (1959) Theory of Elasticity. Pergamon Press.Google Scholar
Landau, L. D. and Lifshitz, E. M. (1964) Statistical Physics. Pergamon Press.Google Scholar
Landau, L. D. and Lifshitz, E. M. (1987) Fluid Dynamics. Pergamon Press.Google Scholar
Langdon, T. G., Dehghan, A., and Sammis, C. G. (1982) Deformation of olivine, and the application to lunar and planetary interiors. Strength of Metals and Alloys, Proceedings of the 6th International Conference, pp. 757–762 Pergamon Press.Google Scholar
Langdon, T. G. and Yavari, P. (1982) An investigation of Harper–Dorn creep – II. The flow process. Acta Metallurgica 30, 881–887.CrossRefGoogle Scholar
Langmuir J. W., Klein E. M., and Plank T. (1992) Petrological systematics of mid-ocean ridge basalt: constraints on melt generation beneath ocean ridges. In Mantle Flow and Melt Generation at Mid-Ocean Ridges (ed. Morgan, J. P., Blackman, D. K., and Sinton, J. M.), pp. 183–280. American Geophysical Union.CrossRefGoogle Scholar
Lasaga, A. C. (1997) Kinetic Theory in Earth Sciences. Princeton University Press.Google Scholar
Lawlis, J. D. (1998) High Temperature Creep of Synthetic Olivine-Enstatite Aggregates. Ph.D., The Pennsylvania State University.Google Scholar
Lawrence, J. F. and Wysession, M. E. (2005) QLM9: a new radial quality factor (Q) model for the mantle. Earth and Planetary Science Letters 241, 962–971.CrossRefGoogle Scholar
Lawrence J. F. and Wysession M. E. (2006) Seismic evidence for subduction-transported water in the lower mantle. In Earth's Deep Water Cycle (ed. Jacobsen, S. D. and Lee, S. v. d.), pp. 251–261. American Geophysical Union.CrossRefGoogle Scholar
Lay, T., Garnero, E. J., and Williams, Q. (2004) Partial melting in a thermo-chemical boundary layer at the base of the mantle. Physics of Earth and Planetary Interiors 146, 441–467.CrossRefGoogle Scholar
Lay, T., Heinz, D. L., Ishii, M., et al. (2005) Multidisciplinary impact of the deep mantle phase transition in perovskite structure. EOS, Transactions of American Geophysical Union 86, 1–5.CrossRefGoogle Scholar
Lay, T. and Wallace, T. C. (1995) Modern Global Seismology. Academic Press.Google Scholar
Lay, T., Williams, Q., and Garnero, E. J. (1998) The core–mantle boundary layer and deep Earth dynamics. Nature 392, 461–468.CrossRefGoogle Scholar
Lebensohn, R. A. and Tomé, C. N. (1993) A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metallurgica et Materials 41, 2611–2624.CrossRefGoogle Scholar
Lee, D.-C. and Halliday, A. N. (1995) Hafnium–tungsten chronometry and the timing of terrestrial core formation. Nature 392, 771–774.CrossRefGoogle Scholar
Lee, K.-H., Jiang, Z., and Karato, S. (2002) A scanning electron microscope study of effects of dynamic recrystallization on the lattice preferred orientation in olivine. Tectonophysics 351, 331–341.CrossRefGoogle Scholar
Lemaire, C., Kohn, S. C., and Brooker, R. A. (2004) The effect of silica activity on the incorporation mechanisms of water in synthetic forsterite: a polarized infrared spectroscopic study. Contributions to Mineralogy and Petrology 147, 48–57.Google Scholar
Lenardic, A. and Moresi, L. N. (1999) Some thoughts on the stability of cratonic lithosphere: effects of buoyancy and viscosity. Journal of Geophysical Research 104, 12 747–12 759.CrossRefGoogle Scholar
Levien, L. and Prewitt, C. T. (1981) High-pressure structural study of diopside. American Mineralogist 66, 315–323.Google Scholar
Lewis, J. S. (1974) Chemical composition of the solar system. Scientific American 230, 50–65.CrossRefGoogle Scholar
Li, B., Liebermann, R. C., and Weidner, D. J. (1998) Elastic moduli of wadsleyite (β-Mg2SiO4) to 7 GPa and 873 K. Science 281, 675–677.CrossRefGoogle Scholar
Li, J., Hadidiacos, C., Mao, H.-K., Fei, Y., and Hemley, R. J. (2003a) Behavior of thermocouples under high pressure in a multi-anvil apparatus. High Pressure Research 23, 389–401.CrossRefGoogle Scholar
Li, J. C. M. (1963) A dislocation mechanism of transient creep. Acta Metallurgica 11, 1269–1270.CrossRefGoogle Scholar
Li, L., Raterron, P., Weidner, D. J., and Long, H. (2006) Plastic flow of pyrope at mantle pressure and temperature. American Mineralogist 91, 517–525.CrossRefGoogle Scholar
Li, L., Ratteron, P., Weidner, D. J., and Chen, J. (2003b) Olivine flow mechanisms at 8 GPa. Physics of Earth and Planetary Interiors 138, 113–129.CrossRefGoogle Scholar
Li, L., Weidner, D. J., Chen, J., et al. (2004a) X-ray strain analysis at high pressure: effect of plastic deformation in MgO. Journal of Applied Physics 95, 8357–8365.CrossRefGoogle Scholar
Li, L., Weidner, D. J., Ratteron, P., Chen, J., and Vaughan, M. T. (2004b) Stress measurements of deforming olivine at high pressure. Physics of Earth and Planetary Interiors 143/144, 357–367.CrossRefGoogle Scholar
Li, P., Karato, S., and Wang, Z. (1996) High-temperature creep in fine-grained polycrystalline CaTiO3, an analogue material of (Mg, Fe)SiO3 perovskite. Physics of Earth and Planetary Interiors 95, 19–36.CrossRefGoogle Scholar
Li, X. and Cormier, V. F. (2002) Frequency-dependent seismic attenuation in the inner core 1. A viscoelastic interpretation. Journal of Geophysical Research 107, 10.1029/2002JB001795.CrossRefGoogle Scholar
Li, Y. and Langdon, T. G. (1998) High strain rate superplasticity in metal matrix composites: the role of load transfer. Acta Materialia 46, 3937–3948.CrossRefGoogle Scholar
Lidiard, A. B. (1981) The volume of formation of Schottky defects in ionic solids. Philosophical Magazine A 43, 292–300.CrossRefGoogle Scholar
Liebermann, R. C. (1982) Elasticity of minerals at high pressure and temperature. In High Pressure Research in Geosciences (ed. Schreyer, W.), pp. 1–14. Schweizerbartsche.Google Scholar
Liebermann R. C. (2000) Elasticity of mantle minerals (experimental studies). In Earth's Deep Interior: Mineral Physics and Tomography (ed. Karato, S., Forte, A. M., Liebermann, R. C., Masters, G., and Stixrude, L.), pp. 181–199. American Geophysical Union.CrossRefGoogle Scholar
Liebermann, R. C. and Ringwood, A. E. (1973) Birch's law and polymorphic phase transformations. Journal of Geophysical Research 78, 6926–6932.CrossRefGoogle Scholar
Lifshitz, I. M. (1963) On the theory of diffusion–viscous flow of polycrystalline bodies. Soviet Physics JETP 17, 909–920.Google Scholar
Lifshitz, I. M. and Shikin, V. B. (1965) The theory of diffusional viscous flow of polycrystalline solids. Soviet Physics, Solid State 6, 2211–2218.Google Scholar
Lin, J.-F., Sturhahn, W., Zhao, J., et al. (2005) Sound velocities of hot dense iron: Birch's law revisited. Science 308, 1892–1894.CrossRefGoogle ScholarPubMed
Lindemann, F. A. (1910) Über die Berechnung Molecular Eigenfrequnzen. Physikalische Zeitschrift 11, 609–612.Google Scholar
Linker M. F. and Kirby S. H. (1981) Anisotropy in the rheology of hydrolytically weakened quartz crystals. In Mechanical Behavior of Crustal Rocks (ed. Carter, N. L., Friedman, M., Logan, J. M., and Stearns, D. W.), pp. 29–48. American Geophysical Union.CrossRefGoogle Scholar
Linker, M. F., Kirby, S. H., Ord, A., and Christie, J. M. (1984) Effects of compression direction on the plasticity and rheology of hydrolytically weakened synthetic quartz crystals at atmospheric pressure. Journal of Geophysical Research 89, 4241–4255.CrossRefGoogle Scholar
Lister, G. S. (1979) Fabric transitions in plastically deformed quartzites: competition between basal, prism and rhomb systems. Bulletin Mineralogie 102, 232–241.Google Scholar
Lister, G. S. and Hobbs, B. E. (1980) The simulation of fabric development during plastic deformation and its application to quartzite: the influence of deformation history. Journal of Structural Geology 2, 355–370.CrossRefGoogle Scholar
Lister, G. S. and Paterson, M. S. (1979) The simulation of fabric development during plastic deformation and its application to quartzite: fabric transition. Journal of Structural Geology 1, 99–115.CrossRefGoogle Scholar
Lister, G. S., Paterson, M. S., and Hobbs, B. E. (1978) The simulation of fabric development during plastic deformation and its application to quartzite: the model. Tectonophysics 45, 107–158.CrossRefGoogle Scholar
Lister, G. S. and Snoke, A. W. (1984) S-C mylonite. Journal of Structural Geology 6, 617–638.CrossRefGoogle Scholar
Litasov, K., Ohtani, E., Langenhorst, F., et al. (2003) Water solubility in Mg-perovskite and water storage capacity in the lower mantle. Earth and Planetary Science Letters 211, 189–203.CrossRefGoogle Scholar
Lithgow-Bertelloni, C. and Silver, P. G. (1998) Dynamic topography, plate driving forces and the African superswell. Nature 395, 269–272.CrossRefGoogle Scholar
Long, M., Xiao, X., Jiang, Z., Evans, B., and Karato, S. (2006) Lattice preferred orientation in deformed polycrystalline (Mg, Fe)O and implications for seismic anisotropy in D″. Physics of Earth and Planetary Interiors 156, 75–88.CrossRefGoogle Scholar
Long, M. D. and Hilst, R. D. (2005) Upper mantle anisotropy beneath Japan from shear wave splitting. Physics of Earth and Planetary Interiors 151, 206–222.CrossRefGoogle Scholar
Loper, D. E. and Fearn, D. R. (1983) A seismic model of a partially molten inner core. Journal of Geophysical Research 88, 1235–1242.CrossRefGoogle Scholar
Louat, N. P. and Duesbery, M. S. (1994) On the theory of normal grain growth. Philosophical Magazine A 69, 841–854.CrossRefGoogle Scholar
Louchet, F. and George, A. (1983) Dislocation mobility measurements: an essential tool for understanding the atomic and electronic core structures of dislocations in semiconductors. Journal de Physique C 4, 51–58.Google Scholar
Lu, R. and Keppler, H. (1997) Water solubility in pyrope to 100 kbar. Contributions to Mineralogy and Petrology 129, 35–42.CrossRefGoogle Scholar
Luan, F. C. and Paterson, M. S. (1992) Preparation and deformation of synthetic aggregates of quartz. Journal of Geophysical Research 97, 301–320.CrossRefGoogle Scholar
Luton, M. J. and Sellars, C. M. (1969) Dynamic recrystallization in nickel and nickel–iron alloys during high temperature deformation. Acta Metallurgica 17, 1033–1043.CrossRefGoogle Scholar
Mackwell, S. J. (1991) High-temperature rheology of enstatite: implications for creep in the upper mantle. Geophysical Research Letters 18, 2027–2030.CrossRefGoogle Scholar
Mackwell, S. J. and Kohlstedt, D. L. (1990) Diffusion of hydrogen in olivine: implications for water in the mantle. Journal of Geophysical Research 95, 5079–5088.CrossRefGoogle Scholar
Mackwell, S. J., Kohlstedt, D. L., and Paterson, M. S. (1985) The role of water in the deformation of olivine single crystals. Journal of Geophysical Research 90, 11 319–11 333.CrossRefGoogle Scholar
Mackwell S. J. and Paterson M. S. (1985) Water-related diffusion and deformation effects in quartz at pressure of 1500 and 300 MPa. In Point Defects in Minerals (ed. Schock, R. N.), pp. 141–150. American Geophysical Union.CrossRefGoogle Scholar
Mackwell, S. J., Zimmerman, M. E., and Kohlstedt, D. L. (1998) High-temperature deformation of dry diabase with application to tectonics on Venus. Journal of Geophysical Research 103, 975–984.CrossRefGoogle Scholar
Mainprice, D. H. and Nicolas, A. (1989) Development of shape and lattice preferred orientations: application to the seismic anisotropy of the lower crust. Journal of Structural Geology 11, 175–189.CrossRefGoogle Scholar
Mainprice, D. H. and Paterson, M. S. (1984) Experimental studies on the role of water in the plasticity of quartzite. Journal of Geophysical Research 89, 4257–4269.CrossRefGoogle Scholar
Mainprice, D. H. and Silver, P. G. (1993) Interpretation of SKS-waves using samples from the subcontinental lithosphere. Physics of Earth and Planetary Interiors 78, 257–280.CrossRefGoogle Scholar
Malvern, L. E. (1969) Introduction to the Mechanics of a Continuous Medium. Prentice-Hall.Google Scholar
Manga, M. (1996) Mixing of heterogeneities in the mantle: effect of viscosity differences. Geophysical Research Letters 23, 403–406.CrossRefGoogle Scholar
Mao, H.-K., Shu, J., Shen, G., et al. (1998) Elasticity and rheology of iron above 200 GPa and the nature of the Earth's inner core. Nature 396, 741–743.CrossRefGoogle Scholar
Maradudin, A. A., Montroll, E. W., Weiss, G. H., and Ipanova, I. P. (1971) Theory of Lattice Dynamics in the Harmonic Approximation. Academic Press.Google Scholar
March, N. H. and Tosi, M. P. (2002) Introduction to Liquid State Physics. World Scientific.CrossRefGoogle Scholar
Marone, C. (1998) Laboratory-derived friction laws and their application to seismic faulting. Annual Review of Earth and Planetary Sciences 26, 643–696.CrossRefGoogle Scholar
Martin, R. F. and Donnay, G. (1972) Hydroxyl in the mantle. American Mineralogist 57, 554–570.Google Scholar
Mase, G. E. (1970) Continuum Mechanics. McGraw-Hill.Google Scholar
Masters, G. and Gubbins, D. (2003) On the resolution of density within the Earth. Physics of the Earth and Planetary Interior 139, 159–167.CrossRefGoogle Scholar
Masters G., Laske G., Bolton H., and Dziewonski A. M. (2000) The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure. In Earth's Deep Interior (ed. Karato, S., Forte, A. M., Liebermann, R. C., Masters, G., and Stixrude, L.), pp. 63–87. American Geophysical Union.Google Scholar
Matsukage, K. N., Nishihara, Y., and Karato, S. (2005) Seismological signature of chemical evolution of Earth's upper mantle. Journal of Geophysical Research 110, 10.1029/2004JB003504.CrossRefGoogle Scholar
Matthies, S. and Wagner, F. (1996) On a 1/n law in texture related single orientation analysis. Physica Status Solidi 196, K11–K15.CrossRefGoogle Scholar
Mavko, G. M. (1980) Velocity and attenuation in partially molten rocks. Journal of Geophysical Research 85, 5173–5189.CrossRefGoogle Scholar
Mavko, G. M. and Nur, A. (1975) Melt squirt in the asthenosphere. Journal of Geophysical Research 80, 1444–1448.CrossRefGoogle Scholar
Mayama, N., Suzuki, I., and Saito, T. (2004) Temperature dependence of elastic moduli of β-(Mg, Fe)2SiO4. Geophysical Research Letters 31, 10.1029/2003GL019247.CrossRefGoogle Scholar
McBirney, A. R. and Murase, T. (1984) Rheological properties of magmas. Annual Review of Earth and Planetary Sciences 12, 337–357.CrossRefGoogle Scholar
McCartney, L. N. (1976) No time-gentlemen please!Philosophical Magazine 33, 689–695.CrossRefGoogle Scholar
McDonnell, R. D., Peach, C. J., Roemund, H. L. M., and Spiers, C. J. (2000) Effect of varying enstatite content on the deformation behavior of fine-grained synthetic peridotite under wet conditions. Journal of Geophysical Research 105, 13 535–13 553.CrossRefGoogle Scholar
McDonough, W. F. and Sun, S.-S. (1995) The composition of the Earth. Chemical Geology 120, 223–253.CrossRefGoogle Scholar
McGovern, P. J. and Schubert, G. (1989) Thermal evolution of the Earth: effects of volatile exchange between atmosphere and interior. Earth and Planetary Science Letters 96, 27–37.CrossRefGoogle Scholar
McKenzie, D. P. (1969) Speculations on the consequences and cause of plate motion. Geophysical Journal of Royal Astronomical Society 18, 1–32.CrossRefGoogle Scholar
McKenzie, D. P. (1984) The generation and compaction of partially molten rocks. Journal of Petrology 25, 713–765.CrossRefGoogle Scholar
McKenzie, D. P. (2003) Estimating Te in the presence of internal loads. Journal of Geophysical Research 108, 10.1029/JB001766.CrossRefGoogle Scholar
McLaren, A. C., Cook, R. F., Hyde, S. T., and Tobin, R. C. (1983) The mechanisms of the formation and growth of water bubbles and associated dislocation loops in synthetic quartz. Physics and Chemistry of Minerals 9, 79–94.CrossRefGoogle Scholar
McLaren, A. C., Fitz Gerald, J. D., and Gerretsen, J. (1989) Dislocation nucleation and multiplication in synthetic quartz: relevance to water weakening. Physics and Chemistry of Minerals 16, 465–482.CrossRefGoogle Scholar
McNamara, A., Karato, S., and Keken, P. E. (2001) Localization of dislocation creep in Earth's lower mantle: implications for seismic anisotropy. Earth and Planetary Science Letters 191, 85–99.CrossRefGoogle Scholar
McNamara, A., Keken, P. E., and Karato, S. (2002) Development of anisotropic structure by solid-state convection in the Earth's lower mantle. Nature 416, 310–314.CrossRefGoogle ScholarPubMed
McNamara, A., Keken, P. E., and Karato, S. (2003) Development of finite strain in the convecting lower mantle and its implications for seismic anisotropy. Journal of Geophysical Research 108, 10.1029/2002JB001970, 2003.CrossRefGoogle Scholar
McNutt, M. K. (1998) Superswells. Review of Geophysics 36, 211–244.CrossRefGoogle Scholar
Meade, C. and Jeanloz, R. (1988) Yield strength of the B1 and B2 phases of NaCl. Journal of Geophysical Research 93, 3270–3274.CrossRefGoogle Scholar
Meade, C. and Jeanloz, R. (1990) The strength of mantle silicates at high pressures and room temperature: implications for the viscosity of the mantle. Nature 348, 533–535.CrossRefGoogle Scholar
Meade, C., Reffner, J. A., and Ito, E. (1993) Synchrotron infrared absorbance measurements of hydrogen in MgSiO3 perovskite. Science 264, 1558–1560.CrossRefGoogle Scholar
Meade, C., Silver, P. G., and Kaneshima, S. (1995) Laboratory and seismological observations of lower mantle isotropy. Geophysical Research Letters 22, 1293–1296.CrossRefGoogle Scholar
Means, W. D. (1976) Stress and Strain. Springer-Verlag.CrossRefGoogle Scholar
Mecklenburgh, J. and Rutter, E. H. (2003) On the rheology of partially molten synthetic granite. Journal of Structural Geology 25, 1575–1585.CrossRefGoogle Scholar
Mehl, L., Hacker, B. R., and Hirth, G. (2003) Arc-parallel flow within the mantle wedge: evidence from the accreted Talkeetna arc, south central Alaska. Journal of Geophysical Research 108, 10.1029/2002JB002233.CrossRefGoogle Scholar
Mei, S., Bai, W., Hiraga, T., and Kohlstedt, D. L. (2002) Influence of melt on the creep behavior of olivine–basalt aggregates under hydrous conditions. Earth and Planetary Science Letters 201, 491–507.CrossRefGoogle Scholar
Mei, S. and Kohlstedt, D. L. (2000a) Influence of water on plastic deformation of olivine aggregates, 1. Diffusion creep regime. Journal of Geophysical Research 105, 21 457–21 469.CrossRefGoogle Scholar
Mei, S. and Kohlstedt, D. L. (2000b) Influence of water on plastic deformation of olivine aggregates, 2. Dislocation creep regime. Journal of Geophysical Research 105, 21 471–21 481.CrossRefGoogle Scholar
Meike A. (1993) A critical review of investigation into transformational plasticity. In Defects and Processes in the Solid States (ed. Boland, J. N. and Gerald, J. D. Fitz), pp. 5–25. Elsevier.Google Scholar
Meissner, R. and Mooney, W. D. (1998) Weakness of lower continental crust: a condition for delamination, uplift, and escape. Tectonophysics 296, 47–60.CrossRefGoogle Scholar
Mendelson, M. I. (1969) Average grain size in polycrystalline ceramics. Journal of the American Ceramic Society 55, 19–24.Google Scholar
Mercier, J.-C. C. (1980) Magnitude of the continental lithospheric stresses inferred from rheomorphic petrology. Journal of Geophysical Research 85, 6293–6303.CrossRefGoogle Scholar
Merkel, S., Wenk, H.-R., Badro, J., et al. (2003) Deformation of (Mg0.9, Fe0.1)SiO3 perovskite aggregates up to 32 GPa. Earth and Planetary Science Letters 209, 351–360.CrossRefGoogle Scholar
Merkel, S., Wenk, H.-R., Gillet, P., Mao, H.-K., and Hemley, R. J. (2004) Deformation of polycrystalline iron up to 30 GPa and 1000 K. Physics of Earth and Planetary Interiors 145, 239–251.CrossRefGoogle Scholar
Merkel, S., Wenk, H.-R., Shu, J., et al. (2002) Deformation of polycrystalline MgO at pressures of the lower mantle. Journal of Geophysical Research 107, 10.1029/2001JB000920.CrossRefGoogle Scholar
Merrill, R. T., McElhinny, M. W., and McFaddon, P. L. (1998) The Magnetic Field of the Earth. Academic Press.Google Scholar
Mibe, K., Fujii, T., and Yasuda, A. (1998) Connectivity of aqueous fluid in the Earth's upper mantle. Geophysical Research Letters 25, 1233–1236.CrossRefGoogle Scholar
Minster, J. B. and Anderson, D. L. (1980) Dislocations and nonelastic processes in the mantle. Journal of Geophysical Research 85, 6347–6352.CrossRefGoogle Scholar
Minster, J. B. and Anderson, D. L. (1981) A model of dislocation-controlled rheology for the mantle. Philosophical Transaction of Royal Society of London A 299, 319–356.CrossRefGoogle Scholar
Misener D. J. (1974) Cationic diffusion in olivine to 1400 °C and 35 kbar. In Geochemistry and Reaction Kinetics (ed. Hofmann, A. W., Giletti, B. J., Yorder, J. H. S., and Yund, R. A.), pp. 117–129. Carnegie Institution of Washington.Google Scholar
Mistler, R. E. and Coble, R. L. (1974) Grain-boundary diffusion and boundary widths in metals and ceramics. Journal of Applied Physics 45, 1507–1509.CrossRefGoogle Scholar
Mitrovica, J. X. (1996) Haskell [1935] revisited. Journal of Geophysical Research 101, 555–569.CrossRefGoogle Scholar
Mitrovica, J. X. and Peltier, W. R. (1991a) A complete formalism for the inversion of postglacial rebound data: resolving power analysis. Geophysical Journal International 104, 267–288.CrossRefGoogle Scholar
Mitrovica J. X. and Peltier W. R. (1991b) Radial resolution in the inference of mantle viscosity from observations of glacial isostatic adjustment. In Glacial Isostasy, Sea-Level and Mantle Rheology (ed. Sabadini, R., Lambeck, K., and Boschi, E.), pp. 63–78. Kluwer Academic Publisher.CrossRefGoogle Scholar
Mizutani, H. and Kanamori, H. (1964) Variation in elastic wave velocity and attenuative property near the melting temperature. Journal of Physics of the Earth 12, 43–49.CrossRefGoogle Scholar
Molinari, A., Canova, G. R., and Ahzi, S. (1987) A self-consistent approach of the large deformation polycrystal viscoplasticity. Acta Metallurgica 35, 2983–2994.CrossRefGoogle Scholar
Möller, H.-J. (1978) The movement of dissociated dislocations in the diamond-cubic structure. Acta Metallurgica 26, 963–973.CrossRefGoogle Scholar
Montagner, J.-P. (1998) Where can seismic anisotropy be detected in the Earth's mantle? In boundary layers …. Pure and Applied Geophysics 151, 223–256.CrossRefGoogle Scholar
Montagner, J.-P. (2002) Upper mantle low anisotropy channels below the Pacific Plate. Earth and Planetary Science Letters 202, 263–274.CrossRefGoogle Scholar
Montagner, J.-P., Griot-Pommera, D.-A., and Lavé, J. (2000) How to relate body wave and surface wave anisotropy?Journal of Geophysical Research 105, 19,015–19,028.CrossRefGoogle Scholar
Montagner J.-P. and Guillot L. (2000) Seismic anisotropy in the Earth's mantle. In Problems in Geophysics for the New Millennium (ed. Boschi, E., Ekström, G., and Morelli, A.), pp. 217–253. Editrice Compositori.Google Scholar
Montagner J.-P. and Guillot L. (2002) Seismic anisotropy and global geodynamics. In Plastic Deformation of Minerals and Rocks, Vol. 51 (ed. Karato, S. and Wenk, H.-R.), pp. 353–385. Mineralogical Society of America.Google Scholar
Montagner, J.-P. and Kennett, B. L. N. (1996) How to reconcile body-wave and normal-mode reference Earth models. Geophysical Journal International 125, 229–248.CrossRefGoogle Scholar
Montagner, J.-P. and Nataf, H.-C. (1986) A simple method for inverting the azimuthal anisotropy of surface waves. Journal of Geophysical Research 91, 511–520.CrossRefGoogle Scholar
Montagner, J.-P. and Ritsema, J. (2001) Interactions between ridges and plumes. Science 294, 1472–1473.CrossRefGoogle ScholarPubMed
Montagner, J.-P. and Tanimoto, T. (1990) Global anisotropy in the upper mantle inferred from the regionalization of phase velocities. Journal of Geophysical Research 95, 4797–4819.CrossRefGoogle Scholar
Montagner, J.-P. and Tanimoto, T. (1991) Global upper mantle tomography of seismic wave velocities and anisotropies. Journal of Geophysical Research 96, 20337–20351.CrossRefGoogle Scholar
Montelli, R., Nolet, G., Dahlen, F. A., et al. (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303, 338–343.CrossRefGoogle ScholarPubMed
Montési, L. and Hirth, G. (2003) Grain size evolution and the rheology of ductile shear zone: from laboratory experiments to postseismic creep. Earth and Planetary Science Letters 211, 97–110.CrossRefGoogle Scholar
Montési, L. and Zuber, M. T. (2002) A unified description of localization for application to large-scale tectonics. Journal of Geophysical Research 107, 1/1–1/21.CrossRefGoogle Scholar
Morelli, A., Dziewonski, A. M., and Woodhouse, J. H. (1986) Anisotropy of the inner core inferred from PKIKP travel times. Geophysical Research Letters 13, 1545–1548.CrossRefGoogle Scholar
Mosenfelder, J. L., Connelly, J. A. D., Rubie, D. C., and Liu, M. (2000) Strength of (Mg, Fe)2SiO4 wadsleyite determined by relaxation of transformational stress. Physics of Earth and Planetary Interiors 120, 63–78.CrossRefGoogle Scholar
Mott, N. F. and Littleton, M. J. (1938) Conduction in polar crystals: I. Electrolytic conduction in solid salts. Transactions of Faraday Society 34, 485–491.CrossRefGoogle Scholar
Mukherjee, A. K. (1971) The rate controlling mechanism in superplasticity. Materials Science and Engineering 8, 83–89.CrossRefGoogle Scholar
Murakami, M., Hirose, K., Kawamura, K., Sata, N., and Ohnishi, Y. (2004) Post-perovskite phase transition in MgSiO3. Science 304, 855–858.CrossRefGoogle ScholarPubMed
Murakami, M., Hirose, K., Yurimoto, H., Nakashima, S., and Takafuji, N. (2002) Water in Earth's lower mantle. Science 295, 1885–1887.CrossRefGoogle ScholarPubMed
Nabarro, F. R. N. (1948) Deformation of crystals by the motion of single ions. Report of a Conference on Strength of Solids, 75–90.Google Scholar
Nabarro, F. R. N. (1967a) Steady state diffusional creep. Philosophical Magazine 16, 231–237.CrossRefGoogle Scholar
Nabarro, F. R. N. (1967b) Theory of Crystal Dislocations. Oxford University Press.Google Scholar
Nabarro, F. R. N. (1989) The mechanism of Harper-Dorn creep. Acta Metallurgica 37, 2217–2222.CrossRefGoogle Scholar
Nakada, M. (1986) Holocene sea levels in oceanic islands: implications for the rheological structure of the Earth's mantle. Tectonophysics 121, 263–276.CrossRefGoogle Scholar
Nakada, M. and Lambeck, K. (1987) Glacial rebound and relative sea level variations: a new appraisal. Geophysical Journal of Royal Astronomical Society 90, 171–224.CrossRefGoogle Scholar
Nakada, M. and Lambeck, K. (1989) Late Pleistocene and Holocene sea-level change in the Australian region and mantle rheology. Geophysical Journal International 96, 497–517.CrossRefGoogle Scholar
Nakada M. and Lambeck K. (1991) Late Pleistocene and Holocene sea-level change: evidence for lateral mantle viscosity variation? In Glacial Isostasy, Sea Level and Mantle Rheology (ed. Sabadini, R., Lambeck, K., and Boschi, E.), pp. 79–94. Kluwer Academic.CrossRefGoogle Scholar
Nakajima, J. and Hasegawa, A. (2004) Shear-wave polarization anisotropy and subduction-induced flow in the mantle wedge of northern Japan. Earth and Planetary Science Letters 225, 365–377.CrossRefGoogle Scholar
Nakashima, S. (1995) Diffusivity of ions in pore water as a quantitative basis for rock deformation rate estimate. Tectonophysics 245, 185–203.CrossRefGoogle Scholar
Nakashima S., De Meer S., and Spiers C. J. (2004) Distribution of thin film water in grain boundaries of crustal rocks and implications for crustal strength. In Physicochemistry of Water in Geological and Biological Systems (ed. Nakashima, S., Spiers, C. J., Mercury, L., Fenter, P. A., and Hochella, M. F. M. F. Jr.), pp. 159–178. Universal Academy Press, Inc.Google Scholar
Nakatani, M. (2001) Conceptual and physical clarification of rate and state friction: frictional sliding and thermally activated rheology. Journal of Geophysical Research 106, 13 347–13 380.CrossRefGoogle Scholar
Nataf, H.-C., Nakanishi, I., and Anderson, D. L. (1984) Anisotropy and shear wave heterogeneities in the upper mantle. Geophysical Research Letters 11, 109–112.CrossRefGoogle Scholar
Nataf, H.-C., Nakanishi, I., and Anderson, D. L. (1986) Measurement of mantle wave velocities and inversion for lateral heterogeneities and anisotropy, 3. Inversion. Journal of Geophysical Research 91, 7261–7307.CrossRefGoogle Scholar
Navrotsky, A. (1994) Physics and Chemistry of Earth Materials. Cambridge University Press.CrossRefGoogle Scholar
Nes, E., Hirsch, J., and Lücke, K. (1984) On the origin of the cube recrystallization texture in directionally solidified aluminium. Seventh International Conference on Texture of Materials, 663–674.Google Scholar
Newman, J., Lamb, W. M., Drury, M. R., and Vissers, R. L. M. (1999) Deformation processes in a peridotite shear zone: reaction-softening by a H2O-deficit, continuous net transfer reaction. Tectonophysics 303, 193–222.CrossRefGoogle Scholar
Nicolas, A. (1978) Stress estimates from structural studies in some mantle peridotites. Philosophical Transactions of the Royal Society of London A 288, 49–57.CrossRefGoogle Scholar
Nicolas, A. (1993) Why fast polarization direction of SKS seismic waves are parallel to mountain belts. Physics of Earth and Planetary Interiors 78, 337–342.CrossRefGoogle Scholar
Nicolas A. and Christensen N. I. (1987) Formation of anisotropy in upper mantle peridotite: a review. In Composition, Structure and Dynamics of the Lithosphere–Asthenosphere System (ed. Fuchs, K. and Foridevaux, C.), pp. 111–123. American Geophysical Union.CrossRefGoogle Scholar
Nieh, T. G., Wadsworth, J., and Sherby, O. D. (1997) Superplasticity in Metals and Ceramics. Cambridge University Press.CrossRefGoogle Scholar
Nimmo, F., Price, G. D., Brodholt, J. P., and Gubbins, D. (2004) The influence of potassium on core and geodynamo evolution. Geophysical Journal International 156, 363–376.CrossRefGoogle Scholar
Nishihara, Y., Shinmei, T., and Karato, S. (2006) Grain-growth kinetics in wadsleyite: effects of chemical environment. Physics of Earth and Planetary Interiors 154, 30–43.CrossRefGoogle Scholar
Nishihara, Y., Shinmei, T., and Karato, S. (2007a) Effects of chemical environments on the hydrogen-defects in wadsleyite. American Mineralogist in press.Google Scholar
Nishihara, Y., Tinker, D., Xu, Y., et al. (2007b) Plastic deformation of wadsleyite and olivine at high-pressures and high-temperatures using a rotational Drickamer apparatus (RDA). Physics of the Earth and Planetary Interiors submitted.Google Scholar
Nitsan, U. (1974) Stability field of olivine with respect to oxidation and reduction. Journal of Geophysical Research 79, 706–711.CrossRefGoogle Scholar
Nixon P. H. and Boyd F. R. (1973) Petrogenesis of the granular and sheared ultrabasic nodule site in kimberlites. In Lesotho Kimberlites (ed. Nixon, P. H.), pp. 48–56. Lesotho National Development.Google Scholar
Nolet, G. (1987a) Seismic Tomography. Reidel Publishing Company.CrossRefGoogle Scholar
Nolet G. (1987b) Waveform tomography. In Seismic Tomography (ed. Nolet, G.), pp. 301–322. Reidel Publishing Company.CrossRefGoogle Scholar
Nolet G. (2000) Interpreting seismic waveforms: forward and inverse problems for heterogeneous media. In Problems in Geophysics for the New Millennium (ed. Boschi, E., Ekström, G., and Morelli, A.), pp. 373–401. Edrice Compositori.Google Scholar
Nolet, G. and Dahlen, F. A. (2000) Wave front healing and the evolution of seismic delay times. Journal of Geophysical Research 105, 19,043–19,054.CrossRefGoogle Scholar
Nolet, G. and Zielhuis, A. (1994) Low S velocities under the Tornquist–Teisseyre zone: evidence for water injection into the transition zone by subduction. Journal of Geophysical Research 99, 15 813–15 820.CrossRefGoogle Scholar
Nowick, A. S. and Berry, B. S. (1972) Anelastic Relaxation in Crystalline Solids. Academic Press.Google Scholar
Nye, J. F. and Mae, S. (1972) The effect of non-hydrostatic stress on intergranular water veins and lenses in ice. Journal of Glaciology 11, 81–101.CrossRefGoogle Scholar
O'Connell, R. J. (1977) On the scale of mantle convection. Tectonophysics 38, 119–136.CrossRefGoogle Scholar
O'Connell, R. J. and Budianski, B. (1974) Seismic velocities in dry and saturated cracked solids. Journal of Geophysical Research 79, 5412–5426.CrossRefGoogle Scholar
O'Connell, R. J. and Budianski, B. (1977) Viscoelastic properties of fluid-saturated cracked solids. Journal of Geophysical Research 82, 5719–5735.CrossRefGoogle Scholar
O'Neill, H. S. C., McCammon, C. A., Canil, D., et al. (1993) Mössbauer spectroscopy of mantle transition zone phases and determination of minimum Fe3 + content. American Mineralogist 78, 456–460.Google Scholar
Obata, M. and Karato, S. (1995) Ultramafic pseudotachylyte from Balmuccia peridotite, Ivrea–Verbana zone, northern Italy. Tectonophysics 242, 313–328.CrossRefGoogle Scholar
Oganov, A. R., Martonak, R., Laio, A., Raiteri, P., and Parrinello, M. (2005) Anisotropy of Earth's D″ layer and stacking faults in the MgSiO3 post-perovskite phase. Nature 438, 1142–1144.CrossRefGoogle ScholarPubMed
Oganov, A. R. and Ono, S. (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D″ layer. Nature 430, 445–448.CrossRefGoogle Scholar
Ogawa, M. (1987) Shear instability in a viscoelastic material as the cause for deep earthquakes. Journal of Geophysical Research 92, 13 801–13 810.CrossRefGoogle Scholar
Ohtani, E. (1988) Chemical stratification of the mantle formed by melting in the early stage of the terrestrial evolution. Tectonophysics 154, 201–210.CrossRefGoogle Scholar
Ohtani, E., Mizobata, H., and Yurimoto, H. (2000) Stability of dense hydrous magnesium silicate phases in the system Mg2SiO4–H2O and MgSiO3–H2O at pressures up to 27 GPa. Physics and Chemistry of Minerals 27, 533–544.CrossRefGoogle Scholar
Ohuchi, T. and Nakamura, M. (2006) Grain growth in the forsterite–diopside system. Physics of the Earth and Planetary Interiors 160, 1–21.CrossRefGoogle Scholar
Oki, S. (2006) Whole mantle Vp/Vs tomography, University of Tokyo.Google Scholar
Omori, S., Kamiya, S., Maruyama, S., and Zhao, D. (2002) Morphology of the intraslab seismic zone and devolatilization phase equilibria of the subducting slab peridotite. Bulletin of Earthquake Research Institute 76, 455–478.Google Scholar
Orowan, E. (1934) Zur Kristallplastizität. Zeitschrift für Phisik 89, 605–659.CrossRefGoogle Scholar
Ozawa, K. (1989) Stress induced Al-Cr zoning of spinel in deformed peridotite. Nature 338, 141–144.CrossRefGoogle Scholar
Panasyuk, S. V. and Hager, B. H. (1998) A model of transformational superplasticity in the upper mantle. Geophysical Journal International 133, 741–755.CrossRefGoogle Scholar
Panning, M. and Romanowicz, B. (2004) Inferences on flow at the base of the Earth's mantle based on seismic anisotropy. Science 303, 351–353.CrossRefGoogle ScholarPubMed
Park, J. and Levin, V. (2002) Seismic anisotropy: tracing plate dynamics in the mantle. Science 296, 485–489.CrossRefGoogle ScholarPubMed
Park, K. T. and Mohamed, F. A. (1995) Creep strengthening in a discontinuous SiC–Al composite. Metallurgical Materials Transaction A 26, 3119–3129.CrossRefGoogle Scholar
Parmentier, E. M. (1981) A possible mantle instability due to superplastic deformation associated with phase transitions. Geophysical Research Letters 8, 143–146.CrossRefGoogle Scholar
Pasteris, J. D. (1984) Kimberlites: complex mantle melts. Annual Review of Earth and Planetary Sciences 12, 133–153.CrossRefGoogle Scholar
Paterson, M. S. (1970) A high temperature high pressure apparatus for rock deformation. International Journal of Rock Mechanics and Mining Sciences 7, 517–526.CrossRefGoogle Scholar
Paterson, M. S. (1973) Non-hydrostatic thermodynamics and its geologic applications. Review of Geophysics and Space Physics 11, 355–389.CrossRefGoogle Scholar
Paterson, M. S. (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glass and similar materials. Bulletin Mineralogie 105, 20–29.Google Scholar
Paterson, M. S. (1983) Creep of transforming materials. Mechanics of Materials 2, 103–109.CrossRefGoogle Scholar
Paterson M. S. (1989) The interaction of water with quartz and its influence in dislocation flow – an overview. In Rheology of Solids and of the Earth (ed. Karato, S. and Toriumi, M.), pp. 107–142. Oxford University Press.Google Scholar
Paterson M. S. (1990) Rock deformation experimentation. In The Brittle–Ductile Transition in Rocks: the Heard Volume (ed. Duba, A. G., Durham, W. B., Handin, J. W., and Wang, H. F.), pp. 187–194. American Geophysical Union.CrossRefGoogle Scholar
Paterson, M. S. and Kekulawala, K. R. S. S. (1979) The role of water in quartz deformation. Bulletin Mineralogie 102, 92–98.Google Scholar
Paterson, M. S. and Olgaard, D. L. (2000) Rock deformation tests to large shear strains in torsion. Journal of Structural Geology 22, 1341–1358.CrossRefGoogle Scholar
Paterson, M. S. and Weiss, L. E. (1961) Symmetry concepts in the structural analysis of deformed rocks. Geological Society of America Bulletin 72, 841–882.CrossRefGoogle Scholar
Paterson, M. S. and Wong, T.-F. (2005) Experimental Rock Deformation – The Brittle Field. Springer-Verlag.Google Scholar
Pauling, L. (1960) The Nature of the Chemical Bonds. Cornell University Press.Google Scholar
Pearson D. G. (1999) Evolution of cratonic lithospheric mantle: an isotopic perspective. In Mantle petrology: Field Observations and High Pressure Experimentation (ed. Fei, Y., Bertka, C. M., and Mysen, B. O.), pp. 57–78. The Geochemical Society.Google Scholar
Peltier, W. R. (1984) The thickness of the continental lithosphere. Journal of Geophysical Research 89, 11303–11316.CrossRefGoogle Scholar
Peltier, W. R. (1985a) New constraints on transient lower mantle rheology and internal mantle buoyancy from glacial rebound data. Nature 318, 614–617.CrossRefGoogle Scholar
Peltier, W. R. (1985b) The LAGEOS constraint on deep mantle viscosity: results from a new normal mode method for the inversion of viscoelastic spectra. Journal of Geophysical Research 90, 9411–9421.CrossRefGoogle Scholar
Peltier W. R. (1989) Mantle viscosity. In Mantle Convection (ed. Peltier, W. R.), pp. 389–478. Gordon & Breach.Google Scholar
Peltier, W. R. (1998) Postglacial variation in the level of the sea: implications for climate dynamics and solid-Earth geophysics. Review of Geophysics 36, 603–689.CrossRefGoogle Scholar
Pharr, G. M. and Ashby, M. F. (1983) On creep enhanced by a liquid phase. Acta Metallurgica 31, 129–138.CrossRefGoogle Scholar
Phipps, Morgan J. and Shearer, P. M. (1993) Seismic constraints on mantle flow and topography of the 660-km discontinuity. Nature 365, 506–511.Google Scholar
Pieri, M., Kunze, K., Burlini, L., Stretton, I., Olgaard, D. L., Burg, J.-P., and Wenk, H.-R. (2001) Texture development of calcite by deformation and dynamic recrystallization at 1000 K during torsion experiments of marble to large strains. Tectonophysics 330, 119–142.CrossRefGoogle Scholar
Pitzer, K. S. and Sterner, S. M. (1994) Equations of state valid continuously from zero to extreme pressures for H2O and CO2. Journal of Chemical Physics 101, 3111–3116.CrossRefGoogle Scholar
Plank, T. and Langmuir, A. H. (1992) Effects of melting regime on the composition of the oceanic crust. Journal of Geophysical Research 97, 19 749–19 770.CrossRefGoogle Scholar
Poirier, J.-P. (1976a) On the symmetrical role of cross-slip of screw dislocations and climb of edge dislocations as recovery processes controlling high-temperature creep. Revue de Physique Appliquée 11, 731–738.CrossRefGoogle Scholar
Poirier, J.-P. (1976b) Plasticité a Haute Température des Solides Cristallins. Editions Eyrolles.Google Scholar
Poirier, J.-P. (1980) Shear localization and shear instability in materials in the ductile field. Journal of Structural Geology 2, 135–142.CrossRefGoogle Scholar
Poirier, J.-P. (1982) On transformation plasticity. Journal of Geophysical Research 87, 6791–6797.CrossRefGoogle Scholar
Poirier, J.-P. (1985) Creep of Crystals. Cambridge University Press.CrossRefGoogle Scholar
Poirier, J.-P. (1988) Transport properties of liquid metals and viscosity of the Earth's core. Geophysical Journal of Royal Astronomical Society 92, 99–105.CrossRefGoogle Scholar
Poirier, J.-P. (1994) Light elements in the Earth's outer core: a critical review. Physics of Earth and Planetary Interiors 85, 319–337.CrossRefGoogle Scholar
Poirier, J.-P. (2000) Introduction to the Physics of Earth's Interior. Cambridge University Press.CrossRefGoogle Scholar
Poirier, J.-P. and Guillopé, M. (1979) Deformation induced recrystallization of minerals. Bulletin Mineralogie 102, 67–74.Google Scholar
Poirier, J.-P. and Liebermann, R. C. (1984) On the activation volume for creep and its variation with depth in the Earth's lower mantle. Physics of Earth and Planetary Interiors 35, 283–293.CrossRefGoogle Scholar
Poirier, J.-P., Peyronneau, J., Gesland, J. Y., and Brebec, G. (1983) Viscosity and conductivity of the lower mantle: and experimental study on a MgSiO3 analogue, KZnF3. Physics of Earth and Planetary Interiors 32, 273–287.CrossRefGoogle Scholar
Poirier, J.-P., Peyronneau, J., Madon, M., Guyot, F., and Revcoleshi, A. (1986) Eutectoid phase transformation of olivine and spinel into perovskite and rock salt structures. Nature 321, 603–605.CrossRefGoogle Scholar
Poirier, J.-P., Sotin, C., and Peyronneau, J. (1981) Viscosity of high-pressure ice VI and evolution and dynamics of Ganymede. Nature 292, 225–227.CrossRefGoogle Scholar
Poirier, J.-P. and Vergobbi, B. (1978) Splitting of dislocations in olivine, cross-slip controlled creep and mantle rheology. Physics of Earth and Planetary Interiors 16, 370–378.CrossRefGoogle Scholar
Polanyi, M. (1934) Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte. Zeitschrift für Physik 89, 660–664.CrossRefGoogle Scholar
Pollack, H. K. (1986) Cratonization and the thermal evolution of the mantle. Earth and Planetary Science Letters 80, 175–182.CrossRefGoogle Scholar
Pollack, H. K., Hurter, S. J., and Johnson, J. R. (1993) Heat flow from the Earth's interior: analysis of the global data. Review of Geophysics 31, 267–280.CrossRefGoogle Scholar
Castañeda, Ponte P. and Willis, J. R. (1988) On the overall properties of nonlinearly viscous composites. Proceedings of the Royal Society of London A 416, 217–244.CrossRefGoogle Scholar
Post, A. and Tullis, J. A. (1999) A recrystallized grain size piezometer for experimentally deformed feldspar. Tectonophysics 303, 159–173.CrossRefGoogle Scholar
Post, A. D., Tullis, J., and Yund, R. A. (1996) Effects of chemical environment on dislocation creep of quartzite. Journal of Geophysical Research 101, 22 143–22 155.CrossRefGoogle Scholar
Post, R. L. (1977) High-temperature creep of Mt. Burnett dunite. Tectonophysics 42, 75–110.CrossRefGoogle Scholar
Prigogine, I. and Defay, R. (1950) Thermodynamique Chemique. Editions Desoer.Google Scholar
Prior, D. and Wheeler, J. (1999) Feldspar fabrics in a greenshist facies albite-rich mylonite from electron backscatter diffraction. Tectonophysics 303, 29–49.CrossRefGoogle Scholar
Przystupa, M. A. and Ardell, A. J. (2002) Predictive capabilities of the dislocation-network theory of Harper–Dorn creep. Metallurgical and Materials Transactions A 33, 231–239.CrossRefGoogle Scholar
Raitt, R. W., Shor, G. G., Francis, T. J. G., and Morris, G. B. (1969) Anisotropy of the Pacific upper mantle. Journal of Geophysical Research 74, 3095–3109.CrossRefGoogle Scholar
Raj, R. (1982) Separation of cavitation-strain and creep strain during deformation. Journal of the American Ceramic Society 65, 46–48.CrossRefGoogle Scholar
Raj, R. (1986) Unstable spreading of a film inclusion in a grain boundary under normal stress. Journal of the American Ceramic Society 69, 708–712.CrossRefGoogle Scholar
Raj, R. and Ashby, M. F. (1971) On grain boundary sliding and diffusional creep. Metallurgical Transactions 2, 1113–1127.CrossRefGoogle Scholar
Raj, R. and Chung, C. K. (1981) Solution-precipitation creep in glass ceramics. Acta Metallurgica 29, 159–166.CrossRefGoogle Scholar
Raleigh, C. B., Kirby, S. H., Carter, N. L., and Avé Lallemant, H. G. (1971) Slip and the clinoenstatite transformation as competing processes in enstatite. Journal of Geophysical Research 76, 4011–4022.CrossRefGoogle Scholar
Raleigh, C. B. and Paterson, M. S. (1965) Experimental deformation of serpentine and its tectonic implications. Journal of Geophysical Research 70, 3965–3985.CrossRefGoogle Scholar
Randle, V. (2003) Microtexture Determination and its Applications. The Institute of Materials, Minerals and Mining.Google Scholar
Rauch, M. and Keppler, H. (2002) Water solubility in orthopyroxene. Contributions to Mineralogy and Petrology 143, 525–536.CrossRefGoogle Scholar
Regan, J. and Anderson, D. L. (1984) Anisotropic models of the upper mantle. Physics of Earth and Planetary Interiors 35, 227–263.CrossRefGoogle Scholar
Regenauer-Lieb, K. and Yuen, D. A. (2003) Modeling shear zones in geological and planetary sciences: solid- and fluid-mechanical approaches. Review of Earth Sciences 63, 295–349.CrossRefGoogle Scholar
Renner, J., Stöckhert, B., Zerbian, A., Roller, K., and Rummel, F. (2001) An experimental study into the rheology of synthetic polycrystalline coesite aggregates. Journal of Geophysical Research 106, 19 411–19 429.CrossRefGoogle Scholar
Reppich, B., Haasen, P., and Ilschner, B. (1964) Kriechen von Silizium-Einkristallen. Acta Metallurgica 12, 1283–1288.CrossRefGoogle Scholar
Revenaugh, J. and Jordan, T. H. (1991) Mantle layering from ScS reverberations, 3. Upper mantle. Journal of Geophysical Research 96, 19 781–19 810.CrossRefGoogle Scholar
Revenaugh, J. and Sipkin, S. A. (1994) Seismic evidence for silicate melt atop the 410-km mantle discontinuity. Nature 369, 474–476.CrossRefGoogle Scholar
Ribe, N. M. (1989a) A continuum theory for lattice preferred orientation. Geophysical Journal 97, 199–207.CrossRefGoogle Scholar
Ribe, N. M. (1989b) Seismic anisotropy and mantle flow. Journal of Geophysical Research 94, 4213–4223.CrossRefGoogle Scholar
Ribe, N. M. and Yu, Y. (1991) A theory of plastic deformation and textural evolution of olivine polycrystals. Journal of Geophysical Research 96, 8325–8335.CrossRefGoogle Scholar
Ricard, Y., Bercovici, D., and Schubert, G. (2001) A two-phase model for compaction and damage 2. Applications to compaction, deformation, and the role of interfacial tension. Journal of Geophysical Research 106, 8907–8924.CrossRefGoogle Scholar
Rice J. R. (1976) The localization of plastic deformation. In Theoretical and Applied Mechanics (ed. Koitier, W. T.), pp. 207–220. North-Holland.Google Scholar
Richard, G., Monnereau, M., and Ingrin, J. (2002) Is the transition zone an empty water reservoir? Inference from numerical model of mantle dynamics. Earth and Planetary Science Letters 205, 37–51.CrossRefGoogle Scholar
Richards, M. A. and Hager, B. H. (1984) Geoid anomalies in the dynamic Earth. Journal of Geophysical Research 89, 5987–6002.CrossRefGoogle Scholar
Richards, M. A., Yang, W. S., Baumgardnner, J. R., and Bunge, H.-P. (2001) Role of a low-viscosity zone in stabilizing plate tectonics: implications for comparative planetology. Geochemistry, Geophysics, Geosystems 2, 2000GC000115.CrossRefGoogle Scholar
Ricoult, D. L. and Kohlstedt, D. L. (1983) Structural width of low-angle grain boundaries in olivine. Physics and Chemistry of Minerals 9, 133–138.CrossRefGoogle Scholar
Riedel, M. R. and Karato, S. (1996) Microstructural development during nucleation and growth. Geophysical Journal International 125, 397–414.CrossRefGoogle Scholar
Riedel, M. R. and Karato, S. (1997) Grain-size evolution in subducted oceanic lithosphere associated with the olivine-spinel transformation and its effects on rheology. Earth and Planetary Science Letters 148, 27–43.CrossRefGoogle Scholar
Ringwood, A. E. (1975) Composition and Structure of the Earth's Mantle. McGraw-Hill.Google Scholar
Ritsema, J., Heijst, H. J., and Woodhouse, J. H. (1999) Complex shear wave velocity structure imaged beneath Africa and Iceland. Science 286, 1925–1928.CrossRefGoogle ScholarPubMed
Rogers, H. C. (1979) Adiabatic plastic deformation. Annual Review of Materials Science 9, 283–311.CrossRefGoogle Scholar
Rokosky, J. M., Lay, T., Garnero, E. J., and Russell, S. A. (2004) High-resolution investigation of shear wave anisotropy in D″ beneath the Cocos Plate. Geophysical Research Letters 31, 10.1029/2003GL018902.CrossRefGoogle Scholar
Romanowicz, B. (1994) Anelastic tomography: a new perspective on upper mantle thermal structure. Earth and Planetary Science Letters 128, 113–121.CrossRefGoogle Scholar
Romanowicz, B. (1995) A global tomographic model of shear attenuation in the upper mantle. Journal of Geophysical Research 100, 12 375–12 394.CrossRefGoogle Scholar
Romanowicz, B. (2003) Global mantle tomography: progress status in the past 10 years. Annual Review of Earth and Planetary Sciences 31, 303–328.CrossRefGoogle Scholar
Romanowicz B. and Durek J. J. (2000) Seismological constraints on attenuation in the Earth: a review. In Earth's Deep Interior (ed. Karato, S., Forte, A. M., Liebermann, R. C., Masters, G., and Stixrude, L.), pp. 161–179. American Geophysical Union.Google Scholar
Roscoe, R. (1952) The viscosity of suspensions of rigid spheres. British Journal of Applied Physics 3, 267–269.CrossRefGoogle Scholar
Ross, J. V., Avé Lallemant, H. G., and Carter, N. L. (1979) Activation volume for creep in the upper mantle. Science 203, 261–263.CrossRefGoogle ScholarPubMed
Ross, J. V., Avé Lallemant, H. G., and Carter, N. L. (1980) Stress dependence of recrystallized grain and subgrain size in olivine. Tectonophysics 70, 39–61.CrossRefGoogle Scholar
Ross, J. V., Bauer, S. J., and Hansen, F. D. (1987) Textural evolution of synthetic anhydrite–halite mylonites. Tectonophysics 140, 307–326.CrossRefGoogle Scholar
Ross, J. V. and Nielsen, K. C. (1978) High-temperature flow of wet polycrystalline enstatite. Tectonophysics 44, 233–261.CrossRefGoogle Scholar
Rossman, G. R. and Aines, R. D. (1991) The hydrous components in garnets: grossular-hydrogrossular. American Mineralogist 76, 1153–1164.Google Scholar
Rossman, G. R., Beran, A., and Lange, M. A. (1989) The hydrous component of pyrope from the Dora Maira Massif, western Alps. European Journal of Mineralogy 1, 151–154.CrossRefGoogle Scholar
Roth, E. G., Wiens, D. A., Dorman, L. M., Hildebrand, J., and Webb, S. C. (1999) Seismic attenuation tomography of the Toga-Fiji region using phase pair methods. Journal of Geophysical Research 104, 4795–4809.CrossRefGoogle Scholar
Royden, L. H., Burchfiel, B. C., King, R. W., Chen, Z., Shen, F., and Liu, Y. (1997) Surface deformation and lower crust flow in eastern Tibet. Science 276, 788–790.CrossRefGoogle ScholarPubMed
Ruano, O. A., Wadsworth, J., Wolfensteine, J., and Sherby, O. D. (1993) Evidence for Nabarro–Herring creep in metals: fiction or reality?Materials Science and Engineering A 165, 133–141.CrossRefGoogle Scholar
Rubie, D. C. (1983) Reaction-enhanced ductility: the role of solid–solid univariant reactions in deformation of the crust and mantle. Tectonophysics 96, 331–352.CrossRefGoogle Scholar
Rubie, D. C. (1984) The olivine –> spinel transformation and the rheology of subducting lithosphere. Nature 308, 505–508.CrossRefGoogle Scholar
Rubie, D. C., Karato, S., Yan, H., and O'Neill, H. S. C. (1993) Low differential stress and controlled chemical environment in multianvil high-pressure experiments. Physics and Chemistry of Minerals 20, 315–322.CrossRefGoogle Scholar
Rubie, D. C. and Ross, C. R. II. (1994) Kinetics of the olivine–spinel transformation in subducting lithosphere: experimental constraints and implications for deep slab processes. Physics of Earth and Planetary Interiors 86, 223–241.CrossRefGoogle Scholar
Rudnick, R. L. and Fountain, D. M. (1995) Nature and composition of the continental lower crust: the lower crustal perspective. Review of Geophysics and Space Physics 33, 267–309.CrossRefGoogle Scholar
Rudnick, R. L., McDonough, W. F., and O'Connell, R. J. (1998) Thermal structure, thickness and comopsition of continental lithosphere. Chemical Geology 145, 395–411.CrossRefGoogle Scholar
Rudnicki, J. W. and Rice, J. R. (1975) Conditions for localization of deformation in pressure-sensitive dilatant materials. Journal of Mechanics and Physics of Solids 23, 371–394.CrossRefGoogle Scholar
Ruina, A. (1983) Slip instability and state variable friction laws. Journal of Geophysical Research 88, 10 359–10 370.CrossRefGoogle Scholar
Ruoff, A. L. (1965) Mass transfer problems in ionic crystals with charge neutrality. Journal of Applied Physics 36, 2903–2907.CrossRefGoogle Scholar
Rüpke, L. H., Morgan, Phipps J., Hort, M., and Connolly, J. A. D. (2004) Serpentine and the subduction zone water cycle. Earth and Planetary Science Letters 223, 17–34.CrossRefGoogle Scholar
Russo, R. and Silver, P. G. (1994) Trench-parallel flow beneath the Nazca plate from seismic anisotropy. Science 263, 1105–1111.CrossRefGoogle ScholarPubMed
Rutter, E. H. (1972) The influence of interstitial water on the rheological behaviour of calcite rocks. Tectonophysics 14, 13–33.CrossRefGoogle Scholar
Rutter, E. H. (1976) The kinetics of rock deformation by pressure solution. Philosophical Transactions of the Royal Society of London A 283, 203–219.CrossRefGoogle Scholar
Rutter, E. H. (1983) Pressure solution in nature, theory and experiment. Journal of the Geological Society of London 140, 725–740.CrossRefGoogle Scholar
Rutter, E. H. (1986) On the nomenclature of failure transitions in rocks. Tectonophysics 122, 381–387.CrossRefGoogle Scholar
Rutter, E. H. (1995) Experimental study of the influence of stress, temperature, and strain on the dynamic recrystallization of Carrara marble. Journal of Geophysical Research 100, 24 651–24 663.CrossRefGoogle Scholar
Rutter, E. H. (1998) Use of extension testing to investigate the influence of finite strain on the rheological behaviour of marble. Journal of Structural Geology 20, 243–254.CrossRefGoogle Scholar
Rutter, E. H. and Brodie, K. (1988) The role of tectonic grainsize reduction in the rheological stratification of the lithosphere. Geologische Rundschau 77, 295–308.CrossRefGoogle Scholar
Rutter E. H. and Brodie K. H. (1992) Rheology of the lower crust. In Continental Lower Crust (ed. Fountain, D. M., Arculus, R., and Key, R. W.), pp. 201–267. Elsevier.Google Scholar
Rutter, E. H. and Brodie, K. H. (2004) Experimental grain size-sensitive flow of hot-pressed Brasilian quartz aggregates. Journal of Structural Geology 26, 2011–2023.CrossRefGoogle Scholar
Rutter, E. H., Casey, M., and Burlini, L. (1994) Preferred crystallographic orientation development during the plastic and superplastic flow of calcite rocks. Journal of Structural Geology 16, 1431–1446.CrossRefGoogle Scholar
Rybacki, E. and Dresen, G. (2000) Dislocation and diffusion creep of synthetic anorthite aggregates. Journal of Geophysical Research 105, 26,017–26,036.CrossRefGoogle Scholar
Rybacki, E. and Dresen, G. (2004) Deformation mechanism maps for feldspar rocks. Tectonophysics 382, 173–187.CrossRefGoogle Scholar
Rybacki, E., Gootschalk, M., Wirth, R., and Dresen, G. (2006) Influence of water fugacity and activation volume on the flow properties of fine-grained anorthite aggregates. Journal of Geophysical Research 111, 10.1029/2005JB003663.CrossRefGoogle Scholar
Rybacki, E., Paterson, M. S., Wirth, R., and Dreibus, G. (2003) Rheology of calcite–quartz aggregates deformed to large strain in torsion. Journal of Geophysical Research 108, 10.1029/2002JB001833.CrossRefGoogle Scholar
Rychert, C. A., Fischer, K. M., and Rodenay, S. (2005) A sharp lithosphere–asthenosphere boundary imaged beneath eastern North America. Nature 434, 542–545.CrossRefGoogle Scholar
Ryerson, F. J., Weed, H. C., and Piwinskii, A. J. (1988) Rheology of subliquidus magmas 1. Picritic compositions. Journal of Geophysical Research 93, 3421–3436.CrossRefGoogle Scholar
Sabadini, R., Smith, B. K., and Yuen, D. A. (1987) Consequences of experimental transient rheology. Geophysical Research Letters 14, 816–819.CrossRefGoogle Scholar
Sakai, T. and Jonas, J. J. (1984) Dynamic recrystallization: mechanical and microstructural considerations. Acta Metallurgica 32, 189–209.CrossRefGoogle Scholar
Saltzer, R. L., Gaherty, J. B., and Jordan, T. H. (2000) How are vertical shear wave splitting measurements affected by variations in the orientation of azimuthal anisotropy with depth?Geophysical Journal International 141, 374–390.CrossRefGoogle Scholar
Saltzer, R. L., Hilst, R. D., and Karason, H. (2001) Comparing P and S wave heterogeneity in the mantle. Geophysical Research Letters 28, 1335–1338.CrossRefGoogle Scholar
Sammis, C. G. and Dein, J. L. (1974) On the possibility of transformational superplasticity in the Earth's mantle. Journal of Geophysical Research 79, 2961–2965.CrossRefGoogle Scholar
Sammis, C. G., Smith, J. C., and Schubert, G. (1981) A critical assessment of estimation methods for activation volume. Journal of Geophysical Research 86, 10 707–10 718.CrossRefGoogle Scholar
Sammis, C. G., Smith, J. C., Schubert, G., and Yuen, D. A. (1977) Viscosity depth profile of the Earth's mantle: effect of polymorphic transitions. Journal of Geophysical Research 82, 3747–3761.CrossRefGoogle Scholar
Sandström, R. (1977) Subgrain growth occurring by boundary migration. Acta Metallurgica 25, 905–911.CrossRefGoogle Scholar
Sato, H., Sacks, I. S., Murase, T., Munchill, G., and Fukuyama, H. (1989) Qp-melting temperature relation in peridotite at high pressure and temperature: attenuation mechanism and implications for the mechanical properties of the upper mantle. Journal of Geophysical Research 94, 10 647–10 661.CrossRefGoogle Scholar
Sato M. (1971) Electrochemical measurements and control of oxygen fugacity and other gaseous fugacities with solid electrolyte sensors. In Research Techniques for High Pressure and High Temperature (ed. Ulmer, G. C.), pp. 43–99. Springer-Verlag.CrossRefGoogle Scholar
Savage, M. K. (1999) Seismic anisotropy and mantle deformation: what have we learned from shear wave splitting?Review of Geophysics 37, 65–106.CrossRefGoogle Scholar
Saxena, S. K., Dubrovinski, L. S., and Lazor, P. (1996) Stability of perovskite (MgSiO3) in the Earth's lower mantle. Science 274, 1357–1359.CrossRefGoogle Scholar
Schmalzried H. (1995) Chemical Kinetics of Solids. VCH.
Schmeling, H. (1985) Numerical models on the influence of partial melt on elastic, anelastic and electric properties of rocks. Part I: elasticity and anelasticity. Physics of Earth and Planetary Interiors 41, 34–57.CrossRefGoogle Scholar
Schmeling, H. (1987) On the interaction between small- and large-scale convection and postglacial rebound flow in a power-law mantle. Earth and Planetary Science Letters 84, 254–262.CrossRefGoogle Scholar
Schmid S. M. and Casey M. (1986) Complete fabric analysis of some commonly observed quartz c-axis patterns. In Mineral and Rock Deformation: Laboratory Studies, The Paterson Volume (ed. Hobbs, B. E. and Heard, H. C.), pp. 263–286. American Geophysical Union.CrossRefGoogle Scholar
Schmidt, C., Bruhn, D., and Wirth, R. (2003) Experimental evidence of transformation plasticity in silicates: mimimum of creep strength in quartz. Earth and Planetary Science Letters 205, 273–280.CrossRefGoogle Scholar
Scholz, C. H. (2002) The Mechanics of Earthquake and Faulting. Cambridge University Press.CrossRefGoogle Scholar
Schubert, G., Turcotte, D. L., and Olson, P. (2001) Mantle Convection in the Earth and Planets. Cambridge University Press.CrossRefGoogle Scholar
Schutt, D. L. and Lesher, C. E. (2006) Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite. Journal of Geophysical Research 111, 10.1029/2003JB002950.CrossRefGoogle Scholar
Sclater, J. C., Parsons, B., and Jaupart, C. (1981) Oceans and continents: similarities and differences in the mechanisms of heat loss. Journal of Geophysical Research 86, 11535–11552.CrossRefGoogle Scholar
Sclater, J. G., Jaupart, C., and Galson, D. (1980) The heat flow through the oceanic and continental crust and the heat loss of the earth. Review of Geophysics and Space Physics 18, 269–312.CrossRefGoogle Scholar
Scott, D. R. and Stevenson, D. J. (1984) Magma solitons. Geophysical Research Letters 11, 1161–1164.CrossRefGoogle Scholar
Scott, T. and Kohlstedt, D. L. (2006) The effect of large melt fraction on the deformation behavior of peridotite. Earth and Planetary Science Letters 246, 177–187.CrossRefGoogle Scholar
Secco R. A. (1995) Viscosity of the outer core. In Mineral Physics & Crystallography (ed. Ahrens, T. H.), pp. 218–226. American Geophysical Union.CrossRefGoogle Scholar
Seeger A. and Schiller P. (1966) Kinks in dislocation lines and their effects on the internal friction in crystals. In Physical Acoustics, Vol. III – Part A (ed. Mason, W. P.), pp. 361–495. Academic Press.Google Scholar
Selitser, S. I. and Morris, J. W. Jr. (1994) Substructure formation during plastic deformation. Acta Metallurgica et Materials 42, 3985–3991.CrossRefGoogle Scholar
Shankland, T. J. (1977) Elastic properties, chemical composition, and crystal structures of minerals. Geophysical Survey 3, 69–100.CrossRefGoogle Scholar
Shankland, T. J., O'Connell, R. J., and Waff, H. S. (1981) Geophysical constraints on partial melt in the upper mantle. Review of Geophysics and Space Physics 19, 394–406.CrossRefGoogle Scholar
Sharp, T. G., Bussod, G. Y., and Katsura, T. (1994) Misrostructures in beta-Mg1.8Fe0.2SiO4 experimentally deformed at transition-zone conditions. Physics of Earth and Planetary Interiors 86, 69–83.CrossRefGoogle Scholar
Shearer P. M. (2000) Upper mantle discontinuities. In Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scales (ed. Karato, S., Forte, A. M., Liebermann, R. C., Masters, G., and Stixrude, L.), pp. 115–131. American Geophysical Union.CrossRefGoogle Scholar
Shearer, P. M. and Masters, G. (1992) Global mapping of topography on the 660-km discontinuity. Nature 355, 791–796.CrossRefGoogle Scholar
Shen, G., Mao, H.-K., Hemley, R. J., and Duffy, T. S. (1998) Melting and crystal structure of iron at high pressures and temperatures. Geophysical Research Letters 25, 373–376.CrossRefGoogle Scholar
Shen, Y. and Blum, J. (2003) Seismic evidence for accumulated oceanic crust above the 660-km discontinuity beneath southern Africa. Geophysical Research Letters 30, 10.1029/2003GL017991.CrossRefGoogle Scholar
Sherby, O. D., Klundt, R. H., and Miller, A. L. (1977) Flow-stress, subgrain size and subgrain stability at elevated temperatures. Metallurgical Transactions A 8, 843–850.CrossRefGoogle Scholar
Sherby, O. D., Robbins, J. L., and Goldberg, A. (1970) Calculation of activation volumes for self-diffusion and creep at high temperatures. Journal of Applied Physics 41, 3961–3968.CrossRefGoogle Scholar
Shewmon, P. G. (1989) Diffusion in Solids. The Minerals, Metals & Materials Society.Google Scholar
Shieh, S. R., Duffy, T. S., and Li, B. (2002) Strength and elasticity of SiO2 across the stishovite–CaCl2-type phase boundary. Physical Review Letters 89, 10.1103/PhysRevLett.89.255507.CrossRefGoogle ScholarPubMed
Shim, S.-H., Duffy, T. S., and Shen, G. (2001) Stability and structure of MgSiO3 perovskite to 2300-kilometer depth in Earth's mantle. Science 293, 2437–2440.CrossRefGoogle ScholarPubMed
Shimamoto, T. and Logan, J. M. (1981) Effects of simulated gouges on the sliding behavior of Tennessee sandstone. Tectonophysics 75, 243–255.CrossRefGoogle Scholar
Shimamura, H., Asada, T., Suyehiro, K., Yamada, T., and Inatani, H. (1983) Longshot experiments to study velocity anisotropy in the oceanic lithosphere of the northwestern Pacific. Physics of Earth and Planetary Interiors 31, 348–362.CrossRefGoogle Scholar
Shimazu, Y. (1954) Equation of state of materials composing the Earth's interior. Journal of Earth Science, Nagoya University 2, 15–172.Google Scholar
Shimizu, I. (1992) Nonhydrostatic and nonequilibrium thermodynamics of deformable materials. Journal of Geophysical Research 97, 4587–4597.CrossRefGoogle Scholar
Shimizu, I. (1994) Rock deformation by pressure solution and its implications to the rheology of lithosphere: a review. Structural Geology 39, 153–164.Google Scholar
Shimizu, I. (1998) Stress and temperature dependence of recrystallized grain size: a subgrain misorientation model. Geophysical Research Letters 25, 4237–4240.CrossRefGoogle Scholar
Shimozuru, D. (1963) On the possibility of the existence of the molten portion in the upper mantle of the earth. Journal of Physics of the Earth 11, 49–55.CrossRefGoogle Scholar
Shinmei, T., Tomioka, N., Fujino, K., Kuroda, K., and Irifune, T. (1999) In situ X-ray diffraction of enstatite up to 12 GPa and 1473 K and equation of state. American Mineralogist 84, 1588–1594.CrossRefGoogle Scholar
Shito A., Karato S., Matsukage K. N., and Nishihara Y. (2006) Toward mapping water content, temperature and major element chemistry in Earth's upper mantle from seismic tomography. In Earth's Deep Water Cycle (ed. Jacobsen, S. D. and Lee, S.), pp. 225–236. American Geophysical Union.CrossRefGoogle Scholar
Shito, A., Karato, S., and Park, J. (2004) Frequency dependence of Q in Earth's upper mantle inferred from continuous spectra of body wave. Geophysical Research Letters 31, 10.1029/2004GL019582.CrossRefGoogle Scholar
Shito, A. and Shibutani, T. (2003a) Anelastic structure of the upper mantle beneath the northern Philippine Sea. Physics of Earth and Planetary Interiors 140, 319–329.CrossRefGoogle Scholar
Shito, A. and Shibutani, T. (2003b) Nature of heterogeneity of the upper mantle beneath the northern Philippine Sea as inferred from attenuation and velocity tomography. Physics of Earth and Planetary Interiors 140, 331–341.CrossRefGoogle Scholar
Sibson, R. H. (1975) Generation of pseudotachylyte by ancient seismic faulting. Geophysical Journal of Royal Astronomical Society 43, 775–794.CrossRefGoogle Scholar
Sibson, R. H. (1977) Fault rocks and fault mechanics. Journal of Geological Society of London 133, 191–213.CrossRefGoogle Scholar
Siegesmund, S., Takeshita, T., and Kern, H. (1989) Anisotropy of Vp and Vs in an amphibolite of the deeper crust and its relationship to the mineralogical, microstructural and textural characteristics of the rock. Tectonophysics 157, 25–38.CrossRefGoogle Scholar
Silver, P. G. (1996) Seismic anisotropy and mantle deformation: probing the depths of geology. Annual Review of Earth and Planetary Sciences 24, 385–432.CrossRefGoogle Scholar
Silver P. G., Mainprice D., Ben Ismail W., Tommasi A., and Barroul G. (1999) Mantle structural geology from seismic anisotropy. In Mantle Petrology: Field Observations and High Pressure Experimentation (ed. Fei, Y., Bertka, C. M., and Mysen, B. O.), pp. 79–103. The Geochemical Society.Google Scholar
Simpson, C. and Schmid, S. (1983) An evaluation of criteria to deduce the sense of movement in sheared rocks. Geological Society of America Bulletin 94, 1281–1288.2.0.CO;2>CrossRefGoogle Scholar
Singh, A. K. (1993) The lattice strain in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device. Journal of Applied Physics 73, 4278–4286.CrossRefGoogle Scholar
Singh, A. K., Mao, H.-K., Shu, J., and Hemley, R. J. (1998) Estimation of single-crystal elastic moduli from polycrystalline X-ray diffraction at high pressure: application to FeO and iron. Physical Review Letters 80, 2157–2160.CrossRefGoogle Scholar
Singh, S. C., Taylor, M. A. J., and Montagner, J.-P. (2000) On the presence of liquid in Earth's inner core. Science 287, 2471–2474.CrossRefGoogle ScholarPubMed
Sinogeikin, S. V. and Bass, J. D. (1999) Single-crystal elasticity of MgO at high pressure. Physical Review B 59, R14 141–R14 144.CrossRefGoogle Scholar
Sinogeikin, S. V. and Bass, J. D. (2002) Elasticity of majorite and a majorite–pyrope solid solution to high pressure: implications for the transition zone. Geophysical Research Letters 29, 10.1029/2001GL013937.CrossRefGoogle Scholar
Sinogeikin, S. V., Bass, J. D., and Katsura, T. (2003) Single-crystal elasticity of ringwoodite to high pressures and high temperatures: implications for 520 km seismic discontinuity. Physics of Earth and Planetary Interiors 136, 41–66.CrossRefGoogle Scholar
Sinogeikin, S. V., Chen, G., Neuville, D. R., Vaughan, M. T., and Lierbermann, R. C. (1998) Ultrasonic shear wave velocities of MgSiO3 perovskite at 8 GPa and 800 K and lower mantle composition. Science 281, 677–679.Google Scholar
Sipkin, S. and Jordan, T. H. (1979) Frequency dependence of QScS. Bulletin of Seismological Society of America 69, 1055–1079.Google Scholar
Skemer, P. A., Katayama, I., Jiang, Z., and Karato, S. (2005) The misorientation index: development of a new method for calculating the strength of lattice-preferred orientation. Tectonophysics 411, 157–167.CrossRefGoogle Scholar
Skemer, P. A., Katayama, I., and Karato, S. (2006) Deformation fabrics of a peridotite from Cima di Gagnone, central Alps, Switzerland: evidence of deformation under water-rich condition at low temperatures. Contributions to Mineralogy and Petrology 152, 43–51.CrossRefGoogle Scholar
Skinner, B. J., Porter, S. C., and Park, J. (2004) Dynamic Earth: an Introduction to Physical Geology. John Wiley & Sons.Google Scholar
Skogby, H. (1994) OH incorporation in synthetic clinopyroxene. American Mineralogist 79, 240–249.Google Scholar
Skogby, H., Bell, D. R., and Rossman, G. R. (1990) Hydroxide in pyroxene: variations in the natural environment. American Mineralogist 75, 764–774.Google Scholar
Skogby, H. and Rossman, G. R. (1989) OH− in pyroxene: an experimental study of incorporation mechanisms and stability. American Mineralogist 74, 1059–1069.Google Scholar
Smith B. K. (1985) The influence of defect crystallography on some properties of orthosilicates. In Metamorphic Reactions, Kinetics, Textures and Deformation (ed. , T. A. B. and Rubie, D. C.), pp. 98–117. Springer-Verlag.Google Scholar
Smith, B. K. and Carpenter, F. O. (1987) Transient creep in orthosilicates. Physics of Earth and Planetary Interiors 49, 314–324.CrossRefGoogle Scholar
Smith, G. P., Wiens, D. A., Fischer, K. M., Dorman, L. M., and Hildebrand, J. A. (2001) A complex pattern of mantle flow in the Lau back-arc. Science 292, 713–716.CrossRefGoogle Scholar
Smith, M. F. and Dahlen, F. A. (1981) The period and Q of the Chandler wobble. Geophysical Journal of Royal Astronomical Society 64, 223–281.CrossRefGoogle Scholar
Smith, M. L. and Dahlen, F. A. (1973) The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium. Journal of Geophysical Research 78, 3321–3333.CrossRefGoogle Scholar
Smyth, J. R., Bell, D. R., and Rossman, G. R. (1991) Incorporation of hydroxyl in upper-mantle clinopyroxenes. Nature 351, 732–735.CrossRefGoogle Scholar
Smyth, J. R. and Frost, D. J. (2002) The effect of water on the 410-km discontinuity: an experimental study. Geophysical Research Letters 29, 10.129/2001GL014418.CrossRefGoogle Scholar
Solomatov, V. S. (1996) Can hot mantle be stronger than cold mantle?Geophysical Research Letters 23, 937–940.CrossRefGoogle Scholar
Solomatov, V. S. (2001) Grain size-dependent viscosity convection and the thermal evolution of the Earth. Earth and Planetary Science Letters 191, 203–212.CrossRefGoogle Scholar
Solomatov, V. S., El-Khozondar, R., and Tikare, V. (2002) Grain size in the lower mantle: constraints from numerical modeling of grain growth in two-phase systems. Physics of Earth and Planetary Interiors 129, 265–282.CrossRefGoogle Scholar
Solomatov, V. S. and Moresi, L. N. (1996) Stagnant lid convection on Venus. Journal of Geophysical Research 101, 4737–4753.CrossRefGoogle Scholar
Solomon, S. C. (1972) Seismic wave attenuation and partial melting in the upper mantle of North America. Journal of Geophysical Research 77, 1483–1502.CrossRefGoogle Scholar
Solomon, S. C., Head, J. W., Kaula, W. M., et al. (1991) Venus tectonics: initial analysis from Magellan. Science 252, 297–312.CrossRefGoogle ScholarPubMed
Song, T.-R. A., Helmberger, D. V., and Grand, S. P. (2004) Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States. Nature 427, 530–533.CrossRefGoogle ScholarPubMed
Song, X. (1997) Anisotropy of the Earth's inner core. Review of Geophysics 35, 297–313.CrossRefGoogle Scholar
Song, X. and Helmberger, D. V. (1998) Seismic evidence for an inner core transition zone. Science 282, 924–927.CrossRefGoogle ScholarPubMed
Song, X. and Richards, P. G. (1996) Seismic evidence for the rotation of the inner core. Nature 382, 221–224.CrossRefGoogle Scholar
Souriau, A. (1998) Earth's inner core: is the rotation real?Science 281, 55–56.CrossRefGoogle Scholar
Souriau A. and Poupinet G. (2002) Inner core rotation: a critical appraisal. In Earth's Core: Dynamics, Structure, Rotation (ed. Dehant, V., Creager, K. C., Karato, S., and Zatman, S.), pp. 65–82.Google Scholar
Souriau, A. and Roudil, P. (1995) Attenuation in the uppermost inner core from broadband Geoscope PKP data. Geophysical Journal International 123, 572–587.CrossRefGoogle Scholar
Spetzler, H. A. and Anderson, D. L. (1968) The effect of temperature and partial melting on velocity and attenuation in a simple binary system. Journal of Geophysical Research 73, 6051–6060.CrossRefGoogle Scholar
Speziale S., Jiang F., and Duffy T. S. (2005) Compositional dependence of the elastic wave velocities of mantle minerals: implications for seismic properties of mantle rocks. In Earth's Deep Mantle (ed. Hilst, R. D. v. d., Bass, J. D., Matas, J., and Trampert, J.), pp. 301–320. American Geophysical Union.Google Scholar
Spiegelman, M. (2003) Linear analysis of melt band formation by simple shear. Geochemical Geophysical Geosystems 4, 10.1029/2002GC000499.Google Scholar
Spiegelman, M. and Elliott, T. (1993) Consequences of melt transport for uranium series disequilibrium in young lavas. Earth and Planetary Science Letters 118, 1–20.CrossRefGoogle Scholar
Spiegelman, M. and Kenyon, P. M. (1992) The requirement of chemical disequilibrium during magma migration. Earth and Planetary Science Letters 109, 611–620.CrossRefGoogle Scholar
Spiers C. J., De Meer S., Niemeijer A. R., and Zhang X. (2004) Kinetics of rock deformation by pressure solution and the role of thin aqueous films. In Physicochemistry of Water in Geological and Biological Systems (ed. Nakashima, S., Spiers, C. J., Mercury, L., Fenter, P. A., and Hochella, J. M. F.), pp. 129–158. Universal Academy Press.Google Scholar
Spiers C. J., Schutjens P. M. T. M., Brezesowsky P. H., et al. (1990) Experimental determination of constitutive parameters governing creep of rocksalt by pressure solution. In Deformation Mechanisms, Rheology and Tectonics (ed. Knipe, R. J. and Rutter, E. H.), pp. 215–227. The Geological Society.Google Scholar
Spingarn, J. R., Barnett, D. M., and Nix, W. D. (1979) Theoretical description of climb controlled steady state creep at high and intermediate temperatures. Acta Metallurgica 27, 1549–1562.CrossRefGoogle Scholar
Spingarn, J. R. and Nix, W. D. (1978) Diffusional creep and diffusionally accommodated grain rearrangement. Acta Metallurgica 26, 1388–1398.CrossRefGoogle Scholar
Spray, J. G. (1987) Artificial generation of pseudotachylyte using friction welding apparatus: simulation of melting on a fault plane. Journal of Structural Geology 9, 49–60.CrossRefGoogle Scholar
Srolovitz, D. J. and Davis, S. H. (2001) Do stresses modify wetting angles?Acta Materialia 49, 1005–1007.CrossRefGoogle Scholar
Stacey, F. D. (1992) Physics of the Earth. Brookfield Press.Google Scholar
Stauffer, D. and Aharony, A. (1992) Introduction to Percolation Theory. Taylor and Francis.Google Scholar
Steinle-Neumann, G., Stixrude, L., Cohen, R. E., and Gülseren, O. (2001) Elasticity of iron at the temperature of the Earth's inner core. Nature 413, 57–60.CrossRefGoogle ScholarPubMed
Stevenson, D. J. (1989) Spontaneous small-scale melt segregation in partial melts undergoing deformation. Geophysical Research Letters 16, 1067–1070.CrossRefGoogle Scholar
Stipp, M. and Tullis, J. (2003) The recrystallized grain size piezometer for quartz. Geophysical Research Letters 30, 10.1029/2003GL018444.CrossRefGoogle Scholar
Stipp, M., Tullis, J., and Behrens, H. (2006) Dislocation creep of quartz: the effect of water on flow stress and microstructure. Journal of Geophysical Research 111, 10.1029/2005JB003852.CrossRefGoogle Scholar
Stixrude, L. and Lithgow-Bertelloni, C. (2005a) Mineralogy and elasticity of the oceanic upper mantle: origin of the low-velocity zone. Journal of Geophysical Research 110, 10.1029/2004JB002965.CrossRefGoogle Scholar
Stixrude, L. and Lithgow-Bertelloni, C. (2005b) Thermodynamics of mantle minerals – I. Physical properties. Geophysical Journal International 162, 610–632.CrossRefGoogle Scholar
Stocker, R. L. and Ashby, M. F. (1973) Rheology of the upper mantle. Review of Geophysics and Space Physics 11, 391–426.CrossRefGoogle Scholar
Stroh, A. N. (1954) The formation of cracks as a result of plastic flow. Proceedings of the Royal Society of London A 223, 404–414.CrossRefGoogle Scholar
Stroh, A. N. (1955) The formation of cracks in plastic flow II. Proceedings of the Royal Society of London A 232, 548–560.CrossRefGoogle Scholar
Stünitz, H., Fitz Gerald, J. D., and Tullis, J. (2003) Dislocation generation, slip systems, and dynamic recrystallization in experimentally deformed plagioclase single crystals. Tectonophysics 372, 215–233.CrossRefGoogle Scholar
Stünitz, H. and Tullis, J. (2001) Weakening and strain localization produced by syn-deformational reaction of plagioclase. International Journal of Earth Sciences 90, 136–148.CrossRefGoogle Scholar
Sturhahn, W., Toellner, T. S., Alp, E. E., et al. (1995) Phonon density of states measured by inelastic nuclear resonant scattering. Physical Review Letters 74, 3832–3835.CrossRefGoogle ScholarPubMed
Su, W.-J., Dziewonski, A. M., and Jeanloz, R. (1996) Planet within a planet – rotation of the inner core of the Earth. Science 274, 1883–1887.CrossRefGoogle Scholar
Suetsugu D., Inoue T., Yamada A., Zhao D., and Obayashi M. (2006) Towards mapping three-dimensional distribution of water in the transition zone from P-wave velocity tomography and 660-km discontinuity depths. In Earth's Deep Water Cycle (ed. Jacobsen, S. D. and Lee, S.), pp. 237–249. American Geophysical Union.CrossRefGoogle Scholar
Sumino, K. (1974) A model for the dynamical state of dislocations in crystals. Materials Science and Engineering 13, 269–275.CrossRefGoogle Scholar
Sumita, I., Yoshida, H., Hamano, Y., and Kumazawa, M. (1996) A model for sedimentary compaction in a viscous medium and its application to inner-core growth. Geophysical Journal International 124, 502–524.CrossRefGoogle Scholar
Sung, C.-M., Goetze, C., and Mao, H.-K. (1977) Pressure distribution in the diamond anvil press and shear strength of fayalite. Review of Scientific Instruments 48, 1386–1391.CrossRefGoogle Scholar
Suzuki, H. (1962) Segregation of solute atoms to stacking faults. Journal of Physical Society of Japan 17, 322–325.CrossRefGoogle Scholar
Tackley, P. J. (2000a) Self-consistent generation of tectonic plates in time-dependent, three dimensional mantle convection simulations, 1. Pseudoplastic yielding. Geochemistry, Geophysics, Geosystems 1, 2000GC000,036.Google Scholar
Tackley, P. J. (2000b) Self-consistent generation of tectonic plates in time-dependent, three dimensional mantle convection simulations, 2. Strain weakening and asthenosphere. Geochemistry, Geophysics, Geosystems 1, 2000GC000,043.Google Scholar
Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A., and Schubert, G. (1993) Effects of endothermic phase transition at 670 km depth in a spherical model of mantle convection in the Earth's mantle. Nature 361, 699–704.CrossRefGoogle Scholar
Tada, R. and Siever, R. (1986) Experimental knife-edge pressure solution of halite. Geochemica et Cosmochemica Acta 50, 29–36.CrossRefGoogle Scholar
Tada, R. and Siever, R. (1987) A new mechanism for pressure solution in porous quartzose sandstone. Geochemica et Cosmochemica Acta 51, 2295–2301.CrossRefGoogle Scholar
Takanami, T., Sacks, I. S., and Hasegawa, A. (2000) Attenuation structure beneath the volcanic front in northeastern Japan from broad-band seismograms. Physics of Earth and Planetary Interiors 121, 339–357.CrossRefGoogle Scholar
Takei, Y. (1998) Constitutive mechanical relations of solid–liquid composites in terms of grain-boundary contiguity. Journal of Geophysical Research 103, 18 183–18 203.CrossRefGoogle Scholar
Takei, Y. (2000) Acoustic properties of partially molten media studied on a simple binary system with a controllable dihedral angle. Journal of Geophysical Research 105, 16 665–16 682.CrossRefGoogle Scholar
Takei, Y. (2002) Effect of pore geometry on Vp/Vs: from equilibrium geometry to crack. Journal of Geophysical Research 107, 10.1029/2001JB000522.CrossRefGoogle Scholar
Takeshita T. (1989) Plastic anisotropy in textured mineral aggregates: theories and geological applications. In Rheology of Solids and of the Earth (ed. Karato, S. and Toriumi, M.), pp. 237–262. Oxford University Press.Google Scholar
Takeshita, T. and Wenk, H.-R. (1988) Plastic anisotropy and geometric hardening in quartzites. Tectonophysics 149, 345–361.CrossRefGoogle Scholar
Takeshita T., Wenk H.-R., Molinari A., and Canova G. (1990) Simulation of dislocation assisted plastic deformation in olivine polycrystals. In Deformation Processes in Minerals, Ceramics and Rocks (ed. Barber, D. J. and Meredith, P. G.), pp. 365–377. Unwin Hyman.CrossRefGoogle Scholar
Takeuchi, S. and Argon, A. S. (1976) Steady-state creep of alloys due to viscous motion of dislocations. Acta Metallurgica 24, 883–889.CrossRefGoogle Scholar
Takeuchi, S. and Suzuki, T. (1988) Deformation of crystals controlled by the Peierls mechanism. Strength of Metals and Alloys (ICSMA 8), 161–166.Google Scholar
Tan, B., Jackson, I., and Fitz Gerald, J. D. (1997) Shear wave dispersion and attenuation in fine-grained synthetic olivine aggregates: preliminary results. Geophysical Research Letters 24, 1055–1058.CrossRefGoogle Scholar
Tan, B., Jackson, I., and Fitz Gerald, J. D. (2001) High-temperature viscoelasticity of fine-grained polycrystalline olivine. Physics and Chemistry of Minerals 28, 641–664.CrossRefGoogle Scholar
Tanaka, S. and Hamaguchi, H. (1997) Degree one heterogeneity and hemispherical variation of anisotropy in the inner core from PKP(BC)-PKP(DF) times. Journal of Geophysical Research 102, 2925–2938.CrossRefGoogle Scholar
Tanimoto, T. and Anderson, D. L. (1984) Mapping mantle convection. Geophysical Research Letters 11, 287–290.CrossRefGoogle Scholar
Tanimoto, T. and Anderson, D. L. (1985) Lateral heterogeneities and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100–250 s. Journal of Geophysical Research 90, 1842–1858.CrossRefGoogle Scholar
Tanimoto, T. and Anderson, D. L. (1990) Long-wavelength S-wave velocity structure throughout the mantle. Geophysical Journal International 100, 327–336.CrossRefGoogle Scholar
Tapponnier, P. and Francheteau, J. (1978) Necking of the lithosphere and the mechanics of accreting plate boundaries. Journal of Geophysical Research 83, 3955–3970.CrossRefGoogle Scholar
Tarits, P., Hautot, S., and Perrier, F. (2004) Water in the mantle: results from electrical conductivity beneath the French Alps. Geophysical Research Letters 31, 10.1029/2003GL019277.CrossRefGoogle Scholar
Taylor, G. I. (1934) The mechanism of plastic deformation of crystals. Proceedings of the Royal Society A 145, 362–415.CrossRefGoogle Scholar
Tharp, T. M. (1983) Analogies between the high-temperature deformation of polyphase rocks and the mechanical behavior of porous powder metal. Tectonophysics 96, T1–T11.CrossRefGoogle Scholar
Thompson, A. B. (1992) Water in the Earth's upper mantle. Nature 358, 295–302.CrossRefGoogle Scholar
Thoraval, C. and Richards, M. A. (1997) The geoid constraint in global geodynamics: viscosity structure, mantle heterogeneity models and boundary conditions. Geophysical Journal International 131, 1–8.CrossRefGoogle Scholar
Thurel, E. and Cordier, P. (2003) Plastic deformation of wadsleyite: I. High-pressure deformation in compression. Physics and Chemistry of Minerals 30, 256–266.Google Scholar
Thurel, E., Cordier, P., Frost, D. J., and Karato, S. (2003a) Plastic deformation of wadsleyite: II. High-pressure deformation in shear. Physics and Chemistry of Minerals 30, 267–270.Google Scholar
Thurel, E., Douin, J., and Cordier, P. (2003b) Plastic deformation of wadsleyite: III. Interpretation of dislocation slip systems. Physics and Chemistry of Minerals 30, 271–279.Google Scholar
Tingle, T. N., Green, H. W. II., Young, T. E., and Koczynski, T. A. (1993) Improvements to Griggs-type apparatus for mechanical testing at high pressures and temperatures. Pure and Applied Geophysics 141, 523–543.CrossRefGoogle Scholar
Tommasi, A., Mainprice, D., Canova, G., and Chastel, Y. (2000) Viscoelastic self-consistent and equilibrium-based modeling of olivine preferred orientations: implications for the upper mantle seismic anisotropy. Journal of Geophysical Research 105, 7893–7908.CrossRefGoogle Scholar
Tommasi, A., Mainprice, D., Cordier, P., Thoraval, C., and Couvy, H. (2004) Strain-induced seismic anisotropy of wadsleyite polycrystals and flow patterns in the mantle transition zone. Journal of Geophysical Research 109, 10.1029/2004JB003158.CrossRefGoogle Scholar
Toomey, D. R., Wilcock, W. S. D., Solomon, S. C., Hammond, W. C., and Orcott, J. A. (1998) Mantle structure beneath the MELT region of the East Pacific Rise from P and S wave tomography. Science 280, 1224–1227.CrossRefGoogle Scholar
Toramaru, A. and Fujii, N. (1986) Connectivity of melt phase in a partially molten peridotite. Journal of Geophysical Research 91, 9239–9252.CrossRefGoogle Scholar
Toriumi, M. (1982) Grain boundary migration in olivine at atmospheric pressure. Physics of Earth and Planetary Interiors 30, 26–35.CrossRefGoogle Scholar
Toriumi, M. and Karato, S. (1985) Preferred orientation development of dynamically recrystallized olivine during high temperature creep. Journal of Geology 93, 407–417.CrossRefGoogle Scholar
Tosi, M. P. (1964) Cohesion of ionic solids in the Born model. Solid State Physics 16, 1–120.CrossRefGoogle Scholar
Trampert, J., Deschamps, F., Resovsky, J. S., and Yuen, D. A. (2004) Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science 306, 853–856.CrossRefGoogle Scholar
Trampert, J., Vacher, P., and Vlaar, N. J. (2001) Sensitivities of seismic velocities to temperature, pressure and composition in the lower-mantle. Physics of Earth and Planetary Interiors 124, 255–267.CrossRefGoogle Scholar
Trampert, J. and Heijst, H. J. (2002) Global azimuthal anisotropy in the transition zone. Science 296, 1297–1299.CrossRefGoogle ScholarPubMed
Treagus, S. H. (2002) Modelling the bulk viscosity of two-phase mixtures in terms of clast shape. Journal of Structural Geology 24, 57–76.CrossRefGoogle Scholar
Treagus, S. H. (2003) Viscous anisotropy of two-phase composites, and applications to rocks and structures. Tectonophysics 372, 121–133.CrossRefGoogle Scholar
Tromp, J. (2001) Inner-core anisotropy and rotation. Review of Earth and Planetary Sciences 29, 47–69.CrossRefGoogle Scholar
Tsenn, M. C. and Carter, N. L. (1987) Upper limits of power law creep of rocks. Tectonophysics 136, 1–26.CrossRefGoogle Scholar
Tsuchiya, T., Tsuchiya, J., Umemoto, K., and Wentzcovitch, R. M. (2004a) Elasticity of post-perovskite MgSiO3. Geophysical Research Letters 31, 10.1029/2004GL020278.CrossRefGoogle Scholar
Tsuchiya, T., Tsuchiya, J., Umemoto, K., and Wentzcovitch, R. M. (2004b) Phase transition in MgSiO3 in the Earth's lower mantle. Earth and Planetary Science Letters 224, 241–248.CrossRefGoogle Scholar
Tsumura, N., Matsumoto, S., Horiuchi, S., and Hasegawa, A. (2000) Three-dimensional attenuation structure beneath the northeastern Japan arc estimated from spectra of small earthquakes. Tectonophysics 319, 241–260.CrossRefGoogle Scholar
Tsutsumi, A. and Shimamoto, T. (1997) High-velocity frictional properties of gabbro. Geophysical Research Letters 24, 699–702.CrossRefGoogle Scholar
Tullis J. (2002) Deformation of granitic rocks: Experimental studies and natural examples. In Plastic Deformation of Minerals and Rocks, Vol. 51 (ed. Karato, S. and Wenk, H.-R.), pp. 51–95. Mineralogical Society of America.Google Scholar
Tullis, J., Christie, J. M., and Griggs, D. T. (1973) Microstructure and preferred orientations of experimentally deformed quartzites. Geological Society of America Bulletin 84, 297–314.2.0.CO;2>CrossRefGoogle Scholar
Tullis, J., Shelton, G. L., and Yund, R. A. (1979) Pressure dependence of rock strength: implications for hydrolytic weakening. Bulletin Mineralogie 102, 110–114.Google Scholar
Tullis, J. and Yund, R. A. (1980) Hydrolytic weakening of experimentally deformed Westerly granite and Hale albite rock. Journal of Structural Geology 2, 439–451.CrossRefGoogle Scholar
Tullis, J. and Yund, R. A. (1982) Grain growth kinetics of quartz and calcite aggregates. Journal of Geology 90, 301–318.CrossRefGoogle Scholar
Tullis, J. and Yund, R. A. (1985) Dynamic recrystallization of feldspar: a mechanism of shear zone formation. Geology 13, 238–241.2.0.CO;2>CrossRefGoogle Scholar
Tullis, T. E., Horowitz, F. G., and Tullis, J. (1991) Flow laws of polyphase aggregates from end-member flow laws. Journal of Geophysical Research 96, 8081–8096.CrossRefGoogle Scholar
Tullis T. E. and Tullis J. (1986) Experimental rock deformation. In Mineral and Rock Deformation (ed. Hobbs, B. E. and Heard, H. C.), pp. 297–324. American Geophysical Union.CrossRefGoogle Scholar
Tungatt, P. D. and Humphreys, F. J. (1984) The plastic deformation and dynamic recrystallization of polycrystalline sodium nitrate. Acta Metallurgica 32, 1625–1635.CrossRefGoogle Scholar
Turcotte, D. L. and Schubert, G. (1982) Geodynamics: Applications of Continuum Physics to Geological Problems. John Wiley & Sons.Google Scholar
Twiss, R. J. (1977) Theory and applicability of a recrystallized grain size paleopiezometer. Pure and Applied Geophysics 115, 227–244.CrossRefGoogle Scholar
Uchida, T., Funamori, N., and Yagi, T. (1996) Lattice strains in crystals under uniaxial stress field. Journal of Applied Physics 80, 739–746.CrossRefGoogle Scholar
Underwood, E. E. (1969) Quantitative Stereology. Addison-Wesley.Google Scholar
Urai, J. L. (1983) Water-assisted dynamic recrystallization and weakening in polycrystalline bischofite. Tectonophysics 96, 125–157.CrossRefGoogle Scholar
Urai, J. L. (1987) Development of microstructure during deformation of carnalite and bischofite in transmitted light. Tectonophysics 135, 251–263.CrossRefGoogle Scholar
Urai J. L., Means W. D., and Lister G. S. (1986a) Dynamic recrystallization in minerals. In Mineral and Rock Deformation: Laboratory Studies (ed. Hobbs, B. E. and Heard, H. C.), pp. 166–199. American Geophysical Union.CrossRefGoogle Scholar
Urai, J. L., Spiers, C. J., Zwart, H. J., and Lister, G. S. (1986b) Water weakening in rock salt during long-term creep. Nature 324, 554–557.CrossRefGoogle Scholar
Hilst, R. D. and Kárason, H. (1999) Compositional heterogeneity in the bottom 1000 kilometers of Earth's mantle: toward a hybrid convection model. Science 283, 1885–1888.CrossRefGoogle Scholar
Hilst, R. D., Widiyantoro, R. D. S., and Engdahl, E. R. (1997) Evidence for deep mantle circulation from global tomography. Nature 386, 578–584.CrossRefGoogle Scholar
Meijde, M., Marone, F., Giardini, D., and Lee, S. (2003) Seismic evidence for water deep in Earth's upper mantle. Science 300, 1556–1558.CrossRefGoogle ScholarPubMed
Molen, I. and Paterson, M. S. (1979) Experimental deformation of partially-melted granite. Contributions to Mineralogy and Petrology 70, 299–318.CrossRefGoogle Scholar
Wal, D., Chopra, P. N., Drury, M., and Gerald, Fitz J. D. (1993) Relationships between dynamically recrystallized grain size and deformation conditions in experimentally deformed olivine rocks. Geophysical Research Letters 20, 1479–1482.Google Scholar
van Houtte P. and Wagner F. (1985) Development of texture by slip and twinning. In Preferred Orientation in Deformed Metals and Rocks (ed. Wenk, H.-R.), pp. 233–258. Academic Press.Google Scholar
Orman, J. A. (2004) On the viscosity and creep mechanism of Earth's inner core. Geophysical Research Letters 31, 10.1029/2004GL021209.Google Scholar
Orman, J. A., Fei, Y., Hauri, E. H., and Wang, J. (2003) Diffusion in MgO at high pressure: constraints on deformation mechanisms and chemical transport at the core–mantle boundary. Geophysical Research Letters 30, 10.1029/2002GL016343.Google Scholar
Vauchez, A. and Nicolas, A. (1991) Mountain building: strike-parallel motion and mantle anisotropy. Tectonophysics 185, 183–191.CrossRefGoogle Scholar
Vaughan, P. J. and Coe, R. S. (1978) Geometric flow properties of the germanate analog of forsterite. Tectonophysics 46, 187–196.CrossRefGoogle Scholar
Vaughan, P. J. and Coe, R. S. (1981) Creep mechanisms in Mg2GeO4: effects of a phase transition. Journal of Geophysical Research 86, 389–404.CrossRefGoogle Scholar
Vidale, J. E., Dodge, D. A., and Earle, P. S. (2000) Slow differential rotation of the Earth's inner core indicated by temporal change in scattering. Nature 405, 445–448.CrossRefGoogle ScholarPubMed
Vidale, J. E. and Earle, P. S. (2000) Fine-scale heterogeneity in the Earth's inner core. Nature 404, 273–275.CrossRefGoogle ScholarPubMed
Vineyard, G. H. (1957) Frequency factors and isotope effects in solid state rate processes. Journal of Physics and Chemistry of Solids 3, 121–127.CrossRefGoogle Scholar
Vinnik, L., Breger, L., and Romanowicz, . (1998) Anisotropic structures at the base of the Earth's mantle. Nature 393, 564–567.CrossRefGoogle Scholar
Vinnik, L. and Montagner, J.-P. (1996) Shear wave splitting in the mantle from Ps phases. Geophysical Research Letters 23, 2449–2452.CrossRefGoogle Scholar
Vinnik, L., Romanowicz, B., Stunff, Y., and Makayeva, L. I. (1995) Seismic anisotropy in D″-layer. Geophysical Research Letters 22, 1657–1660.CrossRefGoogle Scholar
Voce, E. (1948) The relationship between stress and strain for homogeneous deformation. Journal of Institute of Metals 74, 537–562.Google Scholar
Mises, R. (1928) Mechanik der plastischen Formändern von Kristallen. Zeitschrift für Angewandte Mathematik und Mechanik 8, 161–185.CrossRefGoogle Scholar
Voorhees, P. W. (1985) The theory of Ostwald ripening. Journal of Statistical Physics 38, 231–252.CrossRefGoogle Scholar
Voorhees, P. W. (1992) Ostwald ripening of 2-phase mixtures. Annual Review of Materials Science 22, 197–215.CrossRefGoogle Scholar
Waff, H. S. and Blau, J. R. (1979) Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic stress conditions. Journal of Geophysical Research 84, 6109–6114.CrossRefGoogle Scholar
Waff H. S. and Blau J. R. (1982) Experimental determination of near equilibrium textures in partially molten silicates at high pressures. In High-pressure Research in Geophysics (ed. Akimoto, S. and Manghnani, M. H.), pp. 229–236. Center for Academic Publication.CrossRefGoogle Scholar
Walcott, R. I. (1970) Flexural rigidity, thickness, and viscosity of the lithosphere. Journal of Geophysical Research 75, 3941–3954.CrossRefGoogle Scholar
Walker, K. T., Bokelmann, G. H., and Klemperer, S. L. (2001) Shear-wave splitting to test mantle deformation models around Hawaii. Geophysical Research Letters 28, 4319–4322.CrossRefGoogle Scholar
Wall, A. and Price, G. D. (1989) Electrical conductivity of the lower mantle: a molecular dynamics simulation of MgSiO3. Physics of Earth and Planetary Interiors 58, 192–204.CrossRefGoogle Scholar
Wallace, D. C. (1972) Thermodynamics of Crystals. Wiley.Google Scholar
Walsh, J. B. (1968) Attenuation in partially molten material. Journal of Geophysical Research 73, 2209–2216.CrossRefGoogle Scholar
Walsh, J. B. (1969) New analysis of attenuation in partially molten rock. Journal of Geophysical Research 74, 4333–4337.CrossRefGoogle Scholar
Wang, D., Mookherjee, M., Xu, Y., and Karato, S. (2006) The effect of water on the electrical conductivity in olivine. Nature 443, 977–980.CrossRefGoogle ScholarPubMed
Wang, J. N. (1994) Harper–Dorn creep in olivine. Materials Science and Engineering A 183, 267–272.CrossRefGoogle Scholar
Wang, J. N., Hobbs, B. E., Ord, A., Shimamoto, T., and Toriumi, M. (1994) Newtonian dislocation creep in quartzites: implications for the rheology of the lower crust. Science 265, 1203–1205.CrossRefGoogle ScholarPubMed
Wang, J. N. and Nieh, T. G. (1995) Effects of the Peierls stress on the transition from power-law creep to Harper–Dorn creep. Acta Metallurgica et Materialia 43, 1415–1419.CrossRefGoogle Scholar
Wang, Y., Durham, W. B., Getting, I. C., and Weidner, D. J. (2003) The deformation-DIA: a new apparatus for high temperature triaxial deformation to pressures up to 15 GPa. Review of Scientific Instruments 74, 3002–3011.CrossRefGoogle Scholar
Wang, Y., Guyot, F., and Liebermann, R. C. (1992) Electron microscopy of (Mg, Fe)SiO3 perovskite: evidence for structural phase transitions and implications for the lower mantle. Journal of Geophysical Research 97, 12 327–12 347.CrossRefGoogle Scholar
Wang, Z. and Ji, S. (2000) Diffusion creep of fine-grained garnetite: implications for the flow strength of subducting slabs. Geophysical Research Letters 27, 2333–2336.CrossRefGoogle Scholar
Wang, Z., Karato, S., and Fujino, K. (1993) High temperature creep of single crystal strontium titanate: a contribution to creep systematics in perovskites. Physics of Earth and Planetary Interiors 79, 299–312.CrossRefGoogle Scholar
Wang, Z., Karato, S., and Fujino, K. (1996) High temperature creep of single crystal gadolinium gallium garnet. Physics and Chemistry of Minerals 23, 73–80.CrossRefGoogle Scholar
Wang, Z., Mei, S., Karato, S., and Wirth, R. (1999) Grain growth in CaTiO3–perovskite + FeO–wüstite aggregates. Physics and Chemistry of Minerals 27, 11–19.CrossRefGoogle Scholar
Watson, E. B. and Brenan, J. M. (1987) Fluids in the lithosphere 1. Experimentally-determined wetting characteristics of CO2–H2O fluids and their implications for fluid transport, host-rock physical-properties, and fluid inclusion formation. Earth and Planetary Science Letters 85, 497–515.CrossRefGoogle Scholar
Watt, J. P., Davies, G. F., and O'Connell, R. J. (1976) The elastic properties of composite materials. Review of Geophysics and Space Physics 14, 541–563.CrossRefGoogle Scholar
Webb, S. and Jackson, I. (1990) Polyhedral rationalization of variation among the single crystal elastic moduli for upper-mantle silicates: garnets, olivine and orthopyroxene. American Mineralogist 75, 731–738.Google Scholar
Webb, S. and Jackson, I. (2003) Anelasticity and microcreep in polycrystalline MgO at high temperature: an exploratory study. Physics and Chemistry of Minerals 30, 157–166.CrossRefGoogle Scholar
Webb, S., Jackson, I., and Fitz Gerald, J. (1999) Viscoelasticity of the titanate perovskite CaTiO3 and SrTiO3 at high temperature. Physics of Earth and Planetary Interiors 115, 259–291.CrossRefGoogle Scholar
Webster, G. A. (1966a) A widely applicable dislocation model of creep. Philosophical Magazine 14, 775–783.CrossRefGoogle Scholar
Webster, G. A. (1966b) In support of a model of creep based on dislocation dynamics. Philosophical Magazine 14, 1303–1307.CrossRefGoogle Scholar
Weertman, J. (1957) Steady state creep of crystals. Journal of Applied Physics 28, 1185–1191.CrossRefGoogle Scholar
Weertman, J. (1968) Dislocation climb theory of steady state creep. Transactions of the American Society of Metals 61, 681–694.Google Scholar
Weertman, J. (1970) The creep strength of the Earth's mantle. Review of Geophysics and Space Physics 8, 145–168.CrossRefGoogle Scholar
Weertman, J. (1978) Creep laws for the mantle of the Earth. Philosophical Transactions of the Royal Society of London A 228, 9–26.CrossRefGoogle Scholar
Weertman, J. and Blacic, J. D. (1984) Harper–Dorn creep; an artifact of low-amplitude temperature cycling?Geophysical Research Letters 11, 117–120.CrossRefGoogle Scholar
Weertman, J. and Weertman, J. R. (1975) High temperature creep of rock and mantle viscosity. Annual Review of Earth and Planetary Sciences 3, 293–315.CrossRefGoogle Scholar
Weidner D. J. (1987) Elastic properties of rocks and minerals. In Methods of Experimental Physics, Vol. 1–30 (ed. Sammis, C. G. and Henyey, T. L.). Academic Press.Google Scholar
Weidner D. J. (1998) Rheological studies at high pressure. In Ultrahigh-Pressure Mineralogy (ed. Hemley, R. J.), pp. 492–524. The Mineralogical Society of America.Google Scholar
Weidner, D. J., Li, L., Davis, M., and Chen, J. (2004) Effect of plasticity on elastic modulus measurements. Geophysical Research Letters 31, 10.1029/2003GL019090.CrossRefGoogle Scholar
Weidner D. J. and Wang Y. (2000) Phase transformations: implications for mantle structure. In Earth's Deep Interior: Mineral Physics and Tomography (ed. Karato, S., Forte, A. M., Liebermann, R. C., Masters, G., and Stixrude, L.), pp. 215–235. American Geophysical Union.CrossRefGoogle Scholar
Weidner D. J., Wang Y., Chen G., Ando J., and Vaughan M. T. (1998) Rheology measurements at high pressure and temperature. In Properties of Earth and Planetary Materials at High Pressure and Temperature (ed. Manghnani, M. H. and Yagi, T.), pp. 473–480. American Geophysical Union.CrossRefGoogle Scholar
Weiss L. E. and Wenk H.-R. (1985) Symmetry of pole figures and textures. In Preferred Orientation in Deformed Metals and Rocks: an Introduction to Modern Texture Analysis (ed. Wenk, H.-R.), pp. 49–72. Academic Press.Google Scholar
Wen, L. (2001) Seismic evidence for a rapidly varying compositional anomaly at the base of the Earth's mantle beneath the Indian Ocean. Earth and Planetary Science Letters 194, 83–95.CrossRefGoogle Scholar
Wen, L. and Anderson, D. L. (1997) Layered mantle convection: a model for geoid and topography. Earth and Planetary Science Letters 146, 367–377.CrossRefGoogle Scholar
Wen, L. and Niu, F. (2002) Seismic velocity and attenuation structures in the top of the Earth's inner core. Journal of Geophysical Research 107, 10.1029/2001JB000170.CrossRefGoogle Scholar
Wen, L., Silver, P. G., James, D. E., and Kuehnel, R. (2001) Seismic evidence of a thermo-chemical boundary at the base of the Earth's mantle. Earth and Planetary Science Letters 189, 141–153.CrossRefGoogle Scholar
Wenk, H.-R. (1985) Preferred Orientation in Deformed Metals and Rocks: an Introduction to Modern Texture Analysis. Academic Press.Google Scholar
Wenk H.-R. (2002) Texture and anisotropy. In Plastic Deformation of Minerals and Rocks, Vol. 51 (ed. Karato, S. and Wenk, H.-R.), pp. 291–329. The Mineralogical Society of America.Google Scholar
Wenk, H.-R., Bennett, K., Canova, G., and Molinari, A. (1991) Modelling plastic deformation of peridotite with the self-consistent theory. Journal of Geophysical Research 96, 8337–8349.CrossRefGoogle Scholar
Wenk, H.-R., Canova, G., Molinari, A., and Mecking, H. (1989) Texture development in halite: comparison of Taylor model and self-consistent theory. Acta Metallurgica 37, 2017–2029.CrossRefGoogle Scholar
Wenk, H.-R., Canova, G. C., Brechet, Y., and Flandin, L. (1997) A deformation-based model for recrystallization of anisotropic materials. Acta Mater 45, 3283–3296.CrossRefGoogle Scholar
Wenk, H.-R. and Christie, J. M. (1991) Comments on the interpretation of deformation textures in rocks. Journal of Structural Geology 13, 1091–1110.CrossRefGoogle Scholar
Wenk, H.-R., Lonardelli, I., Pehl, J., Devine, J. D., Prakapenka, V., Shen, G., and Mao, H.-K. (2004) In situ observation of texture development in olivine, ringwoodite, magnesiowüstite and silicate perovskite at high pressure. Earth and Planetary Science Letters 226, 507–519.CrossRefGoogle Scholar
Wenk, H.-R., Matthius, S., Hemley, R. J., Mao, H.-K., and Shu, J. (2000) The plastic deformation of iron at pressures of the Earth's inner core. Nature 405, 1044–1047.CrossRefGoogle ScholarPubMed
Wettlaufer, J. S., Worster, M. G., and Huppert, H. E. (1997) Natural convection during solidification of an alloy from above with application to the evolution of sea ice. Journal of Fluid Dynamics 344, 291–316.Google Scholar
Wheeler, J. (1992) Importance of pressure solution and Coble creep in the deformation of polymineralic rocks. Journal of Geophysical Research 97, 4579–4586.CrossRefGoogle Scholar
Wheeler, J., Prior, D. J., Jiang, Z., Spiess, R., and Trimbly, P. W. (2001) The petrological significance of misorientations between grains. Contributions to Mineralogy and Petrology 141, 109–124.CrossRefGoogle Scholar
White, S. H. (1979) Grain and sub-grain size variations across a mylonite shear zone. Contributions to Mineralogy and Petrology 70, 193–202.CrossRefGoogle Scholar
White, S. H., Burrows, S. E., Carreras, J., Shaw, N. D., and Humphreys, F. J. (1980) On mylonites in ductile shear zones. Journal of Structural Geology 2, 175–187.CrossRefGoogle Scholar
White, S. H. and Knipe, R. J. (1978) Transformation- and reaction-induced ductility in rocks. Journal of the Geological Society of London 135, 513–516.CrossRefGoogle Scholar
Whitehead, J. A. Jr. and Luther, P. S. (1975) Dynamics of laboratory diapir and plume models. Journal of Geophysical Research 80, 705–717.CrossRefGoogle Scholar
Williams, D. B. and Carter, C. B. (1996) Transmission Electron Microscopy. Plenum Press.CrossRefGoogle Scholar
Williams, Q. and Garnero, E. J. (1996) Seismic evidence for partial melt at the base of Earth's mantle. Science 273, 1528–1530.CrossRefGoogle Scholar
Williams, Q. and Hemley, R. J. (2001) Hydrogen in the deep Earth. Annual Review of Earth and Planetary Sciences 29, 365–418.CrossRefGoogle Scholar
Winger, L. A., Bradt, R. C., and Hoke, J. H. (1980) Transformational superplasticity of Bi2WO6 and Bi2MoO6. Journal of the American Ceramic Society 63, 291–294.CrossRefGoogle Scholar
Withers, A. C., Wood, B. J., and Carroll, M. R. (1998) The OH content of pyrope at high pressure. Chemical Geology 147, 161–171.CrossRefGoogle Scholar
Woirgard, J., Rivière, A., and Fouquet, J. (1981) Experimental and theoretical aspect of the high temperature damping of pure metals. Journal de PhysiqueColloque C 5, 407–419.Google Scholar
Wolf, G. H. and Jeanloz, R. (1984) Lindemann melting law: anharmonic correction and test of its validity for minerals. Journal of Geophysical Research 89, 7821–7835.CrossRefGoogle Scholar
Wolfe, C. J. and Solomon, S. C. (1998) Shear-wave splitting and implications for mantle flow beneath the MELT region of the East Pacific. Science 280, 1230–1232.CrossRefGoogle ScholarPubMed
Wolfenstein, J., Ruano, O. A., Wadsworth, J., and Sherby, O. D. (1993) Refutation of the relationship between denuded zones and diffusional creep. Scripta Metallurgica et Material 29, 515–520.CrossRefGoogle Scholar
Wood, B. J. (1995) The effect of H2O on the 410-kilometer seismic discontinuity. Science 268, 74–76.CrossRefGoogle ScholarPubMed
Wood, B. J. and Fraser, D. G. (1976) Elementary Thermodynamics for Geologists. Oxford University Press.Google Scholar
Wood, B. J. and Haliday, A. N. (2005) Cooling of the Earth and core formation after the giant impact. Nature 437, 1345–1348.CrossRefGoogle ScholarPubMed
Wood, B. J., Pawley, A. R., and Frost, D. R. (1996) Water and carbon in the Earth's mantle. Philosophical Transactions of the Royal Society of London 354, 1495–1511.CrossRefGoogle Scholar
Wood, B. J., Walter, M. J., and Wade, J. (2006) Accretion of the Earth and segregation of its core. Nature 441, 825–833.CrossRefGoogle ScholarPubMed
Woodhouse, J. H. and Dziewonski, A. M. (1984) Mapping the upper mantle: three-dimensional modeling of Earth structure by inversion of seismic waveforms. Journal of Geophysical Research 89, 5953–5986.CrossRefGoogle Scholar
Woodhouse, J. H. and Dziewonski, A. M. (1989) Seismic modelling of the Earth's large-scale three-dimensional structure. Philosophical Transactions of the Royal Society of London A 328, 291–308.CrossRefGoogle Scholar
Woodhouse, J. H., Giardini, D., and Li, X. D. (1986) Evidence for inner core anisotropy from free oscillations. Geophysical Research Letters 13, 1549–1552.CrossRefGoogle Scholar
Wookey, J. and Kendall, J.-M. (2004) Evidence of midmantle anisotropy from shear wave splitting and the influence of shear-coupled P waves. Journal of Geophysical Research 109, 10.1029/2003JB002871.CrossRefGoogle Scholar
Wookey, J., Kendall, J. M., and Barruol, G. (2002) Mid-mantle deformation inferred from seismic anisotropy. Nature 415, 777–780.CrossRefGoogle ScholarPubMed
Wright, K. and Price, G. D. (1993) Computer simulation of defects and diffusion in perovskites. Journal of Geophysical Research 98, 22 245–22 253.CrossRefGoogle Scholar
Wyllie, P. J. and Huang, W. L. (1976) Carbonation and melting reactions in the system CaO-MgO-SiO2-CO2 at mantle pressure with geophysical and petrological applications. Contributions to Mineralogy and Petrology 54, 79–107.CrossRefGoogle Scholar
Xiao, X., Wirth, R., and Dresen, G. (2002) Diffusion creep of anorthite–quartz aggregates. Journal of Geophysical Research 107, 10.1029/2001JB000789.CrossRefGoogle Scholar
Xie, Y., Wenk, H.-R., and Matthies, S. (2003) Plagioclase preferred orientation by TOF neutron diffraction and SEM-EBSD. Tectonophysics 370, 269–286.CrossRefGoogle Scholar
Xu Y., Nishihara Y., and Karato S. (2005) Development of a rotational Drickamer apparatus for large-strain deformation experiments under deep Earth conditions. In Frontiers in High-pressure Research: Applications to Geophysics (ed. Chen, J., Wang, Y., Duffy, T. S., Shen, G., and Dobrzhinetskaya, L. F.), pp. 167–182. Elsevier.Google Scholar
Xu, Y., Weidner, D. J., Chen, J., Vaughan, M. T., Wang, Y., and Uchida, T. (2003) Flow-law for ringwoodite at subduction zone conditions. Physics of Earth and Planetary Interiors 136, 3–9.CrossRefGoogle Scholar
Yamazaki, D., Inoue, T., Okamoto, M., and Irifune, T. (2005) Grain growth kinetics of ringwoodite and its implication for rheology of the subducting slab. Earth and Planetary Science Letters 236, 871–881.CrossRefGoogle Scholar
Yamazaki, D. and Irifune, T. (2003) Fe–Mg interdiffusion in magnesiowüstite up to 35 GPa. Earth and Planetary Science Letters 216, 301–311.CrossRefGoogle Scholar
Yamazaki, D. and Karato, S. (2001a) High pressure rotational deformation apparatus to 15 GPa. Review of Scientific Instruments 72, 4207–4211.CrossRefGoogle Scholar
Yamazaki, D. and Karato, S. (2001b) Some mineral physics constraints on the rheology and geothermal structure of Earth's lower mantle. American Mineralogist 86, 385–391.CrossRefGoogle Scholar
Yamazaki, D. and Karato, S. (2002) Fabric development in (Mg, Fe)O during large strain, shear deformation: implications for seismic anisotropy in Earth's lower mantle. Physics of Earth and Planetary Interiors 131, 251–267.CrossRefGoogle Scholar
Yamazaki, D., Kato, T., Ohtani, E., and Toriumi, M. (1996) Grain growth rates of MgSiO3 perovskite and periclase under lower mantle conditions. Science 274, 2052–2054.CrossRefGoogle ScholarPubMed
Yamazaki, D., Kato, T., Toriumi, M., and Ohtani, E. (2001) Silicon self-diffusion in MgSiO3 perovskite at 25 GPa. Physics of Earth and Planetary Interiors 119, 299–309.CrossRefGoogle Scholar
Yamazaki, D., Yishino, T., Ohfuji, H., Ando, J., and Yoneda, A. (2006) Origin of seismic anisotropy in the D″ layer inferred from shear deformation experiments on post-perovskite phase. Earth and Planetary Science Letters.CrossRefGoogle Scholar
Yan H. (1992) Dislocation Recovery in Olivine. Master of Science, University of Minnesota.
Yan M. F., Cannon R. F., and Bowen H. K. (1977) Grain boundary migration in ceramics. In Ceramic Microstructures ′76 (ed. Fulrath, R. M. and Pask, J. A.), pp. 276–307. Westview Press.Google Scholar
Yan, M. F., Cannon, R. M., and Bowen, H. K. (1983) Space charge, elastic field and dipole contributions to equilibrium solute segregation at interfaces. Journal of Applied Physics 54, 764–777.CrossRefGoogle Scholar
Yokobori, T. (1968) Criteria for nearly brittle fracture. The International Journal of Fracture Mechanics 4, 179–205.CrossRefGoogle Scholar
Yoon, C. K. and Chen, I.-W. (1990) Superplastic flow of two-phase ceramics containing rigid inclusions: zirconia/mullite composites. Journal of the American Ceramic Society 73, 1555–1565.CrossRefGoogle Scholar
Yoon, D. N. and Lazarus, D. (1972) Pressure dependence of ionic conductivity in KCl, NaCl, KBr and NaBr. Physical Review B 5, 4935–4945.CrossRefGoogle Scholar
Yoshida, H., Ikuhara, Y., and Sakuma, T. (2002) Grain boundary electronic structure related to the high-temperature creep resistance in polycrystalline Al2O3. Acta Materialia 50, 2955–2966.CrossRefGoogle Scholar
Yoshida, S., Sumita, I., and Kumazawa, M. (1996) Growth model of the inner core coupled with the outer core dynamics and the resulting elastic anisotropy. Journal of Geophysical Research 101, 28,085–28 103.CrossRefGoogle Scholar
Yoshii, T. (1973) Upper mantle structure beneath the north Pacific and marginal seas. Journal of Physics of the Earth 21, 313–328.CrossRefGoogle Scholar
Yoshii T., Kono Y., and Ito K. (1976) Thickening of the oceanic lithosphere. In The Geophysics of the Pacific Ocean Basin and Its Margin (ed. Sutton, G. H., Manghnani, M. H., and Moberly, R.), pp. 423–430. American Geophysical Union.CrossRefGoogle Scholar
Yoshino T., Nishihara Y., and Karato S. (2007) Complete wetting of olivine grain-boundaries by a hydrous melt near the mantle transition zone. Earth and Planetary Science Letters256, 466–472.CrossRef
Yoshinobu, A. S. and Hirth, G. (2002) Microstructural and experimental constraints on the rheology of partially molten gabbro beneath oceanic spreading centers. Journal of Structural Geology 24, 1101–1107.CrossRefGoogle Scholar
Yuen, D. A., Sabadini, R., and Boschi, E. V. (1982) Viscosity of the lower mantle as inferred from rotational data. Journal of Geophysical Research 87, 10 745–10 762.CrossRefGoogle Scholar
Zamora, M. and Poirier, J.-P. (1983) Experiments in anisothermal transformation plasticity: the case of cobalt. Geophysical implications. Mechanics of Materials 2, 193–202.CrossRefGoogle Scholar
Zener, C. (1942) Theory of lattice expansion introduced by cold-work. Transactions of the Metallurgical Society of AIME 147, 104–110.Google Scholar
Zener, C. (1948a) Elasticity and Anelasticiy of Metals. University of Chicago Press.Google Scholar
Zener C. (1948b) The micro-mechanism of fracture. In Fracturing of Metals (ed. Johnson, F., Roop, W. P., and Bayles, R. T.), pp. 3–31. ASM.Google Scholar
Zener, C. and Hollomon, J. H. (1946) Problems in non-elastic deformation of metals. Journal of Applied Physics 17, 69–82.CrossRefGoogle Scholar
Zeuch, D. H. (1982) Ductile faulting, dynamic recrystallization and grain-size-sensitive flow in olivine. Tectonophysics 83, 293–308.CrossRefGoogle Scholar
Zeuch, D. H. (1983) On the inter-relationship between grain-size sensitive creep and dynamic recrystallization of olivine. Tectonophysics 93, 151–168.CrossRefGoogle Scholar
Zha, C.-S., Duffy, T. S., Downs, R. T., et al. (1998) Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa. Earth and Planetary Science Letters 159, 25–33.CrossRefGoogle Scholar
Zhang, S. and Christensen, U. R. (1993) Some effects of lateral viscosity variations on geoid and surface velocities induced by density anomalies in the mantle. Geophysical Journal International 114, 531–547.CrossRefGoogle Scholar
Zhang, S. and Karato, S. (1995) Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature 375, 774–777.CrossRefGoogle Scholar
Zhang, S., Karato, S., Fitz Gerald, J., Faul, U. H., and Zhou, Y. (2000) Simple shear deformation of olivine aggregates. Tectonophysics 316, 133–152.CrossRefGoogle Scholar
Zhang, Y. and Xu, Z. (1995) Atomic radii of noble gas elements in condensed phases. American Mineralogist 80, 670–675.CrossRefGoogle Scholar
Zhang, Y. S. and Tanimoto, T. (1992) Ridges, hotspots and their interactions as observed in seismic velocity maps. Nature 355, 45–49.CrossRefGoogle Scholar
Zhang, Y. S. and Tanimoto, T. (1993) High-resolution global upper mantle structure and plate tectonics. Journal of Geophysical Research 98, 9793–9823.CrossRefGoogle Scholar
Zhao, D. (2004) Global tomographic images of mantle plumes and subducting slabs: insights into deep mantle dynamics. Physics of the Earth and Planetary Interiors 146, 3–34.CrossRefGoogle Scholar
Zhao, Y.-H., Ginsberg, S. B., and Kohlstedt, D. L. (2004) Solubility of hydrogen in olivine: dependence on temperature and iron content. Contributions to Mineralogy and Petrology 147, 155–161.CrossRefGoogle Scholar
Zimmerman, M. E. and Kohlstedt, D. L. (2004) Rheological properties of partially molten lherzolite. Journal of Petrology 45, 275–298.CrossRefGoogle Scholar
Zimmerman, M. R., Zhang, S., Kohlstedt, D. L., and Karato, S. (1999) Melt distribution in mantle rocks deformed in shear. Geophysical Research Letters 26, 1505–1508.CrossRefGoogle Scholar
Aaronson, H. I. (1990) Atomic mechanisms of diffusional nucleation and growth and comparisons with their counterparts in shear transformations. Metallurgical Transactions A 24, 241–276.CrossRefGoogle Scholar
Abe, Y. (1997) Thermal and chemical evolution of terrestrial magma ocean. Physics of Earth and Planetary Interiors 100, 27–39.CrossRefGoogle Scholar
Adams, B. L., Wright, S. I., and Kunze, K. (1993) Orientation imaging: the emergence of a new microscopy. Metallurgical Transactions A 24, 819–831.CrossRefGoogle Scholar
Agee, C. B. (1993) Petrology of the mantle transition zone. Annual Review of Earth and Planetary Sciences 21, 19–42.CrossRefGoogle Scholar
Aines, R. D. and Rossman, G. R. (1984) The hydrous component in garnets: pyralsites. American Mineralogist 69, 1116–1126.Google Scholar
Aizawa, Y., Yoneda, A., Katsura, T., Ito, E., Saito, T., and Suzuki, I. (2004) Temperature derivatives of elastic moduli of MgSiO3 perovskite. Geophysical Research Letters 31, 10.1029/2003GL018762.CrossRefGoogle Scholar
Akaogi, M., Ito, E., and Navrotsky, A. (1989) Olivine-modified spinel–spinel transitions in the system Mg2SiO4–Fe2SiO4: calorimetric measurements, thermochemical calculation, and geophysical application. Journal of Geophysical Research 94, 15,671–15 685.CrossRefGoogle Scholar
Aki, K. (1968) Seismological evidence for the existence of soft thin layers in the upper mantle under Japan. Journal of Geophysical Research 73, 585–594.CrossRefGoogle Scholar
Aki, K., Christoffersson, A., and Husebye, F. S. (1977) Determination of three-dimensional seismic structure of the lithosphere. Journal of Geophysical Research 82, 277–296.CrossRefGoogle Scholar
Aki, K. and Kaminuma, K. (1963) Phase velocity of Love waves in Japan (part 1): Love waves from the Aleutian shock of March 1957. Bulletin of Earthquake Research Institute 41, 243–259.Google Scholar
Aki, K. and Richards, P. G. (2002) Quantitative Seismology. University Science Books.Google Scholar
Akimoto, S., Akaogi, M., Kawada, K., and Nishizawa, O. (1976) Mineralogic distribution of iron in the upper half of the transition zone in the Earth's mantle. In The Geophysics of the Pacific Ocean Basin and Its Margin, pp. 399–405. American Geophysical Union.Google Scholar
Akulov, N. S. (1964) On dislocation kinetics. Acta Metallurgica 12, 1195–1196.CrossRefGoogle Scholar
Alfé, D., Gillan, M. J., and Price, G. D. (2002a) Composition and temperature of Earth's core constrained by combining ab-initio calculations and seismic data. Earth and Planetary Science Letters 95, 91–98.CrossRefGoogle Scholar
Alfé, D., Price, G. D., and Gillan, M. J. (2000) Constraints on the composition of the Earth's core from ab-initio calculations. Nature 405, 172–175.CrossRefGoogle ScholarPubMed
Alfé, D., Price, G. D., and Gillan, M. J. (2002b) Ab initio chemical potentials of solid and liquid alloys and the chemistry of the Earth's core. Journal of Chemical Physics 116, 7127–7136.CrossRefGoogle Scholar
Allègre, C. J. and Turcotte, D. L. (1986) Implications of a two-component marble-cake mantle. Nature 323, 123–127.CrossRefGoogle Scholar
Allen, F. M., Smith, B. K., and Buseck, P. R. (1987) Direct observation of dissociated dislocations in garnet. Science 238, 1695–1697.CrossRefGoogle ScholarPubMed
Amadeo, R. J. and Ghoniem, N. M. (1988) A review of experimental observations and theoretical models of dislocation cells and subgrains. Res Mechanica 23, 137–160.Google Scholar
Amin, K. E., Mukherjee, A. K., and Dorn, J. E. (1970) A universal law for high-temperature diffusion controlled transient creep. Journal of Mechanics and Physics of Solids 18, 413–426.CrossRefGoogle Scholar
Anand, L., Kim, K. H., and Shawki, T. G. (1987) Onset of shear localization in viscoplastic solids. Journal of Mechanics and Physics of Solids 35, 407–429.CrossRefGoogle Scholar
Anderson, D. L. (1979) The deep structure of continents. Journal of Geophysical Research 84, 7555–7560.CrossRefGoogle Scholar
Anderson, D. L. (1987a) A seismic equation of state II. Shear properties and thermodynamics of the lower mantle. Physics of Earth and Planetary Interiors 45, 307–323.CrossRefGoogle Scholar
Anderson, D. L. (1987b) Thermally induced phase changes, lateral heterogeneity of the mantle, continental roots, and deep slab anomalies. Journal of Geophysical Research 92, 13,968–13 980.CrossRefGoogle Scholar
Anderson, D. L. and Bass, J. D. (1986) Transition region of the Earth's upper mantle. Nature 320, 321–328.CrossRefGoogle Scholar
Anderson, D. L. and Given, J. W. (1982) Absorption band Q model for the Earth. Journal of Geophysical Research 87, 3893–3904.CrossRefGoogle Scholar
Anderson, D. L. and Minster, J. B. (1979) The frequency dependence of Q in the Earth and implications for mantle rheology and Chandler wobble. Geophysical Journal of Royal Astronomical Society 58, 431–440.CrossRefGoogle Scholar
Anderson D. L., Sammis C. G., and Phinney R. A. (1969) Brillouin scattering – A new geophysical tool. In The Application of Modern Physics to the Earth and Planetary Interiors (ed. Runcorn, S. K.), pp. 465–477. Wiley-Interscience.Google Scholar
Anderson, D. L., Tanimoto, T., and Zhang, Y. (1992) Plate tectonics and hotspots – the third dimension. Science 256, 1645–1651.CrossRefGoogle ScholarPubMed
Anderson, O. L. (1968) Comments on the negative pressure dependence of the shear modulus found in some oxides. Journal of Geophysical Research 73, 7707–7712.CrossRefGoogle Scholar
Anderson, O. L. (1996) Equation of State of Solids for Geophysics and Ceramic Sciences. Oxford University Press.Google Scholar
Anderson O. L. (2002) The three-dimensional phase diagram of iron. In Earth's Core: Dynamics, Structure, Rotation (ed. Dehant, V., Creager, K. C., Karato, S., and Zatman, S.), pp. 83–103. American Geophysical Union.Google Scholar
Anderson O. L. and Isaak D. G. (1995) Elastic constants of mantle minerals at high temperature. In Mineral Physics & Crystallography (ed. Ahrens, T. J.), pp. 64–97. American Geophysical Union.CrossRefGoogle Scholar
Anderson, O. L. and Liebermann, R. C. (1970) Equations for elastic constants and their pressure derivatives for three cubic lattices and some geophysical applications. Physics of Earth and Planetary Interiors 3, 61–85.CrossRefGoogle Scholar
Ando, J., Shibata, Y., Okajima, Y., Kanagawa, K., and Furusho, M. (2001) Striped iron zoning of olivine induced by dislocation creep in deformed olivine. Nature 414, 893–895.CrossRefGoogle ScholarPubMed
Ando K. (1989) Self-diffusion in oxides. In Rheology of Solids and of the Earth (ed. Karato, S. and Toriumi, M.), pp. 57–82. Oxford University Press.Google Scholar
Andrade, E. N. d. C. (1910) On the viscous flow in metals and allies phenomena. Proceedings of the Royal Society of London A 84, 1–12.CrossRefGoogle Scholar
Andrault, D., Fiquet, G., Guyot, F., and Hanfland, M. (1998) Pressure-induced Landau-type transition in stishovite. Science 282, 720–724.CrossRefGoogle ScholarPubMed
Ardell, A. J. (1997) Harper–Dorn creep – Prediction of the dislocation network theory of high temperature deformation. Acta Materialia 45, 2971–2981.CrossRefGoogle Scholar
Argon A. S. (1973) Stability of plastic deformation. In The Inhomogeneity of Plastic Deformation (ed. Reed-Hill, R. E.), pp. 161–189. American Society of Metals.Google Scholar
Artemieva, I. M. (2006) Global 1° × 1° thermal model TC1 for the continental lithosphere: implications for lithosphere secular evolution. Tectonophysics 416, 245–277.CrossRefGoogle Scholar
Arzi, A. A. (1978) Critical phenomena in the rheology of partially melted rocks. Tectonophysics 44, 173–184.CrossRefGoogle Scholar
Arzt, E., Ashby, M. F., and Verrall, R. A. (1983) Interface controlled diffusional creep. Acta Metallurgica 31, 1977–1989.CrossRefGoogle Scholar
Ashby, M. F. (1969) On interface reaction-control of Nabarro–Herring creep and sintering. Scripta Metallurgica 3, 837–842.CrossRefGoogle Scholar
Ashby, M. F. (1970) The deformation of plastically non-homogeneous crystals. Philosophical Magazine 21, 399–424.CrossRefGoogle Scholar
Ashby, M. F. (1972) A first report on deformation-mechanism maps. Acta Metallurgica 20, 887–897.CrossRefGoogle Scholar
Ashby M. F. and Brown A. M. (1982) Flow in polycrystals and the scaling of mechanical properties. In Deformation of Polycrystals: Mechanisms and Microstructures (ed. Hansen, N., Horsewell, A., Leffers, T., and Lilholt, H.), pp. 1–13. RISØ National Laboratory.Google Scholar
Ashby, M. F., Edward, G. H., Davenport, J., and Verrall, R. A. (1978) Application of bound theorems for creeping solids and their application to large strain diffusional flow. Acta Metallurgica 26, 1379–1388.CrossRefGoogle Scholar
Ashby, M. F. and Verrall, R. A. (1973) Diffusion accommodated flow and superplasticity. Acta Metallurgica 21, 149–163.CrossRefGoogle Scholar
Atkinson, H. V. (1988) Theories of normal grain growth in pure single phase systems. Acta Metallurgica 36, 469–491.CrossRefGoogle Scholar
Auten, T. A., Davis, L. A., and Gordon, R. B. (1973) Hydrostatic pressure and the mechanical properties of NaCl polycrystals. Philosophical Magazine 28, 335–341.CrossRefGoogle Scholar
Auten, T. A., Radcliffe, S. V., and Gordon, R. B. (1976) Flow stress of MgO single crystals compressed along [100] at high hydrostatic pressure. Journal of the American Ceramic Society 59, 40–42.CrossRefGoogle Scholar
Lallemant, Avé H. G. (1978) Experimental deformation of diopside and websterite. Tectonophysics 48, 1–27.CrossRefGoogle Scholar
Lallemant, Avé H. G. and Carter, N. L. (1970) Syntectonic recrystallization of olivine and modes of flow in the upper mantle. Geological Society of America Bulletin 81, 2203–2220.CrossRefGoogle Scholar
Lallemant, Avé H. G., Mercier, J.-C. C., and Carter, N. L. (1980) Rheology of the upper mantle: inference from peridotite xenoliths. Tectonophysics 70, 85–114.CrossRefGoogle Scholar
Backus, G. E. (1962) Long wave elastic anisotropy produced by horizontal layering. Journal of Geophysical Research 67, 4427–4440.CrossRefGoogle Scholar
Bai, Q., Mackwell, S. J., and Kohlstedt, D. L. (1991) High temperature creep of olivine single crystals 1. Mechanical results for buffered samples. Journal of Geophysical Research 96, 2441–2463.CrossRefGoogle Scholar
Bai, Y. L. (1982) Thermo-plastic instability in simple shear. Journal of Mechanics and Physics of Solids 30, 195–207.CrossRefGoogle Scholar
Bamford, D. (1977) Pn velocity anisotropy in a continental upper mantle. Geophysical Journal of Royal Astronomical Society 57, 397–429.CrossRefGoogle Scholar
Barrat, J.-L. and Hansen, J.-P. (2003) Basic Concepts for Simple and Complex Liquids. Cambridge University Press.CrossRefGoogle Scholar
Bass J. D. (1995) Elasticity of minerals, glasses, and melts. In Mineral Physics and Crystallography: a Handbook of Physical Constants (ed. Ahrens, T. J.), pp. 46–63. American Geophysical Union.CrossRefGoogle Scholar
Bass, J. D., Weidner, D. J., Hamaya, N., Ozima, M., and Akimoto, S. (1984) Elasticity of the olivine and spinel polymorphs of Ni2SiO4. Physics and Chemistry of Minerals 10, 261–272.CrossRefGoogle Scholar
Beauchesne, S. and Poirier, J.-P. (1989) Creep of barium titanate perovskite: a contribution to a systematic approach to the viscosity of the lower mantle. Physics of Earth and Planetary Interiors 55, 187–199.CrossRefGoogle Scholar
Beauchesne, S. and Poirier, J.-P. (1990) In search of systematics for the viscosity of perovskite: creep of potassium tantalate and niobate. Physics of Earth and Planetary Interiors 61, 182–198.CrossRefGoogle Scholar
Becker, T. W., Kellogg, J. B., and O'Connell, R. J. (1999) Thermal constraints on the survival of primitive blobs in the lower mantle. Earth and Planetary Science Letters 171, 351–365.CrossRefGoogle Scholar
Beghein, C. and Trampert, J. (2003a) Probability density functions for radial anisotropy: implications for the upper 1200 km of the mantle. Earth and Planetary Science Letters 217, 151–162.CrossRefGoogle Scholar
Beghein, C. and Trampert, J. (2003b) Robust normal mode constraints on inner-core anisotropy from model space search. Science 299, 552–555.CrossRefGoogle Scholar
Behrmann, J. H. and Mainprice, D. (1987) Deformation mechanisms in a high temperature quartz–feldspar mylonite: evidence for superplastic flow in the lower continental crust. Tectonophysics 140, 297–305.CrossRefGoogle Scholar
Béjina, F., Jaoul, O., and Liebermann, R. C. (1999) Activation volume of Si diffusion in San Carlos olivine: implications for upper mantle rheology. Journal of Geophysical Research 104, 25,529–25 542.CrossRefGoogle Scholar
Bell, D. R. and Rossman, G. R. (1992) Water in Earth's mantle: the role of nominally anhydrous minerals. Science 255, 1391–1397.CrossRefGoogle ScholarPubMed
Bell, D. R., Rossman, G. R., Maldener, J., Endisch, D., and Rauch, F. (2003) Hydroxide in olivine: a quantitative determination of the absolute amount and calibration of the IR spectrum. Journal of Geophysical Research 108, 10.1029/2001JB000679.CrossRefGoogle Scholar
Bell, T. H. and Etheridge, M. A. (1973) Microstructures of mylonites and their descriptive terminology. Lithos 6, 337–348.CrossRefGoogle Scholar
Ismail, Ben W. and Mainprice, D. (1998) An olivine fabric database: an overview of upper mantle fabrics and seismic anisotropy. Tectonophysics 296, 145–157.CrossRefGoogle Scholar
Benn, K. and Allard, B. (1989) Preferred mineral orientations related to magmatic flow in ophiolite layered gabbros. Journal of Petrology 30, 925–946.CrossRefGoogle Scholar
Bennington, K. O. (1963) Some crystal growth features of sea ice. Journal of Glaciology 4, 669–688.CrossRefGoogle Scholar
Benz, H. and Vidale, J. E. (1993) Sharpness of upper-mantle discontinuities determined from high-frequency reflections. Nature 365, 147–150.CrossRefGoogle Scholar
Beran A. and Libowitzky E. (2006) Water in natural mantle minerals II: olivine, garnet and accessary minerals. In Water in Nominally Anhydrous Minerals (ed. Keppler, H. and Smyth, J. R.), pp. 169–191. Mineralogical Society of America.Google Scholar
Berckhemer, H., Kampfmann, W., Aulbach, E., and Schmeling, H. (1982) Shear modulus and Q of forsterite and dunite near partial melting from forced oscillation experiments. Physics of Earth and Planetary Interiors 29, 30–41.CrossRefGoogle Scholar
Bercovici, D. (2003) The generation of plate tectonics from mantle convection. Earth and Planetary Science Letters 205, 107–121.CrossRefGoogle Scholar
Bercovici D. and Karato S. (2002) Some theoretical concepts of shear localization in the lithosphere. In Plastic Deformation of Minerals and Rocks (ed. Karato, S. and Wenk, H.-R.), pp. 387–420. American Mineralogical Society.Google Scholar
Bercovici, D. and Karato, S. (2003) Whole mantle convection and transition-zone water filter. Nature 425, 39–44.CrossRefGoogle ScholarPubMed
Bercovici, D. and Ricard, Y. (2003) Energetics of two-phase model of lithospheric damage, shear localization and plate-boundary formation. Geophysical Journal International 152, 1–16.CrossRefGoogle Scholar
Bercovici, D. and Ricard, Y. (2005) Tectonic plate generation and two-phase damage: void growth versus grain-size reduction. Journal of Geophysical Research 110, 10.1029/2004JB003181.CrossRefGoogle Scholar
Bercovici, D., Ricard, Y., and Schubert, G. (2001a) A two-phase model for compaction and damage 1. General theory. Journal of Geophysical Research 106, 8887–8906.CrossRefGoogle Scholar
Bercovici, D., Ricard, Y., and Schubert, G. (2001b) A two-phase model for compaction and damage 3. Applications to shear localization and plate boundary formation. Journal of Geophysical Research 106, 8925–8939.CrossRefGoogle Scholar
Bergman, M. I. (1997) Measurements of elastic anisotropy due to solidification texturing and the implications for the Earth's inner core. Nature 389, 60–63.CrossRefGoogle Scholar
Bergman, M. I. (1998) Estimates of the Earth's inner core grain size. Geophysical Research Letters 25, 1593–1596.CrossRefGoogle Scholar
Berthe, D., Choukrouse, P., and Jegouzo, P. (1979) Orthogneiss, mylonite and non coaxial deformation of granite: the example of the South American shear zone. Journal of Structural Geology 1, 31–42.CrossRefGoogle Scholar
Bethe, H. A. (1935) Statistical theory of superlattice. Proceedings of the Royal Society of London A 150, 552–575.CrossRefGoogle Scholar
Bhattacharya, J., Shearer, P. M., and Masters, G. (1993) Inner core attenuation for short-period PKP (BC) versus PKP (DF) waveforms. Geophysical Journal International 114, 1–11.CrossRefGoogle Scholar
Bilde-Sorenson, J. B. and Smith, D. A. (1994) Comment on ‘Refutation of the relationship between denuded zones and diffusional creep’. Scripta Metallurgica et Material 30, 383–386.CrossRefGoogle Scholar
Billen, M. I. and Gurnis, M. (2001) A low viscosity wedge in subduction zones. Earth and Planetary Science Letters 193, 227–236.CrossRefGoogle Scholar
Billen, M. I., Gurnis, M., and Simons, M. (2003) Multiscale dynamics of the Tonga–Kermadec subduction zone. Geophysical Journal International 153, 359–388.CrossRefGoogle Scholar
Billien, M., Lébeque, J.-J., and Trampert, J. (2000) Global maps of Rayleigh wave attenuation for periods between 40 and 150 seconds. Geophysical Research Letters 27, 3619–3622.CrossRefGoogle Scholar
Bina, C. B. and Helffrich, G. (1994) Phase transition Clapeyron slopes and transition zone seismic discontinuity topography. Journal of Geophysical Research 99, 15,853–15 860.CrossRefGoogle Scholar
Birch, F. (1952) Elasticity and constitution of the Earth's interior. Journal of Geophysical Research 57, 227–286.CrossRefGoogle Scholar
Birch, F. (1961) The velocity of compressional waves in rocks to 10 kilobars, Part 2. Journal of Geophysical Research 66, 2199–2224.CrossRefGoogle Scholar
Birch, F. (1964) Density and composition of mantle and core. Journal of Geophysical Research 69, 4377–4388.CrossRefGoogle Scholar
Blacic J. D. (1972) Effects of water in the experimental deformation of olivine. In Flow and Fracture of Rocks (ed. Heard, H. C., Borg, I. Y., Carter, N. L., and Raleigh, C. B.), pp. 109–115. American Geophysical Union.CrossRefGoogle Scholar
Blacic, J. D. (1975) Plastic-deformation mechanisms of quartz: the effect of water. Tectonophysics 27, 271–294.CrossRefGoogle Scholar
Blackman, D. K. and Kendall, J.-M. (1997) Sensitivity of teleseismic body waves to mineral texture and melt in the mantle beneath a mid-ocean ridge. Philosophical Transactions of Royal Society of London A 355, 217–231.CrossRefGoogle Scholar
Bloomfield, J. P. and Covey-Crump, S. J. (1993) Correlating mechanical data with microstructural observations in deformation experiments on synthetic two-phase aggregates. Journal of Structural Geology 15, 1007–1019.CrossRefGoogle Scholar
Bloss, F. D. (1971) Crystallography and Crystal Chemistry. Holt, Reinhart and Winston, Inc.Google Scholar
Blum, J. and Shen, Y. (2004) Thermal, hydrous, and mechanical states of the mantle transition zone beneath southern Africa. Earth and Planetary Science Letters 217, 367–378.CrossRefGoogle Scholar
Blum, W., Eisenlohr, P. and Breutinger, F. (2002) Understanding creep – A review. Metallurgical and Materials Transactions A 33, 291–303.CrossRefGoogle Scholar
Boland J. N. and Tullis T. E. (1986) Deformation behaviour of wet and dry clinopyroxenite in the brittle to ductile transition region. In Mineral and Rock Deformation: Laboratory Studies (ed. Hobbs, B. E. and Heard, H. C.), pp. 35–50. American Geophysical Union.CrossRefGoogle Scholar
Bolfan-Casanova, N. (2005) Water in the Earth's mantle. Mineralogical Magazine 69, 229–257.CrossRefGoogle Scholar
Bolfan-Casanova, N., Keppler, H., and Rubie, D. C. (2000) Water partitioning between nominally anhydrous minerals in the MgO-SiO2-H2O system up to 24 GPa: implications for the distribution of water in the Earth's mantle. Earth and Planetary Science Letters 182, 209–221.CrossRefGoogle Scholar
Bolfan-Casanova, N., Keppler, H., and Rubie, D. C. (2003) Water partitioning at 660 km depth and evidence for very low water solubility in magnesium silicate perovskite. Geophysical Research Letters 30, 10.1029/2003GL017182.CrossRefGoogle Scholar
Bolfan-Casanova, N., Mackwell, S. J., Keppler, H., McCammon, C., and Rubie, D. C. (2002) Pressure dependence of H solubility in magnesiowüstite up to 25 GPa: implications for the storage of water in the Earth's lower mantle. Geophysical Research Letters 29, 89–1/89–4.CrossRefGoogle Scholar
Bons, P. D. and Cox, S. J. D. (1994) Analogue experiments and numerical modelling on the relation between microgeometry and flow properties of polyphase materials. Materials Science and Engineering A 175, 237–245.CrossRefGoogle Scholar
Bons, P. D. and Brok, B. (2000) Crystallographic preferred orientation development by dissolution–precipitation creep. Journal of Structural Geology 22, 1713–1722.CrossRefGoogle Scholar
Bons, P. D. and Urai, J. L. (1994) Experimental deformation of two-phase rock analogues. Materials Science and Engineering A 175, 221–229.CrossRefGoogle Scholar
Borch, R. S. and Green, H. W. II. (1987) Dependence of creep in olivine on homologous temperature and its implication for flow in the mantle. Nature 330, 345–348.CrossRefGoogle Scholar
Borch, R. S. and Green, H. W. II. (1989) Deformation of peridotite at high pressure in a new molten cell: comparison of traditional and homologous temperature treatments. Physics of Earth and Planetary Interiors 55, 269–276.CrossRefGoogle Scholar
Born, M. (1940) On the stability of crystal lattice, 1. Proceedings of Cambridge Philosophical Society 36, 160–165.CrossRefGoogle Scholar
Born, M. and Huang, K. (1954) Dynamical Theory of Crystal Lattice. Clarendon Press.Google Scholar
Bouchez, J. L., Lister, G. S., and Nicolas, A. (1983) Fabric asymmetry and shear sense in movement zones. Geologische Rundschau 72, 401–419.CrossRefGoogle Scholar
Boullier, A. M. and Gueguen, Y. (1975) SP-mylonites: origin of some mylonites by superplastic flow. Contributions to Mineralogy and Petrology 50, 93–104.CrossRefGoogle Scholar
Boysen, H., Dorner, B., Frey, F. A., and Grimm, H. (1980) Dynamic structure determination of two interacting modes at the M-point in α- and β-quartz by inelastic neutron scattering. Journal of Physics C: Solid State Physics 13, 6127–6146.CrossRefGoogle Scholar
Braithwaite, J. S., Wright, K., and Catlow, C. R. A. (2003) A theoretical study of the energetics and IR frequencies of hydroxyl defects in forsterite. Journal of Geophysical Research 108, 10.1029/2002JB002126.CrossRefGoogle Scholar
Braun, J., Cherny, J., Poliakov, A. N. B., et al. (1999) A simple parameterization of strain localization in the ductile regime due to grain size reduction: a case study for olivine. Journal of Geophysical Research 104, 25,167–25 181.CrossRefGoogle Scholar
Brennan, B. J. and Stacey, F. D. (1977) Frequency dependence of elasticity of rock – test of seismic velocity dispersion. Nature 268, 220–222.CrossRefGoogle Scholar
Breuer, D. and Spohn, T. (1995) Possible flushing instability in mantle convection at the Archean–Proterozoic transition. Nature 378, 608–610.CrossRefGoogle Scholar
Brodholt, J. P. and Refson, K. (2000) An ab initio study of hydrogen in forsterite and a possible mechanism for hydrolytic weakening. Journal of Geophysical Research 105, 18,977–18 982.CrossRefGoogle Scholar
Bromiley, G. D., Keppler, H., McCammon, C., Bromiley, F. A., and Jacobsen, S. B. (2004) Hydrogen solubility and speciation in natural, gem quality chromian diopside. American Mineralogist 89, 941–949.CrossRefGoogle Scholar
Brook, R. J. (1969) Pore-grain boundary interactions and grain growth. Journal of the American Ceramic Society 52, 65–67.Google Scholar
Brookes, C. A., O'Neill, J. B., and Redfern, B. A. W. (1971) Anisotropy in the hardness of single crystals. Proceedings of the Royal Society of London A 322, 73–88.CrossRefGoogle Scholar
Brown, A. M. and Ashby, M. F. (1980) Correlations for diffusion constants. Acta Metallurgica 28, 1085–1101.CrossRefGoogle Scholar
Brown, J. M. and McQueen, R. G. (1980) Melting of iron under shock conditions. Geophysical Research Letters 7, 533–536.CrossRefGoogle Scholar
Brown J. M. and McQueen R. G. (1982) The equation of state for iron and the Earth's core. In High-Pressure Research in Geophysics (ed. Akimoto, S. and Manghnani, M. H.), pp. 611–623. Reidel.CrossRefGoogle Scholar
Brown, J. M. and Shankland, T. J. (1981) Thermodynamic parameters in the Earth as determined from seismic profiles. Geophysical Journal of Royal Astronomical Society 66, 579–596.CrossRefGoogle Scholar
Brown, L. M. (1961) Mobile charged dislocations in ionic crystals. Physica Status Solidi 1, 585–599.CrossRefGoogle Scholar
Bruhn, D. F. and Casey, M. (1997) Texture development in experimentally deformed two-phase aggregates of calcite and anhydrite. Journal of Structural Geology 19, 909–925.CrossRefGoogle Scholar
Bruhn, D. F., Olgaard, D. L., and Dell'Angelo, L. N. (1999) Evidence for enhanced deformation in two-phase rocks: experiments on the rheology of calcite–anhydrite aggregates. Journal of Geophysical Research 104, 707–724.CrossRefGoogle Scholar
Budianski B. and O'Connell R. J. (1980) Bulk dissipation in heterogeneous media. In Solid Earth Geophysics and Geotechnology (ed. Nasser, S. N.), pp. 1–10. American Society of Mechanical Engineering.Google Scholar
Buffett, B. A. (1997) Geodynamic estimates of the viscosity of the Earth's inner core. Nature 388, 571–573.CrossRefGoogle Scholar
Buffett, B. A. and Bloxham, J. (2000) Deformation of Earth's inner core by electromagnetic forces. Geophysical Research Letters 27, 4001–4004.CrossRefGoogle Scholar
Buffett, B. A., Garnero, E. J., and Jeanloz, R. (2000) Sediments at the top of Earth's core. Science 290, 1338–1342.CrossRefGoogle ScholarPubMed
Bunge, H.-J. (1982) Texture Analysis in Materials Science – Mathematical Methods. Butterworth.Google Scholar
Bunge, H.-P., Ricard, Y., and Matas, J. (2001) Non-adiabaticity in mantle convection. Geophysical Research Letters 28, 879–882.CrossRefGoogle Scholar
Burns, R. G. (1970) Mineralogical Applications of Crystal Field Theory. Cambridge University Press.Google Scholar
Burton, B. and Reynolds, G. L. (1994) In defense of diffusional creep. Materials Science and Engineering A 191, 135–141.CrossRefGoogle Scholar
Bussod G. Y. and Christie J. C. (1991) Textural development and melt topology in spinel lherzolite experimentally deformed at hypersolidus conditions. In Orogenic Lherzolites and Mantle Processes (ed. Menzies, M. A., Dupuy, C., and Nicolas, A.), pp. 17–39. Oxford University Press.Google Scholar
Bussod, G. Y., Katsura, T., and Rubie, D. C. (1993) The large volume multi-anvil press as a high P–T deformation apparatus. Pure and Applied Geophysics 141, 579–599.CrossRefGoogle Scholar
Byerlee, J. D. (1978) Friction of rocks. Pure and Applied Geophysics 116, 615–626.CrossRefGoogle Scholar
Bystricky, M. and Mackwell, S. J. (2001) Creep of dry clinopyroxene aggregates. Journal of Geophysical Research 106, 13,443–13 454.CrossRefGoogle Scholar
Cadek, O. and Fleitout, L. (2003) Effect of lateral viscosity variation in the top 300 km on the geoid and dynamic topography. Geophysical Journal International 152, 566–580.CrossRefGoogle Scholar
Cadek, O. and Berg, A. (1998) Radial profile of temperature and viscosity in the Earth's mantle inferred from the geoid and lateral seismic structure. Earth and Planetary Science Letters 164, 607–615.CrossRefGoogle Scholar
Cahn, J. W. and Balluffi, R. W. (1979) On diffusional mass tranport in polycrystals containing stationary or migrating boundaries. Scripta Metallurgica 13, 499–502.CrossRefGoogle Scholar
Cahn, J. W. and Fullman, R. L. (1956) On the use of lineal analysis for obtaining particle size distribution functions in opaque samples. Transaction of AIME 206, 610–612.Google Scholar
Callen, H. B. (1960) Thermodynamics. John Wiley and Sons.Google Scholar
Campbell, I. H. and Taylor, S. R. (1983) No water, no granites – no oceans, no continents. Geophysical Research Letters 10, 1061–1064.CrossRefGoogle Scholar
Cannon R. M. and Coble R. L. (1975) Review of diffusional creep of Al2O3. In Deformation of Ceramic Materials (ed. Bradt, R. C. and Tressler, R. E.), pp. 61–100. Plenum Press.CrossRefGoogle Scholar
Cannon, R. M. and Langdon, T. G. (1988) Creep of ceramics, Part 2. An examination of flow mechanisms. Journal of Materials Science 23, 1–20.CrossRefGoogle Scholar
Cannon, W. R. and Sherby, O. D. (1973) Third-power stress dependence in creep of polycrystalline nonmetals. Journal of the American Ceramic Society 56, 157–160.CrossRefGoogle Scholar
Caristan, Y. (1982) The transition from high-temperature creep to fracture in Maryland diabase. Journal of Geophysical Research 887, 6781–6790.CrossRefGoogle Scholar
Carlson, R. W., Shirey, S. B., Pearson, D. G., and Boyd, F. R. (1994) The mantle beneath continents. Carnegie Institution of Washington, Yearbook 93, 109–117.Google Scholar
Carmichael, I. S. E., Turner, F. J., and Verhoogen, J. (1974) Igneous Petrology. McGraw-Hill.Google Scholar
Carpenter, M. A. (2006) Elastic properties of minerals and the influence of phase transitions. American Mineralogist 91, 229–246.CrossRefGoogle Scholar
Carter, C. H. Jr., Stone, C. A., and Davis, R. F. (1980) High-temperature, multi-atmosphere, constant stress compression creep apparatus. Review of Scientific Instruments 51, 1352–1357.CrossRefGoogle Scholar
Carter, N. L. and Lallemant, Avé H. G. (1970) High temperature deformation of dunite and peridotite. Geological Society of America Bulletin 81, 2181–2202.CrossRefGoogle Scholar
Cathles, L. M. (1975) The Viscosity of the Earth's Mantle. Princeton University Press.Google Scholar
Chaix, C. and Lasalmonie, A. (1981) Transformation induced plasticity in titanium. Res Mechanica 2, 241–249.Google Scholar
Chaklader, A. C. D. (1963) Deformation of quartz crystals at the transformation temperature. Nature 197, 791–792.CrossRefGoogle Scholar
Chakraborty, S. and Ganguly, J. (1992) Cation diffusion in aluminosilicate garnets: experimental determination in spessartine–almandine diffusion couples, evaluation of effective binary diffusion coefficients, and applications. Contributions to Mineralogy and Petrology 111, 74–86.CrossRefGoogle Scholar
Chang, R. (1961) Dislocation relaxation phenomena in oxide crystals. Journal of Applied Physics 32, 1127–1132.CrossRefGoogle Scholar
Chen, G., Miletich, R., Mueller, K., and Spetzler, H. A. (1997) Shear and compressional mode measurements with GHz interferometry and velocity-composition systematics for the purope–almandine solid solution series. Physics of the Earth and Planetary Interiors 99, 273–287.CrossRefGoogle Scholar
Chen, I.-W. (1982) Diffusional creep of two-phase materials. Acta Metallurgica 30, 1655–1664.CrossRefGoogle Scholar
Chen, I.-W. and Argon, A. S. (1979) Steady state power-law creep in heterogeneous alloys with coarse microstructures. Acta Metallurgica 27, 785–791.CrossRefGoogle Scholar
Chen, I.-W. and Argon, A. S. (1981) Creep cavitation in 304 steel. Acta Metallurgica 29, 1321–1333.CrossRefGoogle Scholar
Chen, J., Inoue, T., Weidner, D. J., Wu, Y., and Vaughan, M. T. (1998) Strength and water weakening of mantle minerals, olivine, wadsleyite and ringwoodite. Geophysical Research Letters 25, 575–578.CrossRefGoogle Scholar
Chen, J., Inoue, T., Yurimoto, H., and Weidner, D. J. (2002a) Effect of water on olivine–wadsleyite phase boundary in the (Mg, Fe)2SiO4 system. Geophysical Research Letters 29, 10.1029/2001GRL014429.CrossRefGoogle Scholar
Chen, J., Li, L., Weidner, D. J., and Vaughan, M. T. (2004) Deformation experiments using synchrotron X-rays: in situ stress and strain measurements at high pressure and temperature. Physics of Earth and Planetary Interiors 143–144, 347–356.CrossRefGoogle Scholar
Chen, J., Weidner, D. J., and Vaughan, M. T. (2002b) Strength of Mg0.9Fe0.1SiO3 perovskite at high pressure and temperature. Nature 419, 824–826.CrossRefGoogle Scholar
Chen, W. K. and Peterson, N. L. (1973) Cation diffusion, semiconductivity and nonstoichiometry in (Co, Ni)O crystals. Journal of Physics and Chemistry of Solids 34, 1093–1108.CrossRefGoogle Scholar
Chen, W.-P. and Molnar, P. (1983) Focal depths of intracontinental and intraplate earthquakes and their implications for the thermal structure and mechanical properties of the lithosphere. Journal of Geophysical Research 88, 4183–4214.CrossRefGoogle Scholar
Chester, F. M. (1988) The brittle–ductile transition in a deformation-mechanism map for halite. Tectonophysics 154, 125–136.CrossRefGoogle Scholar
Chevrot, S. (2000) Multichannel analysis of shear wave splitting. Journal of Geophysical Research 105, 21,579–21 590.CrossRefGoogle Scholar
Chevrot, S. and Hilst, R. D. (2003) On the effects of a dipping axis of symmetry on shear wave splitting measurements in a transversely isotropic medium. Geophysical Journal International 152, 497–505.CrossRefGoogle Scholar
Chiang, Y.-M. and Takagi, T. (1990) Grain-boundary chemistry of barium titanate and strontium titanate: I. High-temperature equilibrium space charge. Journal of American Ceramic Society 73, 3278–3285.CrossRefGoogle Scholar
Chinh, N. Q., Horvath, G., Horita, Z., and Langdon, T. G. (2004) A new constitutive relationship for the homogeneous deformation of metals over a wide range of strain. Acta Materialia 52, 3555–3563.CrossRefGoogle Scholar
Chopra, P. N. and Paterson, M. S. (1981) The experimental deformation of dunite. Tectonophysics 78, 453–573.CrossRefGoogle Scholar
Chopra, P. N. and Paterson, M. S. (1984) The role of water in the deformation of dunite. Journal of Geophysical Research 89, 7861–7876.CrossRefGoogle Scholar
Christensen, N. I. and Lundquist, S. M. (1982) Pyroxene orientations within the upper mantle. Geological Society of America Bulletin 93, 279–288.2.0.CO;2>CrossRefGoogle Scholar
Christensen U. R. (1989) Mantle rheology, constitution and convection. In Mantle Convection (ed. Peltier, W. R.), pp. 595–655. Gordon and Breach.Google Scholar
Christensen, U. R. and Hofmann, A. W. (1994) Segregation of subducted oceanic crust in the convecting mantle. Journal of Geophysical Research 99, 19,867–19 884.CrossRefGoogle Scholar
Chung, D. H. (1972) Birch's law: why is it so good?Science 177, 261–263.CrossRefGoogle ScholarPubMed
Clinard, F. W. and Sherby, O. D. (1964) Strength of iron during allotropic transformation. Acta Metallurgica 12, 911–919.CrossRefGoogle Scholar
Coble, R. L. (1963) A model for boundary-diffusion controlled creep in polycrystalline materials. Journal of Applied Physics 34, 1679–1682.CrossRefGoogle Scholar
Cocks, A. C. F. and Gill, S. P. A. (1996) A variational approach to two dimensional grain growth – I. Theory. Acta Materialia 44, 4765–4775.CrossRefGoogle Scholar
Colombo, L., Kataoka, T., and Li, J. C. M. (1982) Movement of edge dislocations in KCl by large electric fields. Philosophical Magazine A 46, 211–215.CrossRefGoogle Scholar
Cooper R. F. (2002) Seismic wave attenuation: energy dissipation in viscoelastic crystalline solids. In Plastic Deformation of Minerals and Rocks (ed. Karato, S. and Wenk, H.-R.), pp. 253–290. Mineralogical Society of America.Google Scholar
Cooper R. F. and Kohlstedt D. L. (1982) Interfacial energies in the olivine–basalt system. In High Pressure Research in Geophysics (ed. Akimoto, S. and Manghnani, M. H.), pp. 217–228. Center for Academic Publication.CrossRefGoogle Scholar
Cooper, R. F. and Kohlstedt, D. L. (1986) Rheology and structure of olivine–basalt partial melts. Journal of Geophysical Research 91, 9315–9323.CrossRefGoogle Scholar
Cooper, R. F., Kohlstedt, D. L., and Chyung, K. (1989) Solution-precipitation enhanced creep in solid–liquid aggregates which displays a non-zero dihedral angle. Acta Metallurgica 37, 1759–1771.CrossRefGoogle Scholar
Cordier P. (2002) Dislocations and slip systems of mantle minerals. In Plastic Deformation of Minerals and Rocks (ed. Karato, S. and Wenk, H.-R.), pp. 137–179. American Mineralogical Society.Google Scholar
Cordier, P. and Doukhan, J.-C. (1989) Water solubility in quartz and its influence on ductility. European Journal of Mineralogy 1, 221–237.CrossRefGoogle Scholar
Cordier, P. and Doukhan, J. C. (1995) Plasticity and dissociation of dislocations in water-poor quartz. Philosophical Magazine A 72, 497–514.CrossRefGoogle Scholar
Cordier, P., Ungar, T., Zsoldos, L., and Tichy, G. (2004) Dislocation creep in MgSiO3 perovskite at conditions of the Earth's uppermost lower mantle. Nature 428, 837–840.CrossRefGoogle ScholarPubMed
Cormier, V. F. and Li, X.-D. (2002) Frequency-dependent seismic attenuation in the inner core, 2. A scattering and fabric interpretation. Journal of Geophysical Research 107, 10.1029/2002JB001796.CrossRefGoogle Scholar
Cormier, V. F., Xu, L., and Choy, G. L. (1998) Seismic attenuation of the inner core: viscoelastic or stratigraphic?Geophysical Research Letters 25, 4019–4022.CrossRefGoogle Scholar
Cottrell, A. H. (1953) Dislocations and Plastic Flow in Crystals. Clarendon Press.Google Scholar
Cottrell, A. H. (1964) The Mechanical Properties of Matter. Wiley.Google Scholar
Covey-Crump, S. J. and Rutter, E. H. (1989) Thermally-induced grain growth of calcite marbles on Naxos Island, Greece. Contributions to Mineralogy and Petrology 101, 69–86.CrossRefGoogle Scholar
Crampin, S. (1978) Seismic waves propagating through a cracked solid: polarization as a possible dilatancy diagnostic. Geophysical Journal of Royal Astronomical Society 53, 467–496.CrossRefGoogle Scholar
Crampin, S. (1981) A review of wave motion in anisotropic and cracked elastic-media. Wave Motion 3, 343–391.CrossRefGoogle Scholar
Crampin, S. (1984) An introduction to wave propagation in anisotropic media. Geophysical Journal of Royal Astronomical Society 76, 17–28.CrossRefGoogle Scholar
Creager K. C. (2000) Inner core anisotropy and rotation. In Earth's Deep Interior: Mineral Physics and Tomography (ed. Karato, S., Forte, A. M., Liebermann, R. C., Masters, G., and Stixrude, L.), pp. 89–114. American Geophysical Union.CrossRefGoogle Scholar
Dahlen, F. A. and Tromp, J. (1998) Theoretical Global Seismology. Princeton University Press.Google Scholar
Davies, G. F. (1974) Elasticity, crystal structure and phase transitions. Earth and Planetary Science Letters 22, 339–346.CrossRefGoogle Scholar
Davis, L. A. and Gordon, R. B. (1968) Pressure dependence of the plastic flow stress of alkali halide single crystals. Journal of Applied Physics 39, 3885–3897.CrossRefGoogle Scholar
Bresser, J. H. P., Peach, C. J., Reijs, J. P. J., and Spiers, C. J. (1998) On dynamic recrystallization during solid state flow: effects of stress and temperature. Geophysical Research Letters 25, 3457–3460.CrossRefGoogle Scholar
Bresser, J. H. P., Heege, J. H., and Spiers, C. J. (2001) Grain size reduction by dynamic recrystallization: can it result in major rheological weakening?International Journal of Earth Sciences 90, 28–45.CrossRefGoogle Scholar
Groot, S. R. and Mazur, P. (1962) Non-Equilibrium Thermodynamics. North-Holland.Google Scholar
Jong, M. and Rathenau, G. W. (1959) Mechanical properties of iron and some iron alloys while undergoing allotropic transformations. Acta Metallurgica 7, 246–253.CrossRefGoogle Scholar
Jong, M. and Rathenau, G. W. (1961) Mechanical properties of an iron carbon alloy during allotropic transformation. Acta Metallurgica 11, 714–720.CrossRefGoogle Scholar
Debayle, E., Kennett, B. L. N., and Priestley, K. (2005) Global azimuthal seismic anisotropy and the unique plate-motion deformation of Australia. Nature 433, 509–512.CrossRefGoogle Scholar
Demouchy, S., Deloule, E., Frost, D. J., and Keppler, H. (2005) Pressure and temperature-dependence of water solubility in iron-free wadsleyite. American Mineralogist 90, 1084–1091.CrossRefGoogle Scholar
Dennis, P. F. (1984) Oxygen self-diffusion in quartz under hydrothermal conditions. Journal of Geophysical Research 89, 4047–4057.CrossRefGoogle Scholar
Derby, B. and Ashby, M. F. (1987) On dynamic recrystallization. Scripta Metallurgica 21, 879–884.CrossRefGoogle Scholar
Deschamps, F., Snieder, R., and Trampert, J. (2001) The relative density-to-shear velocity scaling in the uppermost mantle. Physics of Earth and Planetary Interiors 124, 193–211.CrossRefGoogle Scholar
Deschamps, F. and Trampert, J. (2003) Mantle tomography and its relation to temperature and composition. Physics of the Earth and Planetary Interiors 140, 277–291.CrossRefGoogle Scholar
Deschamps, F., Trampert, J., and Snieder, R. (2002) Anomalies of temperature and iron in the uppermost mantle inferred from gravity data and tomographic models. Physics of Earth and Planetary Interiors 129, 245–264.CrossRefGoogle Scholar
Deuss, A. and Woodhouse, J. H. (2002) A systematic search for mantle discontinuities using SS-precursors. Geophysical Research Letters 29, 10.1029/2002GL014768.CrossRefGoogle Scholar
Deuss, A. and Woodhouse, J. H. (2004) The nature of the Lehmann discontinuity from its seismological Clapeyron slope. Earth and Planetary Science Letters 225, 295–304.CrossRefGoogle Scholar
Dhalenne, G., Dechamps, M., and Revcolevschi, A. (1982) Relative energies of < 011 > tilt boundaries in NiO. Journal of the American Ceramic Society 65, 611–612.CrossRefGoogle Scholar
Dick, H. J. B. and Sinton, J. M. (1979) Compositional layering in alpine peridotites: evidence for pressure solution creep in the mantle. Journal of Geology 87, 403–416.CrossRefGoogle Scholar
Dieterich, J. H. (1978) Time-dependent friction and mechanism of stick-slip. Pure and Applied Geophysics 116, 790–806.CrossRefGoogle Scholar
Dimos, D., Wolfensteine, J., and Kohlstedt, D. L. (1988) Kinetic demixing and decomposition of multicomponent oxides due to a nonhydrostatic stress. Acta Metallurgica 36, 1543–1552.CrossRefGoogle Scholar
Dingley, D. J. and Randle, V. (1992) Microtexture determination by electron back-scatter diffraction. Journal of Materials Sciences 27, 4545–4566.CrossRefGoogle Scholar
Doherty, R. D., Hughes, D. A., Humphreys, F. J., et al. (1997) Current issues in recrystallization: a review. Materials Science and Engineering A 238, 219–274.CrossRefGoogle Scholar
Doin, M., Fleitout, L., and Christensen, U. R. (1997) Mantle convection and stability of depleted and undepleted continental lithosphere. Journal of Geophysical Research 102, 2771–2787.CrossRefGoogle Scholar
Doukhan, J.-C. and Paterson, M. S. (1986) Solubility of water in quartz. Bulletin Mineralogie 109, 193–198.Google Scholar
Doukhan, J.-C. and Trépied, L. (1985) Plastic deformation of quartz single crystals. Bulletin Mineralogie 108, 97–123.Google Scholar
Dresen, G., Wang, Z., and Bai, Q. (1996) Kinetics of grain growth in anorthite. Tectonophysics 258, 251–262.CrossRefGoogle Scholar
Drury, M. R. and Fitz Gerald, J. D. (1996) Grain boundary melt films in an experimentally deformed olivine–pyroxene rock: implications for melt distribution in upper mantle rocks. Geophysical Research Letters 23, 701–704.CrossRefGoogle Scholar
Drury M. R. and Fitz Gerald J. D. (1998) Mantle rheology: insights from laboratory studies of deformation and phase transition. In The Earth's Mantle: Composition, Structure and Evolution (ed. Jackson, I.), pp. 503–559. Cambridge University Press.CrossRefGoogle Scholar
Drury, M. R., Humphreys, F. J. and White, S. H. (1985) Large strain deformation studies using polycrystalline magnesium as a rock analogue, part II: dynamic recrystallization mechanisms at high temperature. Physics of the Earth and Planetary Interiors 40, 208–222.CrossRefGoogle Scholar
Drury, M. R. and Urai, J. (1990) Deformation-related recrystallization processes. Tectonophysics 172, 235–253.CrossRefGoogle Scholar
Drury, M. R. and Roermund, H. L. M. (1989) Fluid assisted recrystallization in upper mantle peridotite xenoliths from kimberlite. Journal of Petrology 30, 133–152.CrossRefGoogle Scholar
Drury, M. R., Vissers, R. L. M., Wal, D., and Hoogerduin Strating, E. H. (1991) Shear localization in upper mantle peridotites. Pure and Applied Geophysics 137, 439–460.CrossRefGoogle Scholar
Duclos, R., Doukhan, N., and Escaig, B. (1978) High-temperature creep behaviour of nearly stoichiometric alumina spinel. Journal of Materials Science 13, 1740–1748.CrossRefGoogle Scholar
Duffy T. S. and Ahrens T. H. (1992) Lateral variation in lower mantle seismic velocity. In High-Pressure Research: Application to Earth and Planetary Sciences (ed. Syono, Y. and Manghnani, M. H.), pp. 197–205. Terra Scientific Publishers.CrossRefGoogle Scholar
Duffy, T. S., Shen, G., Heinz, D. L., Shu, J., Ma, Y., Mao, H.-K., Hemley, R. J., and Singh, A. K. (1999) Lattice strain in gold and rhenium under nonhydrostatic compression to 37 GPa. Physical Review B 60, 15,063–15,073.CrossRefGoogle Scholar
Duffy, T. S., Zha, C.-S., Downs, R. T., Mao, H.-K., and Hemley, R. J. (1995) Elasticity of forsterite to 16 GPa and the composition of the upper mantle. Nature 378, 170–173.CrossRefGoogle Scholar
Dupas-Bruzek, C., Sharp, T. G., Rubie, D. C., and Durham, W. B. (1998) Mechanisms of transformation and deformation in Mg1.8Fe0.2SiO4 olivine and wadsleyite under non-hydrostatic stress. Physics of Earth and Planetary Interiors 108, 33–48.CrossRefGoogle Scholar
Durek, J. J. and Ekström, G. (1995) Evidence of bulk attenuation in the asthenosphere from recordings of the Bolivia earthquake. Geophysical Research Letters 22, 2309–2312.CrossRefGoogle Scholar
Durek, J. J. and Romanowicz, B. (1999) Inner core anisotropy inferred by direct inversion of normal mode spectra. Geophysical Journal International 139, 599–622.CrossRefGoogle Scholar
Durham, W. B., Goetze, C., and Blake, B. (1977) Plastic flow of oriented single crystals of olivine, 2. Observations and interpretations of the dislocation structure. Journal of Geophysical Research 82, 5755–5770.CrossRefGoogle Scholar
Durham, W. B. and Stern, L. A. (2001) Rheological properties of water ice – Applications to satellites of the outer planets. Annual Review of Earth and Planetary Sciences 29, 295–330.CrossRefGoogle Scholar
Durham W. B., Weidner D. J., Karato S., and Wang Y. (2002) New developments in deformation experiments at high pressure. In Plastic Deformation of Minerals and Rocks (ed. Karato, S. and Wenk, H.-R.), pp. 21–49. Mineralogical Society of America.Google Scholar
Durinck, J., Legris, A., and Cordier, P. (2005a) Influence of crystal chemistry on ideal plastic shear anisotropy in forsterite: first principles calculations. American Mineralogist 90, 1072–1077.CrossRefGoogle Scholar
Durinck, J., Legris, A., and Cordier, P. (2005b) Pressure sensitivity of olivine slip systems: first-principle calculations of generalised stacking faults. Physics and Chemistry of Minerals 32, 646–654.CrossRefGoogle Scholar
Duval, P., Ashby, M. F., and Anderman, I. (1978) Anelastic behaviour of polycrystalline ice. Journal of Glaciology 21, 621–628.CrossRefGoogle Scholar
Duval, P., Ashby, M. F., and Anderman, I. (1983) Rate-controlling processes in the creep of polycrystalline ice. Journal of Physical Chemistry 87, 4066–4074.CrossRefGoogle Scholar
Duyster, J. and Stöckhert, B. (2001) Grain boundary energies in olivine derived from natural microstructures. Contributions to Mineralogy and Petrology 140, 567–576.CrossRefGoogle Scholar
Dziewonski, A. M. (1984) Mapping the lower mantle: determination of lateral heterogeneity in P velocity up to degree and order 6. Journal of Geophysical Research 89, 5929–5952.CrossRefGoogle Scholar
Dziewonski, A. M. and Anderson, D. L. (1981) Preliminary reference Earth model. Physics of Earth and Planetary Interiors 25, 297–356.CrossRefGoogle Scholar
Dziewonski, A. M., Hager, B. H., and O'Connell, R. J. (1977) Large-scale heterogeneities in the lower mantle. Journal of Geophysical Research 82, 239–255.CrossRefGoogle Scholar
Edington, J. W., Melton, K. N., and Cutler, C. P. (1976) Superplasticity. Progress in Materials Sciences 21, 63–170.Google Scholar
Edmond, J. M. and Paterson, M. S. (1972) Volume changes during the deformation of rocks at high pressures. International Journal of Rock Mechanics and Mining Sciences 9, 161–182.CrossRefGoogle Scholar
Ehrenfest, P. (1933) Phase conversions in a general and enhanced sense, classified according to the specific singularities of the thermodynamic potential. Proceedings of the Koninklijke Akademie van Wetenschappen te Amsterdam 36, 153–157.Google Scholar
Einstein, A. (1906) A new determination of molecular dimensions. Annalen der Physik 19, 289–306.CrossRefGoogle Scholar
Elliott, D. (1973) Diffusion flow laws in metamorphic rocks. Geological Society of America Bulletin 84, 2645–2664.2.0.CO;2>CrossRefGoogle Scholar
Engdahl, E. R., Hilst, R. D., and Buland, R. P. (1998) Global teleseismic earthquake relocation with improved travel times and procedures for depth determination. Bulletin of Seismological Society of America 88, 722–743.Google Scholar
Escaig, B. (1968) Sur le glissement dévie des dislocations dans la structure cubique à faces centrées. Journal de Physique 29, 225–239.CrossRefGoogle Scholar
Eshelby J. D. (1956) The continuum theory of lattice defects. In Solid State Physics, Vol. 3 (ed. Seitz, F. and Turnbull, D.), pp. 79–144. Academic Press.Google Scholar
Eshelby, J. D. (1957) The determination of the elastic strain field of an ellipsoidal inclusion and related problems. Proceedings of the Royal Society of London, Ser. A 241, 376–396.CrossRefGoogle Scholar
Eshelby, J. D., Newey, C. W. A., and Pratt, P. L. (1958) Charged dislocations and the strength of ionic crystals. Philosophical Magazine 3, 75–89.CrossRefGoogle Scholar
Estrin, Y. and Kubin, L. (1986) Local strain hardening and nonuniformity of plastic deformation. Acta Metallurgica 34, 2455–2464.CrossRefGoogle Scholar
Estrin, Y. and Kubin, L. P. (1988) Plastic instabilities: classification and physical mechanisms. Res Mechanica 23, 197–221.Google Scholar
Estrin, Y. and Kubin, L. P. (1991) Plastic instabilities: phenomenology and theory. Materials Science and Engineering A 137, 125–134.CrossRefGoogle Scholar
Etchecopar, A. and Visseur, G. (1987) A 3-D kinematic model of fabric development in polycrystalline aggregates: comparisons with experimental and natural examples. Journal of Structural Geology 9, 705–717.CrossRefGoogle Scholar
Etheridge, M. A., Wall, V. J., and Vernon, R. H. (1983) The role of fluid phase during regional metamorphism and deformation. Journal of Metamorphic Geology 1, 205–226.CrossRefGoogle Scholar
Evans B., Fredrich J. T., and Wong T.-F. (1990) The brittle–ductile transition in rocks: recent experimental and theoretical progress. In The Brittle–Ductile Transition in Rocks: the Heard Volume (ed. Duba, A. G., Durham, W. B., Handin, J. W., and Wang, H. F.), pp. 1–20. American Geophysical Union.CrossRefGoogle Scholar
Evans, B. and Goetze, C. (1979) Temperature variation of hardness of olivine and its implication for polycrystalline yield stress. Journal of Geophysical Research 84, 5505–5524.CrossRefGoogle Scholar
Evans, B., Renner, J. and Hirth, G. (2001) A few remarks on the kinetics of static grain growth in rocks. International Journal of Earth Sciences 90, 88–103.CrossRefGoogle Scholar
Evans B. and Wong T.-F. (1985) Shear localization in rocks induced by tectonic deformation. In Mechanics of Geomaterials (ed. Bazant, Z.), pp. 189–210. John Wiley & Sons.Google Scholar
Eyring, H. (1935) The activated complex and the absolute rate of chemical reaction. Chemical Review 17, 65–82.CrossRefGoogle Scholar
Fan, D., Chen, L.-Q., and Chen, S.-P. P. (1998) Numerical simulation of Zener pinning with growing second-phase particle. Journal of the American Ceramic Society 81, 526–531.CrossRefGoogle Scholar
Fantozzi, G., Esnouf, C., Benoit, W., and Ritchie, I. G. (1982) Internal friction and microdeformation due to the intrinsic properties of dislocations: the Bordoni relaxation. Progress in Materials Sciences 27, 311–451.CrossRefGoogle Scholar
Farber, D. L., Williams, Q., and Ryerson, F. J. (2000) Divalent cation diffusion in Mg2SiO4 spinel (ringwoodite), β phase (wadsleyite), and olivine: implications for the electrical conductivity of the mantle. Journal of Geophysical Research 105, 513–529.CrossRefGoogle Scholar
Farver, J. R. and Yund, R. A. (1991) Oxygen diffusion in quartz: dependence on temperature and water fugacity. Chemical Geology 90, 55–70.CrossRefGoogle Scholar
Faul, U. H. (2001) Melt retention and segregation beneath mid-ocean ridges. Nature 410, 920–923.CrossRefGoogle ScholarPubMed
Faul, U. H., Gerald, Fitz J. D., and Jackson, I. (2004) Shear-wave attenuation and dispersion in melt-bearing olivine polycrystals II. Microstructural interpretation and seismological implications. Journal of Geophysical Research 109, 10.1029/2003JB002407.CrossRefGoogle Scholar
Faul, U. H. and Jackson, I. (2005) The seismological signature of temperature and grain size variations in the upper mantle. Earth and Planetary Science Letters 234, 119–134.CrossRefGoogle Scholar
Faul, U. H., Toomey, D. R., and Waff, H. S. (1994) Intergranular basaltic melt is distributed in thin, elongated inclusions. Geophysical Research Letters 21, 29–32.CrossRefGoogle Scholar
Fearn, D. R., Loper, D. E., and Roberts, P. H. (1981) Structure of the Earth's inner core. Nature 292, 232–233.CrossRefGoogle Scholar
Fischer, K. M. and Wiens, D. G. (1996) The depth of mantle anisotropy beneath the Tonga subduction zone. Earth and Planetary Science Letters 142, 253–260.CrossRefGoogle Scholar
Flanagan, M. P. and Shearer, P. M. (1998) Global mapping of topography on transition zone velocity discontinuities by stacking SS precursors. Journal of Geophysical Research 103, 2673–2692.CrossRefGoogle Scholar
Flanagan, M. P. and Wiens, D. A. (1994) Radial upper mantle attenuation structure of inactive back arc basins from differential shear wave attenuation measurements. Journal of Geophysical Research 99, 15,469–15 485.CrossRefGoogle Scholar
Flesh, L. M., Li, B., and Liebermann, R. C. (1998) Sound velocities of polycrystalline MgSiO3-orthopyroxene to 10 GPa at room temperature. American Mineralogist 83, 444–450.CrossRefGoogle Scholar
Flinn, D. (1962) On folding during three-dimensional progressive deformation. Geological Society of London, Quaternary Journal 118, 385–433.CrossRefGoogle Scholar
Flynn, C. P. (1968) Atomic migration in monoatomic crystals. Physical Review 171, 682–698.CrossRefGoogle Scholar
Flynn, C. P. (1972) Point Defects and Diffusion. Oxford University Press.Google Scholar
Foreman, A. J., Jawson, M. A., and Wood, J. K. (1951) Factors controlling dislocation width. Proceedings of Physical Society A 64, 156–163.CrossRefGoogle Scholar
Forsyth, D. W. (1975) The early structural evolution and anisotropy of the oceanic upper mantle. Geophysical Journal of Royal Astronomical Society 43, 103–162.CrossRefGoogle Scholar
Forsyth, D. W. (1985) Subsurface loading and estimates of the flexural rigidity of continental lithosphere. Journal of Geophysical Research 90, 12,623–12 632.CrossRefGoogle Scholar
Forsyth D. W. (1992) Geophysical constraints on mantle flow and melt generation beneath mid-ocean ridge. In Mantle Flow and Melt Generation at Mid-Ocean Ridges (ed. Morgan, J. P., Blackman, D. K., and Sinton, J. M.), pp. 1–66. American Geophysical Union.CrossRefGoogle Scholar
Forte A. M. (2000) Seismic–geodynamic constraints on mantle flow: implications for layered convection, mantle viscosity, and seismic anisotropy in the deep mantle. In Earth's Deep Interior: Mineral Physics and Seismic Tomography (ed. Karato, S., Forte, A. M., Liebermann, R. C., Masters, G., and Stixrude, L.), pp. 3–36. American Geophysical Union.CrossRefGoogle Scholar
Forte, A. M., Dziewonski, A. M., and O'Connell, R. J. (1994) Continent–ocean chemical heterogeneity in the mantle based on seismic tomography. Science 268, 386–388.CrossRefGoogle Scholar
Forte, A. M. and Mitrovica, J. X. (1996) New inferences of mantle viscosity from joint inversion of long-wavelength mantle convection and post-glacial rebound data. Geophysical Research Letters 23, 1147–1150.CrossRefGoogle Scholar
Forte, A. M. and Mitrovica, J. X. (2001) Deep-mantle high-viscosity flow and thermochemical structure inferred from seismic and geodynamic data. Nature 410, 1049–1056.CrossRefGoogle ScholarPubMed
Forte, A. M., Woodward, R. L., and Dziewonski, A. M. (1994) Joint inversion of seismic and geodynamic data for models of three-dimensional mantle heterogeneity. Journal of Geophysical Research 99, 21,857–21 877.CrossRefGoogle Scholar
French, J. D., Zhao, J., Harmer, M. P., Chan, H. M., and Miller, G. A. (1994) Creep of duplex microstructures. Journal of the American Ceramic Society 77, 2857–2865.CrossRefGoogle Scholar
Fressengas, C. and Molinari, A. (1987) Instability and localization of plastic flow in shear at high strain rate. Journal of Mechanics and Physics of Solids 35, 185–211.CrossRefGoogle Scholar
Freund, F. and Wengeler, H. (1982) The infrared spectrum of OH-compensated defect sites in C-doped MgO and CaO single crystals. Journal of Physics and Chemistry of Solids 43, 129–145.CrossRefGoogle Scholar
Frisillo, A. L. and Barsch, G. R. (1972) Measurement of single-crystal elastic constants of bronzite as a function of pressure and temperature. Journal of Geophysical Research 77, 6360–6384.CrossRefGoogle Scholar
Frost, D. J., Liebske, C., Langenhorst, F., et al. (2004) Experimental evidence for the existence of iron-rich metal in the Earth's lower mantle. Nature 428, 409–412.CrossRefGoogle ScholarPubMed
Frost, D. J. and Wood, B. J. (1997a) Experimental measurements of the fugacity of CO2 and graphite/diamond stability from 35 to 77 kbar at 925 to 1650 °C. Geochimica et Cosmochimica Acta 61, 1565–1574.CrossRefGoogle Scholar
Frost, D. J. and Wood, B. J. (1997b) Experimental measurements of the properties of H2O–CO2 mixtures at high pressures and temperatures. Geochimica et Cosmochimica Acta 61, 3301–3309.CrossRefGoogle Scholar
Frost, H. J. and Ashby, M. F. (1982) Deformation Mechanism Maps. Pergamon Press.Google Scholar
Fuchs, K. (1983) Recently formed elastic anisotropy and petrological models for the continental subcrustal lithosphere in southern Germany. Physics of Earth and Planetary Interiors 31, 93–118.CrossRefGoogle Scholar
Fujimura, A., Endo, S., Kato, M., and Kumazawa, M. (1981) Preferred orientation of β-Mn2GeO4. Programme and Abstracts, The Japan Seismological Society, 185.Google Scholar
Fujino, K., Nakazaki, H., Momoi, H., Karato, S., and Kohlstedt, D. L. (1992) TEM observation of dissociated dislocations with b = [010] in naturally deformed olivine. Physics of Earth and Planetary Interiors 78, 131–137.CrossRefGoogle Scholar
Fukao, Y., Obayashi, M., Inoue, H., and Nenbai, M. (1992) Subducting slabs stagnant in the mantle transition zone. Journal of Geophysical Research 97, 4809–4822.CrossRefGoogle Scholar
Fukao, Y., To, A., and Obayashi, M. (2003) Whole mantle P wave tomography using P and PP-P data. Journal of Geophysical Research 108, 10.1029/2001JB000989.CrossRefGoogle Scholar
Fukao, Y., Widiyantoro, R. D. S., and Obayashi, M. (2001) Stagnant slabs in the upper and lower mantle transition zone. Review of Geophysics 39, 291–323.CrossRefGoogle Scholar
Funamori, N., Yagi, T., and Uchida, T. (1994) Deviatoric stress measurement under uniaxial compression by a powder X-ray diffraction method. Journal of Applied Physics 75, 4327–4331.CrossRefGoogle Scholar
Furusho, M. and Kanagawa, K. (1999) Reaction-induced strain localization in a lherzolite mylonite from the Hidaka metamorphic belt of central Hokkaido, Japan. Tectonophysics 313, 411–432.CrossRefGoogle Scholar
Gaherty, J. B. (2001) Seismic evidence for hotspot-induced buoyant flow beneath the Reykjanes ridge. Science 293, 1645–1647.CrossRefGoogle ScholarPubMed
Gaherty, J. B. and Jordan, T. H. (1995) Lehmann discontinuity as the base of an anisotropic layer beneath continent. Science 268, 1468–1471.CrossRefGoogle Scholar
Gaherty, J. B., Jordan, T. H., and Gee, L. S. (1996) Seismic structure of the upper mantle in a central Pacific corridor. Journal of Geophysical Research 101, 22 291–22 309.CrossRefGoogle Scholar
Gaherty, J. B., Kato, M., and Jordan, T. H. (1999) Seismological structure of the upper mantle: a regional comparison of seismic layering. Physics of Earth and Planetary Interiors 110, 21–41.CrossRefGoogle Scholar
Gandin, C.-A., Rappaz, M., West, D., and Adams, B. L. (1995) Grain texture evolution during the columnar growth of dendritic alloys. Metallurgical Materials Transaction A 26, 1543–1551.CrossRefGoogle Scholar
Gannarelli, C. M. S., Alfé, D., and Gillan, M. J. (2005) The axial ratio of hcp iron at the conditions of the Earth's inner core. Physics of Earth and Planetary Interiors 152, 67–77.CrossRefGoogle Scholar
Garnero, E. J. (2000) Heterogeneity of the lowermost mantle. Annual Review of Earth and Planetary Sciences 28, 509–537.CrossRefGoogle Scholar
Garnero, E. J. (2004) A new paradigm for Earth's core–mantle boundary. Science 304, 834–836.CrossRefGoogle Scholar
Garnero, E. J. and Jeanloz, R. (2000) Fuzzy patches on the Earth's core–mantle boundary?Geophysical Research Letters 27, 2777–2780.CrossRefGoogle Scholar
Garnero, E. J., Maupin, V., Lay, T., and Fouch, M. J. (2004) Variable azimuthal anisotropy in Earth's lowermost mantle. Science 306, 259–261.CrossRefGoogle ScholarPubMed
Garnero E. J., Revenaugh J., Williams Q., Lay T., and Kellogg L. H. (1998) Ultralow velocity zone at the core–mantle boundary. In The Core–Mantle Boundary Regions (ed. Gurnis, M. E. W. M., Knittle, E. and Fuffett, B. A.), pp. 319–334. American Geophysical Union.CrossRefGoogle Scholar
Garofalo, F. (1965) Fundamentals of Creep and Creep-Rupture in Metals. MacMillan.Google Scholar
Gay, N. C. (1968) Pure shear and simple shear deformation of inhomogeneous viscous fluids. 1. Theory. Tectonophysics 5, 211–234.CrossRefGoogle Scholar
Getting, I. C., Dutton, S. J., Burnley, P. C., Karato, S., and Spetzler, H. A. (1997) Shear attenuation and dispersion in MgO. Physics of Earth and Planetary Interiors 99, 249–257.CrossRefGoogle Scholar
Getting, I. C. and Kennedy, G. C. (1970) Effect of pressure on the EMF of chromel–alumel and platinum–platinum 10% rhodium thermocouples. Journal of Applied Physics 41, 4552–4562.CrossRefGoogle Scholar
Ghose S. (1985) Lattice dynamics, phase transitions and soft modes. In Microscopic to Macroscopic (ed. Kiefer, S. W. and Navrotsky, A.), pp. 127–163. Mineralogical Society of America.Google Scholar
Gill, S. P. A. and Cocks, A. C. F. (1996) A variational approach to two dimensional grain growth – II. numerical results. Acta mater 44, 4777–4789.CrossRefGoogle Scholar
Gilman J. J. (1985) Hardness test: a mechanical microprobe. In Science of Hardness Testing (ed. Westbrook, J. H. and Conrad, H.), pp. 51–74. American Society for Metals.Google Scholar
Gilman, M. J. (1981) The volume of formation of defects in ionic crystals. Philosophical Magazine A 43, 301–312.CrossRefGoogle Scholar
Glansdorff, P. and Prigogine, I. (1971) Thermodynamic Theory of Stability, Structure and Fluctuation. John Wiley & Sons.Google Scholar
Gleason, G. C. and Tullis, J. (1995) A flow law for dislocation creep of quartz aggregates determined with the molten slat cell. Tectonophysics 247, 1–23.CrossRefGoogle Scholar
Goetze, C. and Evans, B. (1979) Stress and temperature in the bending lithosphere as constrained by experimental rock mechanics. Geophysical Journal of Royal Astronomical Society 59, 463–478.CrossRefGoogle Scholar
Goldsby, D. L. and Kohlstedt, D. L. (2001) Superplastic deformation of ice: experimental observations. Journal of Geophysical Research 106, 11,017–11,030.CrossRefGoogle Scholar
Gordon, R. B. (1965) Diffusion creep in the Earth's mantle. Journal of Geophysical Research 70, 2413–2418.CrossRefGoogle Scholar
Gordon, R. B. (1971) Observation of crystal plasticity under high pressure with application to the Earth's mantle. Journal of Geophysical Research 76, 1248–1254.CrossRefGoogle Scholar
Gordon, R. S. (1973) Mass transport in the diffusional creep of ionic solids. Journal of the American Ceramic Society 65, 147–152.CrossRefGoogle Scholar
Gordon, R. S. and Terwillinger, G. R. (1972) Transient creep in Fe-doped polycrystalline MgO. Journal of the American Ceramic Society 55, 450–455.CrossRefGoogle Scholar
Gottstein G. and Mecking H. (1985) Recrystallization. In Preferred Orientation in Deformed Metals and Rocks (ed. Wenk, H.-R.), pp. 183–232. Academic Press.Google Scholar
Grand, S. (1994) Mantle shear structure beneath Americas and surrounding oceans. Journal of Geophysical Research 99, 11,591–11 621.CrossRefGoogle Scholar
Green D. H. and Falloon, T. J. (1998) Pyrolite: a Ringwood concept and its current expression. In The Earth's Mantle (ed. Jackson, I.), pp. 311–378. Cambridge University Press.CrossRefGoogle Scholar
Green, H. W. II. (1984) “Pressure solution” creep: some causes and mechanisms. Journal of Geophysical Research 89, 4313–4318.CrossRefGoogle Scholar
Green, H. W. II. (1970) Diffusional flow in polycrystalline materials. Journal of Applied Physics 41, 3899–3902.CrossRefGoogle Scholar
Green, H. W. II. and Borch, R. S. (1987) The pressure dependence of creep. Acta Metallurgica 35, 1301–1305.CrossRefGoogle Scholar
Green, H. W. II. and Houston, H. (1995) The mechanics of deep earthquakes. Annual Review of Earth and Planetary Sciences 23, 169–213.CrossRefGoogle Scholar
Greenwood, G. W. (1994) Denuded zones and diffusional creep. Scripta Metallurgica et Material 30, 1527–1530.CrossRefGoogle Scholar
Greenwood, G. W. and Johnson, R. H. (1965) The deformation of metals under small stresses during phase transformations. Proceedings of the Royal Society of London A 238, 403–422.CrossRefGoogle Scholar
Gribb, T. T. and Cooper, R. F. (1998) Low-frequency shear attenuation in polycrystalline olivine: grain boundary diffusion and the physical significance of the Andrade model for viscoelastic rheology. Journal of Geophysical Research 103, 27,267–27 279.CrossRefGoogle Scholar
Gribb, T. T. and Cooper, R. F. (2000) The effect of an equilibrated melt phase on the shear creep and attenuation behavior of polycrystalline olivine. Geophysical Research Letters 27, 2341–2344.CrossRefGoogle Scholar
Griggs, D. T. (1967) Hydrolytic weakening of quartz and other silicates. Geophysical Journal of Royal Astronomical Society 14, 19–31.CrossRefGoogle Scholar
Griggs, D. T. (1974) A model of hydrolytic weakening in quartz. Journal of Geophysical Research 79, 1653–1661.CrossRefGoogle Scholar
Griggs D. T. and Baker D. W. (1969) The origin of deep-focus earthquakes. In Properties of Matter Under Unusual Conditions (ed. Marks, H. and Feshbach, S.), pp. 23–42. Interscience.Google Scholar
Griggs, D. T. and Blacic, J. D. (1965) Quartz: anomalous weakness of synthetic crystals. Science 147, 292–295.CrossRefGoogle ScholarPubMed
Grimmer, H. (1979) The distribution of disorientation angles if all relative orientations of neighbouring grains are equally probable. Scripta Metallurgica 13, 161–164.CrossRefGoogle Scholar
Grüneisen, E. (1912) Theories des festen Zustands einatomiger elemente. Annalen der Physik, Berlin 39, 257–306.CrossRefGoogle Scholar
Gu, Y. J., Dziewonski, A. M., and Agee, C. B. (1998) Global de-correlation of the topography of transition zone discontinuities. Earth and Planetary Science Letters 157, 57–67.CrossRefGoogle Scholar
Gu, Y. J., Dziewonski, A. M., and Ekström, G. (2001) Preferential detection of the Lehmann discontinuity beneath continents. Geophysical Research Letters 28, 4655–4658.CrossRefGoogle Scholar
Gu, Y. J., Dziewonski, A. M., and Ekström, G. (2003) Simultaneous inversion for mantle velocity and topography of transition zone discontinuities. Geophysical Journal International 154, 559–583.CrossRefGoogle Scholar
Gubbins, D., Alfé, D., Masters, G., Price, G. D., and Gillan, M. J. (2003) Can the Earth's dynamo run on heat alone?Geophysical Journal International 155, 609–622.CrossRefGoogle Scholar
Gueguen, Y., Darot, M., Mazot, P., and Woirgard, J. (1989) Q− 1 of forsterite single crystals. Physics of Earth and Planetary Interiors 55, 254–258.CrossRefGoogle Scholar
Gueguen, Y. and Mercier, J. M. (1973) High attenuation and low velocity zone. Physics of Earth and Planetary Interiors 7, 39–46.CrossRefGoogle Scholar
Gueguen, Y. and Palciauskas, V. (1994) Introduction to the Physics of Rocks. Princeton University Press.Google Scholar
Guillopé, M. and Poirier, J.-P. (1979) Dynamic recrystallization during creep of single-crystalline halite: an experimental study. Journal of Geophysical Research 84, 5557–5567.CrossRefGoogle Scholar
Gung, Y. and Romanowicz, B. (2004) Q tomography of the upper mantle using three-component long-period waveforms. Geophysical Journal International 157, 813–830.CrossRefGoogle Scholar
Gung, Y., Romanowicz, B., and Panning, M. (2003) Global anisotropy and the thickness of continents. Nature 422, 707–711.CrossRefGoogle ScholarPubMed
Gutenberg, B. (1926) Untersuchen zur Frage, bis zu welcher Tiefe die Erde kristallin ist. Zeitschrift für Geophisik 2, 24–29.Google Scholar
Gutenberg, B. (1948) On the layer of relatively low wave velocity at a depth of about 80 kilometers. Bulletin of Seismological Society of America 35, 117–130.Google Scholar
Gutenberg, B. (1954) Low-velocity layers in the Earth's mantle. Bulletin of Seismological Society of America 65, 337–348.CrossRefGoogle Scholar
Haasen, P. (1979) Kink formation and migration as dependent on the Fermi level. Journal de Physique C 6, 111–116.Google Scholar
Hacker, B. R., Gnos, E., Ratschbacher, L., et al. (2000) Hot and dry lower crustal xenoliths from Tibet. Science 287, 2463–2466.CrossRefGoogle Scholar
Hager, B. H. (1984) Subducted slabs and the geoid: constraints on mantle rheology and flow. Journal of Geophysical Research 89, 6003–6015.CrossRefGoogle Scholar
Hager B. H. and Clayton R. W. (1989) Constraints on the structure of mantle convection using seismic observations, flow models and the geoid. In Mantle Convection (ed. Peltier, W. R.), pp. 657–763. Gordon and Breach.Google Scholar
Haggerty, S. E. and Sautter, V. (1990) Ultra deep (> 300 km) ultramafic, upper mantle xenoliths. Science 248, 993–996.CrossRefGoogle Scholar
Hall, C. E. and Parmentier, E. M. (2002) The influence of grain size evolution on a composite dislocation–diffusion creep rheology. Journal of Geophysical Research.Google Scholar
Hammond, W. C. and Humphreys, E. D. (2000a) Upper mantle seismic wave velocity: effects of realistic partial melt distribution. Journal of Geophysical Research 105, 10,987–10 999.CrossRefGoogle Scholar
Hammond, W. C. and Humphreys, E. D. (2000b) Upper mantle seismic wave velocity: effects of realistic partial melt geometries. Journal of Geophysical Research 105, 10,975–10 986.CrossRefGoogle Scholar
Handy, M. R. (1989) Deformation regimes and the rheological evolution of fault zones in the lithosphere: the effects of pressure, temperature, grain size and time. Tectonophysics 163, 119–152.CrossRefGoogle Scholar
Handy, M. R. (1994) Flow laws for rocks containing two non-linear viscous phases: a phenomenological approach. Journal of Structural Geology 16, 287–301.CrossRefGoogle Scholar
Handy, M. R. and Brun, J. P. (2004) Seismicity, structure and strength of the continental lithosphere. Earth and Planetary Science Letters 223, 427–441.CrossRefGoogle Scholar
Harper, J. and Dorn, J. E. (1957) Viscous creep of aluminium near its melting temperature. Acta Metallurgica 5, 654–665.CrossRefGoogle Scholar
Harren, S. V., Dève, H. E., and Asaro, R. J. (1988) Shear band formation in plane strain compression. Acta Metallurgica 36, 2435–2480.CrossRefGoogle Scholar
Harrison, R. J. and Redfern, S. A. T. (2002) The influence of transformation twins on the seismic-frequency elastic and anelastic properties of perovskite: dynamical mechanical analysis of single crystal LaAlO3. Physics of the Earth and Planetary Interiors 134, 253–272.CrossRefGoogle Scholar
Hart, E. W. (1967) Theory of tensile test. Acta Metallurgica 15, 351–355.CrossRefGoogle Scholar
Hart, E. W. (1970) A phenomenological theory for plastic deformation of polycrystalline metals. Acta Metallurgica 18, 599–610.CrossRefGoogle Scholar
Hartmann, W. K. (1999) Moons and Planets. Wadsworth Publishers.Google Scholar
Hashida, T. (1989) Three-dimensional seismic attenuation structure beneath the Japanese islands and its tectonic and thermal implications. Tectonophysics 159, 163–180.CrossRefGoogle Scholar
Hashin, Z. and Shtrikman, S. (1963) A variational approach to the theory of the elastic behavior of multiphase materials. Journal of Mechanics and Physics of Solids 11, 127–140.CrossRefGoogle Scholar
Haskell, N. A. (1935a) The motion of a viscous fluid under a surface load. Physics 6, 265–269.CrossRefGoogle Scholar
Haskell, N. A. (1935b) The motion of a viscous fluid under a surface load. Part II. Physics 7, 56–61.CrossRefGoogle Scholar
Haskell, N. A. (1937) The viscosity of the asthenosphere. American Journal of Science 33, 22–28.CrossRefGoogle Scholar
Hazen, R. M. and Finger, L. W. (1979) Bulk modulus–volume relationship for cation–anion polyhedra. Journal of Geophysical Research 84, 6723–6728.CrossRefGoogle Scholar
Heard, H. C., Borg, I. Y., Carter, N. L., and Raleigh, C. B. (1972) Flow and Fracture of Rocks. American Geophysical Union.CrossRefGoogle Scholar
Heard H. C. and Kirby S. H. (1981) Activation volume for steady-state creep in polycrystalline CsCl: cesium chloride structure. In Mechanical Behavior of Crustal Rocks (ed. Carter, N. L., Friedman, M., Logan, J. M., and Stearns, O. W.), pp. 83–91. American Geophysical Union.CrossRefGoogle Scholar
Heggie, M. and Jones, R. (1986) Models of hydrolytic weakening in quartz. Philosophical Magazine, A 53, L65–L70.CrossRefGoogle Scholar
Heinz, D. L., Jeanloz, R., and O'Connell, R. J. (1982) Bulk attenuation in a polycrystalline Earth. Journal of Geophysical Research 87, 7772–7778.CrossRefGoogle Scholar
Helffrich, G. (2000) Topography of the transition zone discontinuities. Review of Geophysics 38, 141–158.CrossRefGoogle Scholar
Herring, C. (1950) Diffusional viscosity of a polycrystalline solid. Journal of Applied Physics 21, 437–445.CrossRefGoogle Scholar
Hess, H. H. (1964) Seismic anisotropy of the uppermost mantle under oceans. Nature 203, 629–631.CrossRefGoogle Scholar
Hier-Majumder, S., Anderson, I. M., and Kohlstedt, D. L. (2005a) Influence of protons on Fe–Mg interdiffusion in olivine. Journal of Geophysical Research 110, 10.1029/2004JB003292.CrossRefGoogle Scholar
Hier-Majumder, S., Leo, P. H., and Kohlstedt, D. L. (2004) On grain boundary wetting during deformation. Acta Materialia 52, 3425–3433.CrossRefGoogle Scholar
Hier-Majumder, S., Mei, S., and Kohlstedt, D. L. (2005b) Water weakening of clinopyroxene in diffusion creep regime. Journal of Geophysical Research 110, 10.1029/2004JB003414.CrossRefGoogle Scholar
Higo, Y., Inoue, T., Irifune, T., and Yurimoto, H. (2001) Effect of water on the spinel–postspinel transformation in Mg2SiO4. Geophysical Research Letters 28, 3505–3508.CrossRefGoogle Scholar
Hill, R. (1952) The elastic behaviour of a crystalline aggregate. Proceedings of the Physical Society, London A 65, 349–354.CrossRefGoogle Scholar
Hill, R. (1958) A general theory of uniqueness and stability of elastic–plastic models. Journal of Mechanics and Physics of Solids 6, 236–249.CrossRefGoogle Scholar
Hill, R. (1965) A self consistent mechanics of composite materials. Journal of the Mechanics and Physics of Solids 13, 213–222.CrossRefGoogle Scholar
Hill, R. I., Campbell, I. H., Davies, G. F., and Griffiths, R. W. (1992) Mantle plumes and continental tectonics. Science 256, 186–193.CrossRefGoogle ScholarPubMed
Hillert, M. (1965) On the theory of normal and abnormal grain growth. Acta Metallurgica 13, 227–238.CrossRefGoogle Scholar
Hippertt, J. F. and Hongn, F. D. (1998) Deformation mechanisms in the mylonite/ultramylonite transition. Journal of Structural Geology 20, 1435–1448.CrossRefGoogle Scholar
Hiraga, T., Anderson, I. M., and Kohlstedt, D. L. (2004) Grain-boundaries as reservoirs of incompatible elements in the Earth's mantle. Nature 427, 699–703.CrossRefGoogle ScholarPubMed
Hiraga, T., Anderson, I. M., Zimmerman, M. E., Mei, S., and Kohlstedt, D. L. (2002) Structure and chemistry of grain boundaries in deformed, olivine + basalt and partially molten lherzolite aggregates: evidence of melt-free grain boundaries. Contributions to Mineralogy and Petrology 144, 163–175.CrossRefGoogle Scholar
Hirsch, P. B. (1979) A mechanism for the effect of doping on dislocation mobility. Journal de Physique C 6, 117–121.Google Scholar
Hirth G. (2002) Laboratory constraints on the rheology of the upper mantle. In Plastic Deformation of Minerals and Rocks, Vol. 51 (ed. Karato, S. and Wenk, H.-R.), pp. 97–120. Mineralogical Society of America.Google Scholar
Hirth, G. and Kohlstedt, D. L. (1995a) Experimental constraints on the dynamics of partially molten upper mantle: deformation in the diffusion creep regime. Journal of Geophysical Research 100, 1981–2001.CrossRefGoogle Scholar
Hirth, G. and Kohlstedt, D. L. (1995b) Experimental constraints on the dynamics of partially molten upper mantle: deformation in the dislocation creep regime. Journal of Geophysical Research 100, 15,441–15 450.CrossRefGoogle Scholar
Hirth, G. and Kohlstedt, D. L. (1996) Water in the oceanic upper mantle – implications for rheology, melt extraction and the evolution of the lithosphere. Earth and Planetary Science Letters 144, 93–108.CrossRefGoogle Scholar
Hirth G. and Kohlstedt D. L. (2003) Rheology of the upper mantle and the mantle wedge: a view from the experimentalists. In Inside the Subduction Factory (ed. Eiler, J. E.), pp. 83–105. American Geophysical Union.CrossRefGoogle Scholar
Hirth, G., Teyssier, C., and Dunlop, D. J. (2001) An evaluation of quartzite flow law based on comparisons between experimentally and naturally deformed rocks. International Journal of Earth Sciences 90, 77–87.CrossRefGoogle Scholar
Hirth, G. and Tullis, J. (1992) Dislocation creep regimes in quartz aggregates. Journal of Structural Geology 14, 145–159.CrossRefGoogle Scholar
Hirth, J. P. and Lothe, J. (1982) Theory of Dislocations. Krieger Publishing Company.Google Scholar
Hitchings, R. S., Paterson, M. S., and Bitmead, J. (1989) Effects of iron and magnetite additions in olivine–pyroxene rheology. Physics of Earth and Planetary Interiors 55, 277–291.CrossRefGoogle Scholar
Hobbs, B. E. (1968) Recrystallization of single crystal of quartz. Tectonophysics 6, 353–401.CrossRefGoogle Scholar
Hobbs, B. E. (1981) The influence of metamorphic environment upon the deformation of minerals. Tectonophysics 78, 335–383.CrossRefGoogle Scholar
Hobbs, B. E. (1983) Constraints on the mechanism of deformation of olivine imposed by defect chemistry. Tectonophysics 92, 35–69.CrossRefGoogle Scholar
Hobbs, B. E. (1984) Point defect chemistry of minerals under hydrothermal environment. Journal of Geophysical Research 89, 4026–4038.CrossRefGoogle Scholar
Hobbs B. E. (1985) The geological significance of microfabric analysis. In Preferred Orientation in Deformed Metals and Rocks: an Introduction to Modern Texture Analysis (ed. Wenk, H.-R.), pp. 463–484. Academic Press.Google Scholar
Hobbs B. E., McLaren A. C., and Paterson M. S. (1972) Plasticity of single crystals of quartz. In Flow and Fracture of Rocks (ed. Heard, H. C., Borg, I. Y., Carter, N. L., and Raleigh, C. B.), pp. 29–53. American Geophysical Union.CrossRefGoogle Scholar
Hobbs, B. E., Means, W. D., and Williams, P. F. (1976) The Outline of Structural Geology. Addison & Wiley.Google Scholar
Hobbs B. E., Mulhaus H.-B., and Ord A. (1990) Instability, softening and localization of deformation. In Deformation Mechanisms, Rheology and Tectonics (ed. Knipe, R. J. and Rutter, E. H.), pp. 143–165. The Geological Society.Google Scholar
Hobbs, B. E. and Ord, A. (1988) Plastic instabilities: implications for the origin of intermediate and deep focus earthquakes. Journal of Geophysical Research 89, 10,521–10 540.CrossRefGoogle Scholar
Hobbs, B. E., Ord, A., and Teyssier, C. (1986) Earthquakes in the ductile regime. Pure and Applied Geophysics 124, 310–336.CrossRefGoogle Scholar
Hoff, N. J. (1954) Approximate analysis of structures in the presence of moderately large creep deformations. Quarterly Journal of Applied Mathematics 12, 49–55.CrossRefGoogle Scholar
Hofmann, A. W. (1997) Mantle geochemistry: the message from oceanic volcanism. Nature 385, 219–228.CrossRefGoogle Scholar
Hollomon, J. H. (1947) The mechanical equation of state. Trans. AIME 171, 535–545.Google Scholar
Holness, M. B. (1993) Temperature and pressure dependence of quartz-aqueous fluid dihedral angles: the control of absorbed H2O on the permeability of quartzites. Earth and Planetary Science Letters 117, 363–377.CrossRefGoogle Scholar
Holt, D. L. (1970) Dislocation cell formation in metals. Journal of Applied Physics 41, 3197–3201.CrossRefGoogle Scholar
Holtzman, B. K., Groebner, N. J., Zimmerman, M. E., Ginsberg, S. B., and Kohlstedt, D. L. (2003a) Stress-driven melt segregation in partially molten rocks. Geochemistry, Geophysics, Geosystems 4, 10.1029/2001GC000258.CrossRefGoogle Scholar
Holtzman, B. K., Kohlstedt, D. L., and Phipps Morgan, J. (2005) Viscous energy dissipation and strain partitioning in partially molten rocks. Journal of Petrology 46, 2569–2592.CrossRefGoogle Scholar
Holtzman, B. K., Kohlstedt, D. L., Zimmerman, M. E., et al. (2003b) Melt segregation and strain partitioning: implications for seismic anisotropy and mantle flow. Science 301, 1227–1230.CrossRefGoogle Scholar
Honda, S., Yuen, D. A., Balachandar, S., and Reuteler, D. (1993) Three-dimensional instabilities of mantle convection with multiple phase transitions. Science 259, 1308–1311.CrossRefGoogle ScholarPubMed
Horn, R. G., Smith, D. T., and Haller, W. (1989) Surface forces and viscosity of water measured between silica sheets. Chemical Physics Letters 162, 404–408.CrossRefGoogle Scholar
Houlier, B., Cheraghmakni, M., and Jaoul, O. (1990) Silicon diffusion in San Carlos olivine. Physics of Earth and Planetary Interiors 62, 329–340.CrossRefGoogle Scholar
Houlier, B., Jaoul, O., Abel, F., and Liebermann, R. C. (1988) Oxygen and silicon diffusion in natural olivine at T = 1300 °C. Physics of Earth and Planetary Interiors 50, 240–250.CrossRefGoogle Scholar
Huang, X., Xu, Y., and Karato, S. (2005) Water content of the mantle transition zone from the electrical conductivity of wadsleyite and ringwoodite. Nature 434, 746–749.CrossRefGoogle ScholarPubMed
Hutchinson, J. W. (1976) Bounds and self-consistent estimates for creep of polycrystalline materials. Proceedings of the Royal Society of London A 348, 101–127.CrossRefGoogle Scholar
Hutchinson, J. W. (1977) Creep and plasticity of hexagonal polycrystals as related to single crystal slip. Metallurgical Transactions A 8, 1465–1469.CrossRefGoogle Scholar
Ingrin, J. and Skogby, H. (2000) Hydrogen in nominally anhydrous upper-mantle minerals: concentration levels and implications. European Journal of Mineralogy 12, 543–570.CrossRefGoogle Scholar
Inoue, T., Yurimoto, H., and Kudoh, Y. (1995) Hydrous modified spinel, Mg1.75SiH0.5O4: a new water reservoir in the mantle transition zone. Geophysical Research Letters 22, 117–120.CrossRefGoogle Scholar
Irifune T. and Ringwood A. E. (1987) Phase transformations in primitive MORB and pyrolyte composition to 25 GPa and some geophysical implications. In High-Pressure Research in Mineral Physics (ed. Manghnani, M. H. and Syono, Y.), pp. 231–242. American Geophysical Union.Google Scholar
Isaak, D. G. (1992) High-temperature elasticity of iron-bearing olivines. Journal of Geophysical Research 97, 1871–1885.CrossRefGoogle Scholar
Ishii, M. and Dziewonski, A. M. (2002) The innermost inner core of the earth: evidence for a change in anisotropic behavior at the radius of about 300 km. Proceedings of American Academy of Arts and Sciences 99, 14,026–14,030.Google ScholarPubMed
Ishii, M. and Tromp, J. (1999) Normal mode and free-air gravity constraints on lateral variation in density of Earth's mantle. Science 285, 1231–1236.CrossRefGoogle Scholar
Ita, J. and Cohen, R. E. (1997) Effects of pressure on diffusion and vacancy formation in MgO from nonempirical free-energy integration. Physical Review Letters 79, 3198–3201.CrossRefGoogle Scholar
Ito, E. and Katsura, T. (1989) A temperature profile of the mantle transition zone. Geophysical Research Letters 16, 425–428.CrossRefGoogle Scholar
Ito, Y. and Toriumi, M. (2007) Pressure effect on self-diffusion in periclase (MgO) by molecular dynamics. Journal of Geophysical Research, in press.CrossRefGoogle Scholar
Iyer, H. M. and Hirahara, K. (1993) Seismic Tomography: Theory and Practice. Chapman and Hall.Google Scholar
Jackson, I. (1998) Elasticity, composition and temperature of the Earth's lower mantle: a reappraisal. Geophysical Journal International 134, 291–311.CrossRefGoogle Scholar
Jackson I. (2000) Laboratory measurements of seismic wave dispersion and attenuation: recent progress. In Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scale (ed. Karato, S., Forte, A. M., Liebermann, R. C., Masters, G., and Stixrude, L.), pp. 265–289. American Geophysical Union.CrossRefGoogle Scholar
Jackson, I., Faul, U. H., Gerald, Fitz J. D., and Tan, B. (2004a) Shear wave attenuation and dispersion in melt-bearing olivine polycrystals: 1. Specimen fabrication and mechanical testing. Journal of Geophysical Research 109, 10.1029/2003JB002406.CrossRefGoogle Scholar
Jackson, I., Gerald, Fitz J. D., Faul, U. H., and Tan, B. H. (2002) Grain-size sensitive seismic-wave attenuation in polycrystalline olivine. Journal of Geophysical Research 107, 10.1029/2002JB001225.CrossRefGoogle Scholar
Jackson, I., Fitz Gerald, J. D., and Kokkonen, H. (2000a) High-temperature viscoelastic relaxation in iron and its implications for the shear modulus and attenuation of the Earth's inner core. Journal of Geophysical Research 105, 23,605–23 634.CrossRefGoogle Scholar
Jackson I. and Niesler H. (1982) The elasticity of periclase to 3 GPa and some geophysical implications. In High-Pressure Research in Geophysics (ed. Akimoto, S. and Manghnani, M. H.), pp. 93–113. Center for Academic Publications, Japan.CrossRefGoogle Scholar
Jackson, I. and Paterson, M. S. (1987) Shear modulus and internal friction of calcite rocks at seismic frequencies. Physics of Earth and Planetary Interiors 45, 349–367.CrossRefGoogle Scholar
Jackson, I. and Paterson, M. S. (1993) A high-pressure, high-temperature apparatus for studies of seismic wave dispersion and attenuation. Pure and Applied Geophysics 141, 445–466.CrossRefGoogle Scholar
Jackson, I., Paterson, M. S., and Fitz Gerald, J. D. (1992) Seismic wave dispersion and attenuation in Åheim dunite. Geophysical Journal International 108, 517–534.CrossRefGoogle Scholar
Jackson, J. A. (2002a) Faulting, flow, and strength of the continental lithosphere. International Geological Review 11, 39–61.CrossRefGoogle Scholar
Jackson, J. A. (2002b) Strength of the continental lithosphere: time to abandon the jelly sandwich?GSA Today 12, 4–10.2.0.CO;2>CrossRefGoogle Scholar
Jackson, J. M., Sinogeikin, S. V., and Bass, J. D. (2000b) Sound velocities and elastic properties of γ-Mg2SiO4 to 873 K by Brillouin spectroscopy. American Mineralogist 85, 296–303.CrossRefGoogle Scholar
Jackson, J. M., Zhang, J., and Bass, J. D. (2004b) Sound velocities and elasticity of aluminous MgSiO3 perovskite: implications for aluminium heterogeneity in Earth's lower mantle. Geophysical Research Letters 31, 10.1029/2004GL019918.CrossRefGoogle Scholar
Jacobsen S. D. (2006) Effect of water on the equation of state of nominally anhydrous minerals. In Water in Nominally Anhydrous Minerals (ed. Keppler, H. and Smyth, J. R.), pp. 321–342. Mineralogical Society of America.Google Scholar
Jagoutz, E., Palme, H., Baddenhausen, H., et al. (1979) The abundances of major, minor, and trace elements in the Earth's mantle as derived from primitive ultramafic nodules. Proceedings of 10th Lunar and Planetary Science Conference, 2031–2050.Google Scholar
Jaoul, O. (1990) Multicomponent diffusion and creep in olivine. Journal of Geophysical Research 95, 17631–17642.CrossRefGoogle Scholar
Jaoul, O. and Houlier, B. (1983) Study of 18O diffusion in magnesium orthosilicate by nuclear micro analysis. Journal of Geophysical Research 88, 613–624.CrossRefGoogle Scholar
Jaoul O., Poumellec M., Froidevaux C., and Havette A. (1981) Silicon diffusion in forsterite: a new constraint for understanding mantle deformation. In Anelasticity in the Earth (ed. Stacey, F. D., Paterson, M. S., and Nicolas, A.). American Geophysical Union.CrossRefGoogle Scholar
Jaoul O., Sautter V., and Abel F. (1991) Nuclear microanalysis: a powerful tool for measuring low atomic diffusivity with mineralogical applications. In Diffusion, Atomic Ordering, and Mass Transport (ed. Ganguly, J.), pp. 198–220. Springer-Verlag.CrossRefGoogle Scholar
Jaroslow, G. E., Hirth, G., and Dick, H. J. B. (1996) Abyssal peridotite mylonites: implications for grain-size sensitive flow and strain localization in the oceanic lithosphere. Tectonophysics 256, 17–37.CrossRefGoogle Scholar
Jessel, M. W. (1988a) Simulation of fabric development in recrystallizing aggregates – I. Description of the model. Journal of Structural Geology 10, 771–778.CrossRefGoogle Scholar
Jessel, M. W. (1988b) Simulation of fabric development in recrystallizing aggregates – II. Example model runs. Journal of Structural Geology 10, 779–793.CrossRefGoogle Scholar
Jesser, W. A. and Kuhlmann-Wilsdorf, D. (1972) The flow stress and dislocation structure of nickel deformed at very high pressure. Materials Science and Engineering 9, 111–117.CrossRefGoogle Scholar
Ji, S., Wang, Z., and Wirth, R. (2001) Bulk flow strength of forsterite–enstatite composites as a function of forsterite content. Tectonophysics 341, 69–93.CrossRefGoogle Scholar
Ji, S. and Zhao, P. (1993) Flow laws of multiphase rocks calculated from experimental data on the constituent phases. Earth and Planetary Science Letters 117, 181–187.CrossRefGoogle Scholar
Jin, D., Karato, S., and Obata, M. (1998) Mechanisms of shear localization in the continental lithosphere: inference from the deformation microstructures of peridotites from the Ivrea zone, northern Italy. Journal of Structural Geology 20, 195–209.CrossRefGoogle Scholar
Jin, Z. M., Green, H. W. II., and Zhou, Y. (1994) Melt topology in partially molten mantle peridotite during ductile deformation. Nature 372, 164–167.CrossRefGoogle Scholar
Jin, Z. M., Zhang, J., Green, H. W. II., and Jin, S. (2001) Eclogite rheology: implications for subducting lithosphere. Geology 29, 667–670.2.0.CO;2>CrossRefGoogle Scholar
Joesten, R. (1983) Grain growth and grain-boundary diffusion in quartz from the Christmas Mountains (Texas) contact aurole. American Journal of Science 283, 233–254.Google Scholar
Johnson, W. C. (1984) On the elastic stabilization of precipitates against coarsening under applied load. Acta Metallurgica 32, 465–475.CrossRefGoogle Scholar
Johnson, W. C. and Cahn, J. W. (1984) Elastically induced shape bifurcations of inclusions. Acta Metallurgica 32, 1925–1933.CrossRefGoogle Scholar
Johnson, W. C. and Schmalzried, H. (1992) Gibbs–Duhem and Clausius–Clapeyron type equations for elastically stressed crystals. Acta Metallurgica et Materialia 40, 2337–2342.CrossRefGoogle Scholar
Johnston, W. G. (1962) Yield points and delay times in single crystals. Journal of Applied Physics 33, 2716–2730.CrossRefGoogle Scholar
Johnston, W. G. and Gilman, J. J. (1959) Dislocation velocities, dislocation densities, and plastic flow in lithium fluoride crystals. Journal of Applied Physics 30, 129–144.CrossRefGoogle Scholar
Jones, R. (1980) The structure of kinks on the 90° partial in silicon and a ‘strain-bond model’ for dislocation motion. Philosophical Magazine B 42, 213–219.CrossRefGoogle Scholar
Jordan, P. G. (1987) The deformation behaviour of bimineralic limestone–halite aggregates. Tectonophysics 135, 185–197.CrossRefGoogle Scholar
Jordan, P. G. (1988) The rheology of polymineralic rocks: an approach. Geologiches Rundschau 77, 285–294.CrossRefGoogle Scholar
Jordan, T. H. (1975) The continental tectosphere. Review of Geophysics and Space Physics 13, 1–12.CrossRefGoogle Scholar
Jordan, T. H. (1981) Continents as a chemical boundary layer. Philosophical Transactions of the Royal Society of London A 301, 359–373.CrossRefGoogle Scholar
Jung, H. and Karato, S. (2001a) Effect of water on the size of dynamically recrystallized grains in olivine. Journal of Structural Geology 23, 1337–1344.CrossRefGoogle Scholar
Jung, H. and Karato, S. (2001b) Water-induced fabric transitions in olivine. Science 293, 1460–1463.CrossRefGoogle Scholar
Jung, H., Katayama, I., Jiang, Z., Hiraga, T., and Karato, S. (2006) Effects of water and stress on the lattice preferred orientation in olivine. Tectonophysics 421, 1–22.CrossRefGoogle Scholar
Kamb, W. B. (1961) The thermodynamic theory of non-hydrostatically stressed solids. Journal of Geophysical Research 66, 259–271.CrossRefGoogle Scholar
Kamb W. B. (1972) Experimental recrystallization of ice under stress. In Flow and Fracture of Rocks (ed. Heard, H. C., Borg, I. Y., Carter, N. L., and Raleigh, C. B.), pp. 211–241. American Geophysical Union.CrossRefGoogle Scholar
Kaminski, E. (2002) The influence of water on the development of lattice preferred orientation in olivine aggregates. Geophysical Research Letters 29, 17-1/17-4.CrossRefGoogle Scholar
Kaminski, E. and Ribe, N. M. (2001) A kinematic model for dynamic recrystallization and texture development in olivine polycrystals. Earth and Planetary Science Letters 189, 253–267.CrossRefGoogle Scholar
Kaminski, E., Ribe, N. M., and Browaeys, J. T. (2004) D-rex, a program for calculation of seismic anisotropy due to crystal lattice preferred orientation in the convective upper mantle. Geophysical Journal International 158, 744–752.CrossRefGoogle Scholar
Kamiya, S. and Kobayashi, Y. (2000) Seismological evidence for the presence of serpentinized wedge mantle. Geophysical Research Letters 27, 819–822.CrossRefGoogle Scholar
Kampfmann, W. and Berckhemer, H. (1985) High temperature experiments on the elastic and anelastic behaviour of magmatic rocks. Physics of Earth and Planetary Interiors 40, 223–247.CrossRefGoogle Scholar
Kanamori, H. and Anderson, D. L. (1977) Importance of physical dispersion in surface wave and free oscillation problems: review. Review of Geophysics and Space Physics 15, 105–112.CrossRefGoogle Scholar
Kanamori, H. and Press, F. (1970) How thick is the lithosphere?Nature 226, 330–331.CrossRefGoogle ScholarPubMed
Kaneshima, S. (1990) Origin of crustal anisotropy: shear wave splitting studies in Japan. Journal of Geophysical Research 95, 11,121–11 133.CrossRefGoogle Scholar
Kaneshima, S. and Helffrich, G. (1999) Dipping low-velocity layer in the mid-mantle: evidence for geochemical heterogeneity. Science 283, 1888–1891.CrossRefGoogle Scholar
Kanzaki, H. (1957) Point defects in face-centred cubic lattice – I. Distortion around defects. Journal of Physics and Chemistry of Solids 2, 24–36.CrossRefGoogle Scholar
Karato, S. (1977) Rheological Properties of Materials Composing the Earth's Mantle. Ph.D., University of Tokyo.Google Scholar
Karato, S. (1978) The concentration minimum of point defects under high pressures and the viscosity of the lower mantle. Programme and Abstracts, The Seismological Society of Japan 1, D31.Google Scholar
Karato, S. (1981a) Pressure dependence of diffusion in ionic solids. Physics of Earth and Planetary Interiors 25, 38–51.CrossRefGoogle Scholar
Karato, S. (1981b) Rheology of the lower mantle. Physics of Earth and Planetary Interiors 24, 1–14.CrossRefGoogle Scholar
Karato, S. (1984) Grain-size distribution and rheology of the upper mantle. Tectonophysics 104, 155–176.CrossRefGoogle Scholar
Karato, S. (1986) Does partial melting reduce the creep strength of the upper mantle?Nature 319, 309–310.CrossRefGoogle Scholar
Karato, S. (1987a) Scanning electron microscope observation of dislocations in olivine. Physics and Chemistry of Minerals 14, 245–248.CrossRefGoogle Scholar
Karato S. (1987b) Seismic anisotropy due to lattice preferred orientation of minerals: kinematic or dynamic? In High-Pressure Research in Geophysics (ed. Manghnani, M. H. and Syono, Y.), pp. 455–471. American Geophysical Union.Google Scholar
Karato, S. (1988) The role of recrystallization in the preferred orientation in olivine. Physics of Earth and Planetary Interiors 51, 107–122.CrossRefGoogle Scholar
Karato S. (1989a) Defects and plastic deformation in olivine. In Rheology of Solids and of the Earth (ed. Karato, S. and Toriumi, M.), pp. 176–208. Oxford University Press.Google Scholar
Karato, S. (1989b) Grain growth kinetics in olivine aggregates. Tectonophysics 155, 255–273.CrossRefGoogle Scholar
Karato, S. (1989c) Plasticity-crystal structure systematics in dense oxides and its implications for creep strength of the Earth's deep interior: a preliminary result. Physics of Earth and Planetary Interiors 55, 234–240.CrossRefGoogle Scholar
Karato, S. (1990) The role of hydrogen in the electrical conductivity of the upper mantle. Nature 347, 272–273.CrossRefGoogle Scholar
Karato, S. (1992) On the Lehmann discontinuity. Geophysical Research Letters 19, 2255–2258.CrossRefGoogle Scholar
Karato, S. (1993a) Importance of anelasticity in the interpretation of seismic tomography. Geophysical Research Letters 20, 1623–1626.CrossRefGoogle Scholar
Karato, S. (1993b) Inner core anisotropy due to the magnetic field-induced preferred orientation of iron. Science 262, 1708–1711.CrossRefGoogle Scholar
Karato, S. (1995) Effects of water on seismic wave velocities in the upper mantle. Proceedings of the Japan Academy 71, 61–66.CrossRefGoogle Scholar
Karato, S. (1997a) On the separation of crustal component from subducted oceanic lithosphere near the 660 km discontinuity. Physics of Earth and Planetary Interiors 99, 103–111.CrossRefGoogle Scholar
Karato S. (1997b) Phase transformations and rheological properties of mantle minerals. In Earth's Deep Interior (ed. Crossley, D.), pp. 223–272. Gordon and Breach.Google Scholar
Karato, S. (1998a) A dislocation model of seismic wave attenuation and velocity dispersion and microcreep of the solid Earth: Harold Jeffreys and the rheology of the solid Earth. Pure and Applied Geophysics 153, 239–256.CrossRefGoogle Scholar
Karato S. (1998b) Effects of pressure on plastic deformation of polycrystalline solids: some geological applications. In High Pressure Research in Materials Sciences (ed. Wentzcovitch, R. M., Hemley, R. J., Neillis, W. J., and Yu, P. Y.), pp. 3–14. Materials Research Society.Google Scholar
Karato S. (1998c) Micro-physics of post glacial rebound (In Dynamics of the Ice Age Earth ed. Wu, P.), pp. 351–364. Trans. Tech.Google Scholar
Karato, S. (1998d) Seismic anisotropy in the deep mantle, boundary layers and geometry of mantle convection. Pure and Applied Geophysics 151, 565–587.CrossRefGoogle Scholar
Karato, S. (1998e) Some remarks on seismic anisotropy in the D″ layer. Earth, Planets, Space 50, 1019–1028.CrossRefGoogle Scholar
Karato, S. (1999) Seismic anisotropy of the Earth's inner core resulting from flow induced by Maxwell stress. Nature 402, 871–873.CrossRefGoogle Scholar
Karato, S. (2000) Dynamics and anisotropy of the Earth's inner core. Proceedings of Japan Academy B 76, 1–6.CrossRefGoogle Scholar
Karato, S. (2003a) Dynamic Structure of the Deep Earth: an Interdisciplinary Approach. Princeton University Press.Google Scholar
Karato, S. (2003b) Mapping water content in Earth's upper mantle. In Inside the Subduction Factory (ed. Eiler, J. E.), pp. 135–152. American Geophysical Union.Google Scholar
Karato S. (2006a) Influence of hydrogen-related defects on the electrical conductivity and plastic deformation of mantle minerals: a critical review. In Earth's Deep Water Cycle (ed. Jacobsen, S. D. and Lee, S.), pp. 113–129. American Geophysical Union.CrossRefGoogle Scholar
Karato S. (2006b) Remote sensing of hydrogen in Earth's mantle. In Water in Nominally Anhydrous Minerals (ed. Keppler, H. and Smyth, J. R.), pp. 343–375. Mineralogical Society of America.Google Scholar
Karato S. (2007) Microscopic models for the influence of hydrogen on physical and chemical properties of minerals. In Superplume: Beyond Plate Tectonics (ed. Yuen, D. A., Maruyama, S., Karato, S., and Windley, B. F.), 321–355. Springer-Verlag.CrossRefGoogle Scholar
Karato, S., Bercovici, D., Leahy, G., Richard, G., and Jing, Z. (2006) Transition zone water filter model for global material circulation: where do we stand? In Earth's Deep Water Cycle (ed. Jacobsen, S. D. and Lee, S.), pp. 289–313. American Geophysical Union.Google Scholar
Karato, S., Dupas-Bruzek, C., and Rubie, D. C. (1998) Plastic deformation of silicate spinel under the transition zone conditions of the Earth. Nature 395, 266–269.CrossRefGoogle Scholar
Karato, S., Ito, E., and Fujino, K. (1990) Plasticity of MgSiO3 perovskite: the results of microhardness tests on single crystals. Geophysical Research Letters 17, 13–16.CrossRefGoogle Scholar
Karato, S. and Jung, H. (1998) Water, partial melting and the origin of seismic low velocity and high attenuation zone in the upper mantle. Earth and Planetary Science Letters 157, 193–207.CrossRefGoogle Scholar
Karato, S. and Jung, H. (2003) Effects of pressure on high-temperature dislocation creep in olivine polycrystals. Philosophical Magazine A 83, 401–414.CrossRefGoogle Scholar
Karato, S. and Karki, B. B. (2001) Origin of lateral heterogeneity of seismic wave velocities and density in Earth's deep mantle. Journal of Geophysical Research 106, 21,771–21 783.CrossRefGoogle Scholar
Karato, S. and Lee, K.-H. (1999) Stress–strain distribution in deformed olivine aggregates: inference from microstructural observations and implications for texture development. 12th International Conference on Textures of Materials, 1546–1555.Google Scholar
Karato, S. and Li, P. (1992) Diffusion creep in the perovskite: implications for the rheology of the lower mantle. Science 255, 1238–1240.CrossRefGoogle ScholarPubMed
Karato, S. and Murthy, V. R. (1997) Core formation and chemical equilibrium in the Earth I. Physical considerations. Physics of Earth and Planetary Interiors 100, 61–79.CrossRefGoogle Scholar
Karato, S., Paterson, M. S., and Fitz Gerald, J. D. (1986) Rheology of synthetic olivine aggregates: influence of grain-size and water. Journal of Geophysical Research 91, 8151–8176.CrossRefGoogle Scholar
Karato, S., Riedel, M. R., and Yuen, D. A. (2001) Rheological structure and deformation of subducted slabs in the mantle transition zone: implications for mantle circulation and deep earthquakes. Physics of Earth and Planetary Interiors 127, 83–108.CrossRefGoogle Scholar
Karato, S. and Rubie, D. C. (1997) Toward experimental study of plastic deformation under deep mantle conditions: a new multianvil sample assembly for deformation experiments under high pressures and temperatures. Journal of Geophysical Research 102, 20,111–20 122.CrossRefGoogle Scholar
Karato, S. and Sato, H. (1982) The effect of oxygen partial pressure on the dislocation recovery in olivine: a new constraint on creep mechanisms. Physics of Earth and Planetary Interiors 28, 312–319.CrossRefGoogle Scholar
Karato, S. and Spetzler, H. A. (1990) Defect microdynamics in minerals and solid state mechanisms of seismic wave attenuation and velocity dispersion in the mantle. Review of Geophysics 28, 399–421.CrossRefGoogle Scholar
Karato, S., Toriumi, M., and Fujii, T. (1980) Dynamic recrystallization of olivine single crystals during high temperature creep. Geophysical Research Letters 7, 649–652.CrossRefGoogle Scholar
Karato, S., Wang, Z., Liu, B., and Fujino, K. (1995a) Plastic deformation of garnets: systematics and implications for the rheology of the mantle transition zone. Earth and Planetary Science Letters 130, 13–30.CrossRefGoogle Scholar
Karato, S. and Wu, P. (1993) Rheology of the upper mantle: a synthesis. Science 260, 771–778.CrossRefGoogle ScholarPubMed
Karato, S., Zhang, S., and Wenk, H.-R. (1995b) Superplasticity in Earth's lower mantle: evidence from seismic anisotropy and rock physics. Science 270, 458–461.CrossRefGoogle Scholar
Karki, B. B., Stixrude, L., Clark, S. J., et al. (1997) Structure and elasticity of MgO at high pressure. American Mineralogist 82, 635–639.CrossRefGoogle Scholar
Karki, B. B., Stixrude, L., and Wentzcovitch, R. M. (2001) High-pressure elastic properties of major materials of Earth's mantle from first principles. Review of Geophysics 39, 507–534.CrossRefGoogle Scholar
Kataoka, T., Colombo, L., and Li, J. C. M. (1983) Dislocation charges in pure and Ca2 +-doped KCl in the temperature range from 82 to 294 K. Radiation Effects 75, 227–234.CrossRefGoogle Scholar
Kataoka, T., Colombo, L., and Li, J. C. M. (1984a) Direct measurements of dislocation charges in Ca2 +-doped KCl by using large electric fields. Philosophical Magazine A 49, 395–407.CrossRefGoogle Scholar
Kataoka, T., Colombo, L., and Li, J. C. M. (1984b) Dislocation charges in Ca2 +-doped KCl. Effects of impurity concentration and temperature. Philosophical Magazine A 49, 409–423.CrossRefGoogle Scholar
Katayama, I., Hirose, K., Yurimoto, H., and Nakashima, S. (2003) Water solubility in majorite garnet in subducting oceanic crust. Geophysical Research Letters 30, 10.1029/2003GL018127.CrossRefGoogle Scholar
Katayama, I., Jung, H., and Karato, S. (2004) New type of olivine fabric at modest water content and low stress. Geology 32, 1045–1048.CrossRefGoogle Scholar
Katayama, I. and Karato, S. (2006) Effects of temperature on the B- to C-type fabric transition in olivine. Physics of the Earth and Planetary Interiors 157, 33–45.CrossRefGoogle Scholar
Katayama, I. and Karato, S. (2007) The role of water and iron content on the rheological contrast between garnet and olivine. Physics of the Earth and Planetary Interiors, submitted.Google Scholar
Katayama, I. and Nakashima, S. (2003) Hydroxyl in clinopyroxene from the deep subducted crust: evidence for H2O transport into the mantle. American Mineralogist 88, 229–234.CrossRefGoogle Scholar
Kato, T. and Kumazawa, M. (1985) Garnet phase of MgSiO3 filling the pyroxene–ilmenite gap at very high temperature. Nature 316, 803–805.CrossRefGoogle Scholar
Katsura, T., Mayama, N., Shouno, K., et al. (2001) Temperature derivatives of elastic moduli of (Mg0.91, Fe0.09)2SiO4 modified spinel. Physics of Earth and Planetary Interiors 124, 163–166.CrossRefGoogle Scholar
Katz, R. F., Spiegelman, M., and Holtzman, B. (2006) The dynamics of melt and shear localization in partially molten aggregates. Nature 442, 676–679.CrossRefGoogle ScholarPubMed
Kaula, W. M. (1964) Tidal dissipation by solid friction and the resulting orbital evolution. Review of Geophysics 2, 661–685.CrossRefGoogle Scholar
Kawakatsu, H. and Niu, F. (1995) Seismic evidence for the 920-km discontinuity in the mantle. Nature 371, 301–305.CrossRefGoogle Scholar
Kawamoto, T., Hertig, R. J., and Holloway, J. R. (1996) Experimental evidence for a hydrous transition zone in Earth's early mantle. Earth and Planetary Science Letters 142, 587–592.CrossRefGoogle Scholar
, T. S. (1947) Experimental evidence of the viscous behavior of grain boundaries in metals. Physical Review 71, 533–546.CrossRefGoogle Scholar
Kekulawala, K. R. S. S., Paterson, M. S., and Boland, J. N. (1978) Hydrolytic weakening in quartz. Tectonophysics 46, T1–T6.CrossRefGoogle Scholar
Kekulawala K. R. S. S., Paterson M. S., and Boland J. N. (1981) An experimental study of the role of water in quartz deformation. In Mechanical Behavior of Crustal Rocks: the Handin Volume (ed. Carter, N. L., Friedman, M., Logan, J. M., and Stearns, D. W.), pp. 49–60. American Geophysical Union.CrossRefGoogle Scholar
Kelemen, P. B., Hirth, G., Shimizu, N., Spiegelman, M., and Dick, H. J. B. (1997) A review of melt migration processes in the adiabatically upwelling mantle beneath oceanic spreading ridges. Philosophical Transactions of the Royal Society of London 355, 283–318.CrossRefGoogle Scholar
Kellogg, L. H., Hager, B. H., and Hilst, R. D. (1999) Compositional stratification in the deep mantle. Science 283, 1881–1884.CrossRefGoogle ScholarPubMed
Kelly, A., Tyson, W. R., and Cottrell, A. H. (1967) Ductile and brittle crystals. Philosophical Magazine 15, 567–586.CrossRefGoogle Scholar
Kendall, J.-M. and Silver, P. G. (1996) Constraints from seismic anisotropy on the nature of the lowermost mantle. Nature 381, 409–412.CrossRefGoogle Scholar
Kendall J.-M. and Silver P. G. (1998) Investigating causes of D″ anisotropy. In The Core–Mantle Boundary Region (ed. Gurnis, M. E. W. M., Knittle, E. and Buffett, B. A.), pp. 97–118. American Geophysical Union.CrossRefGoogle Scholar
Kennett, B. L. N., Engdahl, E. R., and Buland, R. P. (1995) Constraints on seismic wave velocities in the Earth from travel times. Geophysical Journal International 122, 108–124.CrossRefGoogle Scholar
Keppler, H., Wiedenbeck, M., and Shcheka, S. S. (2003) Carbon solubility in olivine and the mode of carbon storage in the Earth's mantle. Nature 424, 414–416.CrossRefGoogle ScholarPubMed
Keyes R. W. (1963) Continuum models of the effect of pressure on activated processes. In Solids Under Pressure (ed. Paul, W. and Warschauer, D. M.), pp. 71–91. McGraw-Hill.Google Scholar
Khisina, N. R., Wirth, R., Andrut, M., and Ukhanov, A. V. (2001) Extrinsic and intrinsic mode of hydrogen occurrence in natural olivines: FTIR and TEM investigation. Physics and Chemistry of Minerals 28, 291–301.Google Scholar
Kido, M. and Cadek, O. (1997) Inferences of viscosity from the oceanic geoid: indication of a low viscosity zone below the 660-km discontinuity. Earth and Planetary Science Letters 151, 125–137.CrossRefGoogle Scholar
King, S. D. (1995a) Radial models of mantle viscosity: results from a genetic algorithm. Geophysical Journal International 122, 725–734.CrossRefGoogle Scholar
King, S. D. (1995b) The viscosity structure of the mantle. Review of Geophysics 33, 11–17.CrossRefGoogle Scholar
Kingery, W. D. (1974a) Plausible concepts necessary and sufficient for interpretation of ceramic grain-boundary phenomena: I. Grain-boundary characteristics, structure, and electrostatic potential. Journal of the American Ceramic Society 57, 1–8.CrossRefGoogle Scholar
Kingery, W. D. (1974b) Plausible concepts necessary and sufficient for interpretation of ceramic grain-boundary phenomena: II. Solute segregation, grain-boundary diffusion, and general discussion. Journal of the American Ceramic Society 57, 74–83.CrossRefGoogle Scholar
Kingery, W. D., Bowen, H. K., and Uhlmann, D. R. (1976) Introduction to Ceramics. John Wiley & Sons.Google Scholar
Kinsland, G. L. and Bassett, W. A. (1977) Strength of MgO and NaCl polycrystals to confining pressures of 250 kbar at 25 °C. Journal of Applied Physics 48, 978–985.CrossRefGoogle Scholar
Kirby, S. H. (1977) The effects of the α–β phase transformation on the creep properties of hydrolytically-weakened synthetic quartz. Geophysical Research Letters 4, 97–100.CrossRefGoogle Scholar
Kitamura, M., Kondoh, S., Morimoto, N., et al. (1987) Planar OH-bearing defects in mantle olivine. Nature 328, 143–145.CrossRefGoogle Scholar
Kitamura, M., Matsuda, H., and Morimoto, N. (1986) Direct observation of the Cottrell atmosphere in olivine. Proceedings of Japan Academy 62, 149–152.CrossRefGoogle Scholar
Kittel, C. (1986) Introduction to Solid State Physics. John Wiley & Sons.Google Scholar
Kliewer, K. L. and Koehler, J. S. (1965) Space charge in ionic crystals. I. General approach with application to NaCl. Physical Review 140, A1226–A1240.CrossRefGoogle Scholar
Kneller, E. A., Keken, P. E., Karato, S., and Park, J. (2005) B-type olivine fabric in the mantle wedge: insights from high-resolution non-Newtonian subduction zone models. Earth and Planetary Science Letters 237, 781–797.CrossRefGoogle Scholar
Kocks, U. F. (1970) The relation between polycrystal deformation and single crystal deformation. Metallurgical Transactions 1, 1121–1143.CrossRefGoogle Scholar
Kocks, U. F., Argon, A. S., and Ashby, M. F. (1975) Thermodynamics and kinetics of slip. Progress in Materials Sciences 19, 1–288.Google Scholar
Kocks, U. F., Jonas, J. J., and Mecking, H. (1979) The development of strain-rate gradients. Acta Metallurgica 27, 419–432.CrossRefGoogle Scholar
Kocks, U. F., Tomé, C. N., and Wenk, H.-R. (1998) Texture and Anisotropy. Cambridge University Press.Google Scholar
Kogiso, T., Hirose, K., and Takahashi, E. (1998) Melting experiments on homogeneous mixtures of peridotites and basalts: application to the genesis of ocean island basalts. Earth and Planetary Science Letters 162, 45–61.CrossRefGoogle Scholar
Kohlstedt D. L. (2002) Partial melting and deformation. In Plastic Deformation of Minerals and Rocks, Vol. 51 (ed. Karato, S. and Wenk, H.-R.), pp. 121–135. Mineralogical Society of America.Google Scholar
Kohlstedt D. L. (2006) The role of water in high-temperature rock deformation. In Water in Nominally Anhydrous Minerals (ed. Keppler, H. and Smyth, J. R.), pp. 377–396. Mineralogical Society of America.Google Scholar
Kohlstedt, D. L., Evans, B., and Mackwell, S. J. (1995) Strength of the lithosphere: constraints imposed by laboratory measurements. Journal of Geophysical Research 100, 17 587–17 602.CrossRefGoogle Scholar
Kohlstedt, D. L. and Goetze, C. (1974) Low-stress, high-temperature creep in olivine single crystals. Journal of Geophysical Research 79, 2045–2051.CrossRefGoogle Scholar
Kohlstedt, D. L., Goetze, C., and Durham, W. B. (1976) A new technique for decorating dislocations in olivine. Science 191, 1945–1046.CrossRefGoogle ScholarPubMed
Kohlstedt, D. L., Keppler, H., and Rubie, D. C. (1996) Solubility of water in the α, β and γ phases of (Mg, Fe)2SiO4. Contributions to Mineralogy and Petrology 123, 345–357.CrossRefGoogle Scholar
Kohlstedt, D. L. and Mackwell, S. J. (1998) Diffusion of hydrogen and intrinsic point defects in olivine. Zeitschrift für Phisikalische Chemie 207, 147–162.CrossRefGoogle Scholar
Kohlstedt D. L. and Mackwell S. J. (1999) Solubility and diffusion of ‘water’ in silicates. In Microscopic Properties and Processes in Minerals (ed. Wright, K. and Catlow, R.), pp. 539–559. Kluwer Academic Publishers.CrossRefGoogle Scholar
Kohlstedt, D. L. and Weathers, M. S. (1980) Deformation-induced microstructures, paleopiezometers, and differential stresses in deeply eroded fault zones. Journal of Geophysical Research 85, 6269–6285.CrossRefGoogle Scholar
Kolsky, H. (1956) The propagation of stress pulses in viscoelastic solids. Philosophical Magazine 1, 693–710.CrossRefGoogle Scholar
Korenaga, J. (2005) Firm mantle plumes and the nature of the core–mantle region. Earth and Planetary Science Letters 232, 29–37.CrossRefGoogle Scholar
Korenaga, J. (2007) Thermal cracking and the deep hydration of oceanic lithosphere: a key to the generation of plate tectonics? Journal of Geophysical Research 112, 10.1029/2006JB004502.CrossRefGoogle Scholar
Krajewski, P. E., Jones, J. W., and Allison, J. E. (1995) The effect of particle reinforcement on the creep behavior of single-phase aluminum. Metallurgical Materials Transactions A 26, 3107–3118.CrossRefGoogle Scholar
Kronenberg, A. K., Kirby, S. H., and Aines, R. D. (1986) Solubility and diffusional uptake of hydrogen in quartz at high water pressures: implications for hydrolytic weakening. Journal of Geophysical Research 91, 12 723–12 744.CrossRefGoogle Scholar
Kronenberg, A. K. and Tullis, J. (1984) Flow strength of quartz aggregates: grain size and pressure effects due to hydrolytic weakening. Journal of Geophysical Research 89, 4281–4297.CrossRefGoogle Scholar
Kubin L. P. (1993) Dislocation patterning. In Materials Science and Technology, Vol. 6 (ed. Cahn, R. W., Haasen, P., and Kramer, E. J.), pp. 137–190. VCH.Google Scholar
Kubo, T., Ohtani, E., Kato, T., Shinmei, T., and Fujino, K. (1998) Effects of water on the α–β transformation kinetics in San Carlos olivine. Science 281, 85–87.CrossRefGoogle ScholarPubMed
Kubo, T., Ohtani, E., Kato, T., et al. (2000) Formation of metastable assemblages and mechanisms of the grain-size reduction in the postspinel transformation of Mg2SiO4. Geophysical Research Letters 27, 807–810.CrossRefGoogle Scholar
Kumazawa M. (1974) On the relation between plastic flow properties and elastic wave velocities. In Flow of Solids: From Earth to Crystals (ed. Uyeda, S.), pp. 246–262. Tokai University Press.Google Scholar
Kurishita, H., Yoshinaga, H., and Nakashima, H. (1989) The high temperature deformation mechanism in pure metals. Acta Metallurgica 37, 499–505.CrossRefGoogle Scholar
Kurz, W. and Fischer, D. J. (1998) Fundamentals of Solidification. Trans Tech.Google Scholar
Kushiro, I. (1975) On the nature of silicate melt and its significance in magma genesis: regularities in the shift of the liquidus boundaries involving olivine. American Journal of Science 275, 411–431.CrossRefGoogle Scholar
Kushiro, I. (1976) Viscosities of basalt and andesite melts at high pressures. Journal of Geophysical Research 81, 6351–6356.CrossRefGoogle Scholar
Labrosse, S., Poirier, J.-P., and Mouel, J.-L. (2001) The age of the inner core. Physics of Earth and Planetary Interiors 190, 111–123.CrossRefGoogle Scholar
Lager, G. A., Armbruster, T., Rotella, F. J., and Rossman, G. R. (1989) The OH substitution in garnets: X-ray and neutron diffraction, infrared and geometric-modelling studies. American Mineralogist 74, 840–851.Google Scholar
Lakki, A., Schaller, R., Carry, C., and Benoit, W. (1998) High temperature anelastic and viscoelastic deformation of fine-grained MgO-doped Al2O3. Acta Materialia 46, 689–700.CrossRefGoogle Scholar
Lambeck K. and Johnston P. (1998) The viscosity of the mantle: evidence from analyses of glacial-rebound phenomena. In The Earth's Mantle (ed. Jackson, I.), pp. 461–502. Cambridge University Press.CrossRefGoogle Scholar
Landau, L. D. and Lifshitz, E. M. (1959) Theory of Elasticity. Pergamon Press.Google Scholar
Landau, L. D. and Lifshitz, E. M. (1964) Statistical Physics. Pergamon Press.Google Scholar
Landau, L. D. and Lifshitz, E. M. (1987) Fluid Dynamics. Pergamon Press.Google Scholar
Langdon, T. G., Dehghan, A., and Sammis, C. G. (1982) Deformation of olivine, and the application to lunar and planetary interiors. Strength of Metals and Alloys, Proceedings of the 6th International Conference, pp. 757–762 Pergamon Press.Google Scholar
Langdon, T. G. and Yavari, P. (1982) An investigation of Harper–Dorn creep – II. The flow process. Acta Metallurgica 30, 881–887.CrossRefGoogle Scholar
Langmuir J. W., Klein E. M., and Plank T. (1992) Petrological systematics of mid-ocean ridge basalt: constraints on melt generation beneath ocean ridges. In Mantle Flow and Melt Generation at Mid-Ocean Ridges (ed. Morgan, J. P., Blackman, D. K., and Sinton, J. M.), pp. 183–280. American Geophysical Union.CrossRefGoogle Scholar
Lasaga, A. C. (1997) Kinetic Theory in Earth Sciences. Princeton University Press.Google Scholar
Lawlis, J. D. (1998) High Temperature Creep of Synthetic Olivine-Enstatite Aggregates. Ph.D., The Pennsylvania State University.Google Scholar
Lawrence, J. F. and Wysession, M. E. (2005) QLM9: a new radial quality factor (Q) model for the mantle. Earth and Planetary Science Letters 241, 962–971.CrossRefGoogle Scholar
Lawrence J. F. and Wysession M. E. (2006) Seismic evidence for subduction-transported water in the lower mantle. In Earth's Deep Water Cycle (ed. Jacobsen, S. D. and Lee, S. v. d.), pp. 251–261. American Geophysical Union.CrossRefGoogle Scholar
Lay, T., Garnero, E. J., and Williams, Q. (2004) Partial melting in a thermo-chemical boundary layer at the base of the mantle. Physics of Earth and Planetary Interiors 146, 441–467.CrossRefGoogle Scholar
Lay, T., Heinz, D. L., Ishii, M., et al. (2005) Multidisciplinary impact of the deep mantle phase transition in perovskite structure. EOS, Transactions of American Geophysical Union 86, 1–5.CrossRefGoogle Scholar
Lay, T. and Wallace, T. C. (1995) Modern Global Seismology. Academic Press.Google Scholar
Lay, T., Williams, Q., and Garnero, E. J. (1998) The core–mantle boundary layer and deep Earth dynamics. Nature 392, 461–468.CrossRefGoogle Scholar
Lebensohn, R. A. and Tomé, C. N. (1993) A self-consistent anisotropic approach for the simulation of plastic deformation and texture development of polycrystals: application to zirconium alloys. Acta Metallurgica et Materials 41, 2611–2624.CrossRefGoogle Scholar
Lee, D.-C. and Halliday, A. N. (1995) Hafnium–tungsten chronometry and the timing of terrestrial core formation. Nature 392, 771–774.CrossRefGoogle Scholar
Lee, K.-H., Jiang, Z., and Karato, S. (2002) A scanning electron microscope study of effects of dynamic recrystallization on the lattice preferred orientation in olivine. Tectonophysics 351, 331–341.CrossRefGoogle Scholar
Lemaire, C., Kohn, S. C., and Brooker, R. A. (2004) The effect of silica activity on the incorporation mechanisms of water in synthetic forsterite: a polarized infrared spectroscopic study. Contributions to Mineralogy and Petrology 147, 48–57.Google Scholar
Lenardic, A. and Moresi, L. N. (1999) Some thoughts on the stability of cratonic lithosphere: effects of buoyancy and viscosity. Journal of Geophysical Research 104, 12 747–12 759.CrossRefGoogle Scholar
Levien, L. and Prewitt, C. T. (1981) High-pressure structural study of diopside. American Mineralogist 66, 315–323.Google Scholar
Lewis, J. S. (1974) Chemical composition of the solar system. Scientific American 230, 50–65.CrossRefGoogle Scholar
Li, B., Liebermann, R. C., and Weidner, D. J. (1998) Elastic moduli of wadsleyite (β-Mg2SiO4) to 7 GPa and 873 K. Science 281, 675–677.CrossRefGoogle Scholar
Li, J., Hadidiacos, C., Mao, H.-K., Fei, Y., and Hemley, R. J. (2003a) Behavior of thermocouples under high pressure in a multi-anvil apparatus. High Pressure Research 23, 389–401.CrossRefGoogle Scholar
Li, J. C. M. (1963) A dislocation mechanism of transient creep. Acta Metallurgica 11, 1269–1270.CrossRefGoogle Scholar
Li, L., Raterron, P., Weidner, D. J., and Long, H. (2006) Plastic flow of pyrope at mantle pressure and temperature. American Mineralogist 91, 517–525.CrossRefGoogle Scholar
Li, L., Ratteron, P., Weidner, D. J., and Chen, J. (2003b) Olivine flow mechanisms at 8 GPa. Physics of Earth and Planetary Interiors 138, 113–129.CrossRefGoogle Scholar
Li, L., Weidner, D. J., Chen, J., et al. (2004a) X-ray strain analysis at high pressure: effect of plastic deformation in MgO. Journal of Applied Physics 95, 8357–8365.CrossRefGoogle Scholar
Li, L., Weidner, D. J., Ratteron, P., Chen, J., and Vaughan, M. T. (2004b) Stress measurements of deforming olivine at high pressure. Physics of Earth and Planetary Interiors 143/144, 357–367.CrossRefGoogle Scholar
Li, P., Karato, S., and Wang, Z. (1996) High-temperature creep in fine-grained polycrystalline CaTiO3, an analogue material of (Mg, Fe)SiO3 perovskite. Physics of Earth and Planetary Interiors 95, 19–36.CrossRefGoogle Scholar
Li, X. and Cormier, V. F. (2002) Frequency-dependent seismic attenuation in the inner core 1. A viscoelastic interpretation. Journal of Geophysical Research 107, 10.1029/2002JB001795.CrossRefGoogle Scholar
Li, Y. and Langdon, T. G. (1998) High strain rate superplasticity in metal matrix composites: the role of load transfer. Acta Materialia 46, 3937–3948.CrossRefGoogle Scholar
Lidiard, A. B. (1981) The volume of formation of Schottky defects in ionic solids. Philosophical Magazine A 43, 292–300.CrossRefGoogle Scholar
Liebermann, R. C. (1982) Elasticity of minerals at high pressure and temperature. In High Pressure Research in Geosciences (ed. Schreyer, W.), pp. 1–14. Schweizerbartsche.Google Scholar
Liebermann R. C. (2000) Elasticity of mantle minerals (experimental studies). In Earth's Deep Interior: Mineral Physics and Tomography (ed. Karato, S., Forte, A. M., Liebermann, R. C., Masters, G., and Stixrude, L.), pp. 181–199. American Geophysical Union.CrossRefGoogle Scholar
Liebermann, R. C. and Ringwood, A. E. (1973) Birch's law and polymorphic phase transformations. Journal of Geophysical Research 78, 6926–6932.CrossRefGoogle Scholar
Lifshitz, I. M. (1963) On the theory of diffusion–viscous flow of polycrystalline bodies. Soviet Physics JETP 17, 909–920.Google Scholar
Lifshitz, I. M. and Shikin, V. B. (1965) The theory of diffusional viscous flow of polycrystalline solids. Soviet Physics, Solid State 6, 2211–2218.Google Scholar
Lin, J.-F., Sturhahn, W., Zhao, J., et al. (2005) Sound velocities of hot dense iron: Birch's law revisited. Science 308, 1892–1894.CrossRefGoogle ScholarPubMed
Lindemann, F. A. (1910) Über die Berechnung Molecular Eigenfrequnzen. Physikalische Zeitschrift 11, 609–612.Google Scholar
Linker M. F. and Kirby S. H. (1981) Anisotropy in the rheology of hydrolytically weakened quartz crystals. In Mechanical Behavior of Crustal Rocks (ed. Carter, N. L., Friedman, M., Logan, J. M., and Stearns, D. W.), pp. 29–48. American Geophysical Union.CrossRefGoogle Scholar
Linker, M. F., Kirby, S. H., Ord, A., and Christie, J. M. (1984) Effects of compression direction on the plasticity and rheology of hydrolytically weakened synthetic quartz crystals at atmospheric pressure. Journal of Geophysical Research 89, 4241–4255.CrossRefGoogle Scholar
Lister, G. S. (1979) Fabric transitions in plastically deformed quartzites: competition between basal, prism and rhomb systems. Bulletin Mineralogie 102, 232–241.Google Scholar
Lister, G. S. and Hobbs, B. E. (1980) The simulation of fabric development during plastic deformation and its application to quartzite: the influence of deformation history. Journal of Structural Geology 2, 355–370.CrossRefGoogle Scholar
Lister, G. S. and Paterson, M. S. (1979) The simulation of fabric development during plastic deformation and its application to quartzite: fabric transition. Journal of Structural Geology 1, 99–115.CrossRefGoogle Scholar
Lister, G. S., Paterson, M. S., and Hobbs, B. E. (1978) The simulation of fabric development during plastic deformation and its application to quartzite: the model. Tectonophysics 45, 107–158.CrossRefGoogle Scholar
Lister, G. S. and Snoke, A. W. (1984) S-C mylonite. Journal of Structural Geology 6, 617–638.CrossRefGoogle Scholar
Litasov, K., Ohtani, E., Langenhorst, F., et al. (2003) Water solubility in Mg-perovskite and water storage capacity in the lower mantle. Earth and Planetary Science Letters 211, 189–203.CrossRefGoogle Scholar
Lithgow-Bertelloni, C. and Silver, P. G. (1998) Dynamic topography, plate driving forces and the African superswell. Nature 395, 269–272.CrossRefGoogle Scholar
Long, M., Xiao, X., Jiang, Z., Evans, B., and Karato, S. (2006) Lattice preferred orientation in deformed polycrystalline (Mg, Fe)O and implications for seismic anisotropy in D″. Physics of Earth and Planetary Interiors 156, 75–88.CrossRefGoogle Scholar
Long, M. D. and Hilst, R. D. (2005) Upper mantle anisotropy beneath Japan from shear wave splitting. Physics of Earth and Planetary Interiors 151, 206–222.CrossRefGoogle Scholar
Loper, D. E. and Fearn, D. R. (1983) A seismic model of a partially molten inner core. Journal of Geophysical Research 88, 1235–1242.CrossRefGoogle Scholar
Louat, N. P. and Duesbery, M. S. (1994) On the theory of normal grain growth. Philosophical Magazine A 69, 841–854.CrossRefGoogle Scholar
Louchet, F. and George, A. (1983) Dislocation mobility measurements: an essential tool for understanding the atomic and electronic core structures of dislocations in semiconductors. Journal de Physique C 4, 51–58.Google Scholar
Lu, R. and Keppler, H. (1997) Water solubility in pyrope to 100 kbar. Contributions to Mineralogy and Petrology 129, 35–42.CrossRefGoogle Scholar
Luan, F. C. and Paterson, M. S. (1992) Preparation and deformation of synthetic aggregates of quartz. Journal of Geophysical Research 97, 301–320.CrossRefGoogle Scholar
Luton, M. J. and Sellars, C. M. (1969) Dynamic recrystallization in nickel and nickel–iron alloys during high temperature deformation. Acta Metallurgica 17, 1033–1043.CrossRefGoogle Scholar
Mackwell, S. J. (1991) High-temperature rheology of enstatite: implications for creep in the upper mantle. Geophysical Research Letters 18, 2027–2030.CrossRefGoogle Scholar
Mackwell, S. J. and Kohlstedt, D. L. (1990) Diffusion of hydrogen in olivine: implications for water in the mantle. Journal of Geophysical Research 95, 5079–5088.CrossRefGoogle Scholar
Mackwell, S. J., Kohlstedt, D. L., and Paterson, M. S. (1985) The role of water in the deformation of olivine single crystals. Journal of Geophysical Research 90, 11 319–11 333.CrossRefGoogle Scholar
Mackwell S. J. and Paterson M. S. (1985) Water-related diffusion and deformation effects in quartz at pressure of 1500 and 300 MPa. In Point Defects in Minerals (ed. Schock, R. N.), pp. 141–150. American Geophysical Union.CrossRefGoogle Scholar
Mackwell, S. J., Zimmerman, M. E., and Kohlstedt, D. L. (1998) High-temperature deformation of dry diabase with application to tectonics on Venus. Journal of Geophysical Research 103, 975–984.CrossRefGoogle Scholar
Mainprice, D. H. and Nicolas, A. (1989) Development of shape and lattice preferred orientations: application to the seismic anisotropy of the lower crust. Journal of Structural Geology 11, 175–189.CrossRefGoogle Scholar
Mainprice, D. H. and Paterson, M. S. (1984) Experimental studies on the role of water in the plasticity of quartzite. Journal of Geophysical Research 89, 4257–4269.CrossRefGoogle Scholar
Mainprice, D. H. and Silver, P. G. (1993) Interpretation of SKS-waves using samples from the subcontinental lithosphere. Physics of Earth and Planetary Interiors 78, 257–280.CrossRefGoogle Scholar
Malvern, L. E. (1969) Introduction to the Mechanics of a Continuous Medium. Prentice-Hall.Google Scholar
Manga, M. (1996) Mixing of heterogeneities in the mantle: effect of viscosity differences. Geophysical Research Letters 23, 403–406.CrossRefGoogle Scholar
Mao, H.-K., Shu, J., Shen, G., et al. (1998) Elasticity and rheology of iron above 200 GPa and the nature of the Earth's inner core. Nature 396, 741–743.CrossRefGoogle Scholar
Maradudin, A. A., Montroll, E. W., Weiss, G. H., and Ipanova, I. P. (1971) Theory of Lattice Dynamics in the Harmonic Approximation. Academic Press.Google Scholar
March, N. H. and Tosi, M. P. (2002) Introduction to Liquid State Physics. World Scientific.CrossRefGoogle Scholar
Marone, C. (1998) Laboratory-derived friction laws and their application to seismic faulting. Annual Review of Earth and Planetary Sciences 26, 643–696.CrossRefGoogle Scholar
Martin, R. F. and Donnay, G. (1972) Hydroxyl in the mantle. American Mineralogist 57, 554–570.Google Scholar
Mase, G. E. (1970) Continuum Mechanics. McGraw-Hill.Google Scholar
Masters, G. and Gubbins, D. (2003) On the resolution of density within the Earth. Physics of the Earth and Planetary Interior 139, 159–167.CrossRefGoogle Scholar
Masters G., Laske G., Bolton H., and Dziewonski A. M. (2000) The relative behavior of shear velocity, bulk sound speed, and compressional velocity in the mantle: implications for chemical and thermal structure. In Earth's Deep Interior (ed. Karato, S., Forte, A. M., Liebermann, R. C., Masters, G., and Stixrude, L.), pp. 63–87. American Geophysical Union.Google Scholar
Matsukage, K. N., Nishihara, Y., and Karato, S. (2005) Seismological signature of chemical evolution of Earth's upper mantle. Journal of Geophysical Research 110, 10.1029/2004JB003504.CrossRefGoogle Scholar
Matthies, S. and Wagner, F. (1996) On a 1/n law in texture related single orientation analysis. Physica Status Solidi 196, K11–K15.CrossRefGoogle Scholar
Mavko, G. M. (1980) Velocity and attenuation in partially molten rocks. Journal of Geophysical Research 85, 5173–5189.CrossRefGoogle Scholar
Mavko, G. M. and Nur, A. (1975) Melt squirt in the asthenosphere. Journal of Geophysical Research 80, 1444–1448.CrossRefGoogle Scholar
Mayama, N., Suzuki, I., and Saito, T. (2004) Temperature dependence of elastic moduli of β-(Mg, Fe)2SiO4. Geophysical Research Letters 31, 10.1029/2003GL019247.CrossRefGoogle Scholar
McBirney, A. R. and Murase, T. (1984) Rheological properties of magmas. Annual Review of Earth and Planetary Sciences 12, 337–357.CrossRefGoogle Scholar
McCartney, L. N. (1976) No time-gentlemen please!Philosophical Magazine 33, 689–695.CrossRefGoogle Scholar
McDonnell, R. D., Peach, C. J., Roemund, H. L. M., and Spiers, C. J. (2000) Effect of varying enstatite content on the deformation behavior of fine-grained synthetic peridotite under wet conditions. Journal of Geophysical Research 105, 13 535–13 553.CrossRefGoogle Scholar
McDonough, W. F. and Sun, S.-S. (1995) The composition of the Earth. Chemical Geology 120, 223–253.CrossRefGoogle Scholar
McGovern, P. J. and Schubert, G. (1989) Thermal evolution of the Earth: effects of volatile exchange between atmosphere and interior. Earth and Planetary Science Letters 96, 27–37.CrossRefGoogle Scholar
McKenzie, D. P. (1969) Speculations on the consequences and cause of plate motion. Geophysical Journal of Royal Astronomical Society 18, 1–32.CrossRefGoogle Scholar
McKenzie, D. P. (1984) The generation and compaction of partially molten rocks. Journal of Petrology 25, 713–765.CrossRefGoogle Scholar
McKenzie, D. P. (2003) Estimating Te in the presence of internal loads. Journal of Geophysical Research 108, 10.1029/JB001766.CrossRefGoogle Scholar
McLaren, A. C., Cook, R. F., Hyde, S. T., and Tobin, R. C. (1983) The mechanisms of the formation and growth of water bubbles and associated dislocation loops in synthetic quartz. Physics and Chemistry of Minerals 9, 79–94.CrossRefGoogle Scholar
McLaren, A. C., Fitz Gerald, J. D., and Gerretsen, J. (1989) Dislocation nucleation and multiplication in synthetic quartz: relevance to water weakening. Physics and Chemistry of Minerals 16, 465–482.CrossRefGoogle Scholar
McNamara, A., Karato, S., and Keken, P. E. (2001) Localization of dislocation creep in Earth's lower mantle: implications for seismic anisotropy. Earth and Planetary Science Letters 191, 85–99.CrossRefGoogle Scholar
McNamara, A., Keken, P. E., and Karato, S. (2002) Development of anisotropic structure by solid-state convection in the Earth's lower mantle. Nature 416, 310–314.CrossRefGoogle ScholarPubMed
McNamara, A., Keken, P. E., and Karato, S. (2003) Development of finite strain in the convecting lower mantle and its implications for seismic anisotropy. Journal of Geophysical Research 108, 10.1029/2002JB001970, 2003.CrossRefGoogle Scholar
McNutt, M. K. (1998) Superswells. Review of Geophysics 36, 211–244.CrossRefGoogle Scholar
Meade, C. and Jeanloz, R. (1988) Yield strength of the B1 and B2 phases of NaCl. Journal of Geophysical Research 93, 3270–3274.CrossRefGoogle Scholar
Meade, C. and Jeanloz, R. (1990) The strength of mantle silicates at high pressures and room temperature: implications for the viscosity of the mantle. Nature 348, 533–535.CrossRefGoogle Scholar
Meade, C., Reffner, J. A., and Ito, E. (1993) Synchrotron infrared absorbance measurements of hydrogen in MgSiO3 perovskite. Science 264, 1558–1560.CrossRefGoogle Scholar
Meade, C., Silver, P. G., and Kaneshima, S. (1995) Laboratory and seismological observations of lower mantle isotropy. Geophysical Research Letters 22, 1293–1296.CrossRefGoogle Scholar
Means, W. D. (1976) Stress and Strain. Springer-Verlag.CrossRefGoogle Scholar
Mecklenburgh, J. and Rutter, E. H. (2003) On the rheology of partially molten synthetic granite. Journal of Structural Geology 25, 1575–1585.CrossRefGoogle Scholar
Mehl, L., Hacker, B. R., and Hirth, G. (2003) Arc-parallel flow within the mantle wedge: evidence from the accreted Talkeetna arc, south central Alaska. Journal of Geophysical Research 108, 10.1029/2002JB002233.CrossRefGoogle Scholar
Mei, S., Bai, W., Hiraga, T., and Kohlstedt, D. L. (2002) Influence of melt on the creep behavior of olivine–basalt aggregates under hydrous conditions. Earth and Planetary Science Letters 201, 491–507.CrossRefGoogle Scholar
Mei, S. and Kohlstedt, D. L. (2000a) Influence of water on plastic deformation of olivine aggregates, 1. Diffusion creep regime. Journal of Geophysical Research 105, 21 457–21 469.CrossRefGoogle Scholar
Mei, S. and Kohlstedt, D. L. (2000b) Influence of water on plastic deformation of olivine aggregates, 2. Dislocation creep regime. Journal of Geophysical Research 105, 21 471–21 481.CrossRefGoogle Scholar
Meike A. (1993) A critical review of investigation into transformational plasticity. In Defects and Processes in the Solid States (ed. Boland, J. N. and Gerald, J. D. Fitz), pp. 5–25. Elsevier.Google Scholar
Meissner, R. and Mooney, W. D. (1998) Weakness of lower continental crust: a condition for delamination, uplift, and escape. Tectonophysics 296, 47–60.CrossRefGoogle Scholar
Mendelson, M. I. (1969) Average grain size in polycrystalline ceramics. Journal of the American Ceramic Society 55, 19–24.Google Scholar
Mercier, J.-C. C. (1980) Magnitude of the continental lithospheric stresses inferred from rheomorphic petrology. Journal of Geophysical Research 85, 6293–6303.CrossRefGoogle Scholar
Merkel, S., Wenk, H.-R., Badro, J., et al. (2003) Deformation of (Mg0.9, Fe0.1)SiO3 perovskite aggregates up to 32 GPa. Earth and Planetary Science Letters 209, 351–360.CrossRefGoogle Scholar
Merkel, S., Wenk, H.-R., Gillet, P., Mao, H.-K., and Hemley, R. J. (2004) Deformation of polycrystalline iron up to 30 GPa and 1000 K. Physics of Earth and Planetary Interiors 145, 239–251.CrossRefGoogle Scholar
Merkel, S., Wenk, H.-R., Shu, J., et al. (2002) Deformation of polycrystalline MgO at pressures of the lower mantle. Journal of Geophysical Research 107, 10.1029/2001JB000920.CrossRefGoogle Scholar
Merrill, R. T., McElhinny, M. W., and McFaddon, P. L. (1998) The Magnetic Field of the Earth. Academic Press.Google Scholar
Mibe, K., Fujii, T., and Yasuda, A. (1998) Connectivity of aqueous fluid in the Earth's upper mantle. Geophysical Research Letters 25, 1233–1236.CrossRefGoogle Scholar
Minster, J. B. and Anderson, D. L. (1980) Dislocations and nonelastic processes in the mantle. Journal of Geophysical Research 85, 6347–6352.CrossRefGoogle Scholar
Minster, J. B. and Anderson, D. L. (1981) A model of dislocation-controlled rheology for the mantle. Philosophical Transaction of Royal Society of London A 299, 319–356.CrossRefGoogle Scholar
Misener D. J. (1974) Cationic diffusion in olivine to 1400 °C and 35 kbar. In Geochemistry and Reaction Kinetics (ed. Hofmann, A. W., Giletti, B. J., Yorder, J. H. S., and Yund, R. A.), pp. 117–129. Carnegie Institution of Washington.Google Scholar
Mistler, R. E. and Coble, R. L. (1974) Grain-boundary diffusion and boundary widths in metals and ceramics. Journal of Applied Physics 45, 1507–1509.CrossRefGoogle Scholar
Mitrovica, J. X. (1996) Haskell [1935] revisited. Journal of Geophysical Research 101, 555–569.CrossRefGoogle Scholar
Mitrovica, J. X. and Peltier, W. R. (1991a) A complete formalism for the inversion of postglacial rebound data: resolving power analysis. Geophysical Journal International 104, 267–288.CrossRefGoogle Scholar
Mitrovica J. X. and Peltier W. R. (1991b) Radial resolution in the inference of mantle viscosity from observations of glacial isostatic adjustment. In Glacial Isostasy, Sea-Level and Mantle Rheology (ed. Sabadini, R., Lambeck, K., and Boschi, E.), pp. 63–78. Kluwer Academic Publisher.CrossRefGoogle Scholar
Mizutani, H. and Kanamori, H. (1964) Variation in elastic wave velocity and attenuative property near the melting temperature. Journal of Physics of the Earth 12, 43–49.CrossRefGoogle Scholar
Molinari, A., Canova, G. R., and Ahzi, S. (1987) A self-consistent approach of the large deformation polycrystal viscoplasticity. Acta Metallurgica 35, 2983–2994.CrossRefGoogle Scholar
Möller, H.-J. (1978) The movement of dissociated dislocations in the diamond-cubic structure. Acta Metallurgica 26, 963–973.CrossRefGoogle Scholar
Montagner, J.-P. (1998) Where can seismic anisotropy be detected in the Earth's mantle? In boundary layers …. Pure and Applied Geophysics 151, 223–256.CrossRefGoogle Scholar
Montagner, J.-P. (2002) Upper mantle low anisotropy channels below the Pacific Plate. Earth and Planetary Science Letters 202, 263–274.CrossRefGoogle Scholar
Montagner, J.-P., Griot-Pommera, D.-A., and Lavé, J. (2000) How to relate body wave and surface wave anisotropy?Journal of Geophysical Research 105, 19,015–19,028.CrossRefGoogle Scholar
Montagner J.-P. and Guillot L. (2000) Seismic anisotropy in the Earth's mantle. In Problems in Geophysics for the New Millennium (ed. Boschi, E., Ekström, G., and Morelli, A.), pp. 217–253. Editrice Compositori.Google Scholar
Montagner J.-P. and Guillot L. (2002) Seismic anisotropy and global geodynamics. In Plastic Deformation of Minerals and Rocks, Vol. 51 (ed. Karato, S. and Wenk, H.-R.), pp. 353–385. Mineralogical Society of America.Google Scholar
Montagner, J.-P. and Kennett, B. L. N. (1996) How to reconcile body-wave and normal-mode reference Earth models. Geophysical Journal International 125, 229–248.CrossRefGoogle Scholar
Montagner, J.-P. and Nataf, H.-C. (1986) A simple method for inverting the azimuthal anisotropy of surface waves. Journal of Geophysical Research 91, 511–520.CrossRefGoogle Scholar
Montagner, J.-P. and Ritsema, J. (2001) Interactions between ridges and plumes. Science 294, 1472–1473.CrossRefGoogle ScholarPubMed
Montagner, J.-P. and Tanimoto, T. (1990) Global anisotropy in the upper mantle inferred from the regionalization of phase velocities. Journal of Geophysical Research 95, 4797–4819.CrossRefGoogle Scholar
Montagner, J.-P. and Tanimoto, T. (1991) Global upper mantle tomography of seismic wave velocities and anisotropies. Journal of Geophysical Research 96, 20337–20351.CrossRefGoogle Scholar
Montelli, R., Nolet, G., Dahlen, F. A., et al. (2004) Finite-frequency tomography reveals a variety of plumes in the mantle. Science 303, 338–343.CrossRefGoogle ScholarPubMed
Montési, L. and Hirth, G. (2003) Grain size evolution and the rheology of ductile shear zone: from laboratory experiments to postseismic creep. Earth and Planetary Science Letters 211, 97–110.CrossRefGoogle Scholar
Montési, L. and Zuber, M. T. (2002) A unified description of localization for application to large-scale tectonics. Journal of Geophysical Research 107, 1/1–1/21.CrossRefGoogle Scholar
Morelli, A., Dziewonski, A. M., and Woodhouse, J. H. (1986) Anisotropy of the inner core inferred from PKIKP travel times. Geophysical Research Letters 13, 1545–1548.CrossRefGoogle Scholar
Mosenfelder, J. L., Connelly, J. A. D., Rubie, D. C., and Liu, M. (2000) Strength of (Mg, Fe)2SiO4 wadsleyite determined by relaxation of transformational stress. Physics of Earth and Planetary Interiors 120, 63–78.CrossRefGoogle Scholar
Mott, N. F. and Littleton, M. J. (1938) Conduction in polar crystals: I. Electrolytic conduction in solid salts. Transactions of Faraday Society 34, 485–491.CrossRefGoogle Scholar
Mukherjee, A. K. (1971) The rate controlling mechanism in superplasticity. Materials Science and Engineering 8, 83–89.CrossRefGoogle Scholar
Murakami, M., Hirose, K., Kawamura, K., Sata, N., and Ohnishi, Y. (2004) Post-perovskite phase transition in MgSiO3. Science 304, 855–858.CrossRefGoogle ScholarPubMed
Murakami, M., Hirose, K., Yurimoto, H., Nakashima, S., and Takafuji, N. (2002) Water in Earth's lower mantle. Science 295, 1885–1887.CrossRefGoogle ScholarPubMed
Nabarro, F. R. N. (1948) Deformation of crystals by the motion of single ions. Report of a Conference on Strength of Solids, 75–90.Google Scholar
Nabarro, F. R. N. (1967a) Steady state diffusional creep. Philosophical Magazine 16, 231–237.CrossRefGoogle Scholar
Nabarro, F. R. N. (1967b) Theory of Crystal Dislocations. Oxford University Press.Google Scholar
Nabarro, F. R. N. (1989) The mechanism of Harper-Dorn creep. Acta Metallurgica 37, 2217–2222.CrossRefGoogle Scholar
Nakada, M. (1986) Holocene sea levels in oceanic islands: implications for the rheological structure of the Earth's mantle. Tectonophysics 121, 263–276.CrossRefGoogle Scholar
Nakada, M. and Lambeck, K. (1987) Glacial rebound and relative sea level variations: a new appraisal. Geophysical Journal of Royal Astronomical Society 90, 171–224.CrossRefGoogle Scholar
Nakada, M. and Lambeck, K. (1989) Late Pleistocene and Holocene sea-level change in the Australian region and mantle rheology. Geophysical Journal International 96, 497–517.CrossRefGoogle Scholar
Nakada M. and Lambeck K. (1991) Late Pleistocene and Holocene sea-level change: evidence for lateral mantle viscosity variation? In Glacial Isostasy, Sea Level and Mantle Rheology (ed. Sabadini, R., Lambeck, K., and Boschi, E.), pp. 79–94. Kluwer Academic.CrossRefGoogle Scholar
Nakajima, J. and Hasegawa, A. (2004) Shear-wave polarization anisotropy and subduction-induced flow in the mantle wedge of northern Japan. Earth and Planetary Science Letters 225, 365–377.CrossRefGoogle Scholar
Nakashima, S. (1995) Diffusivity of ions in pore water as a quantitative basis for rock deformation rate estimate. Tectonophysics 245, 185–203.CrossRefGoogle Scholar
Nakashima S., De Meer S., and Spiers C. J. (2004) Distribution of thin film water in grain boundaries of crustal rocks and implications for crustal strength. In Physicochemistry of Water in Geological and Biological Systems (ed. Nakashima, S., Spiers, C. J., Mercury, L., Fenter, P. A., and Hochella, M. F. M. F. Jr.), pp. 159–178. Universal Academy Press, Inc.Google Scholar
Nakatani, M. (2001) Conceptual and physical clarification of rate and state friction: frictional sliding and thermally activated rheology. Journal of Geophysical Research 106, 13 347–13 380.CrossRefGoogle Scholar
Nataf, H.-C., Nakanishi, I., and Anderson, D. L. (1984) Anisotropy and shear wave heterogeneities in the upper mantle. Geophysical Research Letters 11, 109–112.CrossRefGoogle Scholar
Nataf, H.-C., Nakanishi, I., and Anderson, D. L. (1986) Measurement of mantle wave velocities and inversion for lateral heterogeneities and anisotropy, 3. Inversion. Journal of Geophysical Research 91, 7261–7307.CrossRefGoogle Scholar
Navrotsky, A. (1994) Physics and Chemistry of Earth Materials. Cambridge University Press.CrossRefGoogle Scholar
Nes, E., Hirsch, J., and Lücke, K. (1984) On the origin of the cube recrystallization texture in directionally solidified aluminium. Seventh International Conference on Texture of Materials, 663–674.Google Scholar
Newman, J., Lamb, W. M., Drury, M. R., and Vissers, R. L. M. (1999) Deformation processes in a peridotite shear zone: reaction-softening by a H2O-deficit, continuous net transfer reaction. Tectonophysics 303, 193–222.CrossRefGoogle Scholar
Nicolas, A. (1978) Stress estimates from structural studies in some mantle peridotites. Philosophical Transactions of the Royal Society of London A 288, 49–57.CrossRefGoogle Scholar
Nicolas, A. (1993) Why fast polarization direction of SKS seismic waves are parallel to mountain belts. Physics of Earth and Planetary Interiors 78, 337–342.CrossRefGoogle Scholar
Nicolas A. and Christensen N. I. (1987) Formation of anisotropy in upper mantle peridotite: a review. In Composition, Structure and Dynamics of the Lithosphere–Asthenosphere System (ed. Fuchs, K. and Foridevaux, C.), pp. 111–123. American Geophysical Union.CrossRefGoogle Scholar
Nieh, T. G., Wadsworth, J., and Sherby, O. D. (1997) Superplasticity in Metals and Ceramics. Cambridge University Press.CrossRefGoogle Scholar
Nimmo, F., Price, G. D., Brodholt, J. P., and Gubbins, D. (2004) The influence of potassium on core and geodynamo evolution. Geophysical Journal International 156, 363–376.CrossRefGoogle Scholar
Nishihara, Y., Shinmei, T., and Karato, S. (2006) Grain-growth kinetics in wadsleyite: effects of chemical environment. Physics of Earth and Planetary Interiors 154, 30–43.CrossRefGoogle Scholar
Nishihara, Y., Shinmei, T., and Karato, S. (2007a) Effects of chemical environments on the hydrogen-defects in wadsleyite. American Mineralogist in press.Google Scholar
Nishihara, Y., Tinker, D., Xu, Y., et al. (2007b) Plastic deformation of wadsleyite and olivine at high-pressures and high-temperatures using a rotational Drickamer apparatus (RDA). Physics of the Earth and Planetary Interiors submitted.Google Scholar
Nitsan, U. (1974) Stability field of olivine with respect to oxidation and reduction. Journal of Geophysical Research 79, 706–711.CrossRefGoogle Scholar
Nixon P. H. and Boyd F. R. (1973) Petrogenesis of the granular and sheared ultrabasic nodule site in kimberlites. In Lesotho Kimberlites (ed. Nixon, P. H.), pp. 48–56. Lesotho National Development.Google Scholar
Nolet, G. (1987a) Seismic Tomography. Reidel Publishing Company.CrossRefGoogle Scholar
Nolet G. (1987b) Waveform tomography. In Seismic Tomography (ed. Nolet, G.), pp. 301–322. Reidel Publishing Company.CrossRefGoogle Scholar
Nolet G. (2000) Interpreting seismic waveforms: forward and inverse problems for heterogeneous media. In Problems in Geophysics for the New Millennium (ed. Boschi, E., Ekström, G., and Morelli, A.), pp. 373–401. Edrice Compositori.Google Scholar
Nolet, G. and Dahlen, F. A. (2000) Wave front healing and the evolution of seismic delay times. Journal of Geophysical Research 105, 19,043–19,054.CrossRefGoogle Scholar
Nolet, G. and Zielhuis, A. (1994) Low S velocities under the Tornquist–Teisseyre zone: evidence for water injection into the transition zone by subduction. Journal of Geophysical Research 99, 15 813–15 820.CrossRefGoogle Scholar
Nowick, A. S. and Berry, B. S. (1972) Anelastic Relaxation in Crystalline Solids. Academic Press.Google Scholar
Nye, J. F. and Mae, S. (1972) The effect of non-hydrostatic stress on intergranular water veins and lenses in ice. Journal of Glaciology 11, 81–101.CrossRefGoogle Scholar
O'Connell, R. J. (1977) On the scale of mantle convection. Tectonophysics 38, 119–136.CrossRefGoogle Scholar
O'Connell, R. J. and Budianski, B. (1974) Seismic velocities in dry and saturated cracked solids. Journal of Geophysical Research 79, 5412–5426.CrossRefGoogle Scholar
O'Connell, R. J. and Budianski, B. (1977) Viscoelastic properties of fluid-saturated cracked solids. Journal of Geophysical Research 82, 5719–5735.CrossRefGoogle Scholar
O'Neill, H. S. C., McCammon, C. A., Canil, D., et al. (1993) Mössbauer spectroscopy of mantle transition zone phases and determination of minimum Fe3 + content. American Mineralogist 78, 456–460.Google Scholar
Obata, M. and Karato, S. (1995) Ultramafic pseudotachylyte from Balmuccia peridotite, Ivrea–Verbana zone, northern Italy. Tectonophysics 242, 313–328.CrossRefGoogle Scholar
Oganov, A. R., Martonak, R., Laio, A., Raiteri, P., and Parrinello, M. (2005) Anisotropy of Earth's D″ layer and stacking faults in the MgSiO3 post-perovskite phase. Nature 438, 1142–1144.CrossRefGoogle ScholarPubMed
Oganov, A. R. and Ono, S. (2004) Theoretical and experimental evidence for a post-perovskite phase of MgSiO3 in Earth's D″ layer. Nature 430, 445–448.CrossRefGoogle Scholar
Ogawa, M. (1987) Shear instability in a viscoelastic material as the cause for deep earthquakes. Journal of Geophysical Research 92, 13 801–13 810.CrossRefGoogle Scholar
Ohtani, E. (1988) Chemical stratification of the mantle formed by melting in the early stage of the terrestrial evolution. Tectonophysics 154, 201–210.CrossRefGoogle Scholar
Ohtani, E., Mizobata, H., and Yurimoto, H. (2000) Stability of dense hydrous magnesium silicate phases in the system Mg2SiO4–H2O and MgSiO3–H2O at pressures up to 27 GPa. Physics and Chemistry of Minerals 27, 533–544.CrossRefGoogle Scholar
Ohuchi, T. and Nakamura, M. (2006) Grain growth in the forsterite–diopside system. Physics of the Earth and Planetary Interiors 160, 1–21.CrossRefGoogle Scholar
Oki, S. (2006) Whole mantle Vp/Vs tomography, University of Tokyo.Google Scholar
Omori, S., Kamiya, S., Maruyama, S., and Zhao, D. (2002) Morphology of the intraslab seismic zone and devolatilization phase equilibria of the subducting slab peridotite. Bulletin of Earthquake Research Institute 76, 455–478.Google Scholar
Orowan, E. (1934) Zur Kristallplastizität. Zeitschrift für Phisik 89, 605–659.CrossRefGoogle Scholar
Ozawa, K. (1989) Stress induced Al-Cr zoning of spinel in deformed peridotite. Nature 338, 141–144.CrossRefGoogle Scholar
Panasyuk, S. V. and Hager, B. H. (1998) A model of transformational superplasticity in the upper mantle. Geophysical Journal International 133, 741–755.CrossRefGoogle Scholar
Panning, M. and Romanowicz, B. (2004) Inferences on flow at the base of the Earth's mantle based on seismic anisotropy. Science 303, 351–353.CrossRefGoogle ScholarPubMed
Park, J. and Levin, V. (2002) Seismic anisotropy: tracing plate dynamics in the mantle. Science 296, 485–489.CrossRefGoogle ScholarPubMed
Park, K. T. and Mohamed, F. A. (1995) Creep strengthening in a discontinuous SiC–Al composite. Metallurgical Materials Transaction A 26, 3119–3129.CrossRefGoogle Scholar
Parmentier, E. M. (1981) A possible mantle instability due to superplastic deformation associated with phase transitions. Geophysical Research Letters 8, 143–146.CrossRefGoogle Scholar
Pasteris, J. D. (1984) Kimberlites: complex mantle melts. Annual Review of Earth and Planetary Sciences 12, 133–153.CrossRefGoogle Scholar
Paterson, M. S. (1970) A high temperature high pressure apparatus for rock deformation. International Journal of Rock Mechanics and Mining Sciences 7, 517–526.CrossRefGoogle Scholar
Paterson, M. S. (1973) Non-hydrostatic thermodynamics and its geologic applications. Review of Geophysics and Space Physics 11, 355–389.CrossRefGoogle Scholar
Paterson, M. S. (1982) The determination of hydroxyl by infrared absorption in quartz, silicate glass and similar materials. Bulletin Mineralogie 105, 20–29.Google Scholar
Paterson, M. S. (1983) Creep of transforming materials. Mechanics of Materials 2, 103–109.CrossRefGoogle Scholar
Paterson M. S. (1989) The interaction of water with quartz and its influence in dislocation flow – an overview. In Rheology of Solids and of the Earth (ed. Karato, S. and Toriumi, M.), pp. 107–142. Oxford University Press.Google Scholar
Paterson M. S. (1990) Rock deformation experimentation. In The Brittle–Ductile Transition in Rocks: the Heard Volume (ed. Duba, A. G., Durham, W. B., Handin, J. W., and Wang, H. F.), pp. 187–194. American Geophysical Union.CrossRefGoogle Scholar
Paterson, M. S. and Kekulawala, K. R. S. S. (1979) The role of water in quartz deformation. Bulletin Mineralogie 102, 92–98.Google Scholar
Paterson, M. S. and Olgaard, D. L. (2000) Rock deformation tests to large shear strains in torsion. Journal of Structural Geology 22, 1341–1358.CrossRefGoogle Scholar
Paterson, M. S. and Weiss, L. E. (1961) Symmetry concepts in the structural analysis of deformed rocks. Geological Society of America Bulletin 72, 841–882.CrossRefGoogle Scholar
Paterson, M. S. and Wong, T.-F. (2005) Experimental Rock Deformation – The Brittle Field. Springer-Verlag.Google Scholar
Pauling, L. (1960) The Nature of the Chemical Bonds. Cornell University Press.Google Scholar
Pearson D. G. (1999) Evolution of cratonic lithospheric mantle: an isotopic perspective. In Mantle petrology: Field Observations and High Pressure Experimentation (ed. Fei, Y., Bertka, C. M., and Mysen, B. O.), pp. 57–78. The Geochemical Society.Google Scholar
Peltier, W. R. (1984) The thickness of the continental lithosphere. Journal of Geophysical Research 89, 11303–11316.CrossRefGoogle Scholar
Peltier, W. R. (1985a) New constraints on transient lower mantle rheology and internal mantle buoyancy from glacial rebound data. Nature 318, 614–617.CrossRefGoogle Scholar
Peltier, W. R. (1985b) The LAGEOS constraint on deep mantle viscosity: results from a new normal mode method for the inversion of viscoelastic spectra. Journal of Geophysical Research 90, 9411–9421.CrossRefGoogle Scholar
Peltier W. R. (1989) Mantle viscosity. In Mantle Convection (ed. Peltier, W. R.), pp. 389–478. Gordon & Breach.Google Scholar
Peltier, W. R. (1998) Postglacial variation in the level of the sea: implications for climate dynamics and solid-Earth geophysics. Review of Geophysics 36, 603–689.CrossRefGoogle Scholar
Pharr, G. M. and Ashby, M. F. (1983) On creep enhanced by a liquid phase. Acta Metallurgica 31, 129–138.CrossRefGoogle Scholar
Phipps, Morgan J. and Shearer, P. M. (1993) Seismic constraints on mantle flow and topography of the 660-km discontinuity. Nature 365, 506–511.Google Scholar
Pieri, M., Kunze, K., Burlini, L., Stretton, I., Olgaard, D. L., Burg, J.-P., and Wenk, H.-R. (2001) Texture development of calcite by deformation and dynamic recrystallization at 1000 K during torsion experiments of marble to large strains. Tectonophysics 330, 119–142.CrossRefGoogle Scholar
Pitzer, K. S. and Sterner, S. M. (1994) Equations of state valid continuously from zero to extreme pressures for H2O and CO2. Journal of Chemical Physics 101, 3111–3116.CrossRefGoogle Scholar
Plank, T. and Langmuir, A. H. (1992) Effects of melting regime on the composition of the oceanic crust. Journal of Geophysical Research 97, 19 749–19 770.CrossRefGoogle Scholar
Poirier, J.-P. (1976a) On the symmetrical role of cross-slip of screw dislocations and climb of edge dislocations as recovery processes controlling high-temperature creep. Revue de Physique Appliquée 11, 731–738.CrossRefGoogle Scholar
Poirier, J.-P. (1976b) Plasticité a Haute Température des Solides Cristallins. Editions Eyrolles.Google Scholar
Poirier, J.-P. (1980) Shear localization and shear instability in materials in the ductile field. Journal of Structural Geology 2, 135–142.CrossRefGoogle Scholar
Poirier, J.-P. (1982) On transformation plasticity. Journal of Geophysical Research 87, 6791–6797.CrossRefGoogle Scholar
Poirier, J.-P. (1985) Creep of Crystals. Cambridge University Press.CrossRefGoogle Scholar
Poirier, J.-P. (1988) Transport properties of liquid metals and viscosity of the Earth's core. Geophysical Journal of Royal Astronomical Society 92, 99–105.CrossRefGoogle Scholar
Poirier, J.-P. (1994) Light elements in the Earth's outer core: a critical review. Physics of Earth and Planetary Interiors 85, 319–337.CrossRefGoogle Scholar
Poirier, J.-P. (2000) Introduction to the Physics of Earth's Interior. Cambridge University Press.CrossRefGoogle Scholar
Poirier, J.-P. and Guillopé, M. (1979) Deformation induced recrystallization of minerals. Bulletin Mineralogie 102, 67–74.Google Scholar
Poirier, J.-P. and Liebermann, R. C. (1984) On the activation volume for creep and its variation with depth in the Earth's lower mantle. Physics of Earth and Planetary Interiors 35, 283–293.CrossRefGoogle Scholar
Poirier, J.-P., Peyronneau, J., Gesland, J. Y., and Brebec, G. (1983) Viscosity and conductivity of the lower mantle: and experimental study on a MgSiO3 analogue, KZnF3. Physics of Earth and Planetary Interiors 32, 273–287.CrossRefGoogle Scholar
Poirier, J.-P., Peyronneau, J., Madon, M., Guyot, F., and Revcoleshi, A. (1986) Eutectoid phase transformation of olivine and spinel into perovskite and rock salt structures. Nature 321, 603–605.CrossRefGoogle Scholar
Poirier, J.-P., Sotin, C., and Peyronneau, J. (1981) Viscosity of high-pressure ice VI and evolution and dynamics of Ganymede. Nature 292, 225–227.CrossRefGoogle Scholar
Poirier, J.-P. and Vergobbi, B. (1978) Splitting of dislocations in olivine, cross-slip controlled creep and mantle rheology. Physics of Earth and Planetary Interiors 16, 370–378.CrossRefGoogle Scholar
Polanyi, M. (1934) Über eine Art Gitterstörung, die einen Kristall plastisch machen könnte. Zeitschrift für Physik 89, 660–664.CrossRefGoogle Scholar
Pollack, H. K. (1986) Cratonization and the thermal evolution of the mantle. Earth and Planetary Science Letters 80, 175–182.CrossRefGoogle Scholar
Pollack, H. K., Hurter, S. J., and Johnson, J. R. (1993) Heat flow from the Earth's interior: analysis of the global data. Review of Geophysics 31, 267–280.CrossRefGoogle Scholar
Castañeda, Ponte P. and Willis, J. R. (1988) On the overall properties of nonlinearly viscous composites. Proceedings of the Royal Society of London A 416, 217–244.CrossRefGoogle Scholar
Post, A. and Tullis, J. A. (1999) A recrystallized grain size piezometer for experimentally deformed feldspar. Tectonophysics 303, 159–173.CrossRefGoogle Scholar
Post, A. D., Tullis, J., and Yund, R. A. (1996) Effects of chemical environment on dislocation creep of quartzite. Journal of Geophysical Research 101, 22 143–22 155.CrossRefGoogle Scholar
Post, R. L. (1977) High-temperature creep of Mt. Burnett dunite. Tectonophysics 42, 75–110.CrossRefGoogle Scholar
Prigogine, I. and Defay, R. (1950) Thermodynamique Chemique. Editions Desoer.Google Scholar
Prior, D. and Wheeler, J. (1999) Feldspar fabrics in a greenshist facies albite-rich mylonite from electron backscatter diffraction. Tectonophysics 303, 29–49.CrossRefGoogle Scholar
Przystupa, M. A. and Ardell, A. J. (2002) Predictive capabilities of the dislocation-network theory of Harper–Dorn creep. Metallurgical and Materials Transactions A 33, 231–239.CrossRefGoogle Scholar
Raitt, R. W., Shor, G. G., Francis, T. J. G., and Morris, G. B. (1969) Anisotropy of the Pacific upper mantle. Journal of Geophysical Research 74, 3095–3109.CrossRefGoogle Scholar
Raj, R. (1982) Separation of cavitation-strain and creep strain during deformation. Journal of the American Ceramic Society 65, 46–48.CrossRefGoogle Scholar
Raj, R. (1986) Unstable spreading of a film inclusion in a grain boundary under normal stress. Journal of the American Ceramic Society 69, 708–712.CrossRefGoogle Scholar
Raj, R. and Ashby, M. F. (1971) On grain boundary sliding and diffusional creep. Metallurgical Transactions 2, 1113–1127.CrossRefGoogle Scholar
Raj, R. and Chung, C. K. (1981) Solution-precipitation creep in glass ceramics. Acta Metallurgica 29, 159–166.CrossRefGoogle Scholar
Raleigh, C. B., Kirby, S. H., Carter, N. L., and Avé Lallemant, H. G. (1971) Slip and the clinoenstatite transformation as competing processes in enstatite. Journal of Geophysical Research 76, 4011–4022.CrossRefGoogle Scholar
Raleigh, C. B. and Paterson, M. S. (1965) Experimental deformation of serpentine and its tectonic implications. Journal of Geophysical Research 70, 3965–3985.CrossRefGoogle Scholar
Randle, V. (2003) Microtexture Determination and its Applications. The Institute of Materials, Minerals and Mining.Google Scholar
Rauch, M. and Keppler, H. (2002) Water solubility in orthopyroxene. Contributions to Mineralogy and Petrology 143, 525–536.CrossRefGoogle Scholar
Regan, J. and Anderson, D. L. (1984) Anisotropic models of the upper mantle. Physics of Earth and Planetary Interiors 35, 227–263.CrossRefGoogle Scholar
Regenauer-Lieb, K. and Yuen, D. A. (2003) Modeling shear zones in geological and planetary sciences: solid- and fluid-mechanical approaches. Review of Earth Sciences 63, 295–349.CrossRefGoogle Scholar
Renner, J., Stöckhert, B., Zerbian, A., Roller, K., and Rummel, F. (2001) An experimental study into the rheology of synthetic polycrystalline coesite aggregates. Journal of Geophysical Research 106, 19 411–19 429.CrossRefGoogle Scholar
Reppich, B., Haasen, P., and Ilschner, B. (1964) Kriechen von Silizium-Einkristallen. Acta Metallurgica 12, 1283–1288.CrossRefGoogle Scholar
Revenaugh, J. and Jordan, T. H. (1991) Mantle layering from ScS reverberations, 3. Upper mantle. Journal of Geophysical Research 96, 19 781–19 810.CrossRefGoogle Scholar
Revenaugh, J. and Sipkin, S. A. (1994) Seismic evidence for silicate melt atop the 410-km mantle discontinuity. Nature 369, 474–476.CrossRefGoogle Scholar
Ribe, N. M. (1989a) A continuum theory for lattice preferred orientation. Geophysical Journal 97, 199–207.CrossRefGoogle Scholar
Ribe, N. M. (1989b) Seismic anisotropy and mantle flow. Journal of Geophysical Research 94, 4213–4223.CrossRefGoogle Scholar
Ribe, N. M. and Yu, Y. (1991) A theory of plastic deformation and textural evolution of olivine polycrystals. Journal of Geophysical Research 96, 8325–8335.CrossRefGoogle Scholar
Ricard, Y., Bercovici, D., and Schubert, G. (2001) A two-phase model for compaction and damage 2. Applications to compaction, deformation, and the role of interfacial tension. Journal of Geophysical Research 106, 8907–8924.CrossRefGoogle Scholar
Rice J. R. (1976) The localization of plastic deformation. In Theoretical and Applied Mechanics (ed. Koitier, W. T.), pp. 207–220. North-Holland.Google Scholar
Richard, G., Monnereau, M., and Ingrin, J. (2002) Is the transition zone an empty water reservoir? Inference from numerical model of mantle dynamics. Earth and Planetary Science Letters 205, 37–51.CrossRefGoogle Scholar
Richards, M. A. and Hager, B. H. (1984) Geoid anomalies in the dynamic Earth. Journal of Geophysical Research 89, 5987–6002.CrossRefGoogle Scholar
Richards, M. A., Yang, W. S., Baumgardnner, J. R., and Bunge, H.-P. (2001) Role of a low-viscosity zone in stabilizing plate tectonics: implications for comparative planetology. Geochemistry, Geophysics, Geosystems 2, 2000GC000115.CrossRefGoogle Scholar
Ricoult, D. L. and Kohlstedt, D. L. (1983) Structural width of low-angle grain boundaries in olivine. Physics and Chemistry of Minerals 9, 133–138.CrossRefGoogle Scholar
Riedel, M. R. and Karato, S. (1996) Microstructural development during nucleation and growth. Geophysical Journal International 125, 397–414.CrossRefGoogle Scholar
Riedel, M. R. and Karato, S. (1997) Grain-size evolution in subducted oceanic lithosphere associated with the olivine-spinel transformation and its effects on rheology. Earth and Planetary Science Letters 148, 27–43.CrossRefGoogle Scholar
Ringwood, A. E. (1975) Composition and Structure of the Earth's Mantle. McGraw-Hill.Google Scholar
Ritsema, J., Heijst, H. J., and Woodhouse, J. H. (1999) Complex shear wave velocity structure imaged beneath Africa and Iceland. Science 286, 1925–1928.CrossRefGoogle ScholarPubMed
Rogers, H. C. (1979) Adiabatic plastic deformation. Annual Review of Materials Science 9, 283–311.CrossRefGoogle Scholar
Rokosky, J. M., Lay, T., Garnero, E. J., and Russell, S. A. (2004) High-resolution investigation of shear wave anisotropy in D″ beneath the Cocos Plate. Geophysical Research Letters 31, 10.1029/2003GL018902.CrossRefGoogle Scholar
Romanowicz, B. (1994) Anelastic tomography: a new perspective on upper mantle thermal structure. Earth and Planetary Science Letters 128, 113–121.CrossRefGoogle Scholar
Romanowicz, B. (1995) A global tomographic model of shear attenuation in the upper mantle. Journal of Geophysical Research 100, 12 375–12 394.CrossRefGoogle Scholar
Romanowicz, B. (2003) Global mantle tomography: progress status in the past 10 years. Annual Review of Earth and Planetary Sciences 31, 303–328.CrossRefGoogle Scholar
Romanowicz B. and Durek J. J. (2000) Seismological constraints on attenuation in the Earth: a review. In Earth's Deep Interior (ed. Karato, S., Forte, A. M., Liebermann, R. C., Masters, G., and Stixrude, L.), pp. 161–179. American Geophysical Union.Google Scholar
Roscoe, R. (1952) The viscosity of suspensions of rigid spheres. British Journal of Applied Physics 3, 267–269.CrossRefGoogle Scholar
Ross, J. V., Avé Lallemant, H. G., and Carter, N. L. (1979) Activation volume for creep in the upper mantle. Science 203, 261–263.CrossRefGoogle ScholarPubMed
Ross, J. V., Avé Lallemant, H. G., and Carter, N. L. (1980) Stress dependence of recrystallized grain and subgrain size in olivine. Tectonophysics 70, 39–61.CrossRefGoogle Scholar
Ross, J. V., Bauer, S. J., and Hansen, F. D. (1987) Textural evolution of synthetic anhydrite–halite mylonites. Tectonophysics 140, 307–326.CrossRefGoogle Scholar
Ross, J. V. and Nielsen, K. C. (1978) High-temperature flow of wet polycrystalline enstatite. Tectonophysics 44, 233–261.CrossRefGoogle Scholar
Rossman, G. R. and Aines, R. D. (1991) The hydrous components in garnets: grossular-hydrogrossular. American Mineralogist 76, 1153–1164.Google Scholar
Rossman, G. R., Beran, A., and Lange, M. A. (1989) The hydrous component of pyrope from the Dora Maira Massif, western Alps. European Journal of Mineralogy 1, 151–154.CrossRefGoogle Scholar
Roth, E. G., Wiens, D. A., Dorman, L. M., Hildebrand, J., and Webb, S. C. (1999) Seismic attenuation tomography of the Toga-Fiji region using phase pair methods. Journal of Geophysical Research 104, 4795–4809.CrossRefGoogle Scholar
Royden, L. H., Burchfiel, B. C., King, R. W., Chen, Z., Shen, F., and Liu, Y. (1997) Surface deformation and lower crust flow in eastern Tibet. Science 276, 788–790.CrossRefGoogle ScholarPubMed
Ruano, O. A., Wadsworth, J., Wolfensteine, J., and Sherby, O. D. (1993) Evidence for Nabarro–Herring creep in metals: fiction or reality?Materials Science and Engineering A 165, 133–141.CrossRefGoogle Scholar
Rubie, D. C. (1983) Reaction-enhanced ductility: the role of solid–solid univariant reactions in deformation of the crust and mantle. Tectonophysics 96, 331–352.CrossRefGoogle Scholar
Rubie, D. C. (1984) The olivine –> spinel transformation and the rheology of subducting lithosphere. Nature 308, 505–508.CrossRefGoogle Scholar
Rubie, D. C., Karato, S., Yan, H., and O'Neill, H. S. C. (1993) Low differential stress and controlled chemical environment in multianvil high-pressure experiments. Physics and Chemistry of Minerals 20, 315–322.CrossRefGoogle Scholar
Rubie, D. C. and Ross, C. R. II. (1994) Kinetics of the olivine–spinel transformation in subducting lithosphere: experimental constraints and implications for deep slab processes. Physics of Earth and Planetary Interiors 86, 223–241.CrossRefGoogle Scholar
Rudnick, R. L. and Fountain, D. M. (1995) Nature and composition of the continental lower crust: the lower crustal perspective. Review of Geophysics and Space Physics 33, 267–309.CrossRefGoogle Scholar
Rudnick, R. L., McDonough, W. F., and O'Connell, R. J. (1998) Thermal structure, thickness and comopsition of continental lithosphere. Chemical Geology 145, 395–411.CrossRefGoogle Scholar
Rudnicki, J. W. and Rice, J. R. (1975) Conditions for localization of deformation in pressure-sensitive dilatant materials. Journal of Mechanics and Physics of Solids 23, 371–394.CrossRefGoogle Scholar
Ruina, A. (1983) Slip instability and state variable friction laws. Journal of Geophysical Research 88, 10 359–10 370.CrossRefGoogle Scholar
Ruoff, A. L. (1965) Mass transfer problems in ionic crystals with charge neutrality. Journal of Applied Physics 36, 2903–2907.CrossRefGoogle Scholar
Rüpke, L. H., Morgan, Phipps J., Hort, M., and Connolly, J. A. D. (2004) Serpentine and the subduction zone water cycle. Earth and Planetary Science Letters 223, 17–34.CrossRefGoogle Scholar
Russo, R. and Silver, P. G. (1994) Trench-parallel flow beneath the Nazca plate from seismic anisotropy. Science 263, 1105–1111.CrossRefGoogle ScholarPubMed
Rutter, E. H. (1972) The influence of interstitial water on the rheological behaviour of calcite rocks. Tectonophysics 14, 13–33.CrossRefGoogle Scholar
Rutter, E. H. (1976) The kinetics of rock deformation by pressure solution. Philosophical Transactions of the Royal Society of London A 283, 203–219.CrossRefGoogle Scholar
Rutter, E. H. (1983) Pressure solution in nature, theory and experiment. Journal of the Geological Society of London 140, 725–740.CrossRefGoogle Scholar
Rutter, E. H. (1986) On the nomenclature of failure transitions in rocks. Tectonophysics 122, 381–387.CrossRefGoogle Scholar
Rutter, E. H. (1995) Experimental study of the influence of stress, temperature, and strain on the dynamic recrystallization of Carrara marble. Journal of Geophysical Research 100, 24 651–24 663.CrossRefGoogle Scholar
Rutter, E. H. (1998) Use of extension testing to investigate the influence of finite strain on the rheological behaviour of marble. Journal of Structural Geology 20, 243–254.CrossRefGoogle Scholar
Rutter, E. H. and Brodie, K. (1988) The role of tectonic grainsize reduction in the rheological stratification of the lithosphere. Geologische Rundschau 77, 295–308.CrossRefGoogle Scholar
Rutter E. H. and Brodie K. H. (1992) Rheology of the lower crust. In Continental Lower Crust (ed. Fountain, D. M., Arculus, R., and Key, R. W.), pp. 201–267. Elsevier.Google Scholar
Rutter, E. H. and Brodie, K. H. (2004) Experimental grain size-sensitive flow of hot-pressed Brasilian quartz aggregates. Journal of Structural Geology 26, 2011–2023.CrossRefGoogle Scholar
Rutter, E. H., Casey, M., and Burlini, L. (1994) Preferred crystallographic orientation development during the plastic and superplastic flow of calcite rocks. Journal of Structural Geology 16, 1431–1446.CrossRefGoogle Scholar
Rybacki, E. and Dresen, G. (2000) Dislocation and diffusion creep of synthetic anorthite aggregates. Journal of Geophysical Research 105, 26,017–26,036.CrossRefGoogle Scholar
Rybacki, E. and Dresen, G. (2004) Deformation mechanism maps for feldspar rocks. Tectonophysics 382, 173–187.CrossRefGoogle Scholar
Rybacki, E., Gootschalk, M., Wirth, R., and Dresen, G. (2006) Influence of water fugacity and activation volume on the flow properties of fine-grained anorthite aggregates. Journal of Geophysical Research 111, 10.1029/2005JB003663.CrossRefGoogle Scholar
Rybacki, E., Paterson, M. S., Wirth, R., and Dreibus, G. (2003) Rheology of calcite–quartz aggregates deformed to large strain in torsion. Journal of Geophysical Research 108, 10.1029/2002JB001833.CrossRefGoogle Scholar
Rychert, C. A., Fischer, K. M., and Rodenay, S. (2005) A sharp lithosphere–asthenosphere boundary imaged beneath eastern North America. Nature 434, 542–545.CrossRefGoogle Scholar
Ryerson, F. J., Weed, H. C., and Piwinskii, A. J. (1988) Rheology of subliquidus magmas 1. Picritic compositions. Journal of Geophysical Research 93, 3421–3436.CrossRefGoogle Scholar
Sabadini, R., Smith, B. K., and Yuen, D. A. (1987) Consequences of experimental transient rheology. Geophysical Research Letters 14, 816–819.CrossRefGoogle Scholar
Sakai, T. and Jonas, J. J. (1984) Dynamic recrystallization: mechanical and microstructural considerations. Acta Metallurgica 32, 189–209.CrossRefGoogle Scholar
Saltzer, R. L., Gaherty, J. B., and Jordan, T. H. (2000) How are vertical shear wave splitting measurements affected by variations in the orientation of azimuthal anisotropy with depth?Geophysical Journal International 141, 374–390.CrossRefGoogle Scholar
Saltzer, R. L., Hilst, R. D., and Karason, H. (2001) Comparing P and S wave heterogeneity in the mantle. Geophysical Research Letters 28, 1335–1338.CrossRefGoogle Scholar
Sammis, C. G. and Dein, J. L. (1974) On the possibility of transformational superplasticity in the Earth's mantle. Journal of Geophysical Research 79, 2961–2965.CrossRefGoogle Scholar
Sammis, C. G., Smith, J. C., and Schubert, G. (1981) A critical assessment of estimation methods for activation volume. Journal of Geophysical Research 86, 10 707–10 718.CrossRefGoogle Scholar
Sammis, C. G., Smith, J. C., Schubert, G., and Yuen, D. A. (1977) Viscosity depth profile of the Earth's mantle: effect of polymorphic transitions. Journal of Geophysical Research 82, 3747–3761.CrossRefGoogle Scholar
Sandström, R. (1977) Subgrain growth occurring by boundary migration. Acta Metallurgica 25, 905–911.CrossRefGoogle Scholar
Sato, H., Sacks, I. S., Murase, T., Munchill, G., and Fukuyama, H. (1989) Qp-melting temperature relation in peridotite at high pressure and temperature: attenuation mechanism and implications for the mechanical properties of the upper mantle. Journal of Geophysical Research 94, 10 647–10 661.CrossRefGoogle Scholar
Sato M. (1971) Electrochemical measurements and control of oxygen fugacity and other gaseous fugacities with solid electrolyte sensors. In Research Techniques for High Pressure and High Temperature (ed. Ulmer, G. C.), pp. 43–99. Springer-Verlag.CrossRefGoogle Scholar
Savage, M. K. (1999) Seismic anisotropy and mantle deformation: what have we learned from shear wave splitting?Review of Geophysics 37, 65–106.CrossRefGoogle Scholar
Saxena, S. K., Dubrovinski, L. S., and Lazor, P. (1996) Stability of perovskite (MgSiO3) in the Earth's lower mantle. Science 274, 1357–1359.CrossRefGoogle Scholar
Schmalzried H. (1995) Chemical Kinetics of Solids. VCH.
Schmeling, H. (1985) Numerical models on the influence of partial melt on elastic, anelastic and electric properties of rocks. Part I: elasticity and anelasticity. Physics of Earth and Planetary Interiors 41, 34–57.CrossRefGoogle Scholar
Schmeling, H. (1987) On the interaction between small- and large-scale convection and postglacial rebound flow in a power-law mantle. Earth and Planetary Science Letters 84, 254–262.CrossRefGoogle Scholar
Schmid S. M. and Casey M. (1986) Complete fabric analysis of some commonly observed quartz c-axis patterns. In Mineral and Rock Deformation: Laboratory Studies, The Paterson Volume (ed. Hobbs, B. E. and Heard, H. C.), pp. 263–286. American Geophysical Union.CrossRefGoogle Scholar
Schmidt, C., Bruhn, D., and Wirth, R. (2003) Experimental evidence of transformation plasticity in silicates: mimimum of creep strength in quartz. Earth and Planetary Science Letters 205, 273–280.CrossRefGoogle Scholar
Scholz, C. H. (2002) The Mechanics of Earthquake and Faulting. Cambridge University Press.CrossRefGoogle Scholar
Schubert, G., Turcotte, D. L., and Olson, P. (2001) Mantle Convection in the Earth and Planets. Cambridge University Press.CrossRefGoogle Scholar
Schutt, D. L. and Lesher, C. E. (2006) Effects of melt depletion on the density and seismic velocity of garnet and spinel lherzolite. Journal of Geophysical Research 111, 10.1029/2003JB002950.CrossRefGoogle Scholar
Sclater, J. C., Parsons, B., and Jaupart, C. (1981) Oceans and continents: similarities and differences in the mechanisms of heat loss. Journal of Geophysical Research 86, 11535–11552.CrossRefGoogle Scholar
Sclater, J. G., Jaupart, C., and Galson, D. (1980) The heat flow through the oceanic and continental crust and the heat loss of the earth. Review of Geophysics and Space Physics 18, 269–312.CrossRefGoogle Scholar
Scott, D. R. and Stevenson, D. J. (1984) Magma solitons. Geophysical Research Letters 11, 1161–1164.CrossRefGoogle Scholar
Scott, T. and Kohlstedt, D. L. (2006) The effect of large melt fraction on the deformation behavior of peridotite. Earth and Planetary Science Letters 246, 177–187.CrossRefGoogle Scholar
Secco R. A. (1995) Viscosity of the outer core. In Mineral Physics & Crystallography (ed. Ahrens, T. H.), pp. 218–226. American Geophysical Union.CrossRefGoogle Scholar
Seeger A. and Schiller P. (1966) Kinks in dislocation lines and their effects on the internal friction in crystals. In Physical Acoustics, Vol. III – Part A (ed. Mason, W. P.), pp. 361–495. Academic Press.Google Scholar
Selitser, S. I. and Morris, J. W. Jr. (1994) Substructure formation during plastic deformation. Acta Metallurgica et Materials 42, 3985–3991.CrossRefGoogle Scholar
Shankland, T. J. (1977) Elastic properties, chemical composition, and crystal structures of minerals. Geophysical Survey 3, 69–100.CrossRefGoogle Scholar
Shankland, T. J., O'Connell, R. J., and Waff, H. S. (1981) Geophysical constraints on partial melt in the upper mantle. Review of Geophysics and Space Physics 19, 394–406.CrossRefGoogle Scholar
Sharp, T. G., Bussod, G. Y., and Katsura, T. (1994) Misrostructures in beta-Mg1.8Fe0.2SiO4 experimentally deformed at transition-zone conditions. Physics of Earth and Planetary Interiors 86, 69–83.CrossRefGoogle Scholar
Shearer P. M. (2000) Upper mantle discontinuities. In Earth's Deep Interior: Mineral Physics and Tomography from the Atomic to the Global Scales (ed. Karato, S., Forte, A. M., Liebermann, R. C., Masters, G., and Stixrude, L.), pp. 115–131. American Geophysical Union.CrossRefGoogle Scholar
Shearer, P. M. and Masters, G. (1992) Global mapping of topography on the 660-km discontinuity. Nature 355, 791–796.CrossRefGoogle Scholar
Shen, G., Mao, H.-K., Hemley, R. J., and Duffy, T. S. (1998) Melting and crystal structure of iron at high pressures and temperatures. Geophysical Research Letters 25, 373–376.CrossRefGoogle Scholar
Shen, Y. and Blum, J. (2003) Seismic evidence for accumulated oceanic crust above the 660-km discontinuity beneath southern Africa. Geophysical Research Letters 30, 10.1029/2003GL017991.CrossRefGoogle Scholar
Sherby, O. D., Klundt, R. H., and Miller, A. L. (1977) Flow-stress, subgrain size and subgrain stability at elevated temperatures. Metallurgical Transactions A 8, 843–850.CrossRefGoogle Scholar
Sherby, O. D., Robbins, J. L., and Goldberg, A. (1970) Calculation of activation volumes for self-diffusion and creep at high temperatures. Journal of Applied Physics 41, 3961–3968.CrossRefGoogle Scholar
Shewmon, P. G. (1989) Diffusion in Solids. The Minerals, Metals & Materials Society.Google Scholar
Shieh, S. R., Duffy, T. S., and Li, B. (2002) Strength and elasticity of SiO2 across the stishovite–CaCl2-type phase boundary. Physical Review Letters 89, 10.1103/PhysRevLett.89.255507.CrossRefGoogle ScholarPubMed
Shim, S.-H., Duffy, T. S., and Shen, G. (2001) Stability and structure of MgSiO3 perovskite to 2300-kilometer depth in Earth's mantle. Science 293, 2437–2440.CrossRefGoogle ScholarPubMed
Shimamoto, T. and Logan, J. M. (1981) Effects of simulated gouges on the sliding behavior of Tennessee sandstone. Tectonophysics 75, 243–255.CrossRefGoogle Scholar
Shimamura, H., Asada, T., Suyehiro, K., Yamada, T., and Inatani, H. (1983) Longshot experiments to study velocity anisotropy in the oceanic lithosphere of the northwestern Pacific. Physics of Earth and Planetary Interiors 31, 348–362.CrossRefGoogle Scholar
Shimazu, Y. (1954) Equation of state of materials composing the Earth's interior. Journal of Earth Science, Nagoya University 2, 15–172.Google Scholar
Shimizu, I. (1992) Nonhydrostatic and nonequilibrium thermodynamics of deformable materials. Journal of Geophysical Research 97, 4587–4597.CrossRefGoogle Scholar
Shimizu, I. (1994) Rock deformation by pressure solution and its implications to the rheology of lithosphere: a review. Structural Geology 39, 153–164.Google Scholar
Shimizu, I. (1998) Stress and temperature dependence of recrystallized grain size: a subgrain misorientation model. Geophysical Research Letters 25, 4237–4240.CrossRefGoogle Scholar
Shimozuru, D. (1963) On the possibility of the existence of the molten portion in the upper mantle of the earth. Journal of Physics of the Earth 11, 49–55.CrossRefGoogle Scholar
Shinmei, T., Tomioka, N., Fujino, K., Kuroda, K., and Irifune, T. (1999) In situ X-ray diffraction of enstatite up to 12 GPa and 1473 K and equation of state. American Mineralogist 84, 1588–1594.CrossRefGoogle Scholar
Shito A., Karato S., Matsukage K. N., and Nishihara Y. (2006) Toward mapping water content, temperature and major element chemistry in Earth's upper mantle from seismic tomography. In Earth's Deep Water Cycle (ed. Jacobsen, S. D. and Lee, S.), pp. 225–236. American Geophysical Union.CrossRefGoogle Scholar
Shito, A., Karato, S., and Park, J. (2004) Frequency dependence of Q in Earth's upper mantle inferred from continuous spectra of body wave. Geophysical Research Letters 31, 10.1029/2004GL019582.CrossRefGoogle Scholar
Shito, A. and Shibutani, T. (2003a) Anelastic structure of the upper mantle beneath the northern Philippine Sea. Physics of Earth and Planetary Interiors 140, 319–329.CrossRefGoogle Scholar
Shito, A. and Shibutani, T. (2003b) Nature of heterogeneity of the upper mantle beneath the northern Philippine Sea as inferred from attenuation and velocity tomography. Physics of Earth and Planetary Interiors 140, 331–341.CrossRefGoogle Scholar
Sibson, R. H. (1975) Generation of pseudotachylyte by ancient seismic faulting. Geophysical Journal of Royal Astronomical Society 43, 775–794.CrossRefGoogle Scholar
Sibson, R. H. (1977) Fault rocks and fault mechanics. Journal of Geological Society of London 133, 191–213.CrossRefGoogle Scholar
Siegesmund, S., Takeshita, T., and Kern, H. (1989) Anisotropy of Vp and Vs in an amphibolite of the deeper crust and its relationship to the mineralogical, microstructural and textural characteristics of the rock. Tectonophysics 157, 25–38.CrossRefGoogle Scholar
Silver, P. G. (1996) Seismic anisotropy and mantle deformation: probing the depths of geology. Annual Review of Earth and Planetary Sciences 24, 385–432.CrossRefGoogle Scholar
Silver P. G., Mainprice D., Ben Ismail W., Tommasi A., and Barroul G. (1999) Mantle structural geology from seismic anisotropy. In Mantle Petrology: Field Observations and High Pressure Experimentation (ed. Fei, Y., Bertka, C. M., and Mysen, B. O.), pp. 79–103. The Geochemical Society.Google Scholar
Simpson, C. and Schmid, S. (1983) An evaluation of criteria to deduce the sense of movement in sheared rocks. Geological Society of America Bulletin 94, 1281–1288.2.0.CO;2>CrossRefGoogle Scholar
Singh, A. K. (1993) The lattice strain in a specimen (cubic system) compressed nonhydrostatically in an opposed anvil device. Journal of Applied Physics 73, 4278–4286.CrossRefGoogle Scholar
Singh, A. K., Mao, H.-K., Shu, J., and Hemley, R. J. (1998) Estimation of single-crystal elastic moduli from polycrystalline X-ray diffraction at high pressure: application to FeO and iron. Physical Review Letters 80, 2157–2160.CrossRefGoogle Scholar
Singh, S. C., Taylor, M. A. J., and Montagner, J.-P. (2000) On the presence of liquid in Earth's inner core. Science 287, 2471–2474.CrossRefGoogle ScholarPubMed
Sinogeikin, S. V. and Bass, J. D. (1999) Single-crystal elasticity of MgO at high pressure. Physical Review B 59, R14 141–R14 144.CrossRefGoogle Scholar
Sinogeikin, S. V. and Bass, J. D. (2002) Elasticity of majorite and a majorite–pyrope solid solution to high pressure: implications for the transition zone. Geophysical Research Letters 29, 10.1029/2001GL013937.CrossRefGoogle Scholar
Sinogeikin, S. V., Bass, J. D., and Katsura, T. (2003) Single-crystal elasticity of ringwoodite to high pressures and high temperatures: implications for 520 km seismic discontinuity. Physics of Earth and Planetary Interiors 136, 41–66.CrossRefGoogle Scholar
Sinogeikin, S. V., Chen, G., Neuville, D. R., Vaughan, M. T., and Lierbermann, R. C. (1998) Ultrasonic shear wave velocities of MgSiO3 perovskite at 8 GPa and 800 K and lower mantle composition. Science 281, 677–679.Google Scholar
Sipkin, S. and Jordan, T. H. (1979) Frequency dependence of QScS. Bulletin of Seismological Society of America 69, 1055–1079.Google Scholar
Skemer, P. A., Katayama, I., Jiang, Z., and Karato, S. (2005) The misorientation index: development of a new method for calculating the strength of lattice-preferred orientation. Tectonophysics 411, 157–167.CrossRefGoogle Scholar
Skemer, P. A., Katayama, I., and Karato, S. (2006) Deformation fabrics of a peridotite from Cima di Gagnone, central Alps, Switzerland: evidence of deformation under water-rich condition at low temperatures. Contributions to Mineralogy and Petrology 152, 43–51.CrossRefGoogle Scholar
Skinner, B. J., Porter, S. C., and Park, J. (2004) Dynamic Earth: an Introduction to Physical Geology. John Wiley & Sons.Google Scholar
Skogby, H. (1994) OH incorporation in synthetic clinopyroxene. American Mineralogist 79, 240–249.Google Scholar
Skogby, H., Bell, D. R., and Rossman, G. R. (1990) Hydroxide in pyroxene: variations in the natural environment. American Mineralogist 75, 764–774.Google Scholar
Skogby, H. and Rossman, G. R. (1989) OH− in pyroxene: an experimental study of incorporation mechanisms and stability. American Mineralogist 74, 1059–1069.Google Scholar
Smith B. K. (1985) The influence of defect crystallography on some properties of orthosilicates. In Metamorphic Reactions, Kinetics, Textures and Deformation (ed. , T. A. B. and Rubie, D. C.), pp. 98–117. Springer-Verlag.Google Scholar
Smith, B. K. and Carpenter, F. O. (1987) Transient creep in orthosilicates. Physics of Earth and Planetary Interiors 49, 314–324.CrossRefGoogle Scholar
Smith, G. P., Wiens, D. A., Fischer, K. M., Dorman, L. M., and Hildebrand, J. A. (2001) A complex pattern of mantle flow in the Lau back-arc. Science 292, 713–716.CrossRefGoogle Scholar
Smith, M. F. and Dahlen, F. A. (1981) The period and Q of the Chandler wobble. Geophysical Journal of Royal Astronomical Society 64, 223–281.CrossRefGoogle Scholar
Smith, M. L. and Dahlen, F. A. (1973) The azimuthal dependence of Love and Rayleigh wave propagation in a slightly anisotropic medium. Journal of Geophysical Research 78, 3321–3333.CrossRefGoogle Scholar
Smyth, J. R., Bell, D. R., and Rossman, G. R. (1991) Incorporation of hydroxyl in upper-mantle clinopyroxenes. Nature 351, 732–735.CrossRefGoogle Scholar
Smyth, J. R. and Frost, D. J. (2002) The effect of water on the 410-km discontinuity: an experimental study. Geophysical Research Letters 29, 10.129/2001GL014418.CrossRefGoogle Scholar
Solomatov, V. S. (1996) Can hot mantle be stronger than cold mantle?Geophysical Research Letters 23, 937–940.CrossRefGoogle Scholar
Solomatov, V. S. (2001) Grain size-dependent viscosity convection and the thermal evolution of the Earth. Earth and Planetary Science Letters 191, 203–212.CrossRefGoogle Scholar
Solomatov, V. S., El-Khozondar, R., and Tikare, V. (2002) Grain size in the lower mantle: constraints from numerical modeling of grain growth in two-phase systems. Physics of Earth and Planetary Interiors 129, 265–282.CrossRefGoogle Scholar
Solomatov, V. S. and Moresi, L. N. (1996) Stagnant lid convection on Venus. Journal of Geophysical Research 101, 4737–4753.CrossRefGoogle Scholar
Solomon, S. C. (1972) Seismic wave attenuation and partial melting in the upper mantle of North America. Journal of Geophysical Research 77, 1483–1502.CrossRefGoogle Scholar
Solomon, S. C., Head, J. W., Kaula, W. M., et al. (1991) Venus tectonics: initial analysis from Magellan. Science 252, 297–312.CrossRefGoogle ScholarPubMed
Song, T.-R. A., Helmberger, D. V., and Grand, S. P. (2004) Low-velocity zone atop the 410-km seismic discontinuity in the northwestern United States. Nature 427, 530–533.CrossRefGoogle ScholarPubMed
Song, X. (1997) Anisotropy of the Earth's inner core. Review of Geophysics 35, 297–313.CrossRefGoogle Scholar
Song, X. and Helmberger, D. V. (1998) Seismic evidence for an inner core transition zone. Science 282, 924–927.CrossRefGoogle ScholarPubMed
Song, X. and Richards, P. G. (1996) Seismic evidence for the rotation of the inner core. Nature 382, 221–224.CrossRefGoogle Scholar
Souriau, A. (1998) Earth's inner core: is the rotation real?Science 281, 55–56.CrossRefGoogle Scholar
Souriau A. and Poupinet G. (2002) Inner core rotation: a critical appraisal. In Earth's Core: Dynamics, Structure, Rotation (ed. Dehant, V., Creager, K. C., Karato, S., and Zatman, S.), pp. 65–82.Google Scholar
Souriau, A. and Roudil, P. (1995) Attenuation in the uppermost inner core from broadband Geoscope PKP data. Geophysical Journal International 123, 572–587.CrossRefGoogle Scholar
Spetzler, H. A. and Anderson, D. L. (1968) The effect of temperature and partial melting on velocity and attenuation in a simple binary system. Journal of Geophysical Research 73, 6051–6060.CrossRefGoogle Scholar
Speziale S., Jiang F., and Duffy T. S. (2005) Compositional dependence of the elastic wave velocities of mantle minerals: implications for seismic properties of mantle rocks. In Earth's Deep Mantle (ed. Hilst, R. D. v. d., Bass, J. D., Matas, J., and Trampert, J.), pp. 301–320. American Geophysical Union.Google Scholar
Spiegelman, M. (2003) Linear analysis of melt band formation by simple shear. Geochemical Geophysical Geosystems 4, 10.1029/2002GC000499.Google Scholar
Spiegelman, M. and Elliott, T. (1993) Consequences of melt transport for uranium series disequilibrium in young lavas. Earth and Planetary Science Letters 118, 1–20.CrossRefGoogle Scholar
Spiegelman, M. and Kenyon, P. M. (1992) The requirement of chemical disequilibrium during magma migration. Earth and Planetary Science Letters 109, 611–620.CrossRefGoogle Scholar
Spiers C. J., De Meer S., Niemeijer A. R., and Zhang X. (2004) Kinetics of rock deformation by pressure solution and the role of thin aqueous films. In Physicochemistry of Water in Geological and Biological Systems (ed. Nakashima, S., Spiers, C. J., Mercury, L., Fenter, P. A., and Hochella, J. M. F.), pp. 129–158. Universal Academy Press.Google Scholar
Spiers C. J., Schutjens P. M. T. M., Brezesowsky P. H., et al. (1990) Experimental determination of constitutive parameters governing creep of rocksalt by pressure solution. In Deformation Mechanisms, Rheology and Tectonics (ed. Knipe, R. J. and Rutter, E. H.), pp. 215–227. The Geological Society.Google Scholar
Spingarn, J. R., Barnett, D. M., and Nix, W. D. (1979) Theoretical description of climb controlled steady state creep at high and intermediate temperatures. Acta Metallurgica 27, 1549–1562.CrossRefGoogle Scholar
Spingarn, J. R. and Nix, W. D. (1978) Diffusional creep and diffusionally accommodated grain rearrangement. Acta Metallurgica 26, 1388–1398.CrossRefGoogle Scholar
Spray, J. G. (1987) Artificial generation of pseudotachylyte using friction welding apparatus: simulation of melting on a fault plane. Journal of Structural Geology 9, 49–60.CrossRefGoogle Scholar
Srolovitz, D. J. and Davis, S. H. (2001) Do stresses modify wetting angles?Acta Materialia 49, 1005–1007.CrossRefGoogle Scholar
Stacey, F. D. (1992) Physics of the Earth. Brookfield Press.Google Scholar
Stauffer, D. and Aharony, A. (1992) Introduction to Percolation Theory. Taylor and Francis.Google Scholar
Steinle-Neumann, G., Stixrude, L., Cohen, R. E., and Gülseren, O. (2001) Elasticity of iron at the temperature of the Earth's inner core. Nature 413, 57–60.CrossRefGoogle ScholarPubMed
Stevenson, D. J. (1989) Spontaneous small-scale melt segregation in partial melts undergoing deformation. Geophysical Research Letters 16, 1067–1070.CrossRefGoogle Scholar
Stipp, M. and Tullis, J. (2003) The recrystallized grain size piezometer for quartz. Geophysical Research Letters 30, 10.1029/2003GL018444.CrossRefGoogle Scholar
Stipp, M., Tullis, J., and Behrens, H. (2006) Dislocation creep of quartz: the effect of water on flow stress and microstructure. Journal of Geophysical Research 111, 10.1029/2005JB003852.CrossRefGoogle Scholar
Stixrude, L. and Lithgow-Bertelloni, C. (2005a) Mineralogy and elasticity of the oceanic upper mantle: origin of the low-velocity zone. Journal of Geophysical Research 110, 10.1029/2004JB002965.CrossRefGoogle Scholar
Stixrude, L. and Lithgow-Bertelloni, C. (2005b) Thermodynamics of mantle minerals – I. Physical properties. Geophysical Journal International 162, 610–632.CrossRefGoogle Scholar
Stocker, R. L. and Ashby, M. F. (1973) Rheology of the upper mantle. Review of Geophysics and Space Physics 11, 391–426.CrossRefGoogle Scholar
Stroh, A. N. (1954) The formation of cracks as a result of plastic flow. Proceedings of the Royal Society of London A 223, 404–414.CrossRefGoogle Scholar
Stroh, A. N. (1955) The formation of cracks in plastic flow II. Proceedings of the Royal Society of London A 232, 548–560.CrossRefGoogle Scholar
Stünitz, H., Fitz Gerald, J. D., and Tullis, J. (2003) Dislocation generation, slip systems, and dynamic recrystallization in experimentally deformed plagioclase single crystals. Tectonophysics 372, 215–233.CrossRefGoogle Scholar
Stünitz, H. and Tullis, J. (2001) Weakening and strain localization produced by syn-deformational reaction of plagioclase. International Journal of Earth Sciences 90, 136–148.CrossRefGoogle Scholar
Sturhahn, W., Toellner, T. S., Alp, E. E., et al. (1995) Phonon density of states measured by inelastic nuclear resonant scattering. Physical Review Letters 74, 3832–3835.CrossRefGoogle ScholarPubMed
Su, W.-J., Dziewonski, A. M., and Jeanloz, R. (1996) Planet within a planet – rotation of the inner core of the Earth. Science 274, 1883–1887.CrossRefGoogle Scholar
Suetsugu D., Inoue T., Yamada A., Zhao D., and Obayashi M. (2006) Towards mapping three-dimensional distribution of water in the transition zone from P-wave velocity tomography and 660-km discontinuity depths. In Earth's Deep Water Cycle (ed. Jacobsen, S. D. and Lee, S.), pp. 237–249. American Geophysical Union.CrossRefGoogle Scholar
Sumino, K. (1974) A model for the dynamical state of dislocations in crystals. Materials Science and Engineering 13, 269–275.CrossRefGoogle Scholar
Sumita, I., Yoshida, H., Hamano, Y., and Kumazawa, M. (1996) A model for sedimentary compaction in a viscous medium and its application to inner-core growth. Geophysical Journal International 124, 502–524.CrossRefGoogle Scholar
Sung, C.-M., Goetze, C., and Mao, H.-K. (1977) Pressure distribution in the diamond anvil press and shear strength of fayalite. Review of Scientific Instruments 48, 1386–1391.CrossRefGoogle Scholar
Suzuki, H. (1962) Segregation of solute atoms to stacking faults. Journal of Physical Society of Japan 17, 322–325.CrossRefGoogle Scholar
Tackley, P. J. (2000a) Self-consistent generation of tectonic plates in time-dependent, three dimensional mantle convection simulations, 1. Pseudoplastic yielding. Geochemistry, Geophysics, Geosystems 1, 2000GC000,036.Google Scholar
Tackley, P. J. (2000b) Self-consistent generation of tectonic plates in time-dependent, three dimensional mantle convection simulations, 2. Strain weakening and asthenosphere. Geochemistry, Geophysics, Geosystems 1, 2000GC000,043.Google Scholar
Tackley, P. J., Stevenson, D. J., Glatzmaier, G. A., and Schubert, G. (1993) Effects of endothermic phase transition at 670 km depth in a spherical model of mantle convection in the Earth's mantle. Nature 361, 699–704.CrossRefGoogle Scholar
Tada, R. and Siever, R. (1986) Experimental knife-edge pressure solution of halite. Geochemica et Cosmochemica Acta 50, 29–36.CrossRefGoogle Scholar
Tada, R. and Siever, R. (1987) A new mechanism for pressure solution in porous quartzose sandstone. Geochemica et Cosmochemica Acta 51, 2295–2301.CrossRefGoogle Scholar
Takanami, T., Sacks, I. S., and Hasegawa, A. (2000) Attenuation structure beneath the volcanic front in northeastern Japan from broad-band seismograms. Physics of Earth and Planetary Interiors 121, 339–357.CrossRefGoogle Scholar
Takei, Y. (1998) Constitutive mechanical relations of solid–liquid composites in terms of grain-boundary contiguity. Journal of Geophysical Research 103, 18 183–18 203.CrossRefGoogle Scholar
Takei, Y. (2000) Acoustic properties of partially molten media studied on a simple binary system with a controllable dihedral angle. Journal of Geophysical Research 105, 16 665–16 682.CrossRefGoogle Scholar
Takei, Y. (2002) Effect of pore geometry on Vp/Vs: from equilibrium geometry to crack. Journal of Geophysical Research 107, 10.1029/2001JB000522.CrossRefGoogle Scholar
Takeshita T. (1989) Plastic anisotropy in textured mineral aggregates: theories and geological applications. In Rheology of Solids and of the Earth (ed. Karato, S. and Toriumi, M.), pp. 237–262. Oxford University Press.Google Scholar
Takeshita, T. and Wenk, H.-R. (1988) Plastic anisotropy and geometric hardening in quartzites. Tectonophysics 149, 345–361.CrossRefGoogle Scholar
Takeshita T., Wenk H.-R., Molinari A., and Canova G. (1990) Simulation of dislocation assisted plastic deformation in olivine polycrystals. In Deformation Processes in Minerals, Ceramics and Rocks (ed. Barber, D. J. and Meredith, P. G.), pp. 365–377. Unwin Hyman.CrossRefGoogle Scholar
Takeuchi, S. and Argon, A. S. (1976) Steady-state creep of alloys due to viscous motion of dislocations. Acta Metallurgica 24, 883–889.CrossRefGoogle Scholar
Takeuchi, S. and Suzuki, T. (1988) Deformation of crystals controlled by the Peierls mechanism. Strength of Metals and Alloys (ICSMA 8), 161–166.Google Scholar
Tan, B., Jackson, I., and Fitz Gerald, J. D. (1997) Shear wave dispersion and attenuation in fine-grained synthetic olivine aggregates: preliminary results. Geophysical Research Letters 24, 1055–1058.CrossRefGoogle Scholar
Tan, B., Jackson, I., and Fitz Gerald, J. D. (2001) High-temperature viscoelasticity of fine-grained polycrystalline olivine. Physics and Chemistry of Minerals 28, 641–664.CrossRefGoogle Scholar
Tanaka, S. and Hamaguchi, H. (1997) Degree one heterogeneity and hemispherical variation of anisotropy in the inner core from PKP(BC)-PKP(DF) times. Journal of Geophysical Research 102, 2925–2938.CrossRefGoogle Scholar
Tanimoto, T. and Anderson, D. L. (1984) Mapping mantle convection. Geophysical Research Letters 11, 287–290.CrossRefGoogle Scholar
Tanimoto, T. and Anderson, D. L. (1985) Lateral heterogeneities and azimuthal anisotropy of the upper mantle: Love and Rayleigh waves 100–250 s. Journal of Geophysical Research 90, 1842–1858.CrossRefGoogle Scholar
Tanimoto, T. and Anderson, D. L. (1990) Long-wavelength S-wave velocity structure throughout the mantle. Geophysical Journal International 100, 327–336.CrossRefGoogle Scholar
Tapponnier, P. and Francheteau, J. (1978) Necking of the lithosphere and the mechanics of accreting plate boundaries. Journal of Geophysical Research 83, 3955–3970.CrossRefGoogle Scholar
Tarits, P., Hautot, S., and Perrier, F. (2004) Water in the mantle: results from electrical conductivity beneath the French Alps. Geophysical Research Letters 31, 10.1029/2003GL019277.CrossRefGoogle Scholar
Taylor, G. I. (1934) The mechanism of plastic deformation of crystals. Proceedings of the Royal Society A 145, 362–415.CrossRefGoogle Scholar
Tharp, T. M. (1983) Analogies between the high-temperature deformation of polyphase rocks and the mechanical behavior of porous powder metal. Tectonophysics 96, T1–T11.CrossRefGoogle Scholar
Thompson, A. B. (1992) Water in the Earth's upper mantle. Nature 358, 295–302.CrossRefGoogle Scholar
Thoraval, C. and Richards, M. A. (1997) The geoid constraint in global geodynamics: viscosity structure, mantle heterogeneity models and boundary conditions. Geophysical Journal International 131, 1–8.CrossRefGoogle Scholar
Thurel, E. and Cordier, P. (2003) Plastic deformation of wadsleyite: I. High-pressure deformation in compression. Physics and Chemistry of Minerals 30, 256–266.Google Scholar
Thurel, E., Cordier, P., Frost, D. J., and Karato, S. (2003a) Plastic deformation of wadsleyite: II. High-pressure deformation in shear. Physics and Chemistry of Minerals 30, 267–270.Google Scholar
Thurel, E., Douin, J., and Cordier, P. (2003b) Plastic deformation of wadsleyite: III. Interpretation of dislocation slip systems. Physics and Chemistry of Minerals 30, 271–279.Google Scholar
Tingle, T. N., Green, H. W. II., Young, T. E., and Koczynski, T. A. (1993) Improvements to Griggs-type apparatus for mechanical testing at high pressures and temperatures. Pure and Applied Geophysics 141, 523–543.CrossRefGoogle Scholar
Tommasi, A., Mainprice, D., Canova, G., and Chastel, Y. (2000) Viscoelastic self-consistent and equilibrium-based modeling of olivine preferred orientations: implications for the upper mantle seismic anisotropy. Journal of Geophysical Research 105, 7893–7908.CrossRefGoogle Scholar
Tommasi, A., Mainprice, D., Cordier, P., Thoraval, C., and Couvy, H. (2004) Strain-induced seismic anisotropy of wadsleyite polycrystals and flow patterns in the mantle transition zone. Journal of Geophysical Research 109, 10.1029/2004JB003158.CrossRefGoogle Scholar
Toomey, D. R., Wilcock, W. S. D., Solomon, S. C., Hammond, W. C., and Orcott, J. A. (1998) Mantle structure beneath the MELT region of the East Pacific Rise from P and S wave tomography. Science 280, 1224–1227.CrossRefGoogle Scholar
Toramaru, A. and Fujii, N. (1986) Connectivity of melt phase in a partially molten peridotite. Journal of Geophysical Research 91, 9239–9252.CrossRefGoogle Scholar
Toriumi, M. (1982) Grain boundary migration in olivine at atmospheric pressure. Physics of Earth and Planetary Interiors 30, 26–35.CrossRefGoogle Scholar
Toriumi, M. and Karato, S. (1985) Preferred orientation development of dynamically recrystallized olivine during high temperature creep. Journal of Geology 93, 407–417.CrossRefGoogle Scholar
Tosi, M. P. (1964) Cohesion of ionic solids in the Born model. Solid State Physics 16, 1–120.CrossRefGoogle Scholar
Trampert, J., Deschamps, F., Resovsky, J. S., and Yuen, D. A. (2004) Probabilistic tomography maps chemical heterogeneities throughout the lower mantle. Science 306, 853–856.CrossRefGoogle Scholar
Trampert, J., Vacher, P., and Vlaar, N. J. (2001) Sensitivities of seismic velocities to temperature, pressure and composition in the lower-mantle. Physics of Earth and Planetary Interiors 124, 255–267.CrossRefGoogle Scholar
Trampert, J. and Heijst, H. J. (2002) Global azimuthal anisotropy in the transition zone. Science 296, 1297–1299.CrossRefGoogle ScholarPubMed
Treagus, S. H. (2002) Modelling the bulk viscosity of two-phase mixtures in terms of clast shape. Journal of Structural Geology 24, 57–76.CrossRefGoogle Scholar
Treagus, S. H. (2003) Viscous anisotropy of two-phase composites, and applications to rocks and structures. Tectonophysics 372, 121–133.CrossRefGoogle Scholar
Tromp, J. (2001) Inner-core anisotropy and rotation. Review of Earth and Planetary Sciences 29, 47–69.CrossRefGoogle Scholar
Tsenn, M. C. and Carter, N. L. (1987) Upper limits of power law creep of rocks. Tectonophysics 136, 1–26.CrossRefGoogle Scholar
Tsuchiya, T., Tsuchiya, J., Umemoto, K., and Wentzcovitch, R. M. (2004a) Elasticity of post-perovskite MgSiO3. Geophysical Research Letters 31, 10.1029/2004GL020278.CrossRefGoogle Scholar
Tsuchiya, T., Tsuchiya, J., Umemoto, K., and Wentzcovitch, R. M. (2004b) Phase transition in MgSiO3 in the Earth's lower mantle. Earth and Planetary Science Letters 224, 241–248.CrossRefGoogle Scholar
Tsumura, N., Matsumoto, S., Horiuchi, S., and Hasegawa, A. (2000) Three-dimensional attenuation structure beneath the northeastern Japan arc estimated from spectra of small earthquakes. Tectonophysics 319, 241–260.CrossRefGoogle Scholar
Tsutsumi, A. and Shimamoto, T. (1997) High-velocity frictional properties of gabbro. Geophysical Research Letters 24, 699–702.CrossRefGoogle Scholar
Tullis J. (2002) Deformation of granitic rocks: Experimental studies and natural examples. In Plastic Deformation of Minerals and Rocks, Vol. 51 (ed. Karato, S. and Wenk, H.-R.), pp. 51–95. Mineralogical Society of America.Google Scholar
Tullis, J., Christie, J. M., and Griggs, D. T. (1973) Microstructure and preferred orientations of experimentally deformed quartzites. Geological Society of America Bulletin 84, 297–314.2.0.CO;2>CrossRefGoogle Scholar
Tullis, J., Shelton, G. L., and Yund, R. A. (1979) Pressure dependence of rock strength: implications for hydrolytic weakening. Bulletin Mineralogie 102, 110–114.Google Scholar
Tullis, J. and Yund, R. A. (1980) Hydrolytic weakening of experimentally deformed Westerly granite and Hale albite rock. Journal of Structural Geology 2, 439–451.CrossRefGoogle Scholar
Tullis, J. and Yund, R. A. (1982) Grain growth kinetics of quartz and calcite aggregates. Journal of Geology 90, 301–318.CrossRefGoogle Scholar
Tullis, J. and Yund, R. A. (1985) Dynamic recrystallization of feldspar: a mechanism of shear zone formation. Geology 13, 238–241.2.0.CO;2>CrossRefGoogle Scholar
Tullis, T. E., Horowitz, F. G., and Tullis, J. (1991) Flow laws of polyphase aggregates from end-member flow laws. Journal of Geophysical Research 96, 8081–8096.CrossRefGoogle Scholar
Tullis T. E. and Tullis J. (1986) Experimental rock deformation. In Mineral and Rock Deformation (ed. Hobbs, B. E. and Heard, H. C.), pp. 297–324. American Geophysical Union.CrossRefGoogle Scholar
Tungatt, P. D. and Humphreys, F. J. (1984) The plastic deformation and dynamic recrystallization of polycrystalline sodium nitrate. Acta Metallurgica 32, 1625–1635.CrossRefGoogle Scholar
Turcotte, D. L. and Schubert, G. (1982) Geodynamics: Applications of Continuum Physics to Geological Problems. John Wiley & Sons.Google Scholar
Twiss, R. J. (1977) Theory and applicability of a recrystallized grain size paleopiezometer. Pure and Applied Geophysics 115, 227–244.CrossRefGoogle Scholar
Uchida, T., Funamori, N., and Yagi, T. (1996) Lattice strains in crystals under uniaxial stress field. Journal of Applied Physics 80, 739–746.CrossRefGoogle Scholar
Underwood, E. E. (1969) Quantitative Stereology. Addison-Wesley.Google Scholar
Urai, J. L. (1983) Water-assisted dynamic recrystallization and weakening in polycrystalline bischofite. Tectonophysics 96, 125–157.CrossRefGoogle Scholar
Urai, J. L. (1987) Development of microstructure during deformation of carnalite and bischofite in transmitted light. Tectonophysics 135, 251–263.CrossRefGoogle Scholar
Urai J. L., Means W. D., and Lister G. S. (1986a) Dynamic recrystallization in minerals. In Mineral and Rock Deformation: Laboratory Studies (ed. Hobbs, B. E. and Heard, H. C.), pp. 166–199. American Geophysical Union.CrossRefGoogle Scholar
Urai, J. L., Spiers, C. J., Zwart, H. J., and Lister, G. S. (1986b) Water weakening in rock salt during long-term creep. Nature 324, 554–557.CrossRefGoogle Scholar
Hilst, R. D. and Kárason, H. (1999) Compositional heterogeneity in the bottom 1000 kilometers of Earth's mantle: toward a hybrid convection model. Science 283, 1885–1888.CrossRefGoogle Scholar
Hilst, R. D., Widiyantoro, R. D. S., and Engdahl, E. R. (1997) Evidence for deep mantle circulation from global tomography. Nature 386, 578–584.CrossRefGoogle Scholar
Meijde, M., Marone, F., Giardini, D., and Lee, S. (2003) Seismic evidence for water deep in Earth's upper mantle. Science 300, 1556–1558.CrossRefGoogle ScholarPubMed
Molen, I. and Paterson, M. S. (1979) Experimental deformation of partially-melted granite. Contributions to Mineralogy and Petrology 70, 299–318.CrossRefGoogle Scholar
Wal, D., Chopra, P. N., Drury, M., and Gerald, Fitz J. D. (1993) Relationships between dynamically recrystallized grain size and deformation conditions in experimentally deformed olivine rocks. Geophysical Research Letters 20, 1479–1482.Google Scholar
van Houtte P. and Wagner F. (1985) Development of texture by slip and twinning. In Preferred Orientation in Deformed Metals and Rocks (ed. Wenk, H.-R.), pp. 233–258. Academic Press.Google Scholar
Orman, J. A. (2004) On the viscosity and creep mechanism of Earth's inner core. Geophysical Research Letters 31, 10.1029/2004GL021209.Google Scholar
Orman, J. A., Fei, Y., Hauri, E. H., and Wang, J. (2003) Diffusion in MgO at high pressure: constraints on deformation mechanisms and chemical transport at the core–mantle boundary. Geophysical Research Letters 30, 10.1029/2002GL016343.Google Scholar
Vauchez, A. and Nicolas, A. (1991) Mountain building: strike-parallel motion and mantle anisotropy. Tectonophysics 185, 183–191.CrossRefGoogle Scholar
Vaughan, P. J. and Coe, R. S. (1978) Geometric flow properties of the germanate analog of forsterite. Tectonophysics 46, 187–196.CrossRefGoogle Scholar
Vaughan, P. J. and Coe, R. S. (1981) Creep mechanisms in Mg2GeO4: effects of a phase transition. Journal of Geophysical Research 86, 389–404.CrossRefGoogle Scholar
Vidale, J. E., Dodge, D. A., and Earle, P. S. (2000) Slow differential rotation of the Earth's inner core indicated by temporal change in scattering. Nature 405, 445–448.CrossRefGoogle ScholarPubMed
Vidale, J. E. and Earle, P. S. (2000) Fine-scale heterogeneity in the Earth's inner core. Nature 404, 273–275.CrossRefGoogle ScholarPubMed
Vineyard, G. H. (1957) Frequency factors and isotope effects in solid state rate processes. Journal of Physics and Chemistry of Solids 3, 121–127.CrossRefGoogle Scholar
Vinnik, L., Breger, L., and Romanowicz, . (1998) Anisotropic structures at the base of the Earth's mantle. Nature 393, 564–567.CrossRefGoogle Scholar
Vinnik, L. and Montagner, J.-P. (1996) Shear wave splitting in the mantle from Ps phases. Geophysical Research Letters 23, 2449–2452.CrossRefGoogle Scholar
Vinnik, L., Romanowicz, B., Stunff, Y., and Makayeva, L. I. (1995) Seismic anisotropy in D″-layer. Geophysical Research Letters 22, 1657–1660.CrossRefGoogle Scholar
Voce, E. (1948) The relationship between stress and strain for homogeneous deformation. Journal of Institute of Metals 74, 537–562.Google Scholar
Mises, R. (1928) Mechanik der plastischen Formändern von Kristallen. Zeitschrift für Angewandte Mathematik und Mechanik 8, 161–185.CrossRefGoogle Scholar
Voorhees, P. W. (1985) The theory of Ostwald ripening. Journal of Statistical Physics 38, 231–252.CrossRefGoogle Scholar
Voorhees, P. W. (1992) Ostwald ripening of 2-phase mixtures. Annual Review of Materials Science 22, 197–215.CrossRefGoogle Scholar
Waff, H. S. and Blau, J. R. (1979) Equilibrium fluid distribution in an ultramafic partial melt under hydrostatic stress conditions. Journal of Geophysical Research 84, 6109–6114.CrossRefGoogle Scholar
Waff H. S. and Blau J. R. (1982) Experimental determination of near equilibrium textures in partially molten silicates at high pressures. In High-pressure Research in Geophysics (ed. Akimoto, S. and Manghnani, M. H.), pp. 229–236. Center for Academic Publication.CrossRefGoogle Scholar
Walcott, R. I. (1970) Flexural rigidity, thickness, and viscosity of the lithosphere. Journal of Geophysical Research 75, 3941–3954.CrossRefGoogle Scholar
Walker, K. T., Bokelmann, G. H., and Klemperer, S. L. (2001) Shear-wave splitting to test mantle deformation models around Hawaii. Geophysical Research Letters 28, 4319–4322.CrossRefGoogle Scholar
Wall, A. and Price, G. D. (1989) Electrical conductivity of the lower mantle: a molecular dynamics simulation of MgSiO3. Physics of Earth and Planetary Interiors 58, 192–204.CrossRefGoogle Scholar
Wallace, D. C. (1972) Thermodynamics of Crystals. Wiley.Google Scholar
Walsh, J. B. (1968) Attenuation in partially molten material. Journal of Geophysical Research 73, 2209–2216.CrossRefGoogle Scholar
Walsh, J. B. (1969) New analysis of attenuation in partially molten rock. Journal of Geophysical Research 74, 4333–4337.CrossRefGoogle Scholar
Wang, D., Mookherjee, M., Xu, Y., and Karato, S. (2006) The effect of water on the electrical conductivity in olivine. Nature 443, 977–980.CrossRefGoogle ScholarPubMed
Wang, J. N. (1994) Harper–Dorn creep in olivine. Materials Science and Engineering A 183, 267–272.CrossRefGoogle Scholar
Wang, J. N., Hobbs, B. E., Ord, A., Shimamoto, T., and Toriumi, M. (1994) Newtonian dislocation creep in quartzites: implications for the rheology of the lower crust. Science 265, 1203–1205.CrossRefGoogle ScholarPubMed
Wang, J. N. and Nieh, T. G. (1995) Effects of the Peierls stress on the transition from power-law creep to Harper–Dorn creep. Acta Metallurgica et Materialia 43, 1415–1419.CrossRefGoogle Scholar
Wang, Y., Durham, W. B., Getting, I. C., and Weidner, D. J. (2003) The deformation-DIA: a new apparatus for high temperature triaxial deformation to pressures up to 15 GPa. Review of Scientific Instruments 74, 3002–3011.CrossRefGoogle Scholar
Wang, Y., Guyot, F., and Liebermann, R. C. (1992) Electron microscopy of (Mg, Fe)SiO3 perovskite: evidence for structural phase transitions and implications for the lower mantle. Journal of Geophysical Research 97, 12 327–12 347.CrossRefGoogle Scholar
Wang, Z. and Ji, S. (2000) Diffusion creep of fine-grained garnetite: implications for the flow strength of subducting slabs. Geophysical Research Letters 27, 2333–2336.CrossRefGoogle Scholar
Wang, Z., Karato, S., and Fujino, K. (1993) High temperature creep of single crystal strontium titanate: a contribution to creep systematics in perovskites. Physics of Earth and Planetary Interiors 79, 299–312.CrossRefGoogle Scholar
Wang, Z., Karato, S., and Fujino, K. (1996) High temperature creep of single crystal gadolinium gallium garnet. Physics and Chemistry of Minerals 23, 73–80.CrossRefGoogle Scholar
Wang, Z., Mei, S., Karato, S., and Wirth, R. (1999) Grain growth in CaTiO3–perovskite + FeO–wüstite aggregates. Physics and Chemistry of Minerals 27, 11–19.CrossRefGoogle Scholar
Watson, E. B. and Brenan, J. M. (1987) Fluids in the lithosphere 1. Experimentally-determined wetting characteristics of CO2–H2O fluids and their implications for fluid transport, host-rock physical-properties, and fluid inclusion formation. Earth and Planetary Science Letters 85, 497–515.CrossRefGoogle Scholar
Watt, J. P., Davies, G. F., and O'Connell, R. J. (1976) The elastic properties of composite materials. Review of Geophysics and Space Physics 14, 541–563.CrossRefGoogle Scholar
Webb, S. and Jackson, I. (1990) Polyhedral rationalization of variation among the single crystal elastic moduli for upper-mantle silicates: garnets, olivine and orthopyroxene. American Mineralogist 75, 731–738.Google Scholar
Webb, S. and Jackson, I. (2003) Anelasticity and microcreep in polycrystalline MgO at high temperature: an exploratory study. Physics and Chemistry of Minerals 30, 157–166.CrossRefGoogle Scholar
Webb, S., Jackson, I., and Fitz Gerald, J. (1999) Viscoelasticity of the titanate perovskite CaTiO3 and SrTiO3 at high temperature. Physics of Earth and Planetary Interiors 115, 259–291.CrossRefGoogle Scholar
Webster, G. A. (1966a) A widely applicable dislocation model of creep. Philosophical Magazine 14, 775–783.CrossRefGoogle Scholar
Webster, G. A. (1966b) In support of a model of creep based on dislocation dynamics. Philosophical Magazine 14, 1303–1307.CrossRefGoogle Scholar
Weertman, J. (1957) Steady state creep of crystals. Journal of Applied Physics 28, 1185–1191.CrossRefGoogle Scholar
Weertman, J. (1968) Dislocation climb theory of steady state creep. Transactions of the American Society of Metals 61, 681–694.Google Scholar
Weertman, J. (1970) The creep strength of the Earth's mantle. Review of Geophysics and Space Physics 8, 145–168.CrossRefGoogle Scholar
Weertman, J. (1978) Creep laws for the mantle of the Earth. Philosophical Transactions of the Royal Society of London A 228, 9–26.CrossRefGoogle Scholar
Weertman, J. and Blacic, J. D. (1984) Harper–Dorn creep; an artifact of low-amplitude temperature cycling?Geophysical Research Letters 11, 117–120.CrossRefGoogle Scholar
Weertman, J. and Weertman, J. R. (1975) High temperature creep of rock and mantle viscosity. Annual Review of Earth and Planetary Sciences 3, 293–315.CrossRefGoogle Scholar
Weidner D. J. (1987) Elastic properties of rocks and minerals. In Methods of Experimental Physics, Vol. 1–30 (ed. Sammis, C. G. and Henyey, T. L.). Academic Press.Google Scholar
Weidner D. J. (1998) Rheological studies at high pressure. In Ultrahigh-Pressure Mineralogy (ed. Hemley, R. J.), pp. 492–524. The Mineralogical Society of America.Google Scholar
Weidner, D. J., Li, L., Davis, M., and Chen, J. (2004) Effect of plasticity on elastic modulus measurements. Geophysical Research Letters 31, 10.1029/2003GL019090.CrossRefGoogle Scholar
Weidner D. J. and Wang Y. (2000) Phase transformations: implications for mantle structure. In Earth's Deep Interior: Mineral Physics and Tomography (ed. Karato, S., Forte, A. M., Liebermann, R. C., Masters, G., and Stixrude, L.), pp. 215–235. American Geophysical Union.CrossRefGoogle Scholar
Weidner D. J., Wang Y., Chen G., Ando J., and Vaughan M. T. (1998) Rheology measurements at high pressure and temperature. In Properties of Earth and Planetary Materials at High Pressure and Temperature (ed. Manghnani, M. H. and Yagi, T.), pp. 473–480. American Geophysical Union.CrossRefGoogle Scholar
Weiss L. E. and Wenk H.-R. (1985) Symmetry of pole figures and textures. In Preferred Orientation in Deformed Metals and Rocks: an Introduction to Modern Texture Analysis (ed. Wenk, H.-R.), pp. 49–72. Academic Press.Google Scholar
Wen, L. (2001) Seismic evidence for a rapidly varying compositional anomaly at the base of the Earth's mantle beneath the Indian Ocean. Earth and Planetary Science Letters 194, 83–95.CrossRefGoogle Scholar
Wen, L. and Anderson, D. L. (1997) Layered mantle convection: a model for geoid and topography. Earth and Planetary Science Letters 146, 367–377.CrossRefGoogle Scholar
Wen, L. and Niu, F. (2002) Seismic velocity and attenuation structures in the top of the Earth's inner core. Journal of Geophysical Research 107, 10.1029/2001JB000170.CrossRefGoogle Scholar
Wen, L., Silver, P. G., James, D. E., and Kuehnel, R. (2001) Seismic evidence of a thermo-chemical boundary at the base of the Earth's mantle. Earth and Planetary Science Letters 189, 141–153.CrossRefGoogle Scholar
Wenk, H.-R. (1985) Preferred Orientation in Deformed Metals and Rocks: an Introduction to Modern Texture Analysis. Academic Press.Google Scholar
Wenk H.-R. (2002) Texture and anisotropy. In Plastic Deformation of Minerals and Rocks, Vol. 51 (ed. Karato, S. and Wenk, H.-R.), pp. 291–329. The Mineralogical Society of America.Google Scholar
Wenk, H.-R., Bennett, K., Canova, G., and Molinari, A. (1991) Modelling plastic deformation of peridotite with the self-consistent theory. Journal of Geophysical Research 96, 8337–8349.CrossRefGoogle Scholar
Wenk, H.-R., Canova, G., Molinari, A., and Mecking, H. (1989) Texture development in halite: comparison of Taylor model and self-consistent theory. Acta Metallurgica 37, 2017–2029.CrossRefGoogle Scholar
Wenk, H.-R., Canova, G. C., Brechet, Y., and Flandin, L. (1997) A deformation-based model for recrystallization of anisotropic materials. Acta Mater 45, 3283–3296.CrossRefGoogle Scholar
Wenk, H.-R. and Christie, J. M. (1991) Comments on the interpretation of deformation textures in rocks. Journal of Structural Geology 13, 1091–1110.CrossRefGoogle Scholar
Wenk, H.-R., Lonardelli, I., Pehl, J., Devine, J. D., Prakapenka, V., Shen, G., and Mao, H.-K. (2004) In situ observation of texture development in olivine, ringwoodite, magnesiowüstite and silicate perovskite at high pressure. Earth and Planetary Science Letters 226, 507–519.CrossRefGoogle Scholar
Wenk, H.-R., Matthius, S., Hemley, R. J., Mao, H.-K., and Shu, J. (2000) The plastic deformation of iron at pressures of the Earth's inner core. Nature 405, 1044–1047.CrossRefGoogle ScholarPubMed
Wettlaufer, J. S., Worster, M. G., and Huppert, H. E. (1997) Natural convection during solidification of an alloy from above with application to the evolution of sea ice. Journal of Fluid Dynamics 344, 291–316.Google Scholar
Wheeler, J. (1992) Importance of pressure solution and Coble creep in the deformation of polymineralic rocks. Journal of Geophysical Research 97, 4579–4586.CrossRefGoogle Scholar
Wheeler, J., Prior, D. J., Jiang, Z., Spiess, R., and Trimbly, P. W. (2001) The petrological significance of misorientations between grains. Contributions to Mineralogy and Petrology 141, 109–124.CrossRefGoogle Scholar
White, S. H. (1979) Grain and sub-grain size variations across a mylonite shear zone. Contributions to Mineralogy and Petrology 70, 193–202.CrossRefGoogle Scholar
White, S. H., Burrows, S. E., Carreras, J., Shaw, N. D., and Humphreys, F. J. (1980) On mylonites in ductile shear zones. Journal of Structural Geology 2, 175–187.CrossRefGoogle Scholar
White, S. H. and Knipe, R. J. (1978) Transformation- and reaction-induced ductility in rocks. Journal of the Geological Society of London 135, 513–516.CrossRefGoogle Scholar
Whitehead, J. A. Jr. and Luther, P. S. (1975) Dynamics of laboratory diapir and plume models. Journal of Geophysical Research 80, 705–717.CrossRefGoogle Scholar
Williams, D. B. and Carter, C. B. (1996) Transmission Electron Microscopy. Plenum Press.CrossRefGoogle Scholar
Williams, Q. and Garnero, E. J. (1996) Seismic evidence for partial melt at the base of Earth's mantle. Science 273, 1528–1530.CrossRefGoogle Scholar
Williams, Q. and Hemley, R. J. (2001) Hydrogen in the deep Earth. Annual Review of Earth and Planetary Sciences 29, 365–418.CrossRefGoogle Scholar
Winger, L. A., Bradt, R. C., and Hoke, J. H. (1980) Transformational superplasticity of Bi2WO6 and Bi2MoO6. Journal of the American Ceramic Society 63, 291–294.CrossRefGoogle Scholar
Withers, A. C., Wood, B. J., and Carroll, M. R. (1998) The OH content of pyrope at high pressure. Chemical Geology 147, 161–171.CrossRefGoogle Scholar
Woirgard, J., Rivière, A., and Fouquet, J. (1981) Experimental and theoretical aspect of the high temperature damping of pure metals. Journal de PhysiqueColloque C 5, 407–419.Google Scholar
Wolf, G. H. and Jeanloz, R. (1984) Lindemann melting law: anharmonic correction and test of its validity for minerals. Journal of Geophysical Research 89, 7821–7835.CrossRefGoogle Scholar
Wolfe, C. J. and Solomon, S. C. (1998) Shear-wave splitting and implications for mantle flow beneath the MELT region of the East Pacific. Science 280, 1230–1232.CrossRefGoogle ScholarPubMed
Wolfenstein, J., Ruano, O. A., Wadsworth, J., and Sherby, O. D. (1993) Refutation of the relationship between denuded zones and diffusional creep. Scripta Metallurgica et Material 29, 515–520.CrossRefGoogle Scholar
Wood, B. J. (1995) The effect of H2O on the 410-kilometer seismic discontinuity. Science 268, 74–76.CrossRefGoogle ScholarPubMed
Wood, B. J. and Fraser, D. G. (1976) Elementary Thermodynamics for Geologists. Oxford University Press.Google Scholar
Wood, B. J. and Haliday, A. N. (2005) Cooling of the Earth and core formation after the giant impact. Nature 437, 1345–1348.CrossRefGoogle ScholarPubMed
Wood, B. J., Pawley, A. R., and Frost, D. R. (1996) Water and carbon in the Earth's mantle. Philosophical Transactions of the Royal Society of London 354, 1495–1511.CrossRefGoogle Scholar
Wood, B. J., Walter, M. J., and Wade, J. (2006) Accretion of the Earth and segregation of its core. Nature 441, 825–833.CrossRefGoogle ScholarPubMed
Woodhouse, J. H. and Dziewonski, A. M. (1984) Mapping the upper mantle: three-dimensional modeling of Earth structure by inversion of seismic waveforms. Journal of Geophysical Research 89, 5953–5986.CrossRefGoogle Scholar
Woodhouse, J. H. and Dziewonski, A. M. (1989) Seismic modelling of the Earth's large-scale three-dimensional structure. Philosophical Transactions of the Royal Society of London A 328, 291–308.CrossRefGoogle Scholar
Woodhouse, J. H., Giardini, D., and Li, X. D. (1986) Evidence for inner core anisotropy from free oscillations. Geophysical Research Letters 13, 1549–1552.CrossRefGoogle Scholar
Wookey, J. and Kendall, J.-M. (2004) Evidence of midmantle anisotropy from shear wave splitting and the influence of shear-coupled P waves. Journal of Geophysical Research 109, 10.1029/2003JB002871.CrossRefGoogle Scholar
Wookey, J., Kendall, J. M., and Barruol, G. (2002) Mid-mantle deformation inferred from seismic anisotropy. Nature 415, 777–780.CrossRefGoogle ScholarPubMed
Wright, K. and Price, G. D. (1993) Computer simulation of defects and diffusion in perovskites. Journal of Geophysical Research 98, 22 245–22 253.CrossRefGoogle Scholar
Wyllie, P. J. and Huang, W. L. (1976) Carbonation and melting reactions in the system CaO-MgO-SiO2-CO2 at mantle pressure with geophysical and petrological applications. Contributions to Mineralogy and Petrology 54, 79–107.CrossRefGoogle Scholar
Xiao, X., Wirth, R., and Dresen, G. (2002) Diffusion creep of anorthite–quartz aggregates. Journal of Geophysical Research 107, 10.1029/2001JB000789.CrossRefGoogle Scholar
Xie, Y., Wenk, H.-R., and Matthies, S. (2003) Plagioclase preferred orientation by TOF neutron diffraction and SEM-EBSD. Tectonophysics 370, 269–286.CrossRefGoogle Scholar
Xu Y., Nishihara Y., and Karato S. (2005) Development of a rotational Drickamer apparatus for large-strain deformation experiments under deep Earth conditions. In Frontiers in High-pressure Research: Applications to Geophysics (ed. Chen, J., Wang, Y., Duffy, T. S., Shen, G., and Dobrzhinetskaya, L. F.), pp. 167–182. Elsevier.Google Scholar
Xu, Y., Weidner, D. J., Chen, J., Vaughan, M. T., Wang, Y., and Uchida, T. (2003) Flow-law for ringwoodite at subduction zone conditions. Physics of Earth and Planetary Interiors 136, 3–9.CrossRefGoogle Scholar
Yamazaki, D., Inoue, T., Okamoto, M., and Irifune, T. (2005) Grain growth kinetics of ringwoodite and its implication for rheology of the subducting slab. Earth and Planetary Science Letters 236, 871–881.CrossRefGoogle Scholar
Yamazaki, D. and Irifune, T. (2003) Fe–Mg interdiffusion in magnesiowüstite up to 35 GPa. Earth and Planetary Science Letters 216, 301–311.CrossRefGoogle Scholar
Yamazaki, D. and Karato, S. (2001a) High pressure rotational deformation apparatus to 15 GPa. Review of Scientific Instruments 72, 4207–4211.CrossRefGoogle Scholar
Yamazaki, D. and Karato, S. (2001b) Some mineral physics constraints on the rheology and geothermal structure of Earth's lower mantle. American Mineralogist 86, 385–391.CrossRefGoogle Scholar
Yamazaki, D. and Karato, S. (2002) Fabric development in (Mg, Fe)O during large strain, shear deformation: implications for seismic anisotropy in Earth's lower mantle. Physics of Earth and Planetary Interiors 131, 251–267.CrossRefGoogle Scholar
Yamazaki, D., Kato, T., Ohtani, E., and Toriumi, M. (1996) Grain growth rates of MgSiO3 perovskite and periclase under lower mantle conditions. Science 274, 2052–2054.CrossRefGoogle ScholarPubMed
Yamazaki, D., Kato, T., Toriumi, M., and Ohtani, E. (2001) Silicon self-diffusion in MgSiO3 perovskite at 25 GPa. Physics of Earth and Planetary Interiors 119, 299–309.CrossRefGoogle Scholar
Yamazaki, D., Yishino, T., Ohfuji, H., Ando, J., and Yoneda, A. (2006) Origin of seismic anisotropy in the D″ layer inferred from shear deformation experiments on post-perovskite phase. Earth and Planetary Science Letters.CrossRefGoogle Scholar
Yan H. (1992) Dislocation Recovery in Olivine. Master of Science, University of Minnesota.
Yan M. F., Cannon R. F., and Bowen H. K. (1977) Grain boundary migration in ceramics. In Ceramic Microstructures ′76 (ed. Fulrath, R. M. and Pask, J. A.), pp. 276–307. Westview Press.Google Scholar
Yan, M. F., Cannon, R. M., and Bowen, H. K. (1983) Space charge, elastic field and dipole contributions to equilibrium solute segregation at interfaces. Journal of Applied Physics 54, 764–777.CrossRefGoogle Scholar
Yokobori, T. (1968) Criteria for nearly brittle fracture. The International Journal of Fracture Mechanics 4, 179–205.CrossRefGoogle Scholar
Yoon, C. K. and Chen, I.-W. (1990) Superplastic flow of two-phase ceramics containing rigid inclusions: zirconia/mullite composites. Journal of the American Ceramic Society 73, 1555–1565.CrossRefGoogle Scholar
Yoon, D. N. and Lazarus, D. (1972) Pressure dependence of ionic conductivity in KCl, NaCl, KBr and NaBr. Physical Review B 5, 4935–4945.CrossRefGoogle Scholar
Yoshida, H., Ikuhara, Y., and Sakuma, T. (2002) Grain boundary electronic structure related to the high-temperature creep resistance in polycrystalline Al2O3. Acta Materialia 50, 2955–2966.CrossRefGoogle Scholar
Yoshida, S., Sumita, I., and Kumazawa, M. (1996) Growth model of the inner core coupled with the outer core dynamics and the resulting elastic anisotropy. Journal of Geophysical Research 101, 28,085–28 103.CrossRefGoogle Scholar
Yoshii, T. (1973) Upper mantle structure beneath the north Pacific and marginal seas. Journal of Physics of the Earth 21, 313–328.CrossRefGoogle Scholar
Yoshii T., Kono Y., and Ito K. (1976) Thickening of the oceanic lithosphere. In The Geophysics of the Pacific Ocean Basin and Its Margin (ed. Sutton, G. H., Manghnani, M. H., and Moberly, R.), pp. 423–430. American Geophysical Union.CrossRefGoogle Scholar
Yoshino T., Nishihara Y., and Karato S. (2007) Complete wetting of olivine grain-boundaries by a hydrous melt near the mantle transition zone. Earth and Planetary Science Letters256, 466–472.CrossRef
Yoshinobu, A. S. and Hirth, G. (2002) Microstructural and experimental constraints on the rheology of partially molten gabbro beneath oceanic spreading centers. Journal of Structural Geology 24, 1101–1107.CrossRefGoogle Scholar
Yuen, D. A., Sabadini, R., and Boschi, E. V. (1982) Viscosity of the lower mantle as inferred from rotational data. Journal of Geophysical Research 87, 10 745–10 762.CrossRefGoogle Scholar
Zamora, M. and Poirier, J.-P. (1983) Experiments in anisothermal transformation plasticity: the case of cobalt. Geophysical implications. Mechanics of Materials 2, 193–202.CrossRefGoogle Scholar
Zener, C. (1942) Theory of lattice expansion introduced by cold-work. Transactions of the Metallurgical Society of AIME 147, 104–110.Google Scholar
Zener, C. (1948a) Elasticity and Anelasticiy of Metals. University of Chicago Press.Google Scholar
Zener C. (1948b) The micro-mechanism of fracture. In Fracturing of Metals (ed. Johnson, F., Roop, W. P., and Bayles, R. T.), pp. 3–31. ASM.Google Scholar
Zener, C. and Hollomon, J. H. (1946) Problems in non-elastic deformation of metals. Journal of Applied Physics 17, 69–82.CrossRefGoogle Scholar
Zeuch, D. H. (1982) Ductile faulting, dynamic recrystallization and grain-size-sensitive flow in olivine. Tectonophysics 83, 293–308.CrossRefGoogle Scholar
Zeuch, D. H. (1983) On the inter-relationship between grain-size sensitive creep and dynamic recrystallization of olivine. Tectonophysics 93, 151–168.CrossRefGoogle Scholar
Zha, C.-S., Duffy, T. S., Downs, R. T., et al. (1998) Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa. Earth and Planetary Science Letters 159, 25–33.CrossRefGoogle Scholar
Zhang, S. and Christensen, U. R. (1993) Some effects of lateral viscosity variations on geoid and surface velocities induced by density anomalies in the mantle. Geophysical Journal International 114, 531–547.CrossRefGoogle Scholar
Zhang, S. and Karato, S. (1995) Lattice preferred orientation of olivine aggregates deformed in simple shear. Nature 375, 774–777.CrossRefGoogle Scholar
Zhang, S., Karato, S., Fitz Gerald, J., Faul, U. H., and Zhou, Y. (2000) Simple shear deformation of olivine aggregates. Tectonophysics 316, 133–152.CrossRefGoogle Scholar
Zhang, Y. and Xu, Z. (1995) Atomic radii of noble gas elements in condensed phases. American Mineralogist 80, 670–675.CrossRefGoogle Scholar
Zhang, Y. S. and Tanimoto, T. (1992) Ridges, hotspots and their interactions as observed in seismic velocity maps. Nature 355, 45–49.CrossRefGoogle Scholar
Zhang, Y. S. and Tanimoto, T. (1993) High-resolution global upper mantle structure and plate tectonics. Journal of Geophysical Research 98, 9793–9823.CrossRefGoogle Scholar
Zhao, D. (2004) Global tomographic images of mantle plumes and subducting slabs: insights into deep mantle dynamics. Physics of the Earth and Planetary Interiors 146, 3–34.CrossRefGoogle Scholar
Zhao, Y.-H., Ginsberg, S. B., and Kohlstedt, D. L. (2004) Solubility of hydrogen in olivine: dependence on temperature and iron content. Contributions to Mineralogy and Petrology 147, 155–161.CrossRefGoogle Scholar
Zimmerman, M. E. and Kohlstedt, D. L. (2004) Rheological properties of partially molten lherzolite. Journal of Petrology 45, 275–298.CrossRefGoogle Scholar
Zimmerman, M. R., Zhang, S., Kohlstedt, D. L., and Karato, S. (1999) Melt distribution in mantle rocks deformed in shear. Geophysical Research Letters 26, 1505–1508.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Shun-ichiro Karato, Yale University, Connecticut
  • Book: Deformation of Earth Materials
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804892.023
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Shun-ichiro Karato, Yale University, Connecticut
  • Book: Deformation of Earth Materials
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804892.023
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Shun-ichiro Karato, Yale University, Connecticut
  • Book: Deformation of Earth Materials
  • Online publication: 05 June 2012
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804892.023
Available formats
×