Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-12T15:22:01.005Z Has data issue: false hasContentIssue false

Chapter 9 - Differential diagnosis III: osteogenesis imperfecta

from Section I - Skeletal trauma

Published online by Cambridge University Press:  05 September 2015

Deborah Krakow
Affiliation:
Professor of Orthopaedic Surgery, Human Genetics and Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
Ralph S. Lachman
Affiliation:
Pediatric Radiologist at Harbor/UCLA Medical Center, International Skeletal Dysplasia Registry at Cedars-Sinai Medical Center and Professor of Radiology and Pediatrics at the University of California, Los Angeles School of Medicine, Los Angeles, California, USA
Paul K. Kleinman
Affiliation:
Department of Radiology, Boston Children’s Hospital, and Harvard Medical School, Boston, Massachusetts, USA
Paul K. Kleinman
Affiliation:
Children's Hospital Boston
Get access

Summary

Osteogenesis imperfecta

Of the many conditions that may be confused with child abuse, osteogenesis imperfecta (OI) deserves special consideration. Although this is a relatively rare disorder (1 in 20,000 births), cases of OI have been initially confused with inflicted skeletal injury. As will be apparent from the discussion in this chapter, such confusion is avoidable in most cases if a thorough clinical, radiologic, and molecular evaluation is carried out. A heightened public awareness of OI has created considerable controversy and has added a new dimension to the diagnostic imaging of suspected child abuse (1–13).

In recent years, many cases of children with features of inflicted trauma have had the flag of the OI defense raised by the children’s caretakers and their attorneys, as well as the plaintiffs’ legal representatives in other civil litigations. It has been well known since the earliest description of OI by Ekman in 1788 and Axmann’s (his own and his family’s) description in 1831 that fractures with minimal trauma are an important part of this disease complex (14, 15).

To differentiate OI from child abuse, it is necessary to understand the disease not only radiologically and clinically, but also appreciate the distinct histologic, biochemical, and molecular abnormalities associated with this important condition.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Greeley, CS, Donaruma-Kwoh, M, Vettimattam, M, Lobo, C, Williard, C, Mazur, L. Fractures at diagnosis in infants and children with osteogenesis imperfecta. J Pediatr Orthop. 2013;33(1):32–6.CrossRefGoogle ScholarPubMed
Egge, MK, Berkowitz, CD. Controversies in the evaluation of young children with fractures. Adv Pediatr. 2010;57(1):63–83.CrossRefGoogle ScholarPubMed
Bitton, A, Yialamas, M, Levy, BD, Katz, JT, Loscalzo, J. Clinical problem-solving. A fragile balance. N Engl J Med. 2009;361(1):74–9.CrossRefGoogle ScholarPubMed
Cabral, WA, Milgrom, S, Letocha, AD, Moriarty, E, Marini, JC. Biochemical screening of type I collagen in osteogenesis imperfecta: detection of glycine substitutions in the amino end of the alpha chains requires supplementation by molecular analysis. J Med Genet. 2006;43(8):685–90.CrossRefGoogle ScholarPubMed
Alvarez, R, Garcia, R, Luis, J, Lopez, J, Gutierrez, A, Gonzalez, M, et al. [Bone mineral density in children with osteogenesis imperfecta.]Rev Esp Med Nucl. 2003;22(4):224–8.Google Scholar
Lapillonne, A, Travers, R, DiMaio, M, Salle, BL, Glorieux, FH. Urinary excretion of cross-linked N-telopeptides of type 1 collagen to assess bone resorption in infants from birth to 1 year of age. Pediatrics. 2002;110(1 Pt. 1):105–9.CrossRefGoogle ScholarPubMed
Sewell, RD, Steinberg, M. Chest compressions in an infant with osteogenesis imperfecta type II: No new rib fractures. Pediatrics. 2000;106(5):e71.CrossRefGoogle Scholar
Blacksin, MF, Pletcher, BA, David, M. Osteogenesis imperfecta with joint contractures: bruck syndrome. Pediatr Radiol. 1998;28(2):117–19.CrossRefGoogle ScholarPubMed
Wardinsky, T, Vizcarrondo, F, Cruz, B. The mistaken diagnosis of child abuse: a three-year USAF medical center analysis and literature review. Mil Med. 1995;160(1):15–20.CrossRefGoogle ScholarPubMed
Shaw, DG, Hall, CM, Carty, H. Osteogenesis imperfecta: the distinction from child abuse and the recognition of a variant form. Am J Med Genet. 1995;56(1):116–18.CrossRefGoogle ScholarPubMed
Minnis, H, Ramsay, R, Ewije, P, Kumar, C. Osteogenesis imperfecta and non-accidental injury. Br J Psychiatry. 1995;166(6):824–5.CrossRefGoogle ScholarPubMed
Steiner, R, Pepin, M, Byers, PH. Studies of collagen synthesis and structure in the differentiation of child abuse from osteogenesis imperfecta. J Pediatr. 1996;128(4):542–7.CrossRefGoogle ScholarPubMed
Renaud, A, Aucourt, J, Weill, J, Bigot, J, Dieux, A, Devisme, L, et al. Radiographic features of osteogenesis imperfecta. Insights Imaging. 2013;4(4):417–29.CrossRefGoogle ScholarPubMed
Cole, ZA, Gale, CR, Javaid, MK, Robinson, SM, Law, C, Boucher, BJ, et al. Maternal dietary patterns during pregnancy and childhood bone mass: a longitudinal study. J Bone Miner Res. 2009;24(4):663–8.CrossRefGoogle ScholarPubMed
Marlowe, A, Pepin, MG, Byers, PH. Testing for osteogenesis imperfecta in cases of suspected non-accidental injury. J Med Genet. 2002;39(6):382–6.CrossRefGoogle ScholarPubMed
Sillence, DO, Rimoin, DL. Classification of osteogenesis imperfecta. Lancet. 1978;1(8072):1041–2.CrossRefGoogle Scholar
Van Dijk, FS, Pals, G, Van Rijn, RR, Nikkels, PG, Cobben, JM. Classification of osteogenesis imperfecta revisited. Eur J Med Genet. 2010;53(1):1–5.CrossRefGoogle ScholarPubMed
Marini, JC, Blissett, AR. New genes in bone development: what’s new in osteogenesis imperfecta. J Clin Endocrinol Metab. 2013;98(8):3095–103.CrossRefGoogle ScholarPubMed
Forlino, A, Marini, JC. Osteogenesis imperfecta: prospects for molecular therapeutics. Mol Genet Metab. 2000;71(1–2):225–32.CrossRefGoogle ScholarPubMed
Taitz, LS. Child abuse and metabolic bone disease: are they often confused?BMJ. 1991;302(6787):1244.CrossRefGoogle ScholarPubMed
Rohrbach, M, Giunta, C. Recessive osteogenesis imperfecta: clinical, radiological, and molecular findings. Am J Med Genet C Semin Med Genet. 2012;160C(3):175–89.CrossRefGoogle ScholarPubMed
Rauch, F, Moffatt, P, Cheung, M, Roughley, P, Lalic, L, Lund, AM, et al. Osteogenesis imperfecta type V: marked phenotypic variability despite the presence of the IFITM5 c. –14C>T mutation in all patients. J Med Genet. 2013;50(1):21–4.CrossRefGoogle ScholarPubMed
Semler, O, Garbes, L, Keupp, K, Swan, D, Zimmermann, K, Becker, J, et al. A mutation in the 5ʹ-UTR of IFITM5 creates an in-frame start codon and causes autosomal-dominant osteogenesis imperfecta type V with hyperplastic callus. Am J Hum Genet. 2012;91(2):349–57.CrossRefGoogle ScholarPubMed
Sillence, DO, Senn, A, Danks, DM. Genetic heterogeneity in osteogenesis imperfecta. J Med Genet. 1979;16(2):101–16.CrossRefGoogle ScholarPubMed
Leidig-Bruckner, G, Grauer, A. Images in clinical medicine. Blue sclerae in osteogenesis imperfecta. N Engl J Med. 1998;339(14):966.CrossRefGoogle ScholarPubMed
Carr, AJ, Chiodo, AA, Hilton, JM, Chow, CW, Hockey, A, Cole, WG. The clinical features of Ehlers–Danlos syndrome type VIIB resulting from a base substitution at the splice acceptor site of intron 5 of the COL1A2 gene. J Med Genet. 1994;31(4):306–11.CrossRefGoogle ScholarPubMed
Byers, PH, Murray, ML. Heritable collagen disorders: the paradigm of the Ehlers–Danlos syndrome. J Invest Dermatol. 2012;132(E1):E6–11.CrossRefGoogle ScholarPubMed
Santos, F, McCall, AA, Chien, W, Merchant, S. Otopathology in osteogenesis imperfecta. Otol Neurotol. 2012;33(9):1562–6.CrossRefGoogle ScholarPubMed
Teixeira, CS, Santos Felippe, MC, Tadeu Felippe, W, Silva-Sousa, YT, Sousa-Neto, MD. The role of dentists in diagnosing osteogenesis imperfecta in patients with dentinogenesis imperfecta. J Am Dent Assoc. 2008;139(7):906–14; quiz 994.CrossRefGoogle ScholarPubMed
Kim, JW, Simmer, JP. Hereditary dentin defects. J Dent Res. 2007;86(5):392–9.CrossRefGoogle ScholarPubMed
Baumgartner, D, Gassner, I, Sperl, W, Salzer-Kuntschik, M, Judmaier, W, Steinmann, B. Calvarial “doughnut lesions”: clinical spectrum of the syndrome, report on a case, and review of the literature. Am J Med Genet. 2001;99(3):238–43.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Moog, U, Maroteaux, P, Schrander-Stumpel, CT, van Ooij, A, Schrander, JJ, Fryns, JP. Two sibs with an unusual pattern of skeletal malformations resembling osteogenesis imperfecta: a new type of skeletal dysplasia?J Med Genet. 1999;36(11):856–8.Google ScholarPubMed
Unger, S, Antoniazzi, F, Brugnara, M, Alanay, Y, Caglayan, A, Lachlan, K, et al. Clinical and radiographic delineation of odontochondrodysplasia. Am J Med Genet A. 2008;146A(6):770–8.CrossRefGoogle ScholarPubMed
Lachman, RS. Taybi and Lachman’s Radiology of Syndromes, Metabolic Disorders and Skeletal Dysplasias, 5th edn. St. Louis, MO: Mosby; 2007.Google Scholar
Byers, PH, Pyott, SM. Recessively inherited forms of osteogenesis imperfecta. Annu Rev Genet. 2012;46:475–97.CrossRefGoogle ScholarPubMed
Puig-Hervas, MT, Temtamy, S, Aglan, M, Valencia, M, Martinez-Glez, V, Ballesta-Martinez, MJ, et al. Mutations in PLOD2 cause autosomal-recessive connective tissue disorders within the Bruck syndrome–osteogenesis imperfecta phenotypic spectrum. Hum Mutat. 2012;33(10):1444–9.CrossRefGoogle ScholarPubMed
Schwarze, U, Cundy, T, Pyott, SM, Christiansen, HE, Hegde, MR, Bank, RA, et al. Mutations in FKBP10, which result in Bruck syndrome and recessive forms of osteogenesis imperfecta, inhibit the hydroxylation of telopeptide lysines in bone collagen. Hum Mol Genet. 2013;22(1):1–17.CrossRefGoogle ScholarPubMed
Kelley, BP, Malfait, F, Bonafe, L, Baldridge, D, Homan, E, Symoens, S, et al. Mutations in FKBP10 cause recessive osteogenesis imperfecta and Bruck syndrome. J Bone Miner Res. 2011;26(3):666–72.CrossRefGoogle ScholarPubMed
Aslam, SI, Sivakumar, S. A case report of a rare type of skeletal dysplasia diagnosed by a common blood test. Arch Dis Child. 2011;96(Suppl. 1):A77.CrossRefGoogle Scholar
Matsushita, M, Kitoh, H, Michigami, T, Tachikawa, K, Ishiguro, N. Benign prenatal hypophosphatasia: a treatable disease not to be missed. Pediatr Radiol. 2014;44(3):340–3.CrossRefGoogle Scholar
Marini, JC, Forlino, A, Cabral, WA, Barnes, AM, San Antonio, JD, Milgrom, S, et al. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat. 2007;28(3):209–21.CrossRefGoogle Scholar
Pyott, SM, Pepin, MG, Schwarze, U, Yang, K, Smith, G, Byers, PH. Recurrence of perinatal lethal osteogenesis imperfecta in sibships: parsing the risk between parental mosaicism for dominant mutations and autosomal recessive inheritance. Genet Med. 2011;13(2):125–30.CrossRefGoogle ScholarPubMed
Rimoin, DL. Histopathology and ultrastructure of cartilage in the chondrodystrophies. Birth Defects Orig Artic Ser. 1974;10(9):1–18.Google ScholarPubMed
Khoury, DJ, Szalay, EA. Bone mineral density correlation with fractures in nonambulatory pediatric patients. J Pediatr Orthop. 2007;27(5):562–6.CrossRefGoogle ScholarPubMed
Ben Amor, IM, Glorieux, FH, Rauch, F. Genotype–phenotype correlations in autosomal dominant osteogenesis imperfecta. J Osteoporos. 2011;2011:540178.Google ScholarPubMed
Rauch, F, Lalic, L, Roughley, P, Glorieux, FH. Genotype–phenotype correlations in nonlethal osteogenesis imperfecta caused by mutations in the helical domain of collagen type I. Eur J Hum Genet. 2010;18(6):642–7.CrossRefGoogle ScholarPubMed
Tedeschi, E, Antoniazzi, F, Venturi, G, Zamboni, G, Tato, L. Osteogenesis imperfecta and its molecular diagnosis by determination of mutations of type I collagen genes. Pediatr Endocrinol Rev. 2006;4(1):40–6.Google ScholarPubMed
Willing, MC, Deschenes, SP, Slayton, RL, Roberts, EJ. Premature chain termination is a unifying mechanism for COL1A1 null alleles in osteogenesis imperfecta type I cell strains. Am J Hum Genet. 1996;59(4):799–809.Google ScholarPubMed
Bateman, JF, Lamande, SR, Dahl, HH, Chan, D, Mascara, T, Cole, WG. A frameshift mutation results in a truncated nonfunctional carboxyl-terminal pro alpha 1(I) propeptide of type I collagen in osteogenesis imperfecta. J Biol Chem. 1989;264(19):10,960–4.Google Scholar
Gahagan, S, Rimsza, ME. Child abuse and osteogenesis imperfecta: how can we tell?Pediatrics. 1991;88:987–92.Google ScholarPubMed
Paterson, CR, Mole, PA. Bone density in osteogenesis imperfecta may well be normal. Postgrad Med J. 1994;70:104–7.CrossRefGoogle ScholarPubMed
Dent, JA, Paterson, CR. Fractures in early childhood: OI or child abuse?J Pediatr Orthop. 1991;11:184–6.CrossRefGoogle ScholarPubMed
Bulloch, B, Schubert, CJ, Brophy, PD, Johnson, N, Reed, MH, Shapiro, RA. Cause and clinical characteristics of rib fractures in infants. Pediatrics. 2000;105(4):E48.CrossRefGoogle ScholarPubMed
Marti, B, Sirinelli, D, Maurin, L, Carpentier, E. Wormian bones in a general paediatric population. Diagn Interv Imaging. 2013;94(4):428–32.CrossRefGoogle Scholar
Semler, O, Cheung, MS, Glorieux, FH, Rauch, F. Wormian bones in osteogenesis imperfecta: correlation to clinical findings and genotype. Am J Med Genet A. 2010;152A(7):1681–7.CrossRefGoogle ScholarPubMed
Cremin, B, Goodman, H, Spranger, J, Beighton, P. Wormian bones in osteogenesis imperfecta and other disorders. Skeletal Radiol. 1982;8(1):35–8.CrossRefGoogle ScholarPubMed
Parmar, CD, Sinha, AK, Hayhurst, C, May, PL, O’Brien, DF. Epidural hematoma formation following trivial head trauma in a child with osteogenesis imperfecta. Case report. J Neurosurg. 2007;106(1 Suppl.):57–60.Google Scholar
Tsipouras, P, Barabas, G, Matthews, WS. Neurologic correlates of osteogenesis imperfecta. Arch Neurol. 1986;43(2):150–2.CrossRefGoogle ScholarPubMed
Khandanpour, N, Connolly, DJA, Raghavan, A, Griffiths, PD, Hoggard, N. Craniospinal abnormalities and neurologic complications of osteogenesis imperfecta: imaging overview. Radiographics. 2012;32(7):2101–12.CrossRefGoogle ScholarPubMed
Burchardt, AJ, Wagner, AA, Basse, P. Hyperplastic callus formation in osteogenesis imperfecta. A case report. Acta Radiol. 1994;35(5):426–8.CrossRefGoogle ScholarPubMed
Ramirez, N, Vilella, FE, Colon, M, Flynn, JM. Osteogenesis imperfecta and hyperplastic callus formation in a family: a report of three cases and a review of the literature. J Pediatr Orthop B. 2003;12(2):88–96.CrossRefGoogle Scholar
Folkestad, L, Hald, JD, Hansen, S, Gram, J, Langdahl, B, Abrahamsen, B, et al. Bone geometry, density, and microarchitecture in the distal radius and tibia in adults with osteogenesis imperfecta type I assessed by high-resolution pQCT. J Bone Miner Res. 2012;27(6):1405–12.CrossRefGoogle ScholarPubMed
Herman, TE, McAlister, WH. Inherited diseases of bone density in children. Radiol Clin North Am. 1991;29(1):149–64.Google ScholarPubMed
Miller, ME, Hangartner, TN. Bone density measurements by computed tomography in osteogenesis imperfecta type I. Osteoporos Int. 1999;9(5):427–32.CrossRefGoogle ScholarPubMed
Miller, M, Hangartner, TN. CT bone density in a case of osteogenesis imperfecta – type I (OI) presenting with suspected child abuse. Pediatr Res. 1998;43(4):116A [Abstract].CrossRefGoogle Scholar
Davie, MW, Haddaway, MJ. Bone mineral content and density in healthy subjects and in osteogenesis imperfecta. Arch Dis Child. 1994;70(4):331–4.CrossRefGoogle ScholarPubMed
Engelke, K, Libanati, C, Fuerst, T, Zysset, P, Genant, HK. Advanced CT based in vivo methods for the assessment of bone density, structure, and strength. Curr Osteoporos Rep. 2013;11(3):246–55.CrossRefGoogle ScholarPubMed
Kocher, MS, Dichtel, L. Osteogenesis imperfecta misdiagnosed as child abuse. J Pediatr Orthop. 2011;20(6):440–3.CrossRefGoogle Scholar
Knight, DJ, Bennet, GC. Nonaccidental injury in osteogenesis imperfecta: a case report. J Pediatr Orthop. 1990;10(4):542–4.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Differential diagnosis III: osteogenesis imperfecta
    • By Deborah Krakow, Professor of Orthopaedic Surgery, Human Genetics and Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA, Ralph S. Lachman, Pediatric Radiologist at Harbor/UCLA Medical Center, International Skeletal Dysplasia Registry at Cedars-Sinai Medical Center and Professor of Radiology and Pediatrics at the University of California, Los Angeles School of Medicine, Los Angeles, California, USA, Paul K. Kleinman, Department of Radiology, Boston Children’s Hospital, and Harvard Medical School, Boston, Massachusetts, USA
  • Edited by Paul K. Kleinman
  • Book: Diagnostic Imaging of Child Abuse
  • Online publication: 05 September 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9780511862366.017
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Differential diagnosis III: osteogenesis imperfecta
    • By Deborah Krakow, Professor of Orthopaedic Surgery, Human Genetics and Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA, Ralph S. Lachman, Pediatric Radiologist at Harbor/UCLA Medical Center, International Skeletal Dysplasia Registry at Cedars-Sinai Medical Center and Professor of Radiology and Pediatrics at the University of California, Los Angeles School of Medicine, Los Angeles, California, USA, Paul K. Kleinman, Department of Radiology, Boston Children’s Hospital, and Harvard Medical School, Boston, Massachusetts, USA
  • Edited by Paul K. Kleinman
  • Book: Diagnostic Imaging of Child Abuse
  • Online publication: 05 September 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9780511862366.017
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Differential diagnosis III: osteogenesis imperfecta
    • By Deborah Krakow, Professor of Orthopaedic Surgery, Human Genetics and Obstetrics and Gynecology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA, Ralph S. Lachman, Pediatric Radiologist at Harbor/UCLA Medical Center, International Skeletal Dysplasia Registry at Cedars-Sinai Medical Center and Professor of Radiology and Pediatrics at the University of California, Los Angeles School of Medicine, Los Angeles, California, USA, Paul K. Kleinman, Department of Radiology, Boston Children’s Hospital, and Harvard Medical School, Boston, Massachusetts, USA
  • Edited by Paul K. Kleinman
  • Book: Diagnostic Imaging of Child Abuse
  • Online publication: 05 September 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9780511862366.017
Available formats
×