Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-sh8wx Total loading time: 0 Render date: 2024-07-21T11:31:40.851Z Has data issue: false hasContentIssue false

4 - Animal Studies on Inappropriate Aggressive Behavior Following Stress and Alcohol Exposure in Adolescence

Published online by Cambridge University Press:  14 July 2009

Craig F. Ferris
Affiliation:
University of Massachusetts Medical School
David M. Stoff
Affiliation:
National Institute of Mental Health, Bethesda, Maryland
Elizabeth J. Susman
Affiliation:
Pennsylvania State University
Get access

Summary

INTRODUCTION

Violence is a national health problem. Understanding the etiology and pathophysiology that predispose certain individuals to behave in an inappropriate, excessively aggressive way is critical to reducing the incidence of personal violence in the United States. It is clear that traumatic events in early life make children more vulnerable to future stressors and enhance the probability of antisocial behaviors (Luntz & Widom, 1994). Children exposed to early stressful environments and maltreatment prior to kindergarten are more aggressive and have more social problems than control children (Lansford et al., 2002; Sanson, Smart, Prior, & Oberhlaid, 1993). Children exposed to early physical and emotional neglect may develop learning patterns that affect the interpretation of hostile social information, resulting in inappropriate aggressive behavior and general conduct disorder (Dodge, Bates, & Pettit, 1990). Furthermore, children with conduct problems are at risk for alcohol and drug abuse, a predisposition exacerbated by the fact that alcoholism and drug-taking foster antisocial behaviors and violence (Ito, Miller, & Pollock, 1996).

Although psychosocial developmental studies on children have provided insight into the long-term behavioral consequences of early abuse and alcoholism, the biological changes that accompany exposure to these risk factors are not well understood. For ethical reasons, there can be no prospective human studies looking at changes in neurobiology and neuroendocrinology in response to early life traumas. Therefore, biological data must be gleaned from animal studies that try to model certain aspects of the human condition.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adell, A., Garcia-Marquez, C., Armario, A., & Gelpi, E. (1988). Chronic stress increases serotonin and noradrenaline in rat brain and sensitize their responses to a further acute stress. Journal of Neurochemistry, 50, 1678–1681CrossRefGoogle Scholar
Altemus, M., Cizza, G., & Gold, P. W. (1992). Chronic fluoxetine treatment reduces hypothalamic vasopressin secretion in vitro. Brain Research, 593, 311–313CrossRefGoogle ScholarPubMed
American Humane Association (1978). National analysis of official child neglect and abuse reporting. Denver: American Humane Association
Arvola, A., Forsander, O. (1961). Comparison between water and alcohol consumption in six animal species in free choice experiments. Nature 4790: 814Google Scholar
Bennett, A. J., Lesch, K. P., Heils, A., Long, J. C., Lorenz, J. G., Shoaf, S. E. (2002). Early experience and serotonin transporter gene variation interact to influence primate CNS function. Molecular Psychiatry, 7, 118–122CrossRefGoogle ScholarPubMed
Blanchard, D. C., Sakai, R. R., McEwen, B., Weiss, S. M., & Blanchard, R. J. (1993). Subordination stress: Behavioral, brain and neuroendocrine correlates. Behavioral Brain Research, 58, 113–121CrossRefGoogle ScholarPubMed
Bolanos-Jimenez, F., Manhaes de Castro, R. M., Cloez-Tarayani, I., Monneret, V., Drieu, K., & Fillion, G. (1995). Effects of stress on the functional properties of pre- and postsynaptic 5-HT1B receptors in the rat brain. European Journal of Pharmacology, 294, 531–540CrossRefGoogle ScholarPubMed
Bouwknecht, J. A., Hijzen, T. H., Gugten, J., Maes, R. A. A., Hen, R., & Olivier, B. (2001). Absence of 5-HT1B receptors is associated with impaired impulse control in male 5-HT1B knockout mice. Biological Psychiatry, 49, 557–568CrossRefGoogle Scholar
Brain, P. F. (1972). Effects of isolation/grouping on endocrine function and fighting behavior in male and female golden hamsters (Mesocricetus auratus Waterhouse). Behavioral Biology 7, 349–357CrossRefGoogle Scholar
Bronson, F. H., & Eleftheriou, B. F. (1964). Chronic physiological effects of fighting in mice. General and Comparative Endocrinology, 4, 9–14CrossRefGoogle ScholarPubMed
Brown, G. L., Ebert, M. H., Goyer, P. F., Jimerson, D. C., Klein, W. J., Bunney, W. E. (1982). Aggression, suicide, and serotonin: Relationship to CSF amine metabolites. American Journal of Psychiatry, 139, 741–746Google Scholar
Cherek, D. R., & Lane, S. D. (2001). Acute effects of d-fenfluramine on simultaneous measures of aggressive escape and impulsive responses of adult males with and without a history of conduct disorder. Psychopharmacology, 157, 221–227CrossRefGoogle Scholar
Cherek, D. R., Lane, S. D., Pietras, C. J., & Steinberg, J. L. (2002). Effects of chronic paroxetine administration on measures of aggressive and impulsive responses of adult males with a history of conduct disorder. Psychopharmacology, 159, 266–274CrossRefGoogle ScholarPubMed
Cicero, T. J., Meyer, E. R., & Bell, R. D. (1978). Effects of ethanol and on the hypothalamic pituitary–luteizing hormone axis and testicular steroidogenesisJ. Pharmacol. Exp. Ther. 208: 210–215Google Scholar
Clarke, A. S. (1993). Social rearing effects on HPA axis activity over early development and response to stress in young rhesus monkeys. Developmental Psychobiology, 26, 433–447CrossRefGoogle Scholar
Coccaro, E. F., Astill, J. L., Herbert, J. L., & Schut, A. G. (1990). Fluoxetine treatment of impulsive aggrerssion in DSM-III-R personality disorder patients. Journal of Clinical Psychopharmacology, 10, 373–375CrossRefGoogle ScholarPubMed
Coccaro, E. F., & Kavoussi, R. J. (1997). Fluoxetine and impulsive aggressive behavior in personality-disordered subjects. Archives of General Psychiatry, 54, 1081–1088CrossRefGoogle ScholarPubMed
Coccaro, E. F., Kavoussi, R. J., Hauger, R. L., Cooper, T. B., & Ferris, C. F. (1998). Cerebrospinal fluid vasopressin levels correlates with aggression and serotonin function in personality-disordered subjects. Archives of General Psychiatry, 55, 708–714CrossRefGoogle ScholarPubMed
Cologer-Clifford, A., Simon, N. G., Lu, S. F., & Smoluk, S. A. (1997). Serotonin agonist-induced decreases in intermale aggression are dependent on brain region and receptor subtype. Pharmacology Biochemistry and Behavior, 58: 425–430CrossRefGoogle ScholarPubMed
Cologer-Clifford, A., Simon, N. G., Richter, M. L., Smoluk, S. A., & Lu, S.-F. (1999). Androgens and estrogens modulate 5-HT1A and 5-HT1B agonist effects on aggression. Physiology & Behavior, 65, 823–828CrossRefGoogle ScholarPubMed
Dalta, K. P., Mitra, S. K., & Bhattacharya, S. K. (1991). Serotonergic modulation of footshock induced aggression in paired rats. Indian Journal of Experimental Biology, 29, 631–635Google Scholar
Delville, Y., Mansour, K. M., & Ferris, C. F. (1995). Serotonin blocks vasopressin-facilitated offensive aggression: Interactions within the ventrolateral hypothalamus of golden hamsters. Physiology & Behavior, 59, 813–816CrossRefGoogle Scholar
Delville, Y., Mansour, K. M., & Ferris, C. F. (1996). Testosterone facilitates aggression by modulating vasopressin receptors in the hypothalamus. Physiology & Behavior, 60, 25–29CrossRefGoogle ScholarPubMed
Delville, Y., Melloni, R. H. Jr., & Ferris, C. F. (1998). Behavioral and neurobiological consequences of social subjugation during puberty in golden hamsters. Journal of Neuroscience, 18, 2667–2672CrossRefGoogle ScholarPubMed
Souza, E. B., & Loon, G. R. (1986). Brain serotonin and catecholamine responses to repeated stress in rats. Brain Research, 367, 77–86CrossRefGoogle ScholarPubMed
Vries, G. J., & Al-Shamma, H. A. (1990). Sex differences in hormonal responses of vasopressin pathways in the rat brain. Journal of Neurobiology, 21, 686–693CrossRefGoogle ScholarPubMed
Vries, G. J., Buijs, R. M., & Swaab, D. F. (1981). Ontogeny of the vasopressinergic neurons of the suprachiasmatic nucleus and their extrahypothalamic projections in the rat brain – presence of a sex difference in the lateral septum. Brain Research, 218, 67–78CrossRefGoogle ScholarPubMed
Vries, G. J., Buijs, R. M., Leeuwen, F. W., Caffe, A. R., & Swaab, D. F. (1985). The vasopressinergic innervation of the brain in normal and castrated rats. Journal of Comparative Neurology, 233, 236–254Google Scholar
Dieterlen, F. (1959). Das Verhalten des Syrischen Goldhamsters (Mesocricetus auratus Waterhouse). Zeitschrift für Tierpsychologic, 16, 47–103CrossRefGoogle Scholar
Dodge, K. A., Bates, J. E., & Pettit, G. S. (1990). Mechanisms in the cycle of violence. Science, 250, 1678–1683CrossRefGoogle ScholarPubMed
Dolan, M., Anderson, I. M., & Deakin, J. F. (2001). Relationship between 5-HT function and impulsivity and aggression in male offenders with personality disorders. British Journal of Psychiatry, 178, 352–359CrossRefGoogle ScholarPubMed
Eberhart, J. A., Keverne, E. B., & Meller, R. E. (1980). Social influences on plasma testosterone levels in male talapoin monkeys. Hormones and Behavior, 14, 247–266CrossRefGoogle ScholarPubMed
Eberhart, J. A., Keverne, E. B., & Meller, R. E. (1983). Social influences on circulating levels of cortisol and prolactin in male talapoin monkeys. Physiology & Behavior, 30, 361–369CrossRefGoogle ScholarPubMed
Eberhart, J. A., Yodyingyuad, U., & Keverne, E. B. (1985). Subordination in male talapoin monkeys lowers sexual behaviour in the absence of dominants. Physiology & Behavior, 35, 673–677CrossRefGoogle ScholarPubMed
Eichelman, B. S. (1990). Neurochemical and psychopharmacologic aspects of aggressive behavior. Annual Review of Medicine, 41, 147–158CrossRefGoogle ScholarPubMed
Ellison, G. (1976). Monoamine neurotoxins: Selective and delayed effects on behavior in colonies of laboratory rats. Brain Research, 103, 81–92CrossRefGoogle ScholarPubMed
Fairbanks, L. A., Melega, W. P., Jorgensen, M. J., Kaplan, J. R., & McGuire, M. T. (2001). Social impulsivity inversely associated with CSF 5-HIAA and fluoxetine exposure in vervet monkeys. Neuropsychopharmacology, 24, 370–378CrossRefGoogle ScholarPubMed
Ferris, C. F. (1996). Serotonin inhibits vasopressin facilitated aggression in the Syrian hamster. In C. F. Ferris & T. Grisso (Eds.), Understanding aggressive behavior in children [Special issue]. New York Academy of Sciences, 794, 98–103
Ferris, C. F. (2000). Adolescent stress and neural plasticity in namsters: A vasopressin-serotonin model of inappropriate aggressive behavior. Exp. Physiol. 85 Spec No 855–905
Ferris, C. F., Axelson, J. F., Martin, A. M., & Roberge, L. R. (1989). Vasopressin immunoreactivity in the anterior hypothalamus is altered during the establishment of dominant/subordinate relationships between hamsters. Neuroscience, 29, 675–683CrossRefGoogle ScholarPubMed
Ferris, C. F., & Brewer, J. (1996). Adolescent stress alters ethanol ingestion and agonistic behavior in male golden hamsters. In T. Grisso & C. F. Ferris (Eds.), Understanding aggressive behavior in children [Special issue]. Annals of the New York Academy of Sciences, 794, 348–351CrossRef
Ferris, C. F., Melloni, R. H. Jr., Koppel, G., Perry, K. W., Fuller, R. W., & Delville, Y. (1997). Vasopressin/serotonin interactions in the anterior hypothalamus control aggressive behavior in golden hamsters. Journal of Neuroscience, 17, 4331–4340CrossRefGoogle ScholarPubMed
Ferris, C. F., & Potegal, M. (1988). Vasopressin receptor blockade in the anterior hypothalamus suppresses aggression in hamsters. Physiology & Behavior, 44, 235–239CrossRefGoogle ScholarPubMed
Ferris, C. F., Shtiegman, K., & King, J. A. (1998). Voluntary ethanol consumption in male adolescent hamsters increases testosterone and aggression. Physiology & Behavior, 63, 739–744CrossRefGoogle ScholarPubMed
Ferris, C. F., Stolberg, T., & Delville, Y. (1999). Serotonin regulation of aggressive behavior in male golden hamsters (Mesocricetus auratus). Behavioral Neuroscience, 113, 804–815CrossRefGoogle Scholar
Festing, M. F. W. (1958). Hamsters. In Universities Foundation for Animal Welfare (Ed.), The UFAW handbook on the care and management of laboratory animals (4th ed., pp. 242–256). Baltimore: Williams & Wilkins
Frias, J., Torres, J. M., Miranda, M. T., Ruiz, E., & Ortega, E. (2002). Effects of acute alcohol intoxication on pituitary–gonadal axis hormones, pituitary–adrenal axis hormones, beta-endorphin and prolactin in human adults of both sexes. Alcohol and Alcoholism, 37, 169–173CrossRefGoogle ScholarPubMed
Frishknecht, H. R., Seigfreid, B., & Waser, P. G. (1982). Learning of submissive behavior in mice: A new model. Behavioural Processes, 7, 235–245CrossRefGoogle Scholar
Gonzalez Jatuff, A. S., Berastegui, M., Rodriguez, C. I., & Rodriguez Echandia, E. L. (1999). Permanent and transient effects of repeated preweaning stress on social and sexual behaviors of rats. Stress, 3, 97–106CrossRefGoogle ScholarPubMed
Grant, E. C., & Mackintosh, J. H. (1963). A comparison of the social postures of some common laboratory rodents. Behavior, 21, 246–259CrossRefGoogle Scholar
Haller, J., Makara, G. B., Barna, I., Kovacs, K., Nagy, J., & Vecsernyes, M. (1996). Compression of the pituitary stalk elicits chronic increases in CSF vasopressin, oxytocin as well as in social investigation and aggressiveness. Journal of Neuroendocrinology, 8, 361–365CrossRefGoogle ScholarPubMed
Harlow, H. F., Harlow, M. K., & Suomi, S. J. (1971). From thought to therapy: Lessons from a primate laboratory. American Scientist, 59, 538–549Google ScholarPubMed
Harrison, R. J., Connor, D. F., Nowak, C., Nash, K., & Melloni, R. H. Jr. (2000). Chronic anabolic–androgenic steroid treatment during adolescence increases anterior hypothalamic vasopressin and aggression in intact hamsters. Psychoneuroendocrinology, 25, 317–338CrossRefGoogle ScholarPubMed
Higley, J. D., Suomi, S. J., & Linnoila, M. (1991). CSF monamine metabolite concentrations vary according to age, rearing, and sex, and are influenced by the stressor of social separation in rhesus. Psychopharmacology, 103, 551–556CrossRefGoogle Scholar
Holmes, A., Murphy, D. L., & Crawley, J. N. (2002). Reduced aggression in mice lacking the serotonin transporter. Psychopharmacology, 161, 160–167CrossRefGoogle ScholarPubMed
Huhman, K. L., Moore, T. O., Ferris, C. F., Mougey, E. H., & Meyerhoff, J. L. (1991). Acute and repeated exposure to social conflict in male golden hamsters: Increases in plasma POMC-peptides and cortisol and decreases in plasma testosterone. Hormones and Behavior, 25, 206–216CrossRefGoogle ScholarPubMed
Ingersoll, G. (1992). Psychological and social development. In McAnarney, E. R., Kreipe, R. E., Orr, D. P., & Comerci, G. D. (Eds.), Textbook of adolescent medicine (pp. 91–98). Philadelphia: SaundersGoogle Scholar
Ito, T. A., Miller, N., & Pollock, V. E. (1996). Alcohol and aggression: A meta-analysis on the moderating effects of inhibitory cues, triggering events, and self-focused attention. Psychological Bulletin, 120, 60–82CrossRefGoogle ScholarPubMed
Joppa, M. A., Rowe, R. K., & Meisel, R. L. (1997). Effects of serotonin 1A or 1B receptor agonists on social aggression in male and female syrian hamsters. Pharmacology; Biochemistry; and Behavior, 58, 349–353CrossRefGoogle ScholarPubMed
Kia, H. K., Miquel, M. C., Brisorgueil, M. J., Daual, G., Riadm, Elmestikawy, S., Namon, M., & Verge, D. (1996). Immunocytochemical localization of serotonin 1A receptions in the rat central nervous system. J. Comp. Neurol., 271, 3052–3057Google Scholar
Koolhaas, J. M., Moor, E., Hiemstra, Y., & Bohus, B. (1991). The testosterone-dependent vasopressinergic neurons in the medial amygdala and lateral septum: Involvement in social behaviour of male rats. In Jard, S. & Jamison, R. (Eds.), Vasopressin (pp. 213–219). London: John Libbey EurotextGoogle Scholar
Koolhaas, J. M., Brink, T. H. C., Roozendal, B., & Boorsma, F. (1990). Medial amygdala and aggressive behavior: Interaction between testosterone and vasopressin. Aggressive Behaviors, 16, 223–229Google Scholar
Korte, S. M., Meijer, O. C., Kloet, E. R., Buwalda, B., Keijser, J., Sluyter, F. (1996). Enhanced 5-HT1a receptor expression in forebrain regions of aggressive house mice. Brain Research, 736, 338–343CrossRefGoogle ScholarPubMed
Kraemer, G. W., & Clarke, A. S. (1990). The behavioral neurobiology of self-injurious behavior in rhesus monkeys. Progress in Neuro-psychopharmacology & Biological Psychiatry, 14(Suppl), S141–S168CrossRefGoogle ScholarPubMed
Kruesi, M. J., Rapoport, J. L., Hamburger, S., Hibbs, E., & Potter, W. Z. (1990). Cerebrospinal fluid monoamines metabolites, aggression and impulsivity in disruptive behavior disorders of children and adolescents. Archives of General Psychiatry, 47, 419–426CrossRefGoogle Scholar
Landau, I. T. (1975). Light–dark rhythms in aggressive behavior of the male golden hamster. Physiology & Behavior, 14, 767–774CrossRefGoogle ScholarPubMed
Lansford, J. E., Dodge, K. A., Pettit, G. S., Bates, J. E., Crozier, J., & Kaplow, J. (2002). A 12-year prospective study of the long-term effects of early child physical maltreatment on psychological, behavioral, and academic problems in adolescence. Archives of Pediatrics & Adolescent Medicine, 156, 824–830CrossRefGoogle ScholarPubMed
Lerwill, C. J., & Makings, P. (1971). The agonistic behavior of the golden hamster Mesocricetus auratus (Waterhouse). Animal Behaviour, 19, 714–721CrossRefGoogle Scholar
Linnoila, M., Virkkunen, M., Scheinin, M., Nuutila, A., Rimon, R., & Goodwin, F. K. (1983). Low cerebrospinal fluid 5-hydroxyindoleacetic acid concentration differentiates impulsive from nonimpulsive violent behavior. Life Science, 33, 2609–2614CrossRefGoogle ScholarPubMed
Lourie, I. S., Campiglia, P., James, L. R., & Dewitt, J. (1979). Adolescent abuse and neglect: The role of runaway youth programs. Child Today, 8, 27–29Google ScholarPubMed
Luntz, B. K., & Widom, C. S. (1994). Antisocial personality disorder in abused and neglected children gown up. American Journal of Psychiatry, 151, 670–674Google Scholar
McKittrick, C. R., Blanchard, D. C., Blanchard, R. J., McEwen, B. S., Sakai, R. R., (1995). Serotonin receptor binding in a colony model of chronic social stress. Biological Psychiatry, 37, 383–393CrossRefGoogle Scholar
Mehlman, P. T., Higley, J. D., Faucher, I., Lilly, A. A., Taub, D. M., Vickers, J. (1994). Low CSF 5-HIAA concentration and severe aggression and impaired impulse control in nonhuman primates. American Journal of Psychiatry, 151, 1485–1491Google Scholar
Mello, N. K., Mendelson, J. H., Bree, M. P., Ellingboe, J., & Skupny, A. S. T. (1985). The effects of ethanol on luteinizing hormone and testosterone in male macaque monkeys. Journal of Pharmacology and Experimental Therepeutics, 233, 588–596Google ScholarPubMed
Miczek, K. A. (1974). Intraspecies aggrression in rats: Effects of d-amphetamine and chlordiazepoxide. Psychopharmacologia, 39, 275–301CrossRefGoogle ScholarPubMed
Miller, L. L., Whitsett, J. M., Vandenbergh, J. G., & Colby, D. R. (1977). Physical and behavioral aspects of sexual maturation in male golden hamsters. Journal of Comparative Physiology B: Journal of Comparative Psychology, 91, 245–259CrossRefGoogle ScholarPubMed
Miller, M. A., Urban, J. H., & Dorsa, D. M. (1989). Steroid dependency of vasopressin neurons in the bed nucleus of the stria terminalis by in situ hybridization. Endocrinology, 125, 2335–2340CrossRefGoogle ScholarPubMed
Molina, V., Ciesielski, L., Gobailles, S., Insel, F., & Mandel, P. (1987). Inhibition of mouse killing behavior by serotonin mimetic drugs: Effects of partial alteration of serotonin neurotransmission. Pharmacology, Biochemistry; and Behaviors, 27, 123–131CrossRefGoogle Scholar
Mos, J., Olivier, B., Poth, M., & Aken, H. (1992). The effects of intraventricular administration of eltoprazine 1-(3-trifluoromethylphenyl)piperazine hydrochloride and 8-hydroxy-2-(di-n-propylamino)tetralin e on resident intruder aggression in the rat. European Journal of Pharmacology, 212, 295–298CrossRefGoogle Scholar
Ogren, S. O., Holm, A. C., Renyi, A. L., & Ross, S. B. (1980). Anti-aggressive effect of zimelidine in isolated mice. Acta Pharmacologica Toxicologica, 47, 71–74CrossRefGoogle ScholarPubMed
Olivier, B., Mos, J., Heyden, J., & Hartog, J. (1989). Serotonergic modulation of social interactions in isolated male mice. Psychopharmacology, 97, 154–156CrossRefGoogle ScholarPubMed
Payne, A. P. (1973). A comparison of the aggressive behavior of isolated intact and castrated male golden hamsters towards intruders introduced into the home cage. Physiology & Behavior, 10, 629–631CrossRefGoogle ScholarPubMed
Payne, A. P., & Swanson, H. H. (1972). The effect of sex hormones on the agonistic behavior of the male golden hamster (Mesocricetus auratus Waterhouse). Physiology, Behavior, 8, 687–691CrossRefGoogle Scholar
Potegal, M., & Ferris, C. F. (1990). Intraspecific aggression in male hamsters is inhibited by vasopressin receptor antagonists. Aggressive Behavior, 15, 311–320CrossRefGoogle Scholar
Potegal, M., Huhman, K., Moore, T., & Meyerhoff, J. (1993). Conditioned defeat in the Syrian golden hamster (Mesocricetus auratus). Behavioral and Neural Biology, 60, 93–102CrossRefGoogle Scholar
Rose, R. M., Berstein, I. S., & Gordon, T. P. (1975). Consequences of social conflict on plasma testosterone levels in rhesus monkeys. Psychosomatic Medicine, 37, 50–61CrossRefGoogle ScholarPubMed
Royalty, J. (1990). Effects of prenatal ethanol on juvenile play-fighting and postpubertal aggression in rats. Psychological Reports, 66, 551–560CrossRefGoogle ScholarPubMed
Sanchez, C., & Hyttel, J. (1994). Isolation-induced aggression in mice: Effects of 5-hydroxytryptamine uptake inhibitors and involvement of postsynaptic 5-HT1A receptors. European Journal of Pharmacology, 264, 241–247CrossRefGoogle ScholarPubMed
Sanson, A., Smart, D., Prior, M., & Oberklaid, F. (1993). Precursors of hyperactivity and aggression. Journal of the American Academy of Child and Adolescent Psychiatry, 32, 1207–1216CrossRefGoogle ScholarPubMed
Saudou, F., Amara, D. J., Dierich, A., LeMeur, M., Ramboz, S., Segu, A. (1994). Enhanced aggressive behavior in mice lacking 5-HT1B receptor. Science 265, 1875–1878CrossRefGoogle ScholarPubMed
Schellenbach, C. J., & Guerney, L. F. (1987). Identification of adolescent abuse and future intervention prospects. J Adol Abuse, 10, 1–2CrossRefGoogle ScholarPubMed
Schneider, M. L., Moore, C. F., Kraimer, G. W., Roberts, A. D., & DeJesus, O. T. (2002). The impact of prenatal stress, fetal alcohol exposure, or both on development: Perspectives from a primate model. Psychoneuroendocrinology, 27, 285–298CrossRefGoogle ScholarPubMed
Schoenfeld, T. A., & Leonard, C. M. (1985). Behavioral development in the Syrian golden hamster. In Siegel, H. I. (Ed.), The hamster: Reproduction and behavior. New York: PlenumCrossRefGoogle Scholar
Sijbesma, H., Schipper, J. J., Kloet, E. R., Mos, J., Aken, H., & Olivier, B. (1991). Postsynaptic 5-HT1 receptors and offensive aggression in rats: A combined behavioral and autoradiographic study with eltoprazine. Pharmacology Biochemistry, and Behavior, 38, 447–458CrossRefGoogle ScholarPubMed
Stribley, J. M., & Carter, C. S. (1999). Developmental exposure to vasopressin increases aggression in adult prairie voles. Proceedings of the National Academy of Science, USA, 96, 12601–12604CrossRefGoogle ScholarPubMed
Szot, P., & Dorsa, D. M. (1994). Expression of cytoplasmic and nuclear vasopressin RNA following castration and testosterone replacement: Evidence for transcriptional regulation. Molecular and Cellular Neurosciences, 5, 1–10CrossRefGoogle ScholarPubMed
Vandenbergh, J. G. (1971). The effects of gonadal hormones on the aggressive behaviour of adult golden hamsters. Animal Behavior, 19, 589–594CrossRefGoogle ScholarPubMed
Poll, N. E., DeJonge, F., Oyen, H. G., & Pelt, J. (1982). Aggressive behaviour in rats: Effects of winning or losing on subsequent aggressive interactions. Behavior Processes, 7, 143–155CrossRefGoogle ScholarPubMed
Vegt, B. J., Boer, S. F., Bulwalda, B., Ruiter, A. J. H., Jong, J. G., & Koolhaas, J. M. (2001). Enhanced sensitivity of postsynaptic serotonin-1A receptors in rats and mice with high trait aggression. Physiology & Behavior, 74, 205–211CrossRefGoogle ScholarPubMed
Vergnes, M., Depaulis, A., Boehrer, A., & Kempf, E. (1988). Selective increase of offensive behavior in the rat following intrahypothalamic 5,7-DHT-induced serotonin depletion. Behavioural Brain Research, 29, 85–91CrossRefGoogle Scholar
Villalba, C., Boyle, P. A., Caliguri, E. J., & Vries, G. J. (1997). Effects of the selective serotonin reuptake inhibitor fluoxetine on social behaviors in male and female prairie voles (Microtus ochrogaster). Hormones and Behavior, 32, 184–191CrossRefGoogle Scholar
Vomachka, A. J., & Greenwald, G. S. (1979). The development of gonadotropin and steroid hormone patterns in male and female hamsters from birth to puberty. Endocrinology, 105, 960–966CrossRefGoogle ScholarPubMed
Whitsett, J. M. (1975). The development of aggressive and marking behavior in intact and castrated male hamsters. Hormones and Behavior, 6, 47–57CrossRefGoogle ScholarPubMed
Williams, J. (1982). Influence of shock controllability by dominant rats on subsequent attack and defensive behaviors toward colony intruders. Animal Learning & Behavior 10, 305–314CrossRefGoogle Scholar
Williams, J., & Lierle, D. M. (1988). Effects of repeated defeat by a dominant conspecific on subsequent pain sensitivity, open-field activity, and escape learning. Animal Learning & Behavior, 16, 477–485CrossRefGoogle Scholar
Winslow, J., Hastings, N., Carter, C., Harbaugh, C., & Insel, T. (1993). A role for central vasopressin in pair bonding in monogamous prairie voles. Nature, 365, 545–548CrossRefGoogle ScholarPubMed
Yodyingyuad, U., Riva, C., Abbott, D. H., Herbert, J., & Keverne, E. B. (1985). Relationship between dominance hierarchy, cerebrospinal fluid levels of amine transmitter metabolites (5-hydroxyindole acetic acid and homovanillic acid) and plasma cortisol in monkeys. Neuroscience, 16, 851–858CrossRefGoogle ScholarPubMed
Zubieta, J. A., & Alessi, N. E. (1992). Acute and chronic administration of trazodone in the treatment of disruptive behavior disorders in children. Journal of Clinical Psychopharmacology, 12, 346–351CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×