Skip to main content Accessibility help
×
  • Cited by 7
  • Csaba Hefler, Hong Kong University of Science and Technology, Chang-kwon Kang, University of Alabama, Huntsville, Huihe Qiu, Hong Kong University of Science and Technology, Wei Shyy, Hong Kong University of Science and Technology
Publisher:
Cambridge University Press
Online publication date:
April 2021
Print publication year:
2021
Online ISBN:
9781108874229

Book description

Insect-scale flapping wing flight vehicles can conduct environmental monitoring, disaster assessment, mapping, positioning and security in complex and challenging surroundings. To develop bio-inspired flight vehicles, systematic probing based on the particular category of flight vehicles is needed. This Element addresses the aerodynamics, aeroelasticity, geometry, stability and dynamics of flexible flapping wings in the insect flight regime. The authors highlight distinct features and issues, contrast aerodynamic stability between rigid and flexible wings, present the implications of the wing-aspect ratio, and use canonical models and dragonflies to elucidate scientific insight as well as technical capabilities of bio-inspired design.

References

Åke Norberg, R. (1972). The pterostigma of insect wings as an inertial regulator of wing pitch. Journal of Comparative Physiology. https://doi:10.1007/BF00693547
Alben, S., & Shelley, M. (2005). Coherent locomotion as an attracting state for a free flapping body. Proceedings of the National Academy of Sciences of the United States of America, 102, 1116311166.
Alben, S., Shelley, M., & Zhang, J. (2002). Drag reduction through self-similar bending of a flexible body. Nature, 420(6915), 479481.
Alexander, D. E. (1984). Unusual phase relationships between the forewings and hindwings in flying dragonflies. Journal of Experimental Biology, 109, 379383.
Alexander, D. E. (2002). Nature’s flyers: Birds, insects, and the biomechanics of flight, 1st ed., Baltimore, MD: Johns Hopkins University Press.
Alexander, D. E. (2015). On the wing: Insects, pterosaurs, birds, bats and the evolution of animal flight, 1st ed., Oxford: Oxford University Press.
Alexander, R. D., & BrownJr, W. L. (1963). Mating behavior and the origin of insect wings. Occasional Papers of the Museum of Zoology, 628, 119.
Altshuler, D. L., Dickson, W. B., Vance, J. T., Roberts, S. P. & Dickinson, M. H. (2005). Short-amplitude high-frequency wing strokes determine the aerodynamics of honeybee flight. Proceedings of the National Academy of Sciences of the United States of America, 102(50), 1821318218.
Anderson, J. D. (2011). Fundamentals of aerodynamics, 5th ed., New York: McGraw Hill. https://doi:10.2514/152157
Aono, H., Liang, F., & Liu, H. (2008). Near- and far-field aerodynamics in insect hovering flight: An integrated computational study. Journal of Experimental Biology. https://doi:10.1242/jeb.008649
Aono, H., Shyy, W., & Liu, H. (2009). Near wake vortex dynamics of a hovering hawkmoth. Acta Mechanica Sinica. https://doi:10.1007/s10409-008-0210-x
Azuma, A. (2006). The biokinetics of flying and swimming, 2nd ed., Reston, VA: American Institute of Aeronautics and Astronautics. https://doi:10.2514/4.862502
Azuma, A., & Watanabe, T. (1988). Flight performance of a dragonfly. Journal of Experimental Biology, 137, 221252.
Babinsky, H. (2003). How do wings work? Physics Education. https://doi:10.1088/0031-9120/38/6/001
Barret, C. (2000). Aerobots and hydrobots for planetary exploration. In 38th Aerospace Sciences Meeting and Exhibit, Reston, VA: American Institute of Aeronautics and Astronautics. https://doi:10.2514/6.2000-633
Bäumler, F., Gorb, S. N. & Büsse, S. (2018). Comparative morphology of the thorax musculature of adult Anisoptera (Insecta: Odonata): Functional aspects of the flight apparatus. Arthropod Structure and Development. https://doi:10.1016/j.asd.2018.04.003
Beem, H. R., Rival, D. E. & Triantafyllou, M. S. (2012). On the stabilization of leading-edge vortices with spanwise flow. Experiments in Fluids. https://doi:10.1007/s00348-011-1241-9
Bergou, A. J., Xu, S. & Wang, Z. J. (2007). Passive wing pitch reversal in insect flight. Journal of Fluid Mechanics. https://doi:10.1017/22112007008440
Berman, G. J., & Wang, Z. J. (2007). Energy-minimizing kinematics in hovering insect flight. Journal of Fluid Mechanics, 582, 153.
Birch, J. M., & Dickinson, M. H. (2001). Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature. https://doi:10.1038/35089071
Birch, J. M., & Dickinson, M. H. (2003). The influence of wing-wake interactions on the production of aerodynamic forces in flapping flight. Journal of Experimental Biology, 206(13), 22572272.
Birch, J. M., Dickson, W. B. & Dickinson, M. H. (2004). Force production and flow structure of the leading edge vortex on flapping wings at high and low Reynolds numbers. Journal of Experimental Biology. https://doi:10.1242/jeb.00848
Bluman, J. E., & Kang, C. (2017a). Achieving hover equilibrium in free flight with a flexible flapping wing. Journal of Fluids and Structures, 75, 117139.
Bluman, J. E., & Kang, C. (2017b). Wing-wake interaction destabilizes hover equilibrium of a flapping insect-scale wing. Bioinspiration & Biomimetics, 12(4), 046004.
Bluman, J. E., Sridhar, M. K., & Kang, C. (2018). Chordwise wing flexibility may passively stabilize hovering insects. Journal of the Royal Society Interface, 15(147), 20180409.
Bode-Oke, A. T., Zeyghami, S., & Dong, H. (2018). Flying in reverse: Kinematics and aerodynamics of a dragonfly in backward free flight. Journal of the Royal Society Interface. doi: 10.1098/rsif.2018.0102
Bomphrey, R. J. (2005). The aerodynamics of Manduca sexta: Digital particle image velocimetry analysis of the leading-edge vortex. Journal of Experimental Biology. doi: 10.1242/jeb.01471
Bomphrey, R. J., Nakata, T., Henningsson, P., & Lin, H. T. (2016). Flight of the dragonflies and damselflies. Philosophical Transactions of the Royal Society B: Biological Sciences. doi: 10.1098/rstb.2015.0389
Brackenbury, J. H. (1994). Wing folding and free‐flight kinematics in Coleoptera (Insecta): A comparative study. Journal of Zoology. doi: 10.1111/j.1469-7998.1994.tb01572.x
Broering, T. M., Lian, Y., & Henshaw, W. (2012). Numerical investigation of energy extraction in a tandem flapping wing configuration. AIAA Journal. doi: 10.2514/1.J051104
Bushnell, D. M., & Moore, K. J. (1991). Drag reduction in nature. Annual Review of Fluid Mechanics, 23(1), 6579.
Büsse, S., Helmker, B. & Hörnschemeyer, T. (2015). The thorax morphology of Epiophlebia (Insecta: Odonata) nymphs: Including remarks on ontogenesis and evolution. Scientific Reports. doi: 10.1038/srep12835
Cadell, C. (2018, May). Flight of imagination: Chinese firm breaks record with 1,374 dancing drones. Reuters. Retrieved from www.reuters.com/article/us-china-drones/flight-of-imagination-chinese-firm-breaks-record-with-1374-dancing-drones-idUSKBN1I3189.
Carr, Z. R., Chen, C. & Ringuette, M. J. (2013). Finite-span rotating wings: Three-dimensional vortex formation and variations with aspect ratio. Experiments in Fluids, 54(2), 1444.
Carr, Z. R., DeVoria, A. C. & Ringuette, M. J. (2015). Aspect-ratio effects on rotating wings: Circulation and forces. Journal of Fluid Mechanics, 767, 497525.
Chechetka, S. A., Yu, Y., Tange, M. & Miyako, E. (2017). Materially engineered artificial pollinators. Chem, 2(2), 224239.
Chen, Y. H., Skote, M., Zhao, Y. & Huang, W. M. (2013). Dragonfly (Sympetrum flaveolum) flight: Kinematic measurement and modelling. Journal of Fluids and Structures. doi: 10.1016/j.jfluidstructs.2013.04.003
Chen, Y., Wang, H., Helbling, E. F. et al. (2017). A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot. Science Robotics, 2(11), eaao5619.
Cheng, B., & Deng, X. (2011). Translational and rotational damping of flapping flight and its dynamics and stability at hovering. IEEE Transactions on Robotics, 27(5), 849864.
Cheng, B., Deng, X. & Hedrick, T. L. (2011). The mechanics and control of pitching manoeuvres in a freely flying hawkmoth (Manduca sexta). Journal of Experimental Biology, 214(24), 40924106.
Cheng, B., Roll, J., Liu, Y., Troolin, D. R. & Deng, X. (2014). Three-dimensional vortex wake structure of flapping wings in hovering flight. Journal of the Royal Society Interface. doi: 10.1098/rsif.2013.0984
Cherney, M. (2019, April). Drone racing fans have some questions: Where’s the drone? Who’s winning? Wall Street Journal. Retrieved from www.wsj.com/articles/drone-racing-fans-have-some-questions-wheres-the-drone-whos-winning–11554305405.
Chew, C.-M., Lim, Q.-Y. & Yeo, K. S. (2015). Development of propulsion mechanism for robot manta ray. In 2015 IEEE International Conference on Robotics and Biomimetics (ROBIO), Washington, DC: Institute of Electrical and Electronics Engineers, pp. 19181923.
Chin, D. D., & Lentink, D. (2016). Flapping wing aerodynamics: From insects to vertebrates. Journal of Experimental Biology. doi: 10.1242/jeb.042317
Chowdhury, J., Cook, L. & Ringuette, M. J. (2019). The vortex formation of an unsteady translating plate with a rotating tip. In AIAA Scitech 2019 Forum, Reston, VA: American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2019-0348
Coleman, D., & Benedict, M. (2015). Design, development and flight-testing of a robotic hummingbird. In 71st Annual Forum of the American Helicopter Society, Virginia Beach, VA, pp. 118.
Combes, S. A. (2010). Materials, structure, and dynamics of insect wings as bioinspiration for MAVs. In Blockley, R. & Shyy, W., eds., Encyclopedia of Aerospace Engineering, Hoboken, NJ: Wiley, pp. 110.
Combes, S. A., Crall, J. D. & Mukherjee, S. (2010). Dynamics of animal movement in an ecological context: Dragonfly wing damage reduces flight performance and predation success. Biology Letters, 6(3), 426429.
Combes, S. A., & Daniel, T. L. (2003a). Flexural stiffness in insect wings. II. Spatial distribution and dynamic wing bending. Journal of Experimental Biology. doi: 10.1242/jeb.00524
Combes, S. A., & Daniel, T. L. (2003b). Flexural stiffness in insect wings I. Scaling and the influence of wing venation. Journal of Experimental Biology, 206(17), 29792987.
Combes, S. A., Rundle, D. E., Iwasaki, J. M. & Crall, J. D. (2012). Linking biomechanics and ecology through predator-prey interactions: Flight performance of dragonflies and their prey. Journal of Experimental Biology, 215(6), 903913.
Cooter, R. J., & Baker, P. S. (1977). Weis-Fogh clap and fling mechanism in Locusta. Nature. doi: 10.1038/269053a0
Darwin, C. (1859). On the origin of the species.
Davis, W. R. J., Kosicki, B. B., Boroson, D. M. & Kostishack, D. F. (1996). Micro air vehicles for optical surveillance. Lincoln Laboratory Journal.
Deng, S., Percin, M. & Van Oudheusden, B. (2015). Aerodynamic characterization of ‘delfly micro’ in forward flight configuration by force measurements and flow field visualization. Procedia Engineering, 99, 925929.
Deora, T., Gundiah, N. & Sane, S. P. (2017). Mechanics of the thorax in flies. Journal of Experimental Biology. doi: 10.1242/jeb.128363
Desbiens, A. L., Chen, Y. & Wood, R. J. (2013). A wing characterization method for flapping-wing robotic insects. IEEE International Conference on Intelligent Robots and Systems, Washington, DC: Institute of Electrical and Electronics Engineers, pp. 13671373.
Dewey, P. A., Boschitsch, B. M., Moored, K. W., Stone, H. A. & Smits, A. J. (2013). Scaling laws for the thrust production of flexible pitching panels. Journal of Fluid Mechanics, 732, 2946.
Dickinson, M. H. (1999). Haltere-mediated equilibrium reflexes of the fruit fly, Drosophila melanogaster. Philosophical Transactions of the Royal Society B: Biological Sciences. doi: 10.1098/rstb.1999.0442
Dickinson, M. H., & Gotz, K. G. (1993). Unsteady aerodynamic performance of model wings at low Reynolds numbers. Journal of Experimental Biology, 174(1), 4564.
Dickinson, M. H., Lehmann, F. O. & Gotz, K. G. (1993). The active control of wing rotation by Drosophila. Journal of Experimental Biology.
Dickinson, M. H., Lehmann, F.-O. & Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect right. Science. doi: 10.1126/science.284.5422.1954
Dudley, R. (2000). The biomechanics of insect flight: Form, function, evolution, Princeton, NJ: Princeton University Press.
Eldredge, J. D., Toomey, J. & Medina, A. (2010). On the roles of chord-wise flexibility in a flapping wing with hovering kinematics. Journal of Fluid Mechanics, 659, 94115.
Ellington, C. P. (1984a). The aerodynamics of hovering insect flight. I. The quasi-steady analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 305(1122), 115.
Ellington, C. P. (1984b). The aerodynamics of hovering insect flight. II. Morphological parameters. Philosophical Transactions of the Royal Society B: Biological Sciences, 305(1122), 1740.
Ellington, C. P. (1984c). The aerodynamics of hovering insect flight. III. Kinematics. Philosophical Transactions of the Royal Society B: Biological Sciences, 305(1122), 4178.
Ellington, C. P., Van Berg, C., Den Willmott, A. P., & Thomas, A. L. R. (1996). Leading-edge vortices in insect flight. Nature. doi: 10.1038/384626a0
Ennos, A. R. R. (1988). The inertial cause of wing rotation in Diptera. Journal of Experimental Biology, 140(1), 161169.
Ennos, A. R. R. (1989). Inertial and aerodynamic torques on the wings of diptera in flight. Journal of Experimental Biology, 142, 8795.
Faruque, I., & Humbert, J. S. (2010). Dipteran insect flight dynamics. Part 1: longitudinal motion about hover. Journal of Theoretical Biology, 264(2), 538552.
Fédrigo, O., & Wray, G. A. (2010). Developmental evolution: How beetles evolved their shields. Current Biology. doi: 10.1016/j.cub.2009.12.012
Forbes, W. T. M. (1943). The origin of wings and venational types in insects. American Midland Naturalist, 29(2), 381.
Frame, J., Lopez, N., Curet, O. & Engeberg, E. D. (2018). Thrust force characterization of free-swimming soft robotic jellyfish. Bioinspiration & Biomimetics, 13(6), 064001.
Fry, S. N., Sayaman, R. & Dickinson, M. H. (2005). The aerodynamics of hovering flight in Drosophila. Journal of Experimental Biology, 208(12), 23032318.
Fu, J., Hefler, C., Qiu, H. H. & Shyy, W. (2014). Effects of aspect ratio on flapping wing aerodynamics in animal flight. Acta Mechanica Sinica, 30(6), 776786.
Fu, J., Liu, X., Shyy, W. & Qiu, H. H. (2018). Effects of flexibility and aspect ratio on the aerodynamic performance of flapping wings. Bioinspiration & Biomimetics. doi: 10.1088/1748-3190/aaaac1
Fu, J., Shyy, W. & Qiu, H. H. (2017). Effects of aspect ratio on vortex dynamics of a rotating wing. AIAA Journal. doi: 10.2514/1.j055764
Garmann, D. J., & Visbal, M. R. (2014). Dynamics of revolving wings for various aspect ratios. Journal of Fluid Mechanics, 748, 932956.
Gegenbaur, C., Bell, F. J. & Lankester, E. R. (1878). Elements of comparative anatomy, 2nd ed., London: Macmillan.
Ghiradella, H. (1994). Structure of butterfly scales: Patterning in an insect cuticle. Microscopy Research and Technique. doi: 10.1002/jemt.1070270509
Ghiradella, H. (1998). Hairs, bristles, and scales. In Microscopic anatomy of invertebrates, Volume 11A, Insecta.
Gordnier, R. E., & Attar, P. J. (2014). Impact of flexibility on the aerodynamics of an aspect ratio two membrane wing. Journal of Fluids and Structures, 45(February), 138152.
Gordnier, R. E., Kumar Chimakurthi, S., Cesnik, C. E. S. et al. (2013). High-fidelity aeroelastic computations of a flapping wing with spanwise flexibility. Journal of Fluids and Structures, 40(July), 86104.
Guizzo, E. (2011, April). Robotic aerial vehicle captures dramatic footage of Fukushima reactors. IEEE Spectrum. Retrieved from https://spectrum.ieee.org/automaton/robotics/industrial-robots/robotic-aerial-vehicle-at-fukushima-reactors
Gunnell, G. F., & Simmons, N. B., eds. (2012). Evolutionary history of bats, Cambridge: Cambridge University Press. doi: 10.1017/CBO9781139045599
Haas, F., & Wootton, R. J. (1996). Two basic mechanisms in insect wing folding. Proceedings of the Royal Society B: Biological Sciences. doi: 10.1098/rspb.1996.0241
Habib, M. B. (2013). Capacity for the cretaceous pterosaur Anhanguera to launch from water. FASEB Journal.
Han, J.-S., Chang, J. W. & Cho, H.-K. (2015). Vortices behavior depending on the aspect ratio of an insect-like flapping wing in hover. Experiments in Fluids, 56(9), 181.
Harbig, R. R., Sheridan, J. & Thompson, M. C. (2014). The role of advance ratio and aspect ratio in determining leading-edge vortex stability for flapping flight. Journal of Fluid Mechanics, 751, 71105.
Hassanalian, M., Rice, D. & Abdelkefi, A. (2018). Evolution of space drones for planetary exploration: A review. Progress in Aerospace Sciences, 97, 61105.
Heathcote, S., & Gursul, I. (2007). Flexible flapping airfoil propulsion at low Reynolds numbers. AIAA Journal, 45(5), 10661079.
Heathcote, S., Martin, D. & Gursul, I. (2004). Flexible flapping airfoil propulsion at zero freestream velocity. AIAA Journal. doi: 10.2514/1.5299
Heathcote, S., Wang, Z. & Gursul, I. (2008). Effect of spanwise flexibility on flapping wing propulsion. Journal of Fluids and Structures. doi: 10.1016/j.jfluidstructs.2007.08.003
Hedenström, A., & Johansson, L. C. (2015). Bat flight. Current Biology. doi: 10.1016/j.cub.2015.04.002
Hedrick, T. L. (2011). Damping in flapping flight and its implications for manoeuvring, scaling and evolution. Journal of Experimental Biology, 214(24), 40734081.
Hedrick, T. L., Cheng, B. & Deng, X. (2009). Wingbeat time and the scaling of passive rotational damping in flapping flight. Science, 324(5924), 252.
Hedrick, T. L., Combes, S. A. & Miller, L. A. (2015). Recent developments in the study of insect flight. Canadian Journal of Zoology, 93(12), 925943.
Hefler, C., Noda, R., Qiu, H. H. & Shyy, W. (2020). Aerodynamic performance of a free-flying dragonfly: A span-resolved investigation. Physics of Fluids. doi: 10.1063/1.5145199
Hefler, C., Qiu, H. H. & Shyy, W. (2018). Aerodynamic characteristics along the wing span of a dragonfly Pantala flavescens. Journal of Experimental Biology, 221(19). doi: 10.1242/jeb.171199
Holmes, K. (2015, December). A self-organizing drone army dances with humans. VICE. Retrieved from www.vice.com/en_us/article/pgqxj9/collmot-robotics-drone-dance
Hone, D. W. E., Van Rooijen, M. K. & Habib, M. B. (2015). The wingtips of the pterosaurs: anatomy, aeronautical function and ecological implications. Palaeogeography, Palaeoclimatology, Palaeoecology. doi: 10.1016/j.palaeo.2015.08.046
Hsieh, C. T., Kung, C. F., Chang, C. C. & Chu, C. C. (2010). Unsteady aerodynamics of dragonfly using a simple wing-wing model from the perspective of a force decomposition. Journal of Fluid Mechanics. doi: 10.1017/S0022112010003484
Hu, Z., & Deng, X. Y. (2014). Aerodynamic interaction between forewing and hindwing of a hovering dragonfly. Acta Mechanica Sinica. doi: 10.1007/s10409-014-0118-6
Huang, H., & Sun, M. (2007). Dragonfly forewing-hindwing interaction at various flight speeds and wing phasing. AIAA Journal. doi: 10.2514/1.24666
Ishihara, D., Horie, T. & Denda, M. (2009a). A two-dimensional computational study on the fluid-structure interaction cause of wing pitch changes in dipteran flapping flight. Journal of Experimental Biology. doi: 10.1242/jeb.020404
Ishihara, D., Yamashita, Y., Horie, T., Yoshida, S. & Niho, T. (2009b). Passive maintenance of high angle of attack and its lift generation during flapping translation in crane fly wing. Journal of Experimental Biology, 212(23), 38823891.
Jafferis, N. T., Helbling, E. F., Karpelson, M. & Wood, R. J. (2019). Untethered flight of an insect-sized flapping-wing microscale aerial vehicle. Nature, 570(7762), 491495.
Jones, K. D., Lund, T. C. & Platzer, M. F. (2002). Experimental and computational investigation of flapping wing propulsion for micro air vehicles. Progress in Astronautics and Aeronautics, 195, 307340.
Kang, C., Aono, H., Cesnik, C. E. S. & Shyy, W. (2011). Effects of flexibility on the aerodynamic performance of flapping wings. Journal of Fluid Mechanics, 689, 3274.
Kang, C., Cranford, J., Sridhar, M. K., Kodali, D., Landrum, D. B. & Slegers, N. (2018). Experimental characterization of a butterfly in climbing flight. AIAA Journal, 56(1), 1524.
Kang, C., & Shyy, W. (2013). Scaling law and enhancement of lift generation of an insect-size hovering flexible wing. Journal of the Royal Society Interface, 10(85), 20130361.
Kang, C., & Shyy, W. (2014). Analytical model for instantaneous lift and shape deformation of an insect-scale flapping wing in hover. Journal of the Royal Society Interface, 11(101), 20140933.
Karásek, M., Muijres, F. T., De Wagter, C., Remes, B. D. W. & de Croon, G. C. H. E. (2018). A tailless aerial robotic flapper reveals that flies use torque coupling in rapid banked turns. Science, 361(6407), 10891094.
Katz, J., & Weihs, D. (1978). Hydrodynamic propulsion by large amplitude oscillation of an airfoil with chordwise flexibility. Journal of Fluid Mechanics. doi: 10.1017/S0022112078002220
Keennon, M., Klingebiel, K., Won, H. & Andriukov, A. (2012). Development of the nano hummingbird: A tailless flapping wing micro air vehicle. In 50th AIAA Aerospace Sciences Meeting AIAA 2012–0588, American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2012-588
Kodali, D., Medina, C., Kang, C. & Aono, H. (2017). Effects of spanwise flexibility on the performance of flapping flyers in forward flight. Journal of the Royal Society Interface, 14(136), 20170725.
Kruyt, J. W., Quicazán-Rubio, E. M., Van Heijst, G. F., Altshuler, D. L. & Lentink, D. (2014). Hummingbird wing efficacy depends on aspect ratio and compares with helicopter rotors. Journal of the Royal Society Interface, 11(99), 20140585.
Kruyt, J. W., van Heijst, G. F., Altshuler, D. L. & Lentink, D. (2015). Power reduction and the radial limit of stall delay in revolving wings of different aspect ratio. Journal of the Royal Society Interface, 12(105), 20150051.
Kumar, A., Kumar, N., Das, R., Lakhani, P. & Bhushan, B. (2019). In vivo structural dynamic analysis of the dragonfly wing: The effect of stigma as its modulator. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. doi: 10.1098/rsta.2019.0132
Lai, G., & Shen, G. (2012). Experimental investigation on the wing-wake interaction at the mid stroke in hovering flight of dragonfly. Science China: Physics, Mechanics and Astronomy. doi: 10.1007/s11433-012-4907-2
Lan, S., & Sun, M. (2001). Aerodynamic force and flow structures of two airfoils in flapping motions. Acta Mechanica Sinica, 17(4), 310331.
Lee, Y. J., Lua, K. B. & Lim, T. T. (2016). Aspect ratio effects on revolving wings with Rossby number consideration. Bioinspiration & Biomimetics, 11(5). doi: 10.1088/1748-3190/11/5/056013
Lehmann, F. O. (2004). The mechanisms of lift enhancement in insect flight. Naturwissenschaften. doi: 10.1007/s00114-004-0502-3
Lehmann, F.-O. (2008). When wings touch wakes: Understanding locomotor force control by wake-wing interference in insect wings. Journal of Experimental Biology. doi: 10.1242/jeb.007575
Lehmann, F.-O., & Dickinson, M. H. (1997). The changes in power requirements and muscle efficiency during elevated force production in the fruit fly Drosophila melanogaster. Journal of Experimental Biology, 200(7), 11331143.
Lehmann, F.-O., Sane, S. P. & Michael, D. (2005). The aerodynamic effects of wing-wing interaction in flapping insect wings. Journal of Experimental Biology, 208(16), 30753092.
Lentink, D., & Dickinson, M. H. (2009). Rotational accelerations stabilize leading edge vortices on revolving fly wings. Journal of Experimental Biology. doi: 10.1242/jeb.022269
Lentink, D., Jongerius, S. R. & Bradshaw, N. L. (2010). The scalable design of flapping micro-air vehicles inspired by insect flight. Flying Insects and Robots. doi: 10.1007/978-3-540-89393-6_14
Lian, Y., Broering, T., Hord, K. & Prater, R. (2014). The characterization of tandem and corrugated wings. Progress in Aerospace Sciences. doi: 10.1016/j.paerosci.2013.08.001
Liang, B., & Sun, M. (2013). Nonlinear flight dynamics and stability of hovering model insects. Journal of the Royal Society Interface, 10(85), 20130269.
Liu, H., Ravi, S., Kolomenskiy, D. & Tanaka, H. (2016). Biomechanics and biomimetics in insect-inspired flight systems. Philosophical Transactions of the Royal Society B: Biological Sciences, 371(1704), 20150390.
Lu, C., Warchol, K. M. & Callahan, R. A. (2014). Sub-lethal exposure to neonicotinoids impaired honey bees winterization before proceeding to colony collapse disorder. Bulletin of Insectology, 67(1), 125130.
Lucas, K. N., Thornycroft, P. J. M., Gemmell, B. J., Colin, S. P., Costello, J. H. & Lauder, G. V. (2015). Effects of non-uniform stiffness on the swimming performance of a passively-flexing, fish-like foil model. Bioinspiration & Biomimetics, 10(5), 056019.
Luo, G., & Sun, M. (2005). Effects of corrugation and wing planform on the aerodynamic force production of sweeping model insect wings. Acta Mechanica Sinica, 21, 531541.
Ma, K. Y., Chirarattananon, P., Fuller, S. B. & Wood, R. J. (2013). Controlled flight of a biologically inspired, insect-scale robot. Science, 340(6132), 603607.
MacRae, M. (2016). 5 new applications for drones . ASME. Retrieved August 3, 2019, from www.asme.org/topics-resources/content/5-new-applications-for-drones
Mahardika, N., Viet, N. Q. & Park, H. C. (2011). Effect of outer wing separation on lift and thrust generation in a flapping wing system. Bioinspiration & Biomimetics. doi: 10.1088/1748-3182/6/3/036006
Marden, J. H. (1987). Maximum lift production during takeoff in flying animals. Journal of Experimental Biology.
Maybury, W. J., & Lehmann, F.-O. (2004). The fluid dynamics of flight control by kinematic phase lag variation between two robotic insect wings. Journal of Experimental Biology. doi: 10.1242/jeb.01319
Mcmichael, J. M., & Francis, M. S. (1997). Micro air vehicles: Toward a new dimension in flight. Unmanned Systems.
Michelin, S., & Smith, S. G. L. (2009). Resonance and propulsion performance of a heaving flexible wing. Physics of Fluids, 21, 71902.
Miller, L. A., & Peskin, C. S. (2005). A computational fluid dynamics of ‘clap and fling’ in the smallest insects. Journal of Experimental Biology. doi: 10.1242/jeb.01376
Misof, B., Liu, S., Meusemann, K. et al. (2014). Phylogenomics resolves the timing and pattern of insect evolution. Science, 346(6210), 763767.
Mountcastle, A. M., & Combes, S. A. (2013). Wing flexibility enhances load-lifting capacity in bumblebees. Proceedings of the Royal Society B: Biological Sciences, 280(1759), 20130531.
Mountcastle, A. M., & Combes, S. A. (2014). Biomechanical strategies for mitigating collision damage in insect wings: Structural design versus embedded elastic materials. Journal of Experimental Biology, 217(7), 11081115.
Muijres, F. T., Johansson, L. C., Barfield, R., Wolf, M., Spedding, G. R. & Hedenström, A. (2008). Leading-edge vortex improves lift in slow-flying bats. Science. doi: 10.1126/science.1153019
Müller, F. (1877). Ueber haarpinsel, filzflecke und ähnliche gebilde auf den flügeln männlicher schmetterlinge. Jenaische Zeitschrift Für Naturwissenschaft, 11, 99114.
Muniappan, A., Baskar, V. & Duriyanandhan, V. (2005). Lift and thrust characteristics of flapping wing micro air vehicle (MAV). In 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reston, VA: American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2005-1055
Munson, B. R., Rothmayer, A. P., Okiishi, T. H. & Huebsch, W. W. (2012). Fundamentals of fluid mechanics, 7th ed., Hoboken, NJ: Wiley.
Nakata, T., & Liu, H. (2012). Aerodynamic performance of a hovering hawkmoth with flexible wings: a computational approach. Proceedings. Biological Sciences / The Royal Society, 279(1729), 722731.
National University of Singapore. (2017, November). NUS-developed manta ray robot swims faster and operates up to 10 hours. NUS News: NUS Media Relations Team. Retrieved from https://phys.org/news/2017–11-nus-developed-manta-ray-robot-faster.html.
Neville, A. C. (1960). Aspects of flight mechanics in anisopterous dragonflies. Journal of Experimental Biology.
Norberg, R. Å. (1975). Hovering flight of the dragonfly Aeschna juncea L., kinematics and aerodynamics. Swimming and Flying in Nature. doi: 10.1007/978-1-4757-1326-8_19
Norberg, U. M. (1990). Vertebrate flight: Mechanics, physiology, morphology, ecology and evolution, Berlin: Springer.
Norberg, U. M. (2002). Evolution of vertebrate flight: An aerodynamic model for the transition from gliding to active flight. American Naturalist. doi: 10.1086/284419
Novacek, M. J. (1985). Evidence for echolocation in the oldest known bats. Nature. doi: 10.1038/315140a0
Orlowski, C. T., & Girard, A. R. (2012a). Dynamics, stability, and control analyses of flapping wing micro-air vehicles. Progress in Aerospace Sciences, 51, 1830.
Orlowski, C. T., & Girard, A. R. (2012b). Longitudinal flight dynamics of flapping-wing micro air vehicles. Journal of Guidance, Control, and Dynamics, 35(4), 11151131.
Ozen, C., & Rockwell, D. (2013). Flow structure on a rotating wing: Effect of wing aspect ratio and shape. In 51st AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition, Reston, Virginia, 7 – 10 January 2013, Grapevine, TX: American Institute of Aeronautics and Astronautics. doi: 10.2514/6.2013-676
Park, H., & Choi, H. (2012). Kinematic control of aerodynamic forces on an inclined flapping wing with asymmetric strokes. Bioinspiration and Biomimetics. doi: 10.1088/1748-3182/7/1/016008
Park, J. H., & Yoon, K. J. (2008). Designing a biomimetic ornithopter capable of sustained and controlled flight. Journal of Bionic Engineering. doi: 10.1016/S1672-6529(08)60005-0
Parle, E., Dirks, J. H. & Taylor, D. (2017). Damage, repair and regeneration in insect cuticle: The story so far, and possibilities for the future. Arthropod Structure and Development. doi: 10.1016/j.asd.2016.11.008
Pass, G. (2018). Beyond aerodynamics: The critical roles of the circulatory and tracheal systems in maintaining insect wing functionality. Arthropod Structure and Development. doi: 10.1016/j.asd.2018.05.004
Pennycuick, C. J. (2008). Modelling the flying bird. Theoretical Ecology Series. Burlington, MA: Academic Press. doi: 10.1007/s13398-014-0173-7.2
Percin, M., Hu, Y., Van Oudheusden, B. W., Remes, B. & Scarano, F. (2011). Wing flexibility effects in clap-and-fling. International Journal of Micro Air Vehicles, 3(4), 217227.
Phillips, N., Knowles, K. & Bomphrey, R. J. (2015). The effect of aspect ratio on the leading-edge vortex over an insect-like flapping wing. Bioinspiration & Biomimetics, 10(5), 056020.
Platzer, M. F., Jones, K. D., Young, J. & Lai, J. C. S. (2008). Flapping-wing aerodynamics: Progress and challenges. AIAA Journal. doi: 10.2514/1.29263
Pornsin-Sirirak, T. N., Tai, Y.-C., Ho, C.-M. & Keennon, M. (2001). Microbat: A palm-sized electrically powered ornithopter. Proceedings of NASA/JPL Workshop on Biomorphic Robotics.
Rajabi, H., Rezasefat, M., Darvizeh, A. et al. (2016). A comparative study of the effects of constructional elements on the mechanical behaviour of dragonfly wings. Applied Physics A: Materials Science and Processing. doi: 10.1007/s00339-015-9557-6
Ramamurti, R., & Sandberg, W. (2001). Simulation of flow about flapping airfoils using finite element incompressible flow solver. AIAA Journal, 39(2), 253260.
Ramamurti, R., & Sandberg, W. (2007). A computational investigation of the three-dimensional unsteady aerodynamics of Drosophila hovering and maneuvering. Journal of Experimental Biology. doi: 10.1242/jeb.02704
Ramananarivo, S., Godoy-Diana, R. & Thiria, B. (2011). Rather than resonance, flapping wing flyers may play on aerodynamics to improve performance. Proceedings of the National Academy of Sciences of the United States of America, 108(15), 59645969.
Reavis, M., & Luttges, M. (1988). Aerodynamic forces produced by a dragonfly. In 26th Aerospace Sciences Meeting, Reston, VA: American Institute of Aeronautics and Astronautics. doi: 10.2514/6.1988-330
Richardson, P. L. (2011). How do albatrosses fly around the world without flapping their wings? Progress in Oceanography. doi: 10.1016/j.pocean.2010.08.001
Riggs, P., Bowyer, A. & Vincent, J. (2010). Advantages of a biomimetic stiffness profile in pitching flexible fin propulsion. Journal of Bionic Engineering. doi: 10.1016/S1672-6529(09)60203-1
Ristroph, L., & Childress, S. (2014). Stable hovering of a jellyfish-like flying machine. Journal of the Royal Society Interface. doi: 10.1098/rsif.2013.0992
Rival, D., Schönweitz, D. & Tropea, C. (2011). Vortex interaction of tandem pitching and plunging plates: A two-dimensional model of hovering dragonfly-like flight. Bioinspiration & Biomimetics, 6(1), 016008.
Roccia, B. A., Preidikman, S., Verstraete, M. L. & Mook, D. T. (2017). Influence of spanwise twisting and bending on lift generation in MAV-like flapping wings. Journal of Aerospace Engineering, 30(1), 04016079.
Rudolph, R. (1976a). Preflight behaviour and the initiation of flight in tethered and unrestrained dragonfly, Calopteryx splendens (Harris) (Zygoptera: Calopterygidae). Odonatologica, 5(1), 5964.
Rudolph, R. (1976b). Some aspects of wing kinematics in Calopteryx splendens (Harris) (Zygoptera: Calopterygidae). Odonatologica, 5(2), 119127.
Rüppel, G. (1989). Kinematic analysis of symmetrical flight manoeuvres of Odonata. Journal of Experimental Biology, 144(1).
Ryu, Y., Chang, J. W. & Chung, J. (2016). Aerodynamic force and vortex structures of flapping flexible hawkmoth-like wings. Aerospace Science and Technology, 56, 183196.
Salami, E., Ward, T. A., Montazer, E. & Ghazali, N. N. N. (2019). A review of aerodynamic studies on dragonfly flight. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science. doi: 10.1177/0954406219861133
Salumäe, T., & Kruusmaa, M. (2011). A flexible fin with bio-inspired stiffness profile and geometry. Journal of Bionic Engineering. doi: 10.1016/S1672-6529(11)60047-4
Sane, S. P. (2003). The aerodynamics of insect flight. Journal of Experimental Biology, 206(23), 41914208.
Sane, S. P., & Dickinson, M. H. (2001). The control of flight force by a flapping wing: Lift and drag production. Journal of Experimental Biology.
Sane, S. P., & Dickinson, M. H. (2002). The aerodynamic effects of wing rotation and a revised quasi-steady model of flapping flight. Journal of Experimental Biology.
Santhanakrishnan, A., Robinson, A. K., Jones, S. et al. (2014). Clap and fling mechanism with interacting porous wings in tiny insect flight. Journal of Experimental Biology. doi: 10.1242/jeb.084897
Schmidt, J., O’Neill, M., Dirks, J. H. & Taylor, D. (2020). An investigation of crack propagation in an insect wing using the theory of critical distances. Engineering Fracture Mechanics. doi: 10.1016/j.engfracmech.2020.107052
Shang, J. K., Combes, S. A., Finio, B. M. & Wood, R. J. (2009). Artificial insect wings of diverse morphology for flapping-wing micro air vehicles. Bioinspiration & Biomimetics, 4(3), 36002.
Shelley, M. J., & Zhang, J. (2011). Flapping and bending bodies interacting with fluid flows. Annual Review of Fluid Mechanics, 43(1), 449465.
Shyy, W., Aono, H., Chimakurthi, S. K. et al. (2010). Recent progress in flapping wing aerodynamics and aeroelasticity. Progress in Aerospace Sciences, 46(7), 284327.
Shyy, W., Aono, H., Kang, C., & Liu, H. (2013). An introduction to flapping wing aerodynamics, Cambridge: Cambridge University Press. doi: 10.1017/CBO9781139583916
Shyy, W., Berg, M. & Ljungqvist, D. (1999). Flapping and flexible wings for biological and micro air vehicles. Progress in Aerospace Sciences, 35(5), 455505.
Shyy, W., Ifju, P. & Viieru, D. (2005). Membrane wing-based micro air vehicles. Applied Mechanics Reviews, 58(4), 283301.
Shyy, W., Kang, C. K., Chirarattananon, P., Ravi, S. & Liu, H. (2016). Aerodynamics, sensing and control of insect-scale flapping-wing flight. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. doi: 10.1098/rspa.2015.0712
Shyy, W., Lian, Y., Tang, J. et al. (2008). Computational aerodynamics of low Reynolds number plunging, pitching and flexible wings for MAV applications. Acta Mechanica Sinica/Lixue Xuebao. doi: 10.1007/s10409-008-0164-z
Shyy, W., Lian, Y., Tang, J., Viieru, D., & Liu, H. (2007). Aerodynamics of low Reynolds number flyers, Cambridge: Cambridge University Press. doi: 10.1017/CBO9780511551154
Shyy, W., & Liu, H. (2007). Flapping wings and aerodynamic lift: The role of leading-edge vortices. AIAA Journal, 45(12), 28172819.
Shyy, W., Trizila, P., Kang, C.-K. & Aono, H. (2009). Can tip vortices enhance lift of a flapping wing? AIAA Journal. doi: 10.2514/1.41732
Somps, C., & Luttges, M. (1985). Dragonfly flight: Novel uses of unsteady separated flows. Science. doi: 10.1126/science.228.4705.1326
Somps, C., & Luttges, M. (1986). Response: Dragonfly aerodynamics. Science, 231(4733), 10.
Spagnolie, S., Moret, L., Shelley, M. J. & Zhang, J. (2010). Surprising behaviors in flapping locomotion with passive pitching. Physics of Fluids, 22, 41903.
Spector, D. (2014, July). Harvard robobees closer to pollinating crops instead of real bees. Business Insider. Retrieved from www.businessinsider.com/harvard-robobees-closer-to-pollinating-crops-2014–6
Sridhar, M. K., & Kang, C. (2015). Aerodynamic performance of two-dimensional, chordwise flexible flapping wings at fruit fly scale in hover flight. Bioinspiration & Biomimetics, 10(3), 036007.
Srygley, R. B., & Thomas, A. L. R. (2002). Unconventional lift-generating mechanisms in free-flying butterflies. Nature. doi: 10.1038/nature01223
Su, W., & Cesnik, C. E. S. (2011). Flight dynamic stability of a flapping wing micro air vehicle in hover. In Collection of Technical Papers: AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Denver, CO.
Sullivan, T. N., Wang, B., Espinosa, H. D., & Meyers, M. A. (2017). Extreme lightweight structures: Avian feathers and bones. Materials Today. doi: 10.1016/j.mattod.2017.02.004
Sun, M. (2014). Insect flight dynamics: Stability and control. Reviews of Modern Physics, 86(2), 615646.
Sun, M., & Lan, S. L. (2004). A computational study of the aerodynamic forces and power requirements of dragonfly (Aeschna juncea) hovering. Journal of Experimental Biology. doi: 10.1242/jeb.00969
Sun, M., & Tang, J. (2002). Unsteady aerodynamic force generation by a model fruit fly wing in flapping motion. Journal of Experimental Biology.
Sun, M., Wang, J. K. & Xiong, Y. (2007). Dynamic flight stability of hovering insects. Acta Mechanica Sinica, 23(3), 231246.
Sun, M., & Xiong, Y. (2005). Dynamic flight stability of a hovering bumblebee. Journal of Experimental Biology, 208(3), 447459.
Sunada, S., Zeng, L. & Kawachi, K. (1998). The relationship between dragonfly wing structure and torsional deformation. Journal of Theoretical Biology, 193(1), 3945.
Sutherland, B., ed. (2011). The economist: Modern warfare, intelligence and deterrence, London: Economist Group Press. Retrieved from https://profilebooks.com/the-economist-modern-warfare-intelligence-and-deterrence-ebook.html.
Taha, H. E., Hajj, M. R. & Nayfeh, A. H. (2012). Flight dynamics and control of flapping-wing MAVs: A review. Nonlinear Dynamics, 70(2), 907939.
Taha, H. E., Hajj, M. R. & Nayfeh, A. H. (2014). Longitudinal flight dynamics of hovering MAVs/insects. Journal of Guidance, Control, and Dynamics, 37(3), 970979.
Taha, H. E., Tahmasian, S., Woolsey, C. A., Nayfeh, A. H. & Hajj, M. R. (2015). The need for higher-order averaging in the stability analysis of hovering, flapping-wing flight. Bioinspiration & Biomimetics, 10(1), 016002.
Taira, K., & Colonius, T. (2009). Three-dimensional flows around low-aspect-ratio flat-plate wings at low Reynolds numbers. Journal of Fluid Mechanics. doi: 10.1017/S0022112008005314
Tay, W. B., Van Oudheusden, B. W. & Bijl, H. (2015). Numerical simulation of a flapping four-wing micro-aerial vehicle. Journal of Fluids and Structures, 55, 237261.
Taylor, G. K., Nudds, R. L. & Thomas, A. L. R. (2003). Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature. doi: 10.1038/nature02000
Taylor, G. K., & Thomas, A. L. R. (2002). Animal flight dynamics. II. Longitudinal stability in flapping flight. Journal of Theoretical Biology, 214, 351370.
Thiria, B., & Godoy-Diana, R. (2010). How wing compliance drives the efficiency of self-propelled flapping flyers. Physical Review E, 82(1), 15303.
Thomas, A. L. R., Taylor, G. K., Srygley, R. B., Nudds, R. L., & Bomphrey, R. J. (2004). Dragonfly flight: Free-flight and tethered flow visualizations reveal a diverse array of unsteady lift-generating mechanisms, controlled primarily via angle of attack. Journal of Experimental Biology. doi: 10.1242/jeb.01262
Triantafyllou, M. S., Triantafyllou, G. S. & Yue, D. K. P. (2000). Hydrodynamics of fishlike swimming. Annual Review of Fluid Mechanics. doi: 10.1146/annurev.fluid.32.1.33
Trizila, P., Kang, C., Aono, H., Shyy, W. & Visbal, M. (2011). Low-Reynolds-number aerodynamics of a flapping rigid flat plate. AIAA Journal, 49(4), 806823.
Tu, Z., Fei, F. & Deng, X. (2020a). Untethered flight of an at-scale dual-motor hummingbird robot with bio-inspired decoupled wings. IEEE Robotics and Automation Letters, 5(3), 41944201.
Tu, Z., Fei, F., Zhang, J. & Deng, X. (2020b). An at-scale tailless flapping-wing hummingbird robot. I. Design, optimization, and experimental validation. IEEE Transactions on Robotics, 36(5), 15111525.
Usherwood, J. R., & Ellington, C. P. (2002). The aerodynamics of revolving wings II. Propeller force coefficients from mayfly to quail. Journal of Experimental Biology, 205(11), 1565–76.
Usherwood, J. R., & Lehmann, F.-O. (2008). Phasing of dragonfly wings can improve aerodynamic efficiency by removing swirl. Journal of the Royal Society Interface. doi: 10.1098/rsif.2008.0124
Van den Berg, C., & Ellington, C. P. (1997). The three-dimensional leading-edge vortex of a ‘hovering’ model hawkmoth. Philosophical Transactions of the Royal Society B: Biological Sciences. doi: 10.1098/rstb.1997.0024
Van der Schaft, P. (2018, March). Pollination drones seen as assistants for ailing bees. Robotics Business Review. Retrieved from www.roboticsbusinessreview.com/agriculture/pollination-drones-assist-ailing-bees/.
Van Hemert, K. (2015, March). The shadow ballet where drones dance with humans. WIRED. Retrieved from www.wired.com/2015/03/shadow-ballet-drones-dance-humans/.
Vanella, M., Fitzgerald, T., Preidikman, S., Balaras, E. & Balachandran, B. (2009). Influence of flexibility on the aerodynamic performance of a hovering wing. Journal of Experimental Biology, 212(1), 95105.
Vargas, A., Mittal, R. & Dong, H. (2008). A computational study of the aerodynamic performance of a dragonfly wing section in gliding flight. Bioinspiration & Biomimetics, 3(2), 026004.
Viscor, G., & Fuster, J. F. (1987). Relationships between morphological parameters in birds with different flying habits. Comparative Biochemistry and Physiology – Part A: Physiology. doi: 10.1016/0300-9629(87)90118-6
Vukusic, P., & Sambles, J. R. (2001). Shedding light on butterfly wings. Physics, Theory, and Applications of Periodic Structures in Optics. doi: 10.1117/12.451481
Wakeling, J., & Ellington, C. (1997). Dragonfly flight. II. Velocities, accelerations and kinematics of flapping flight. Journal of Experimental Biology, 200(3), 557582.
Walker, S. M., Thomas, A. L. R. & Taylor, G. K. (2009). Deformable wing kinematics in the desert locust: How and why do camber, twist and topography vary through the stroke? Journal of the Royal Society Interface, 6(38), 735747.
Wang, H., Zeng, L., Liu, H. & Yin, C. (2003). Measuring wing kinematics, flight trajectory and body attitude during forward flight and turning maneuvers in dragonflies. Journal of Experimental Biology. doi: 10.1242/jeb.00183
Wang, S., Zhang, X., He, G. & Liu, T. (2014). Lift enhancement by dynamically changing wingspan in forward flapping flight. Physics of Fluids. doi: 10.1063/1.4884130
Wang, Z. J. (2000). Vortex shedding and frequency selection in flapping flight. Journal of Fluid Mechanics. doi: 10.1017/S0022112099008071
Wang, Z. J. (2005). Dissecting insect flight. Annual Review of Fluid Mechanics, 37(1), 183210.
Wang, Z. J., Birch, J. M. & Dickinson, M. H. (2004). Unsteady forces and flows in low Reynolds number hovering flight: Two-dimensional computations vs robotic wing experiments. Journal of Experimental Biology, 207, 449460.
Wang, Z. J., & Russell, D. (2007). Effect of forewing and hindwing interactions on aerodynamic forces and power in hovering dragonfly flight. Physical Review Letters. doi: 10.1103/PhysRevLett.99.148101
Warrick, D. R., Tobalske, B. W. & Powers, D. R. (2005). Aerodynamics of the hovering hummingbird. Nature. doi: 10.1038/nature03647
Weis-fogh, T. (1973). Quick estimates of flight fitness in hovering animals, including novel mechanism for lift production. Journal of Experimental Biology.
Windsor, S. P., Bomphrey, R. J. & Taylor, G. K. (2014). Vision-based flight control in the hawkmoth Hyles lineata. Journal of the Royal Society Interface, 11(91), 20130921.
Witton, M. P., & Habib, M. B. (2010). On the size and flight diversity of giant pterosaurs, the use of birds as pterosaur analogues and comments on pterosaur flightlessness. PLoS ONE. doi: 10.1371/journal.pone.0013982
Wodinsky, S. (2018, October). This robotic jellyfish could help save our reefs from climate change. NBC News. Retrieved from www.nbcnews.com/mach/science/robotic-jellyfish-could-help-save-our-reefs-climate-change-ncna913111.
Wood, R. J. (2007). Liftoff of a 60 mg flapping-wing MAV. In 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems, Washington, DC: Institute of Electrical and Electronics Engineers, pp. 18891894.
Wootton, R. J. (1979). Function, homology and terminology in insect wings. Systematic Entomology, 4(1), 8193.
Wootton, R. J. (1981). Support and deformability in insect wings. Journal of Zoology. doi: 10.1111/j.1469-7998.1981.tb01497.x
Wootton, R. J. (1992). Functional morphology of insect wings. Annual Review of Entomology. doi: 10.1146/annurev.ento.37.1.113
Wu, J. H., & Sun, M. (2012). Floquet stability analysis of the longitudinal dynamics of two hovering model insects. Journal of the Royal Society Interface, 9(74), 20332046.
Wu, J. H., Zhang, Y.-L. L. & Sun, M. (2009). Hovering of model insects: Simulation by coupling equations of motion with Navier-Stokes equations. Journal of Experimental Biology, 212(20), 33133329.
Wu, P., Stanford, B. K., Sällström, E., Ukeiley, L. & Ifju, P. (2011). Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings. Bioinspiration & Biomimetics, 6(1), 016009.
Xie, C. M., & Huang, W. X. (2015). Vortex interactions between forewing and hindwing of dragonfly in hovering flight. Theoretical and Applied Mechanics Letters. doi: 10.1016/j.taml.2015.01.007
Yates, G. T. (1986). Dragonfly aerodynamics. Science, 231(4733), 10.
Yin, B., & Luo, H. (2010). Effect of wing inertia on hovering performance of flexible flapping wings. Physics of Fluids, 22, 111902.
Young, J., Walker, S. M., Bomphrey, R. J., Taylor, G. K. & Thomas, A. L. R. (2009). Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science, 325(5947), 15491552.
Yu, Y., & Guan, Z. (2015). Learning from bat: Aerodynamics of actively morphing wing. Theoretical and Applied Mechanics Letters. doi: 10.1016/j.taml.2015.01.009
Zhang, Y.-L., & Sun, M. (2010). Dynamic flight stability of hovering model insects: Theory versus simulation using equations of motion coupled with Navier-Stokes equations. Acta Mechanica Sinica, 26(4), 509520.
Zhao, L., Huang, Q., Deng, X. & Sane, S. P. (2010). Aerodynamic effects of flexibility in flapping wings. Journal of the Royal Society, 7(44), 485497.
Zheng, Y., Wu, Y. & Tang, H. (2015). Force measurements of flexible tandem wings in hovering and forward flights. Bioinspiration & Biomimetics. doi: 10.1088/1748-3190/10/1/016021
Zheng, Y., Wu, Y. & Tang, H. (2016a). A time-resolved PIV study on the force dynamics of flexible tandem wings in hovering flight. Journal of Fluids and Structures. doi: 10.1016/j.jfluidstructs.2015.12.008
Zheng, Y., Wu, Y. & Tang, H. (2016b). An experimental study on the forewing-hindwing interactions in hovering and forward flights. International Journal of Heat and Fluid Flow. doi: 10.1016/j.ijheatfluidflow.2015.12.006
Zhou, J., Adrian, R. J., Balachandar, S. & Kendall, T. M. (1999). Mechanisms for generating coherent packets of hairpin vortices in channel flow. Journal of Fluid Mechanics, 387, 353396.
Zussman, E., Yarin, A. & Weihs, D. (2002). A micro-aerodynamic decelerator based on permeable surfaces of nanofiber mats. Experiments in Fluids. doi: 10.1007/s00348-002-0435-6

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Book summary page views

Total views: 0 *
Loading metrics...

* Views captured on Cambridge Core between #date#. This data will be updated every 24 hours.

Usage data cannot currently be displayed.