Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-tsvsl Total loading time: 0 Render date: 2024-07-27T16:15:53.903Z Has data issue: false hasContentIssue false

31 - Novel Approaches to Treatment

from SECTION EIGHT - NEW APPROACHES TO THE TREATMENT OF HEMOGLOBINOPATHIES AND THALASSEMIA

Published online by Cambridge University Press:  03 May 2010

Martin H. Steinberg
Affiliation:
Boston University
Bernard G. Forget
Affiliation:
Yale University, Connecticut
Douglas R. Higgs
Affiliation:
MRC Institute of Molecular Medicine, University of Oxford
David J. Weatherall
Affiliation:
Albert Einstein College of Medicine, New York
Get access

Summary

INTRODUCTION

Sickle cell disease and β thalassemia should be ideal genetic disorders for which to design specific therapies at the cellular, protein, or gene levels. First, normal and abnormal differentiated cells, bone marrow precursors, progenitors, and hematopoietic stem cells are easily obtained for ex vivo studies. Second, specific mutations of the β hemoglobin gene have been characterized; the abnormal structure of sickled hemoglobin (HbS) detailed at atomic resolution is available, the secondary cellular defects and, beyond the erythrocyte itself, the interactions of the defective erythrocytes with other blood or vascular components are better understood. Third, mouse models are available for in vivo evaluation of new therapies. Despite a detailed understanding of the genetics, molecular biology, and biochemistry of HbS and β thalassemia and their effects on the host erythrocyte, the pathogenesis of the organ and vascular dysfunctions observed in both sickle cell disease and β thalassemia remain incompletely understood and likely involve many complex and heterogeneous steps.

The complex pathophysiology of sickle cell disease, as detailed in earlier chapters, involves erythrocyte dehydration and interactions of sickle erythrocytes, leukocytes and platelets with the endothelium, and hemolysis, among many other factors. Severity of disease differs significantly among patients, whereas the HbS mutation is common to all patients (Chapter 27). Therefore, the original idea that a single pathophysiological mechanism, whose basis is polymerization of deoxygenated HbS that leads to sickling, is inadequate to explain the myriad of clinical variations.

Type
Chapter
Information
Disorders of Hemoglobin
Genetics, Pathophysiology, and Clinical Management
, pp. 755 - 773
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Elion, JE, Brun, M, Odievre, MH, Lapoumeroulie, CL, Krishnamoorthy, R. Vaso-occlusion in sickle cell anemia: role of interactions between blood cells and endothelium. Hematol J. 2004;Suppl 3:S195–S198.CrossRefGoogle ScholarPubMed
Lee, K, Gane, P, Roudot-Thoraval, F, et al. The nonexpression of CD36 on reticulocytes and mature red blood cells does not modify the clinical course of patients with sickle cell anemia. Blood. 2001;98:966–971.CrossRefGoogle Scholar
Steinberg, MH, Brugnara, C. Developing treatment for sickle cell disease. Expert Opin Invest Drugs. 2002;11:645–659.Google ScholarPubMed
Vichinsky, E. New therapies in sickle cell disease. Lancet. 2002;360:629–631.CrossRefGoogle ScholarPubMed
Dean, J, Schechter, AN. Sickle-cell anemia:molecular and cellular bases of therapeutic approaches. N Engl J Med. 1978;299:752–763.CrossRefGoogle ScholarPubMed
Beutler, E, Mikus, BJ. The effect of sodium nitrite and para-aminopropriophenone administration on blood methemoglobin levels and red blood cell survival. Blood. 1961;18: 455–467.Google ScholarPubMed
Sirs, JA. The use of carbon monoxide to prevent sickle-cell formation. Lancet. 1963;1:971–972.CrossRefGoogle ScholarPubMed
Murayama, M. Molecular mechanism of red cell “sickling.”Science. 1966;153:145–149.CrossRefGoogle ScholarPubMed
,Cooperative Urea Trials Group. Treatment of sickle cell crisis with urea in invert sugar. A controlled trial. Cooperative urea trials group. JAMA. 1974;228:1125–1128.CrossRefGoogle Scholar
Cerami, A, Manning, JM. Potassium cyanate as an inhibitor of the sickling of erythrocytes in vitro. Proc Natl Acad Sci USA. 1971;68:1180–1183.CrossRefGoogle ScholarPubMed
Castro, O, Brambilla, DJ, Thorington, B, et al. The acute chest syndrome in sickle cell disease:incidence and risk factors. The Cooperative Study of Sickle Cell Disease. Blood. 1994;84:643–649.Google ScholarPubMed
Benesch, RE, Kwong, S, Benesch, R. The effects of alpha chain mutations cis and trans to the β6 mutation on the polymerization of sickle cell haemoglobin. Nature. 1982;299:231–234.CrossRefGoogle ScholarPubMed
Dykes, G, Crepeau, RH, Edelstein, SJ. Three-dimensional reconstruction of the fibres of sickle cell haemoglobin. Nature. 1978;272:506–510.CrossRefGoogle ScholarPubMed
Nagel, RL, Johnson, J, Bookchin, RM, et al. Beta-chain contact sites in the haemoglobin S polymer. Nature. 1980;283:832–834.CrossRefGoogle ScholarPubMed
Perutz, RR, Liquori, AM, Eirich, F. X-ray and solubility studies of the haemoglobin of sickle-cell anaemia patients. Nature. 1951;167:929–931.CrossRefGoogle ScholarPubMed
Wishner, BC, Ward, KB, Lattman, EE, Love, WE. Crystal structure of sickle-cell deoxyhemoglobin at 5 A resolution. J Mol Biol. 1975;98:179–194.CrossRefGoogle ScholarPubMed
Fung, LW, Ho, C, Roth, EF, Nagel, RL. The alkylation of hemoglobin S by nitrogen mustard. High resolution proton nuclear magnetic resonance studies. J Biol Chem. 1975;250:4786–4789.Google ScholarPubMed
Abraham, EC, Stallings, M, Abraham, A, Garbutt, GJ. Modification of sickle hemoglobin by acetaldehyde and its effect on oxygenation, gelation and sickling. Biochim Biophys Acta. 1982;705:76–81.CrossRefGoogle ScholarPubMed
Acharya, AS, Manning, JM. Reactivity of the amino groups of carbonmonoxyhemoglobin S with glyceraldehyde. J Biol Chem. 1980;255:1406–1412.Google ScholarPubMed
Benesch, R, Benesch, RE, Edalji, R, Suzuki, T. 5′-deoxypyridoxal as a potential anti-sickling agent. Proc Natl Acad Sci USA. 1977;74:1721–1723.CrossRefGoogle ScholarPubMed
Zaugg, RH, Walder, JA, Klotz, IM. Schiff base adducts of hemoglobin. Modifications that inhibit erythrocyte sickling. J Biol Chem. 1977;252:8542–8548.Google ScholarPubMed
Seetharam, R, Manning, JM, Acharya, AS. Specific modification of the carboxyl groups of hemoglobin S. J Biol Chem. 1983;258:14810–14815.Google ScholarPubMed
Garel, MC, Domenget, C, Caburi-Martin, J, Prehu, C, Galacteros, F, Beuzard, Y. Covalent binding of glutathione to hemoglobin. I. Inhibition of hemoglobin S polymerization. J Biol Chem. 1986;261:14704–14709.Google ScholarPubMed
Chao, TL, Berenfeld, MR, Gabuzda, TG. Inhibition of sickling by methyl acetimidate. FEBS Lett. 1976;62:57–59.CrossRefGoogle ScholarPubMed
Chatterjee, R, Walder, RY, Arnone, A, Walder, JA. Mechanism for the increase in solubility of deoxyhemoglobin S due to cross-linking the beta chains between lysine-82 beta 1 and lysine-82 beta 2. Biochemistry. 1982;21:5901–5909.CrossRefGoogle Scholar
Keidan, AJ, Franklin, IM, White, RD, Joy, M, Huehns, ER, Stuart, J. Effect of BW12C on oxygen affinity of haemoglobin in sickle-cell disease. Lancet. 1986;1:831–834.CrossRefGoogle ScholarPubMed
Philip, PA, Thompson, CH, Carmichael, J, et al. A phase I study of the left-shifting agent BW12C79 plus mitomycin C and the effect on the skeletal muscle metabolism using 31P magnetic resonance spectroscopy. Cancer Res. 1993;53:5649–5653.Google ScholarPubMed
Wireko, FC, Abraham, DJ. X-ray diffraction study of the binding of the antisickling agent 12C79 to human hemoglobin. Proc Natl Acad Sci USA. 1991;88:2209–2211.CrossRefGoogle ScholarPubMed
Trudel, M, Paepe, ME, Chretien, N, et al. Sickle cell disease of transgenic SAD mice. Blood. 1994;84:3189–3197.Google ScholarPubMed
Arya, R, Rolan, PE, Wootton, R, Posner, J, Bellingham, AJ. Tucaresol increases oxygen affinity and reduces haemolysis in subjects with sickle cell anaemia. Br J Haematol. 1996;93: 817–821.CrossRefGoogle ScholarPubMed
Chen, H, Hall, S, Heffernan, B, Thompson, NT, Rogers, MV, Rhodes, J. Convergence of Schiff base costimulatory signaling and TCR signaling at the level of mitogen-activated protein kinase ERK2. J Immunol. 1997;159:2274–2281.Google ScholarPubMed
Rhodes, J. Covalent chemical events in immune induction:fundamental and therapeutic aspects. Immunol Today. 1996;17:436–441.CrossRefGoogle ScholarPubMed
Rhodes, J, Chen, H, Hall, SR, et al. Therapeutic potentiation of the immune system by costimulatory Sc31-87519-forming drugs. Nature. 1995;377:71–75.CrossRefGoogle ScholarPubMed
Abraham, DJ, Mehanna, AS, Wireko, FC, Whitney, J, Thomas, RP, Orringer, EP. Vanillin, a potential agent for the treatment of sickle cell anemia. Blood. 1991;77:1334–1341.Google ScholarPubMed
Abraham, DJ, Safo, MK, Boyiri, T, Danso-Danquah, RE, Kister, J, Poyart, C. How allosteric effectors can bind to the same protein residue and produce opposite shifts in the allosteric equilibrium. Biochemistry. 1995;34:15006– 15020.CrossRefGoogle ScholarPubMed
Harrington, DJ, Adachi, K, Royer, WE. The high resolution crystal structure of deoxyhemoglobin S. J Mol Biol. 1997;272: 398–407.CrossRefGoogle ScholarPubMed
Kihm, AJ, Kong, Y, Hong, W, et al. An abundant erythroid protein that stabilizes free alpha-haemoglobin. Nature. 2002; 417:758–763.CrossRefGoogle ScholarPubMed
Yu, X, Kong, Y, Dore, LC, et al. An erythroid chaperone that facilitates folding of alpha-globin subunits for hemoglobin synthesis. J Clin Invest. 2007;117:1856–1865.CrossRefGoogle ScholarPubMed
Feng, L, Zhou, S, Gu, L, et al. Structure of oxidized alpha-haemoglobin bound to AHSP reveals a protective mechanism for haem. Nature. 2005;435:697–701.CrossRefGoogle ScholarPubMed
Kong, Y, Zhou, S, Kihm, AJ, et al. Loss of alpha-hemoglobin-stabilizing protein impairs erythropoiesis and exacerbates beta-thalassemia. J Clin Invest. 2004;114:1457–1466.CrossRefGoogle ScholarPubMed
Lai, MI, Jiang, J, Silver, N, Best, S, Menzel, S, Mijovic, A, Colella, S, Ragoussis, J, Garner, C, Weiss, MJ, Thein, SL. Alpha-haemoglobin stabilising protein is a quantitative trait gene that modifies the phenotype of β-thalassaemia. Br J Haematol. 2006;133:675–682.CrossRefGoogle ScholarPubMed
Eaton, WA, Hofrichter, J. Hemoglobin S gelation and sickle cell disease. Blood. 1987;70:1245–1266.Google ScholarPubMed
Glader, BE, Nathan, DG. Cation permeability alterations during sickling:relationship to cation composition and cellular hydration of irreversibly sickled cells. Blood. 1978;51:983–989.Google ScholarPubMed
Joiner, CH. Cation transport and volume regulation in sickle red blood cells. Am J Physiol. 1993;264:C251–C270.CrossRefGoogle ScholarPubMed
Lew, VL, Freeman, CJ, Ortiz, OE, Bookchin, RM. A mathematical model of the volume, pH, and ion content regulation in reticulocytes. Application to the pathophysiology of sickle cell dehydration. J Clin Invest. 1991;87:100–112.CrossRefGoogle ScholarPubMed
Brugnara, C, Bunn, HF, Tosteson, DC. Regulation of erythrocyte cation and water content in sickle cell anemia. Science. 1986;232:388–390.CrossRefGoogle ScholarPubMed
Rosa, RM, Bierer, B, Thomas, R, et al. Prevention and treatment of sickle cell crisis by induced hyponatremia. Trans Assoc Am Physicians. 1980;93:164–174.Google ScholarPubMed
Rosa, RM, Bierer, BE, Thomas, R, et al. A study of induced hyponatremia in the prevention and treatment of sickle-cell crisis. N Engl J Med. 1980;303:1138–1143.CrossRefGoogle ScholarPubMed
Charache, S, Walker, WG. Failure of desmopressin to lower serum sodium or prevent crisis in patients with sickle cell anemia. Blood. 1981;58:892–896.Google ScholarPubMed
Benjamin, LJ, Berkowitz, LR, Orringer, E, et al. A collaborative, double-blind randomized study of cetiedil citrate in sickle cell crisis. Blood. 1986;67:1442–1447.Google ScholarPubMed
Berkowitz, LR, Orringer, EP. Effects of cetiedil on monovalent cation permeability in the erythrocyte:an explanation for the efficacy of cetiedil in the treatment of sickle cell anemia. Blood Cells. 1982;8:283–288.Google ScholarPubMed
Benjamin, LJ. Membrane modifiers in sickle cell disease. Ann NY Acad Sci. 1989;565:247–261.CrossRefGoogle ScholarPubMed
Alvarez, J, Montero, M, Garcia-Sancho, J.Cytochrome P-450 may link intracellular Ca2+ stores with plasma membrane Ca2+ influx. Biochem J. 1991;274(Pt 1):193–197.CrossRefGoogle ScholarPubMed
Brugnara, C. Erythrocyte dehydration in pathophysiology and treatment of sickle cell disease. Curr Opin Hematol. 1995;2:132–138.CrossRefGoogle ScholarPubMed
Brugnara, C, de FL, Alper, SL. Inhibition of Ca(2+)-dependent K+ transport and cell dehydration in sickle erythrocytes by clotrimazole and other imidazole derivatives. J Clin Invest. 1993;92:520–526.CrossRefGoogle ScholarPubMed
Franceschi, L, Saadane, N, Trudel, M, Alper, SL, Brugnara, C, Beuzard, Y. Treatment with oral clotrimazole blocks Ca(2+)-activated K+ transport and reverses erythrocyte dehydration in transgenic SAD mice. A model for therapy of sickle cell disease. J Clin Invest. 1994;93:1670–1676.CrossRefGoogle ScholarPubMed
Brugnara, C, Armsby, CC, Sakamoto, M, Rifai, N, Alper, SL, Platt, O. Oral administration of clotrimazole and blockade of human erythrocyte Ca(++)-activated K+ channel:the imidazole ring is not required for inhibitory activity. J Pharmacol Exp Ther. 1995;273:266–272.Google Scholar
Sawyer, PR, Brogden, RN, Pinder, RM, Speight, TM, Avery, GS. Clotrimazole: a review of its antifungal activity and therapeutic efficacy. Drugs 1975;9:424–447.CrossRefGoogle ScholarPubMed
Seo, M, iida H, Miura, Y. Basic experiments with clotrimazole administered orally. Curr Med Res Opin. 1977;5:169–178.CrossRefGoogle ScholarPubMed
Brugnara, C, Gee, B, Armsby, CC, et al. Therapy with oral clotrimazole induces inhibition of the Gardos channel and reduction of erythrocyte dehydration in patients with sickle cell disease. J Clin Invest. 1996;97:1227–1234.CrossRefGoogle ScholarPubMed
Stocker, JW, Franceschi, L, McNaughton-Smith, GA, Corrocher, R, Beuzard, Y, Brugnara, C. ICA-17043, a novel Gardos channel blocker, prevents sickled red blood cell dehydration in vitro and in vivo in SAD mice. Blood. 2003; 101:2412–2418.CrossRefGoogle ScholarPubMed
Ataga, KI, Orringer, EP, Styles, L, Vichinsky, EP, Swerdlow, P, Davis, GA, Desimone, PA and Stocker, JW. Dose-escalation study of ICA-17043 in patients with sickle cell disease. Pharmacotherapy 2006;26:1557–1564.CrossRefGoogle ScholarPubMed
Ataga, KI, Smith, WR, Castro, LM, et al. Efficacy and safety of the Gardos channel blocker, senicapoc (ICA-17043), in patients with sickle cell anemia. Blood. 2008;111:3991–3997.CrossRefGoogle Scholar
Brugnara, C, Armsby, CC, Franceschi, L, Crest, M, Euclaire, MF and Alper, SL. Ca(2+)-activated K+ channels of human and rabbit erythrocytes display distinctive patterns of inhibition by venom peptide toxins. J Membr Biol 1995;147:71–82.CrossRefGoogle ScholarPubMed
Canessa, M, Spalvins, A, Nagel, RL. Volume-dependent and NEM-stimulated K+,Cl- transport is elevated in oxygenated SS, SC and CC human red cells. FEBS Lett. 1986;200:197–202.CrossRefGoogle ScholarPubMed
Vitoux, D, Olivieri, O, Garay, RP, Cragoe, EJ, Galacteros, F, Beuzard, Y. Inhibition of K+ efflux and dehydration of sickle cells by [(dihydroindenyl)oxy]alkanoic acid:an inhibitor of the K+ Cl- cotransport system. Proc Natl Acad Sci USA. 1989;86:4273–4276.CrossRefGoogle ScholarPubMed
Brugnara, C, Tosteson, DC. Inhibition of K transport by divalent cations in sickle erythrocytes. Blood. 1987;70:1810–1815.Google ScholarPubMed
Bookchin, RM, Balazs, T, Lew, VL. Measurement of the hemoglobin concentration in deoxyhemoglobin S polymers and characterization of the polymer water compartment. J Mol Biol. 1994;244:100–109.CrossRefGoogle ScholarPubMed
Olukoga, AO, Adewoye, HO, Erasmus, RT, Adedoyin, MA. Erythrocyte and plasma magnesium in sickle-cell anaemia. E Afr Med J. 1990;67:348–354.Google ScholarPubMed
Ortiz, OE, Lew, VL, Bookchin, RM. Deoxygenation permeabilizes sickle cell anaemia red cells to magnesium and reverses its gradient in the dense cells. J Physiol. 1990;427:211–226.CrossRefGoogle ScholarPubMed
Franceschi, L, Beuzard, Y, Jouault, H, Brugnara, C. Modulation of erythrocyte potassium chloride cotransport, potassium content, and density by dietary magnesium intake in transgenic SAD mouse. Blood. 1996;88:2738–2744.Google ScholarPubMed
Borella, P, Ambrosini, G, Concari, M, Bargellini, A. Is magnesium content in erythrocytes suitable for evaluating cation retention after oral physiological supplementation in marginally magnesium-deficient subjects?Magnes Res. 1993;6: 149–153.Google ScholarPubMed
Paolisso, G, Scheen, A, Cozzolino, D, et al. Changes in glucose turnover parameters and improvement of glucose oxidation after 4-week magnesium administration in elderly noninsulin-dependent (type II) diabetic patients. J Clin Endocrinol Metab. 1994;78:1510–1514.Google ScholarPubMed
Franceschi, L, Bachir, D, Galacteros, F, et al. Oral magnesium supplements reduce erythrocyte dehydration in patients with sickle cell disease. J Clin Invest. 1997;100:1847–1852.CrossRefGoogle ScholarPubMed
Franceschi, L, Bachir, D, Galacteros, F, et al. Oral magnesium pidolate:effects of long-term administration in patients with sickle cell disease. Br J Haematol. 2000;108:284–289.CrossRefGoogle ScholarPubMed
Hankins, JS, Wynn, LW, Brugnara, C, Hillery, CA, Li, CS, Wang, WC. Phase I study of magnesium pidolate in combination with hydroxycarbamide for children with sickle cell anaemia. Br J Haematol. 2008;140:80–85.Google ScholarPubMed
Franceschi, L, Brugnara, C, Beuzard, Y. Dietary magnesium supplementation ameliorates anemia in a mouse model of beta-thalassemia. Blood. 1997;90:1283–1290.Google Scholar
Franceschi, L, Cappellini, MD, Graziadei, G, et al. The effect of dietary magnesium supplementation on the cellular abnormalities of erythrocytes in patients with beta thalassemia intermedia. Haematologica. 1998;83:118–125.Google ScholarPubMed
Hebbel, RP, Yamada, O, Moldow, CF, Jacob, HS, White, JG, Eaton, JW. Abnormal adherence of sickle erythrocytes to cultured vascular endothelium:possible mechanism for microvascular occlusion in sickle cell disease. J Clin Invest. 1980;65:154–160.CrossRefGoogle ScholarPubMed
Mohandas, N, Evans, E. Adherence of sickle erythrocytes to vascular endothelial cells:requirement for both cell membrane changes and plasma factors. Blood. 1984;64:282–287.Google ScholarPubMed
Barabino, GA, McIntire, LV, Eskin, SG, Sears, DA, Udden, M. Rheological studies of erythrocyte-endothelial cell interactions in sickle cell disease. Prog Clin Biol Res. 1987;240:113–127.Google ScholarPubMed
Fabry, ME, Rajanayagam, V, Fine, E, Holland, S, Gore, JC, Nagel, RL, Kaul, DK. Modeling sickle cell vasoocclusion in the rat leg: quantification of trapped sickle cells and correlation with 31P metabolic and 1H magnetic resonance imaging changes. Proc Natl Acad Sci USA. 1989;86:3808–3812.CrossRefGoogle ScholarPubMed
French, JA, Kenny, D, Scott, JP, et al. Mechanisms of stroke in sickle cell disease:sickle erythrocytes decrease cerebral blood flow in rats after nitric oxide synthase inhibition. Blood. 1997;89:4591–4599.Google ScholarPubMed
Kaul, DK, Fabry, ME, Nagel, RL. Microvascular sites and characteristics of sickle cell adhesion to vascular endothelium in shear flow conditions: pathophysiological implications. Proc Natl Acad Sci USA. 1989;86:3356–3360.CrossRefGoogle ScholarPubMed
Kaul, DK, Fabry, ME, Costantini, F, Rubin, EM, Nagel, RL. In vivo demonstration of red cell-endothelial interaction, sickling and altered microvascular response to oxygen in the sickle transgenic mouse. J Clin Invest. 1995;96:2845–2853.CrossRefGoogle ScholarPubMed
Wood, KC, Hebbel, RP, Granger, DN. Endothelial cell P-selectin mediates a proinflammatory and prothrombogenic phenotype in cerebral venules of sickle cell transgenic mice. Am J Physiol Heart Circ Physiol. 2004;286:H1608–H1614.CrossRefGoogle ScholarPubMed
Turhan, A, Weiss, , Mohandas, N, Coller, BS, Frenette, PS. Primary role for adherent leukocytes in sickle cell vascular occlusion: a new paradigm. Proc Natl Acad Sci USA. 2002;99:3047–3051.CrossRefGoogle ScholarPubMed
Hebbel, RP, Boogaerts, MA, Eaton, JW, Steinberg, MH. Erythrocyte adherence to endothelium in sickle-cell anemia. A possible determinant of disease severity. N Engl J Med. 1980;302:992–995.CrossRefGoogle ScholarPubMed
Joneckis, CC, Ackley, RL, Orringer, EP, Wayner, EA, Parise, LV. Integrin alpha 4 beta 1 and glycoprotein IV (CD36) are expressed on circulating reticulocytes in sickle cell anemia. Blood. 1993;82:3548–3555.Google ScholarPubMed
Swerlick, RA, Eckman, JR, Kumar, A, Jeitler, M, Wick, TM. Alpha 4 beta 1-integrin expression on sickle reticulocytes: vascular cell adhesion molec31-87519-dependent binding to endothelium. Blood. 1993;82:1891–1899.Google ScholarPubMed
Browne, PV, Hebbel, RP. CD36-positive stress reticulocytosis in sickle cell anemia. J Lab Clin Med. 1996;127:340–347.CrossRefGoogle ScholarPubMed
Sugihara, K, Sugihara, T, Mohandas, N, Hebbel, RP. Thrombospondin mediates adherence of CD36+ sickle reticulocytes to endothelial cells. Blood. 1992;80:2634–2642.Google ScholarPubMed
Brittain, HA, Eckman, JR, Swerlick, RA, Howard, RJ, Wick, TM. Thrombospondin from activated platelets promotes sickle erythrocyte adherence to human microvascular endothelium under physiologic flow: a potential role for platelet activation in sickle cell vaso-occlusion. Blood. 1993;81:2137–2143.Google ScholarPubMed
Fabry, ME, Fine, E, Rajanayagam, V, et al. Demonstration of endothelial adhesion of sickle cells in vivo: a distinct role for deformable sickle cell discocytes. Blood. 1992;79:1602–1611.Google ScholarPubMed
Zennadi, R, Hines, PC, Castro, LM, Cartron, JP, Parise, LV, Telen, MJ. Epinephrine acts through erythroid signaling pathways to activate sickle cell adhesion to endothelium via LW-alphavbeta3 interactions. Blood. 2004;104:3774–3781.CrossRefGoogle ScholarPubMed
Setty, BN, Kulkarni, S, Stuart, MJ. Role of erythrocyte phosphatidylserine in sickle red cell-endothelial adhesion. Blood. 2002;99:1564–1571.CrossRefGoogle ScholarPubMed
Hillery, CA, Du, MC, Montgomery, RR, Scott, JP. Increased adhesion of erythrocytes to components of the extracellular matrix:isolation and characterization of a red blood cell lipid that binds thrombospondin and laminin. Blood. 1996;87: 4879–4886.Google ScholarPubMed
Joneckis, CC, Shock, DD, Cunningham, ML, Orringer, EP, Parise, LV. Glycoprotein IV-independent adhesion of sickle red blood cells to immobilized thrombospondin under flow conditions. Blood. 1996;87:4862–4870.Google ScholarPubMed
Gee, BE, Platt, OS. Sickle reticulocytes adhere to VCAM-1. Blood. 1995;85:268–274.Google ScholarPubMed
Natarajan, M, Udden, MM, McIntire, LV. Adhesion of sickle red blood cells and damage to interleukin-1 beta stimulated endothelial cells under flow in vitro. Blood. 1996;87:4845–4852.Google ScholarPubMed
Kaul, DK, Tsai, HM, Liu, XD, Nakada, MT, Nagel, RL, Coller, BS. Monoclonal antibodies to alphaVbeta3 (7E3 and LM609) inhibit sickle red blood cell-endothelium interactions induced by platelet-activating factor. Blood. 2000;95: 368–374.Google ScholarPubMed
Matsui, NM, Borsig, L, Rosen, SD, Yaghmai, M, Varki, A, Embury, SH. P-selectin mediates the adhesion of sickle erythrocytes to the endothelium. Blood. 2001;98:1955–1962.CrossRefGoogle ScholarPubMed
Manodori, AB. Sickle erythrocytes adhere to fibronec31-87519-integrin complexes exposed by thrombin-induced endothelial cell contraction. Microvasc Res. 2001;61: 263–274.CrossRefGoogle ScholarPubMed
Wick, TM, Eckman, JR. Molecular basis of sickle cell-endothelial cell interactions. Curr Opin Hematol. 1996;3:118–124.CrossRefGoogle ScholarPubMed
Solovey, A, Lin, Y, Browne, P, Choong, S, Wayner, E, Hebbel, RP. Circulating activated endothelial cells in sickle cell anemia. N Engl J Med. 1997;337:1584–1590.CrossRefGoogle ScholarPubMed
Solovey, A, Gui, L, Key, NS, Hebbel, RP. Tissue factor expression by endothelial cells in sickle cell anemia. J Clin Invest. 1998;101:1899–1904.CrossRefGoogle ScholarPubMed
Stuart, MJ, Setty, BN. Sickle cell acute chest syndrome: pathogenesis and rationale for treatment. Blood. 1999;94:1555–1560.Google Scholar
Santoro, SA, Frazier, WA. Isolation and characterization of thrombospondin. Methods Enzymol. 1987;144:438–446.CrossRefGoogle ScholarPubMed
Gupta, K, Gupta, P, Solovey, A, Hebbel, RP. Mechanism of interaction of thrombospondin with human endothelium and inhibition of sickle erythrocyte adhesion to human endothelial cells by heparin. Biochim Biophys Acta. 1999;1453:63–73.CrossRefGoogle ScholarPubMed
Brittain, JE, Mlinar, KJ, Anderson, CS, Orringer, EP, Parise, LV. Integrin-associated protein is an adhesion receptor on sickle red blood cells for immobilized thrombospondin. Blood. 2001;97:2159–2164.CrossRefGoogle ScholarPubMed
Barabino, GA, Liu, XD, Ewenstein, BM, Kaul, DK. Anionic polysaccharides inhibit adhesion of sickle erythrocytes to the vascular endothelium and result in improved hemodynamic behavior. Blood. 1999;93:1422–1429.Google ScholarPubMed
Sherman, IW, Crandall, I, Smith, H. Membrane proteins involved in the adherence of Plasmodium falciparum-infected erythrocytes to the endothelium. Biol Cell. 1992;74:161–178.CrossRefGoogle ScholarPubMed
Thevenin, BJ, Crandall, I, Ballas, SK, Sherman, IW, Shohet, SB. Band 3 peptides block the adherence of sickle cells to endothelial cells in vitro. Blood. 1997;90:4172–4179.Google ScholarPubMed
Tryggvason, K. The laminin family. Cell Biol. 1993;5:877–882.Google ScholarPubMed
Udani, M, Zen, Q, Cottman, M, et al. Basal cell adhesion molecule/lutheran protein. The receptor critical for sickle cell adhesion to laminin. J Clin Invest. 1998;101:2550– 2558.CrossRefGoogle ScholarPubMed
Brittain, JE, Mlinar, KJ, Anderson, CS, Orringer, EP, Parise, LV. Activation of sickle red blood cell adhesion via integrin-associated protein(CD47-induced signal transduction. J Clin Invest. 2001;107:1555–1562.CrossRefGoogle ScholarPubMed
Gao, AG, Lindberg, FP, Finn, MB, Blystone, SD, Brown, EJ, Frazier, WA. Integrin-associated protein is a receptor for the C-terminal domain of thrombospondin. J Biol Chem. 1996;271:21–24.CrossRefGoogle ScholarPubMed
Oldenborg, PA, Zheleznyak, A, Fang, YF, Lagenaur, CF, Gresham, HD, Lindberg, FP. Role of CD47 as a marker of self on red blood cells. Science. 2000;288:2051–2054.CrossRefGoogle ScholarPubMed
Humphries, MJ, Sheridan, J, Mould, AP, Newham, P. Mechanisms of VCAM-1 and fibronectin binding to integrin alpha 4 beta 1: implications for integrin function and rational drug design. Ciba Found Symp. 1995;189:177–191.Google ScholarPubMed
Kasschau, MR, Barabino, GA, Bridges, KR, Golan, . Adhesion of sickle neutrophils and erythrocytes to fibronectin. Blood. 1996;87:771–780.Google ScholarPubMed
Han, J, Rose, DM, Woodside, DG, Goldfinger, , Ginsberg, MH. Integrin alpha 4 beta 1-dependent T cell migration requires both phosphorylation and dephosphorylation of the alpha 4 cytoplasmic domain to regulate the reversible binding of paxillin. J Biol Chem. 2003;278:34845–34853.CrossRefGoogle ScholarPubMed
Goldfinger, , Han, J, Kiosses, WB, Howe, AK, Ginsberg, MH. Spatial restriction of alpha4 integrin phosphorylation regulates lamellipodial stability and alpha4beta1-dependent cell migration. J Cell Biol. 2003;162:731–741.CrossRefGoogle ScholarPubMed
Brittain, JE, Han, J, Ataga, KI, Orringer, EP, Parise, LV. Mechanism of CD47-induced alpha4beta1 integrin activation and adhesion in sickle reticulocytes. J Biol Chem. 2004;279:42393–42402.CrossRefGoogle ScholarPubMed
Setty, BN, Stuart, MJ. Vascular cell adhesion molecule-1 is involved in mediating hypoxia-induced sickle red blood cell adherence to endothelium:potential role in sickle cell disease. Blood. 1996;88:2311–2320.Google ScholarPubMed
Vanderslice, P, Ren, K, Revelle, JK, et al. A cyclic hexapeptide is a potent antagonist of alpha 4 integrins. J Immunol. 1997;158:1710–1718.Google ScholarPubMed
Parsons, SF, Lee, G, Spring, FA, et al. Lutheran blood group glycoprotein and its newly characterized mouse homologue specifically bind alpha5 chain-containing human laminin with high affinity. Blood. 2001;97:312–320.CrossRefGoogle ScholarPubMed
Parsons, SF, Spring, FA, Chasis, JA, Anstee, DJ. Erythroid cell adhesion molecules Lutheran and LW in health and disease. Baillieres Best Pract Res Clin Haematol. 1999;12:729–745.CrossRefGoogle ScholarPubMed
Kaul, DK, Liu, XD, Zhang, X, et al. Peptides based on alphaV-binding domains of erythrocyte ICAM-4 inhibit sickle red cell-endothelial interactions and vaso-occlusion in the microcirculation. Am J Physiol Cell Physiol. 2006;291:C922–C930.CrossRefGoogle ScholarPubMed
Hines, PC, Zen, Q, Burney, SN, et al. Novel epinephrine and cyclic AMP-mediated activation of BCAM(Lu-dependent sickle (SS) RBC adhesion. Blood. 2003;101:3281–3287.CrossRefGoogle ScholarPubMed
Manodori, AB, Barabino, GA, Lubin, BH, Kuypers, FA. Adherence of phosphatidylserine-exposing erythrocytes to endothelial matrix thrombospondin. Blood. 2000;95:1293–1300.Google ScholarPubMed
Schlegel, RA, Prendergast, TW, Williamson, P. Membrane phospholipid asymmetry as a factor in erythrocyte-endothelial cell interactions. J Cell Physiol. 1985;123:215–218.CrossRefGoogle ScholarPubMed
Zwaal, RF, Schroit, AJ. Pathophysiologic implications of membrane phospholipid asymmetry in blood cells. Blood. 1997;89:1121–1132.Google ScholarPubMed
Setty, BN, Kulkarni, S, Rao, AK, Stuart, MJ. Fetal hemoglobin in sickle cell disease:relationship to erythrocyte phosphatidylserine exposure and coagulation activation. Blood. 2000;96:1119–1124.Google ScholarPubMed
Setty, BN, Rao, AK, Stuart, MJ. Thrombophilia in sickle cell disease: the red cell connection. Blood. 2001;98:3228–3233.CrossRefGoogle ScholarPubMed
Jong, K, Emerson, RK, Butler, J, Bastacky, J, Mohandas, N, Kuypers, FA. Short survival of phosphatidylserine-exposing red blood cells in murine sickle cell anemia. Blood. 2001;98:1577–1584.CrossRefGoogle ScholarPubMed
Kuypers, FA, Yuan, J, Lewis, RA, et al. Membrane phospholipid asymmetry in human thalassemia. Blood. 1998;91:3044–3051.Google ScholarPubMed
Finnegan, EM, Barabino, GA, Liu, XD, Chang, HY, Jonczyk, A, Kaul, DK. Small-molecule cyclic alpha V beta 3 antagonists inhibit sickle red cell adhesion to vascular endothelium and vasoocclusion. Am J Physiol Heart Circ Physiol. 2007;293:H1038–H1045.CrossRefGoogle ScholarPubMed
Hattori, R, Hamilton, KK, Fugate, RD, McEver, RP, Sims, PJ. Stimulated secretion of endothelial von Willebrand factor is accompanied by rapid redistribution to the cell surface of the intracellular granule membrane protein GMP-140. J Biol Chem. 1989;264:7768–7771.Google ScholarPubMed
Stenberg, PE, McEver, RP, Shuman, MA, Jacques, YV, Bainton, DF. A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J Cell Biol. 1985;101:880–886.CrossRefGoogle ScholarPubMed
Lowe, JB, Ward, PA. Therapeutic inhibition of carbohydrate-protein interactions in vivo. J Clin Invest. 1997;99:822–826.CrossRefGoogle ScholarPubMed
Mayadas, TN, Johnson, RC, Rayburn, H, Hynes, RO, Wagner, DD. Leukocyte rolling and extravasation are severely compromised in P selectin-deficient mice. Cell. 1993;74:541–554.CrossRefGoogle ScholarPubMed
Bullard, DC, Kunkel, EJ, Kubo, H, et al. Infectious susceptibility and severe deficiency of leukocyte rolling and recruitment in E-selectin and P-selectin double mutant mice. J Exp Med. 1996;183:2329–2336.CrossRefGoogle ScholarPubMed
Frenette, PS, Mayadas, TN, Rayburn, H, Hynes, RO, Wagner, DD. Susceptibility to infection and altered hematopoiesis in mice deficient in both P- and E-selectins. Cell. 1996;84:563–574.CrossRefGoogle Scholar
Embury, SH, Matsui, NM, Ramanujam, S, et al. The contribution of endothelial cell P-selectin to the microvascular flow of mouse sickle erythrocytes in vivo. Blood. 2004;104:3378–3385.CrossRefGoogle ScholarPubMed
Matsui, NM, Varki, A, Embury, SH. Heparin inhibits the flow adhesion of sickle red blood cells to P-selectin. Blood. 2002;100:3790–3796.CrossRefGoogle ScholarPubMed
Koenig, A, Norgard-Sumnicht, K, Linhardt, R, Varki, A. Differential interactions of heparin and heparan sulfate glycosaminoglycans with the selectins. Implications for the use of unfractionated and low molecular weight heparins as therapeutic agents. J Clin Invest. 1998;101:877–889.CrossRefGoogle ScholarPubMed
Hirsh, J, Raschke, R, Warkentin, TE, Dalen, JE, Deykin, D, Poller, L. Heparin:mechanism of action, pharmacokinetics, dosing considerations, monitoring, efficacy, and safety. Chest. 1995;108:258S–275S.CrossRefGoogle ScholarPubMed
Hiebert, LM, Wice, SM, Ping, T. Increased plasma anti-Xa activity and recovery of heparin from urine suggest absorption of orally administered unfractionated heparin in human subjects. J Lab Clin Med. 2005;145:151–155.CrossRefGoogle ScholarPubMed
Chaplin, HJ, Monroe, MC, Malecek, AC, Morgan, LK, Michael, J, Murphy, WA. Preliminary trial of minidose heparin prophylaxis for painful sickle cell crises. E African Med J. 1989;66:574–584.Google ScholarPubMed
Hiebert, LM. Oral heparins. Clin Lab. 2002;48:111–116.Google ScholarPubMed
Mousa, SA, Zhang, F, Aljada, A, et al. Pharmacokinetics and pharmacodynamics of oral heparin solid dosage form in healthy human subjects. J Clin Pharmacol. 2007;47:1508–1520.CrossRefGoogle ScholarPubMed
Smith, CM, Hebbel, RP, Tukey, DP, Clawson, CC, White, JG, Vercellotti, GM. Pluronic F-68 reduces the endothelial adherence and improves the rheology of liganded sickle erythrocytes. Blood. 1987;69:1631–1636.Google ScholarPubMed
Adams-Graves, P, Kedar, A, Koshy, M, et al. RheothRx (poloxamer 188) injection for the acute painful episode of sickle cell disease: a pilot study. Blood. 1997;90:2041–2046.Google ScholarPubMed
Gibbs, WJ, Hagemann, TM. Purified poloxamer 188 for sickle cell vaso-occlusive crisis. Ann Pharmacother. 2004;38:320–324.CrossRefGoogle ScholarPubMed
Tricoci, P, Newby, LK, Kandzari, , Harrington, RA. Present and evolving role of eptifibatide in the treatment of acute coronary syndromes. Expert Rev Cardiovasc Ther. 2007;5: 401–412.CrossRefGoogle ScholarPubMed
Ataga, KI, Cappellini, MD, Rachmilewitz, EA. Beta-thalassaemia and sickle cell anaemia as paradigms of hypercoagulability. Br J Haematol. 2007;139:3–13.CrossRefGoogle ScholarPubMed
Eldor, A, Rachmilewitz, EA. The hypercoagulable state in thalassemia. Blood. 2002;99:36–43.CrossRefGoogle ScholarPubMed
Francis, RB. Platelets, coagulation, and fibrinolysis in sickle cell disease: their possible role in vascular occlusion. Blood Coagulat Fibrinolysis. 1991;2:341–353.CrossRefGoogle ScholarPubMed
Kurantsin-Mills, J, Ofosu, FA, Safa, TK, Siegel, RS, Lessin, LS. Plasma factor VII and thrombin-antithrombin III levels indicate increased tissue factor activity in sickle cell patients. Br J Haematol. 1992;81:539–544.CrossRefGoogle ScholarPubMed
Shet, AS, Aras, O, Gupta, K, et al. Sickle blood contains tissue factor-positive microparticles derived from endothelial cells and monocytes. Blood. 2003;102:2678–2683.CrossRefGoogle ScholarPubMed
Solovey, A, Kollander, R, Shet, A, et al. Endothelial cell expression of tissue factor in sickle mice is augmented by hypoxia/reoxygenation and inhibited by lovastatin. Blood. 2004;104:840–846.CrossRefGoogle ScholarPubMed
Franck, PFH, Bevers, EM, Lubin, BH, et al. Uncoupling of the membrane skeleton from the lipid bilayer:the cause of accelerated phospholipid flip-flop leading to an enhanced procoagulant activity of sickle cells. J Clin Invest. 1985;75: 183–190.CrossRefGoogle Scholar
Kuypers, FA, Lewis, RA, Hua, M, et al. Detection of altered membrane phospholipid asymmetry in subpopulations of human red blood cells using fluorescently labeled Annexin V. Blood. 1996;87:1179–1187.Google ScholarPubMed
Peters, M, Plaat, BE, ten Cate, H, Wolters, HJ, Weening, RS, Brandjes, DP. Enhanced thrombin generation in children with sickle cell disease. Thromb Haemost. 1994;71:169–172.Google ScholarPubMed
Kurantsin-Mills, J, Ibe, BO, Natta, CL, Raj, JU, Siegel, RS, Lessin, LS. Elevated urinary levels of thromboxane and prostacyclin metabolities in sickle cell disease reflects activated platelets in the circulation. Br J Haematol. 1994;87:580–585.CrossRefGoogle ScholarPubMed
Setty, BN, Chen, D, Stuart, MJ. Sickle cell vaso-occlusive crisis is associated with abnormalities in the ratio of vasoconstrictor to vasodilator prostanoids. Pediatr Res. 1995;38:95–102.CrossRefGoogle ScholarPubMed
Wun, T, Paglieroni, T, Tablin, F, Welborn, J, Nelson, K, Cheung, A. Platelet activation and platelet-erythrocyte aggregates in patients with sickle cell anemia. J Lab Clin Med. 1997;129:507–516.CrossRefGoogle ScholarPubMed
Solovey, A, Gui, L, Ramakrishnan, S, Steinberg, MH, Hebbel, RP. Sickle cell anemia as a possible state of enhanced anti-apoptotic tone:survival effect of vascular endothelial growth factor on circulating and unanchored endothelial cells. Blood. 1999;93:3824–3830.Google ScholarPubMed
Salvaggio, JE, Arnold, CA, Banov, CH. Long-term anticoagulation in sickle cell disease. N Engl J Med. 1963;269:182–186.CrossRefGoogle Scholar
Wolters, HJ, ten Cate, H, Thomas, LL, et al. Low-intensity oral anticoagulation in sickle-cell disease reverses the prethrombotic state:promises for treatment?Br J Haematol. 1995;90:715–717.CrossRefGoogle Scholar
Schnog, JB, Kater, AP, Mac Gillavry, MR, et al. Low adjusted-dose acenocoumarol therapy in sickle cell disease: a pilot study. Am J Hematol. 2001;68:179–183.CrossRefGoogle ScholarPubMed
Schnog, JB, Mac Gillavry, MR, Rojer, RA, et al. No effect of acenocoumarol therapy on levels of endothelial activation markers in sickle cell disease. Am J Hematol. 2002;71:53–55.CrossRefGoogle ScholarPubMed
Greenberg, J, Ohene-Frempong, K, Halus, J, Way, C, Schwartz, E. Trial of low doses of aspirin as prophylaxis in sickle cell disease. J Pediatr. 1983;102:781–784.CrossRefGoogle ScholarPubMed
Zago, MA, Costa, FF, Ismael, SJ, Tone, LG, Bottura, C. Treatment of sickle cell diseases with aspirin. Acta Haematol. 1984;72:61–64.CrossRefGoogle Scholar
Semple, MJ, Al-Hasani, SF, Kioy, P, Savidge, GF. A double-blind trial of ticlopidine in sickle cell disease. Thromb Haemost. 1984;51:303–306.Google ScholarPubMed
Chaplin, HJ, Alkjaersig, N, Fletcher, AP, Michael, JM, Joist, JH. Aspirin-dipyridamole prophylaxis of sickle cell disease pain crises. Thromb Haemost. 1980;43:218–221.Google ScholarPubMed
Balkaran, B, Char, G, Morris, JS, Thomas, PW, Serjeant, BE, Serjeant, GR. Stroke in a cohort of patients with homozygous sickle cell disease. J Pediatr. 1992;120:360–366.CrossRefGoogle Scholar
Kinney, TR, Sleeper, , Wang, WC, et al. Silent cerebral infarcts in sickle cell anemia:a risk factor analysis. The Cooperative Study of Sickle Cell Disease. Pediatrics. 1999;103:640–645.CrossRefGoogle ScholarPubMed
Miller, ST, Sleeper, , Pegelow, CH, et al. Prediction of adverse outcomes in children with sickle cell disease. N Engl J Med. 2000;342:83–89.CrossRefGoogle ScholarPubMed
Platt, OS, Brambilla, DJ, Rosse, WF, et al. Mortality in sickle cell disease. Life expectancy and risk factors for early death. N Engl J Med. 1994;330:1639–1644.CrossRefGoogle ScholarPubMed
Stuart, J, Stone, PC, Akinola, NO, Gallimore, JR, Pepys, MB. Monitoring the acute phase response to vaso-occlusive crisis in sickle cell disease. J Clin Pathol. 1994;47:166–169.CrossRefGoogle ScholarPubMed
Pathare, A, Al Kindi, S, Alnaqdy, AA, Daar, S, Knox-Macaulay, H, Dennison, D. Cytokine profile of sickle cell disease in Oman. Am J Hematol. 2004;77:323–328.CrossRefGoogle ScholarPubMed
Pathare, A, Kindi, SA, Daar, S, Dennison, D.Cytokines in sickle cell disease. Hematology. 2003;8:329–337.CrossRefGoogle ScholarPubMed
Graido-Gonzalez, E, Doherty, JC, Bergreen, EW, Organ, G, Telfer, M, McMillen, MA. Plasma endothelin-1, cytokine, and prostaglandin E2 levels in sickle cell disease and acute vaso-occlusive sickle crisis. Blood. 1998;92:2551–2555.Google ScholarPubMed
Rybicki, AC, Benjamin, LJ. Increased levels of endothelin-1 in plasma of sickle cell anemia patients. Blood. 1998;92:2594–2596.Google ScholarPubMed
Croizat, H, Nagel, RL. Circulating cytokines response and the level of erythropoiesis in sickle cell anemia. Am J Hematol. 1999;60:105–115.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Duits, AJ, Schnog, JB, Lard, LR, Saleh, AW, Rojer, RA. Elevated IL-8 levels during sickle cell crisis. Eur J Haematol. 1998;61:302–305.CrossRefGoogle ScholarPubMed
Bourantas, KL, Dalekos, GN, Makis, A, Chaidos, A, Tsiara, S, Mavridis, A. Acute phase proteins and interleukins in steady state sickle cell disease. Eur J Haematol. 1998;61:49–54.CrossRefGoogle ScholarPubMed
Oh, SO, Ibe, BO, Johnson, C, Kurantsin-Mills, J, Raj, JU. Platelet-activating factor in plasma of patients with sickle cell disease in steady state. J Lab Clin Med. 1997;130:191–196.CrossRefGoogle ScholarPubMed
Khodorova, A, Navarro, B, Jouaville, LS, et al. Endothelin-B receptor activation triggers an endogenous analgesic cascade at sites of peripheral injury. Nat Med. 2003;9:1055–1061.CrossRefGoogle ScholarPubMed
Solovey, AA, Solovey, AN, Harkness, J, Hebbel, RP. Modulation of endothelial cell activation in sickle cell disease: a pilot study. Blood. 2001;97:1937–1941.CrossRefGoogle ScholarPubMed
Belcher, JD, Bryant, CJ, Nguyen, J, et al. Transgenic sickle mice have vascular inflammation. Blood. 2003;101:3953– 3959.CrossRefGoogle ScholarPubMed
Osarogiagbon, UR, Choong, S, Belcher, JD, Vercellotti, GM, Paller, MS, Hebbel, RP. Reperfusion injury pathophysiology in sickle transgenic mice. Blood. 2000;96:314–320.Google ScholarPubMed
Barrett-Connor, E. Bacterial infection and sickle cell anemia. An analysis of 250 infections in 166 patients and a review of the literature. Medicine (Baltimore). 1971;50:97–112.CrossRefGoogle Scholar
Lachant, NA, Sun, NC, Leong, , Oseas, RS, Prince, HE. Multicentric angiofollicular lymph node hyperplasia (Castleman's disease) followed by Kaposi's sarcoma in two homosexual males with the acquired immunodeficiency syndrome (AIDS). Am J Clin Pathol. 1985;83:27–33.CrossRefGoogle Scholar
Platt, OS. Sickle cell anemia as an inflammatory disease. J Clin Invest. 2000;106:337–338.CrossRefGoogle ScholarPubMed
Collins, T, Read, MA, Neish, AS, Whitley, MZ, Thanos, D, Maniatis, T. Transcriptional regulation of endothelial cell adhesion molecules:NF-kappa B and cytokine-inducible enhancers. FASEB J. 1995;9:899–909.CrossRefGoogle ScholarPubMed
Grisham, MB, Granger, DN, Lefer, DJ. Modulation of leukocyte-endothelial interactions by reactive metabolites of oxygen and nitrogen:relevance to ischemic heart disease. Free Radic Biol Med. 1998;25:404–433.CrossRefGoogle ScholarPubMed
Wahl, C, Liptay, S, Adler, G, Schmid, RM. Sulfasalazine:a potent and specific inhibitor of nuclear factor kappa B. J Clin Invest. 1998;101:1163–1174.CrossRefGoogle ScholarPubMed
Weber, CK, Liptay, S, Wirth, T, Adler, G, Schmid, RM. Suppression of NF-kappaB activity by sulfasalazine is mediated by direct inhibition of IkappaB kinases alpha and beta. Gastroenterology. 2000;119:1209–1218.CrossRefGoogle ScholarPubMed
Kaul, DK, Liu, XD, Choong, S, Belcher, JD, Vercellotti, GM, Hebbel, RP. Anti-inflammatory therapy ameliorates leukocyte adhesion and microvascular flow abnormalities in transgenic sickle mice. Am J Physiol Heart Circ Physiol. 2004;287:H293–H301.CrossRefGoogle ScholarPubMed
Mahaseth, H, Vercellotti, GM, Welch, TE, Bowlin, PR, Sonbol, KM, Hsia, CJ, Li, M, Bischof, JC, Hebbel, RP, Belcher, JD. Polynitroxyl albumin inhibits inflammation and vasoocclusion in transgenic sickle mice. J Lab Clin Med. 2005;145:204– 211.CrossRefGoogle ScholarPubMed
Hammerman, SI, Kourembanas, S, Conca, TJ, Tucci, M, Brauer, M, Farber, HW. Endothelin-1 production during the acute chest syndrome in sickle cell disease. Am J Respir Crit Care Med. 1997;156:280–285.CrossRefGoogle ScholarPubMed
Rivera, A, Rotter, MA, Brugnara, C. Endothelins activate Ca(2+)-gated K(+) channels via endothelin B receptors in CD-1 mouse erythrocytes. Am J Physiol. 1999;277:C746–C754.CrossRefGoogle ScholarPubMed
Winter, RJ, Manten, A, Jong, YP, Adams, R, Deventer, SJ, Lie, KI. Interleukin 8 released after acute myocardial infarction is mainly bound to erythrocytes. Heart. 1997;78:598–602.CrossRefGoogle ScholarPubMed
Neote, K, Mak, JY, Kolakowski, LF, Schall, TJ. Functional and biochemical analysis of the cloned Duffy antigen: identity with the red blood cell chemokine receptor. Blood. 1994;84:44–52.Google ScholarPubMed
Rivera, A. Reduced sickle erythrocyte dehydration in vivo by endothelin-1 receptor antagonists. Am J Physiol Cell Physiol. 2007;293:C960–C966.CrossRefGoogle ScholarPubMed
Eddahibi, S, Raffestin, B, Clozel, M, Levame, M, Adnot, S. Protection from pulmonary hypertension with an orally active endothelin receptor antagonist in hypoxic rats. Am J Physiol. 1995;268:H828–H835.Google ScholarPubMed
Finsnes, F, Lyberg, T, Christensen, G, Skjonsberg, OH. Effect of endothelin antagonism on the production of cytokines in eosinophilic airway inflammation. Am J Physiol Lung Cell Mol Physiol. 2001;280:L659–L665.CrossRefGoogle ScholarPubMed
Pearl, JM, Wellmann, SA, McNamara, JL, Lombardi, JP, Wagner, CJ, Raake, JL, Nelson, DP. Bosentan prevents hypoxia-reoxygenation-induced pulmonary hypertension and improves pulmonary function. Ann Thorac Surg. 1999;68: 1714–1721.CrossRefGoogle ScholarPubMed
Hebbel, RP, Morgan, WT, Eaton, JW, Hedlund, BE. Accelerated autoxidation and heme loss due to instability of sickle hemoglobin. Proc Natl Acad Sci USA. 1988;85:237–241.CrossRefGoogle ScholarPubMed
Sheng, K, Shariff, M, Hebbel, RP. Comparative oxidation of hemoglobins A and S. Blood. 1998;91:3467–3470.Google ScholarPubMed
Chiu, D, Lubin, B, Shohet, SB. Erythrocyte membrane lipid reorganization during the sickling process. Br J Haematol. 1979;41:223–234.CrossRefGoogle ScholarPubMed
Hebbel, RP, Eaton, JW, Balasingam, M, Steinberg, MH. Spontaneous oxygen radical generation by sickle erythrocytes. J Clin Invest. 1982;70:1253–1259.CrossRefGoogle ScholarPubMed
Hogg, N, Kalyanaraman, B, Joseph, J, Struck, A, Parthasarathy, S. Inhibition of low-density lipoprotein oxidation by nitric oxide. Potential role in atherogenesis. FEBS Lett. 1993;334: 170–174.CrossRefGoogle ScholarPubMed
Hogg, N, Struck, A, Goss, SP, et al. Inhibition of macrophage-dependent low density lipoprotein oxidation by nitric-oxide donors. J Lipid Res. 1995;36:1756–1762.Google ScholarPubMed
Garcia-Cardena, G, Fan, R, Shah, V, et al. Dynamic activation of endothelial nitric oxide synthase by Hsp90. Nature. 1998;392:821–824.CrossRefGoogle ScholarPubMed
Lin, MI, Fulton, D, Babbitt, R, et al. Phosphorylation of threonine 497 in endothelial nitric-oxide synthase coordinates the coupling of L-arginine metabolism to efficient nitric oxide production. J Biol Chem. 2003;278:44719–44726.CrossRefGoogle ScholarPubMed
Vasquez-Vivar, J, Kalyanaraman, B, Martasek, P, et al. Superoxide generation by endothelial nitric oxide synthase:the influence of cofactors. Proc Natl Acad Sci USA. 1998;95:9220–9225.CrossRefGoogle ScholarPubMed
Xu, H, Shi, Y, Wang, J, et al. A heat shock protein 90 binding domain in endothelial nitric-oxide synthase influences enzyme function. J Biol Chem. 2007;282:37567–37574.CrossRefGoogle ScholarPubMed
Morris, CR, Morris, SM, Hagar, W, et al. Arginine therapy: a new treatment for pulmonary hypertension in sickle cell disease?Am J Respir Crit Care Med. 2003;168:63–69.CrossRefGoogle ScholarPubMed
Dasgupta, T, Hebbel, RP, Kaul, DK. Protective effect of arginine on oxidative stress in transgenic sickle mouse models. Free Radic Biol Med. 2006;41:1771–1780.CrossRefGoogle ScholarPubMed
Wood, KC, Hebbel, RP, Lefer, DJ, Granger, DN. Critical role of endothelial cell-derived nitric oxide synthase in sickle cell disease-induced microvascular dysfunction. Free Radic Biol Med. 2006;40:1443–1453.CrossRefGoogle ScholarPubMed
Reiter, CD, Wang, X, Tanus-Santos, JE, et al. Cell-free hemoglobin limits nitric oxide bioavailability in sickle-cell disease. Nat Med. 2002;8:1383–1389.CrossRefGoogle ScholarPubMed
Nath, KA, Shah, V, Haggard, JJ, et al. Mechanisms of vascular instability in a transgenic mouse model of sickle cell disease. Am J Physiol Regul Integr Comp Physiol. 2000;279:R1949–R1955.CrossRefGoogle Scholar
Head, CA, Brugnara, C, Martinez-Ruiz, R, et al. Low concentrations of nitric oxide increase oxygen affinity of sickle erythrocytes in vitro and in vivo. J Clin Invest. 1997;100:1193–1198.CrossRefGoogle ScholarPubMed
Weiner, DL, Hibberd, PL, Betit, P, Cooper, AB, Botelho, CA, Brugnara, C. Preliminary assessment of inhaled nitric oxide for acute vaso-occlusive crisis in pediatric patients with sickle cell disease. JAMA. 2003;289:1136–1142.CrossRefGoogle ScholarPubMed
Franceschi, L, Baron, A, Scarpa, A, et al. Inhaled nitric oxide protects transgenic SAD mice from sickle cell disease-specific lung injury induced by hypoxia/reoxygenation. Blood. 2003;102:1087–1096.CrossRefGoogle ScholarPubMed
Franceschi, L, Malpeli, G, Scarpa, A, et al. Protective effects of S-nitrosoalbumin on lung injury induced by hypoxia-reoxygenation in mouse model of sickle cell disease. Am J Physiol Lung Cell Mol Physiol. 2006;291:L457–L465.CrossRefGoogle ScholarPubMed
Ou, J, Ou, Z, Jones, DW, et al. L-4F, an apolipoprotein A-1 mimetic, dramatically improves vasodilation in hypercholesterolemia and sickle cell disease. Circulation. 2003;107:2337–2341.CrossRefGoogle ScholarPubMed
Navab, M, Anantharamaiah, GM, Hama, S, et al. Oral administration of an Apo A-I mimetic Peptide synthesized from D-amino acids dramatically reduces atherosclerosis in mice independent of plasma cholesterol. Circulation. 2002;105:290–292.CrossRefGoogle ScholarPubMed
Navab, M, Anantharamaiah, GM, Reddy, ST, et al. Human apolipoprotein AI mimetic peptides for the treatment of atherosclerosis. Curr Opin Invest Drugs. 2003;4:1100–1104.Google ScholarPubMed
Lenten, BJ, Wagner, AC, Jung, CL, Lehrer, RI, Navab, M, Fogelman, AM. The ability of apolipoprotein A-I mimetic peptides to improve HDL anti-inflammatory properties is due to their remarkable binding affinities for oxidized lipids. Circulation. 2007;116:581.Google Scholar
Navab, M, Anantharamaiah, GM, Reddy, ST, et al. Oral D-4F causes formation of pre-beta high-density lipoprotein and improves high-density lipoprotein-mediated cholesterol efflux and reverse cholesterol transport from macrophages in apolipoprotein E-null mice. Circulation. 2004;109:3215–3220.CrossRefGoogle ScholarPubMed
Weihrauch, D, Xu, H, Shi, Y, et al. Effects of D-4F on vasodilation, oxidative stress, angiostatin, myocardial inflammation, and angiogenic potential in tight-skin mice. Am J Physiol Heart Circ Physiol. 2007;293:H1432–H1441.CrossRefGoogle ScholarPubMed
Remaley, AT, Thomas, F, Stonik, JA, et al. Synthetic amphipathic helical peptides promote lipid efflux from cells by an ABCA1-dependent and an ABCA1-independent pathway. J Lipid Res. 2003;44:828–836.CrossRefGoogle ScholarPubMed
Jia, Z, Natarajan, P, Forte, TM, Bielicki, JK. Thiol-bearing synthetic peptides retain the antioxidant activity of apolipoproteinA-I(Milano). Biochem Biophys Res Commun. 2002;297:206–213.CrossRefGoogle Scholar
Bielicki, JK, Oda, MN. Apolipoprotein A-I(Milano) and apolipoprotein A-I(Paris) exhibit an antioxidant activity distinct from that of wild-type apolipoprotein A-I. Biochemistry. 2002;41:2089–2096.CrossRefGoogle ScholarPubMed
Shah, PK, Yano, J, Reyes, O, et al. High-dose recombinant apolipoprotein A-I(milano) mobilizes tissue cholesterol and rapidly reduces plaque lipid and macrophage content in apolipoprotein e-deficient mice. Potential implications for acute plaque stabilization. Circulation. 2001;103:3047–3050.CrossRefGoogle ScholarPubMed
Shah, PK. High-density lipoprotein mimetics: focus on synthetic high-density lipoprotein. Am J Cardiol. 2007;100:S62–S67.CrossRefGoogle ScholarPubMed
Brouet, A, Sonveaux, P, Dessy, C, Moniotte, S, Balligand, JL, Feron, O. Hsp90 and caveolin are key targets for the proangiogenic nitric oxide-mediated effects of statins. Circ Res. 2001;89:866–873.CrossRefGoogle ScholarPubMed
Aslan, M, Ryan, TM, Adler, B, et al. Oxygen radical inhibition of nitric oxide-dependent vascular function in sickle cell disease. Proc Natl Acad Sci USA. 2001;98:15215–15220.CrossRefGoogle ScholarPubMed
Baldus, S, Eiserich, JP, Brennan, ML, Jackson, RM, Alexander, CB, Freeman, BA. Spatial mapping of pulmonary and vascular nitrotyrosine reveals the pivotal role of myeloperoxidase as a catalyst for tyrosine nitration in inflammatory diseases. Free Radic Biol Med. 2002;33:1010.CrossRefGoogle ScholarPubMed
Schrier, SL, Centis, F, Verneris, M, Ma, L, Angelucci, E. The role of oxidant injury in the pathophysiology of human thalassemias. Redox Rep. 2003;8:241–245.CrossRefGoogle ScholarPubMed
Shinar, E, Rachmilewitz, EA. Haemoglobinopathies and red cell membrane function. Baillieres Clin Haematol. 1993;6:357–369.CrossRefGoogle ScholarPubMed
Repka, T, Hebbel, RP. Hydroxyl radical formation by sickle erythrocyte membranes: role of pathologic iron deposits and cytoplasmic reducing agents. Blood. 1991;78:2753–2758.Google ScholarPubMed
Shalev, O, Repka, T, Goldfarb, A, et al. Deferiprone (L1) chelates pathologic iron deposits from membranes of intact thalassemic and sickle red blood cells both in vitro and in vivo. Blood. 1995;86:2008–2013.Google ScholarPubMed
Zerez, CR, Lachant, NA, Lee, SJ, Tanaka, KR. Decreased erythrocyte nicotinamide adenine dinucleotide redox potential and abnormal pyridine nucleotide content in sickle cell disease. Blood. 1988;71:512–515.Google ScholarPubMed
Morris, CR, Suh, JH, Hagar, W, et al. Erythrocyte glutamine depletion, altered redox environment, and pulmonary hypertension in sickle cell disease. Blood. 2008;111:402–410.CrossRefGoogle ScholarPubMed
Niihara, Y, Zerez, CR, Akiyama, DS, Tanaka, KR. Increased red cell glutamine availability in sickle cell anemia: demonstration of increased active transport, affinity, and increased glutamate level in intact red cells. J Lab Clin Med. 1997;130:83–90.CrossRefGoogle ScholarPubMed
Niihara, Y, Matsui, NM, Shen, YM, et al. L-glutamine therapy reduces endothelial adhesion of sickle red blood cells to human umbilical vein endothelial cells. BMC Blood Disord. 2005;5:4.Google ScholarPubMed
Niihara, Y, Zerez, CR, Akiyama, DS, Tanaka, KR. Oral L-glutamine therapy for sickle cell anemia: I. Subjective clinical improvement and favorable change in red cell NAD redox potential. Am J Hematol. 1998;58:117–121.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Wu, G, Fang, YZ, Yang, S, Lupton, JR, Turner, ND. Glutathione metabolism and its implications for health. J Nutr. 2004;134:489–492.CrossRefGoogle Scholar
Amer, J, Ghoti, H, Rachmilewitz, E, Koren, A, Levin, C, Fibach, E.Red blood cells, platelets and polymorphonuclear neutrophils of patients with sickle cell disease exhibit oxidative stress that can be ameliorated by antioxidants. Br J Haematol. 2006;132:108–113.CrossRefGoogle ScholarPubMed
Udupi, V, Rice-Evans, C. Thiol compounds as protective agents in erythrocytes under oxidative stress. Free Radic Res Commun. 1992;16:315–323.CrossRefGoogle ScholarPubMed
Gibson, XA, Shartava, A, McIntyre, J, et al. The efficacy of reducing agents or antioxidants in blocking the formation of dense cells and irreversibly sickled cells in vitro. Blood. 1998;91:4373–4378.Google ScholarPubMed
Goodman, SR. The irreversibly sickled cell: a perspective. Cell Mol Biol. 2004;50:53–58.Google ScholarPubMed
Pace, BS, Shartava, A, Pack-Mabien, A, Mulekar, M, Ardia, A, Goodman, SR. Effects of N-acetylcysteine on dense cell formation in sickle cell disease. Am J Hematol. 2003;73:26–32.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×