Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-9q27g Total loading time: 0 Render date: 2024-07-21T03:23:18.460Z Has data issue: false hasContentIssue false

11 - Roughness in coastal basins

Published online by Cambridge University Press:  18 December 2009

Get access

Summary

Introduction

Roughness or rugosity has a major role in models of coastal basins at a variety of spatial scales. It is defined in the most general sense as a stochastic variation in the profile of the surface that defines the interface between two media. An example is the roughness of the seabed, and another is the roughness of a coastline. Both of the terms roughness and rugosity are in common use, although the latter does have a quantitative definition as the ratio of the true surface area to the geometric area of the interface. For example, the geometric area of the Earth is that of a sphere (or more precisely an oblate spheroid), whereas the true surface area involves the Earth's complex topography. In reality, the value obtained for the surface area depends on the spatial scale that we use, and this is discussed in more detail later in this chapter. So, rugosity is well defined if we specify the spatial scale at which we measure the true area. This idea can also be used in one dimension and, for example, a chain can be placed over a coral reef to measure the length its surface and this is then compared with the horizontal distance between the points measured with a surveyors tape. The result clearly depends on the length of the links in the chain but is a traditional survey tool for measuring rugosity.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Birkeland, C. (2003). Life and Death of Coral Reefs. New York: Springer.Google Scholar
Bowen, J. and Bowen, M. (2002). The Great Barrier Reef: History, Science, Heritage. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Falconer, K. (2003). Fractal Geometry: Mathematical Foundations and Applications. New York: John Wiley.CrossRefGoogle Scholar
Mandelbrot, B. B. (1982). The Fractal Geometry of Nature. San Francisco, CA: W. H. Freeman.Google Scholar
Rothschild, W. G. (1998). Fractals in Chemistry. New York: Wiley-Interscience.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×