Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-vsgnj Total loading time: 0 Render date: 2024-07-16T12:37:31.172Z Has data issue: false hasContentIssue false

8 - THERMAL SYSTEMS

Published online by Cambridge University Press:  05 June 2012

Bohdan T. Kulakowski
Affiliation:
Pennsylvania State University
John F. Gardner
Affiliation:
Boise State University, Idaho
J. Lowen Shearer
Affiliation:
Pennsylvania State University
Get access

Summary

LEARNING OBJECTIVES FOR THIS CHAPTER

  1. 8–1 To recognize the A- and D-type elements of thermal systems.

  2. 8–2 To identify and model the three fundamental modes of heat transfer.

  3. 8–3 To use the energy-balance method to develop models of lumped-parameter thermal systems.

INTRODUCTION

Fundamentals of mathematical methods used today to model thermal systems were developed centuries ago by such great mathematicians and scientists as Laplace, Fourier, Poisson, and Stefan. The analytical solution of the equations describing the basic mechanisms of heat transfer – conduction, convection, and radiation– was always considered to be an extremely challenging mathematical problem. The study of energy transfer in thermal systems continues to be an important topic in engineering because it forms the basis of analysis of energy efficiency for indoor environmental controls, industrial processes, and all forms of energy transformation.

As described in Chap. 1, temperature is an A-type variable, determining the amount of energy stored in a thermal capacitance, the A-type energy-storing element corresponding to a mass in mechanical systems or a capacitor in electrical systems. All matter has thermal capacitance (which is proportional to mass), and energy is stored as internal energy because of its temperature. The T-type variable in thermal systems is heat flow rate Qh; however, as was pointed out in Section 1.2, there is no T-type element in thermal systems that would be capable of storing energy as a result of heat flow rate. The D-type element in thermal systems is the thermal resistor and will be defined as the resistance to heat transfer.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×