Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-22T05:02:57.384Z Has data issue: false hasContentIssue false

2 - GASDYNAMIC THEORY OF DETONATIONS AND DEFLAGRATIONS

Published online by Cambridge University Press:  06 July 2010

John H. S. Lee
Affiliation:
McGill University, Montréal
Get access

Summary

INTRODUCTION

For given initial and boundary conditions, the possible combustion waves that can be realized are given by the solutions of the steady one-dimensional conservation equations across the wave. Since the three conservation equations (of mass, momentum, and energy) and the equation of state for the reactants and products constitute only four equations for the five unknown quantities (p1, ρ1, u1, h1, and the wave velocity u0), an extra equation is required to close this set. For non-reacting gases, the solutions to the conservation equations were first investigated by Rankine (1870) and by Hugoniot (1887–1889), who derived the relationship between the upstream and downstream states in terms of a specified wave speed, pressure, or particle velocity downstream of the shock wave. Analysis of the solutions of the conservation equations also provided important information on the stability of shock waves and on the impossibility of rarefaction shocks in most common fluids. For reacting mixtures, similar analyses of the conservation laws were first carried out independently by Chapman (1889), Jouguet (1904), and Crussard (1907), but none of these investigators were aware of similar studies carried out by Mikelson (1890) in Russia. More thorough investigations of the properties of the solutions of these conservation laws were carried out later by Becker (1917, 1922a, 1922b), Zeldovich (1940, 1950), Döring (1943), Kistiakowsky and Wilson (1941), and von Neumann (1942). Their aim was to provide a more rigorous theoretical justification of the Chapman–Jouguet criterion.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×