Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-18T11:50:03.902Z Has data issue: false hasContentIssue false

Part III - Conservation and Management

Published online by Cambridge University Press:  21 November 2017

Mario Melletti
Affiliation:
AfBIG (African Buffalo Initiative Group), IUCN SSC ASG
Erik Meijaard
Affiliation:
Australian National University, Canberra
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Altrichter, M. (2005). The sustainability of subsistence hunting of peccaries in the Argentine Chaco. Biological Conservation 126: 351362.Google Scholar
Altrichter, M. (2006). Wildlife in the life of local people in the Argentine Chaco. Biodiversity and Conservation 15: 27192736.Google Scholar
Altrichter, M. & Almeida, R. (2002). Exploitation of white-lipped peccaries (Tayassu pecari) on the Osa Peninsula, Costa Rica. Oryx 36: 126131.Google Scholar
Altrichter, M. & Boaglio, G. (2004). Distribution and abundance of peccaries in the Argentinean Chaco: its associations with human factors. Biological Conservation 116: 217225.Google Scholar
Altrichter, M., Taber, A., Beck, H., et al. (2012). Range-wide declines for a key Neotropical ecosystem architect, the near threatened white-lipped peccary Tayassu pecari. Oryx 46: 8798.Google Scholar
Altrichter, M., Taber, A., Noss, A., Maffei, L. & Campos, J. (2015). Catagonus wagneri. The IUCN Red List of Threatened Species.Google Scholar
Azevedo, F.C. & Conforti, V.C. (2008). Decline of peccaries in a protected subtropical forest of Brazil: toward conservation issues. Mammalia 72: 8288.Google Scholar
Beaune, D., Bollache, L., Fruth, B. & Bretagnolle, F. (2012). Bush pig (Potamochoerus porcus) seed predation of bush mango (Irvingia gabonensis) and other plant species in Democratic Republic of Congo. African Journal of Ecology 50: 509512.CrossRefGoogle Scholar
Beck, H. (2005). Seed predation and dispersal by peccaries throughout the Neotropics and its consequences: a review and synthesis. In Forget, P. M., Lambert, J. E., Hulme, P. E. & Vander Wall, S. B. (eds.), Seed fate: predation, dispersal and seedling establishment. Wallingford: CABI Publishing, pp. 77115.CrossRefGoogle Scholar
Beck, H., Thebpanya, P. & Filiaggi, M. (2010). Do Neotropical peccary species (Tayassuidae) function as ecosystem engineers for anurans? Journal of Tropical Ecology 26: 407414.CrossRefGoogle Scholar
Bell, D. J. & Oliver, W. R. (1992). Northern Indian tall grasslands: management and species conservation with special reference to fire. In Singh, K. P. & Singh, J. S. (eds.), Tropical ecosystems: ecology and management. New Delhi: Wiley Eastern Ltd, pp. 109123.Google Scholar
Bennett, E. L., Nyaoi, A.J. & Sompud, J. (2000). Saving Borneo's bacon: the sustainability of hunting in Sarawak and Sabah. In Robinson, J. G. & Bennett, E. L. (eds.), Hunting for sustainability in tropical forests. New York, NY: Columbia University Press, pp. 305324.Google Scholar
Biondo, C., Keuroghlian, K., Gongora, J. & Miyaki, C. Y. (2011). Population genetic structure and dispersal in the white-lipped peccaries (Tayassu pecari) from the Brazilian Pantanal. Journal of Mammalogy 92: 267274.Google Scholar
Blake, J. G., Mosquera, D., Guerra, J., et al. (2011). Mineral licks as diversity hotspots in lowland forest of eastern Ecuador. Diversity 3: 217234.CrossRefGoogle Scholar
Bodmer, R. E. (1994). Managing wildlife with local communities in the Peruvian Amazon: the case of the Reserva Comunal Tamshiyacu-Tahuayo. In Western, D., Wright, M. & Strum, S. (eds.), Natural connections: perspectives in community-based conservation. Washington, DC: Island Press, pp 113133.Google Scholar
Bodmer, R. E. (1995). Managing Amazonian wildlife:biological correlates of game choice by detribalized hunters. Ecological Applications 5(4): 872877.Google Scholar
Bodmer, R. E. & Lozano, E. P. (2001). Rural development and sustainable wildlife use in Peru. Conservation Biology 15: 11631170.Google Scholar
Bodmer, R. E., Fang, T. G., Villanes, R. A. & Puertas, P. E. (2004a). Certification of the peccary pelt trade: a strategy for managing bush meat hunting in the Peruvian Amazon. Suiform Soundings: PPHSG Newsletter 4(1): 512.Google Scholar
Bodmer, R. E., Lozano, E. P. & Fang, T. G. (2004b). Economic analysis of wildlife use in the Peruvian Amazon. In Silvius, K. M., Bodmer, R. E. & Fragoso, J. M. (eds.), People in nature: wildlife conservation in South and Central America. New York, NY: Columbia University Press, pp. 191207.Google Scholar
Burgos-Paz, W., Souza, C. A., Megens, H. J., et al. (2013). Porcine colonization of the Americas: a 60k SNP story. Heredity 110: 321330.Google Scholar
Burton, J. (2002). Short notes on pigs in Lore Lindu National Park. Asian Wild Pig News 2(2): 30.Google Scholar
Caldecott, J. (1988). Hunting and wildlife management in Sarawak. Gland: IUCN.Google Scholar
Caldecott, J. (1991). Eruptions and migrations of bearded pig populations. Bongo 18: 233243.Google Scholar
Carrillo, E., Saenz, J. C. & Fuller, T. K. (2002). Movements and activities of white-lipped peccaries in Corcovado National Park, Costa Rica. Biological Conservation 108: 317324.CrossRefGoogle Scholar
Cavalcanti, S. M. C. & Gese, E. M. (2010). Kill rates and predation patterns of jaguars (Panthera onca) preying on livestock and native prey in the southern Pantanal, Brazil. Journal of Mammalogy 91: 722736.Google Scholar
Chao, S. (2012) Forest peoples: numbers across the world. Moreton-in-Marsh: Forest Peoples Programme.Google Scholar
Clayton, L. M., Milner-Gulland, E. J., Sinaga, D. W. & Mustari, A. H. (2000). Effects of a proposed ex situ conservation program on in situ conservation of the babirusa, an endangered suid. Conservation Biology 14(2): 382385.Google Scholar
Cruz, F., Donlan, C. J., Campbell, K. & Carrion, V. (2005). Conservation action in the Galàpagos: feral pig (Sus scrofa) eradication from Santiago Island. Biological Conservation 121: 473478.Google Scholar
Cullen, L. Jr., Bodmer, R. E., & Valladares-Pádua, C. (2001). Ecological consequences of hunting in Atlantic forest patches, Sao Paulo, Brazil. Oryx 35: 137144.CrossRefGoogle Scholar
Curran, L. M. & Leighton, M. (2000). Vertebrate responses to spatiotemporal variation in seed production of mast-fruiting Dipterocarpaceae. Ecological Monographs 70: 121150.Google Scholar
Fan, B., Gongora, J., Chen, Y., et al. (2005). Population genetic variability and origin of Auckland Island feral pigs. Journal of the Royal Society of New Zealand 35: 279285.Google Scholar
Fang, T. G., Bodmer, R. E., Puertas, P. E., et al (2008). Certificación de pieles de pecaríes en la amazonía peruana. Una estrategia para la conservación y manejo de fauna silvestre en la amazonía peruana. Lima: Edición. Editorial Walter Wust.Google Scholar
Fragoso, J. M. V. (1994). Large mammals and the community dynamics of an Amazonian rain forest. PhD thesis. Gainesville, FL: The University of Florida.Google Scholar
Fragoso, J. M. V. (1998). Home range and movement patterns of white-lipped peccary (Tayassu pecari ) herds in the Northern Brazilian Amazon. Biotropica 30: 458469.CrossRefGoogle Scholar
Fragoso, J. M. V. (2004). A long-term study of white-lipped peccary (Tayassu pecari) population fluctuation in Northern Amazonia. In Silvius, K., Bodmer, R. E. & Fragoso, J. M. V. (eds.), People in nature, wildlife conservation in South and Central America. New York, NY: Columbia University Press, pp. 286296.CrossRefGoogle Scholar
Frantz, L. A., Schraiber, J. G., Madsen, O., et al. (2013). Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus. Genome Biology 14(9): R107.Google Scholar
Frantz, L., Meijaard, E., Gongora, J., et al. (2016). The evolution of Suidae. Annual Review of Animal Biosciences 4: 6185.Google Scholar
Franzen, M. A. (2006). Evaluating the sustainability of hunting: a comparison of harvest profiles across three Huaorani communities. Environmental Conservation 33: 110.Google Scholar
Freitas, T. P. T., Keuroghlian, A., Eaton, D. P., et al. (2010). Prevalence of Leptospira interrogans antibodies in free-ranging Tayassu pecari of the Southern Pantanal, Brazil, an ecosystem where wildlife and cattle interact. Tropical Animal Health Prod. DOI 10.1007/s11250-010-9622-2Google Scholar
Galetti, M., Guevara, R., Neves, C. L., et al. (2015a). Defaunation affects the populations and diets of rodents in Neotropical rainforests. Biological Conservation 190: 27.Google Scholar
Galetti, M., Bovendorp, R. S. & Guevara, R. (2015b). Defaunation of large mammals leads to an increase in seed predation in the Atlantic forest. Global Ecology and Conservation 3: 824830.Google Scholar
Garibaldi, A. & Turner, N. (2004). Cultural keystone species: implications for ecological conservation and restoration. Ecology and Society 9: 1.Google Scholar
Glanz, W. E. (1990). Neotropical mammal densities: how unusual is the community on Barro Colorado Island, Panama? In Gentry, A. H. (ed.), Four neotropical rainforests. New Haven, CT: Yale University Press, pp. 287313.Google Scholar
Goedbloed, D. J., Megens, H. J., Van Hooft, P., et al. (2013). Genome-wide single nucleotide polymorphism analysis reveals recent genetic introgression from domestic pigs into Northwest European wild boar populations. Molecular Ecology 22: 856866.CrossRefGoogle ScholarPubMed
Gongora, J., Morales, S., Bernal, J. E. & Moran, C. (2006). Phylogenetic divisions among Collared peccaries (Pecari tajacu) detected using mitochondrial and nuclear sequences. Molecular Phylogenetics and Evolution 41: 111.CrossRefGoogle ScholarPubMed
Groenen, M. A., Archibald, A. L., Uenishi, H., et al. (2012). Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491(7424): 393398.Google Scholar
Herrera, H. M., Norek, A., Freitas, T. P. T., et al (2005). Domestic and wild mammals infection by Trypanosoma evansi in a pristine area of the Brazilian Pantanal region. Parasitology Research 96: 121126.CrossRefGoogle Scholar
Herrera, H. M., Abreu, U. G. P., Keuroghlian, A., et al. (2008). The role played by sympatric collared peccary (Tayassu tajacu), white-lipped peccary (Tayassu pecari), and feral pig (Sus scrofa) as maintenance hosts for Trypanosoma evansi and Trypanosoma cruzi in a sylvatic area of Brazil. Parasitology Research 103: 619624.Google Scholar
Jacomo, A. T. A., Furtado, M.M., Kashivakura, C. K., et al. (2013). White-lipped peccary home-range size in a protected area and farmland in the central Brazilian grasslands. Journal of Mammalogy 94: 137145.Google Scholar
Janson, C. H. & Emmons, L. H. (1990). Ecological structure of the non-flying mammal community at Cocha Cashu Biological Station, Manu National Park, Peru. In Gentry, A. H. (ed.), In four neotropical rainforests. New Haven, CT: Yale University Press, pp. 314338.Google Scholar
Jorge, M. L. S. P., Galetti, M., Ribeiro, M. & Ferraz, K. M. P. M. B. (2013). Mammal defaunation as surrogate of trophic cascades in a biodiversity hotspot. Biology Conservation 163: 4957.Google Scholar
Jori, F. & Bastos, A. D. S. (2009). Role of wild suids in the epidemiology of African swine fever. EcoHealth 6: 296310.Google Scholar
Keuroghlian, A. & Eaton, D. P. (2009). Removal of palm fruits and ecosystem engineering in palm stands by white-lipped peccaries (Tayassu pecari) and other frugivores in an isolated Atlantic Forest fragment. Biodiversity and Conservation 18: 17331750.Google Scholar
Keuroghlian, A., Eaton, D. P. & Longland, W. S. (2004). Area use by white-lipped and collared peccaries (Tayassu pecari and Tayassu tajacu) in a tropical forest fragment. Biological Conservation 120: 411425.Google Scholar
Keuroghlian, A., Desbiez, A. L. J., Beisiegel, B. M., et al. (2012). Avaliação do Risco de Extinção do queixada, Tayassu pecari (Link, 1795) no Brasil (Extinction risk assessment of white-lipped peccaries in Brazil). Biodiversidade Brasileira 2(3): 84102.Google Scholar
Keuroghlian, A., Desbiez, A., Reyna-Hurtado, R., et al. (2013). Tayassu pecari. The IUCN Red List of Threatened Species 2013.Google Scholar
Keuroghlian, A., Santos, M. C. A. & Eaton, D. P. (2015). The effects of deforestation on white-lipped peccary (Tayassu pecari) home range in the southern Pantanal. Mammalia 79(4): 491497.Google Scholar
Kiltie, R. A. & Terborgh, J. (1983). Observation on the behavior of rain forest peccaries in Peru: why do white-lipped peccaries form herds? Zeitschrift fur Tierpsychologie. 62: 241255.CrossRefGoogle Scholar
Lahm, S. (1990). Impact of human activity on antelope populations in Gabon. IUCN/SSC Antelope Specialist Group Gnusletter 10(1): 78.Google Scholar
Lameed, G. A., Omifolaji, J. K., Abere, A. S. & Ilori, S. O. (2015). Hunting intensity on wildlife population in Oban Sector of Cross River National Park. Natural Resources 6: 325330.Google Scholar
Larson, G., Dobney, K., Albarella, U., et al. (2005). Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307: 16181621.CrossRefGoogle ScholarPubMed
Leigh, E. G. & Wright, S. J. (1990). Barro Colorado Island and tropical biology. In Gentry, A. H. (ed.), Four neotropical rainforests. New Haven, CT: Yale University Press, pp. 2847.Google Scholar
Leopold, A. S. (1959). Wildlife of Mexico: the game birds and mammals. Los Angeles, CA: University of California Press, p. 568.Google Scholar
Leslie, D. M. & Huffman, B. A. (2015). Potamochoerus porcus (Artiodactyla: Suidae). Mammalian Species 47(919): 1531.Google Scholar
Manunza, A., Zidi, A., Yeghoyan, S., et al. (2013). A high throughput genotyping approach reveals distinctive autosomal genetic signatures for European and Near Eastern wild boar. PLoS ONE 8(2): e55891.Google Scholar
Massei, G., Kindberg, J., Licoppe, A., et al. (2015). Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Management Science 71(4): 492500.Google Scholar
Meijaard, E. (2003). Mammals of South-East Asian islands and their Late Pleistocene environments. Journal of Biogeography 30: 12451257.Google Scholar
Meijaard, E. & Sheil, D. (2008). Cuddly animals don't persuade poor people to back conservation. Nature 454: 159.Google Scholar
Meijaard, E., d'Huart, J.P. & Oliver, W. L. R. (2011). Family Suidae (pigs). In Wilson, D. E. & Mittermeier, R. A. (eds.), Handbook of the mammals of the world. Vol 2. Hoofed mammals. Barcelona: Lynx Edicions, pp. 248291.Google Scholar
Melo, E. R. A., Gadelha, J. R., de Nazare, Domingos, da Silva, M. M., da Silva Junior, A. P. & Mendes Pontes, A. R. (2015). Diversity, abundance and the impact of hunting on large mammals in two contrasting forest sites in northern Amazon. Wildlife Biology 21(5): 234245.CrossRefGoogle Scholar
Meng, X., Linsay, D. & Sriranganathan, N. (2009). Wild boars as sources for infectious diseases in livestock and humans. Philosophical Transactions of the Royal Society B 364: 26972707.Google Scholar
Milner-Gulland, E. J. & Clayton, L. (2002). The trade in babirusas and wild pigs in North Sulawesi. Indonesia Ecological Economics 42: 165183.Google Scholar
Morato, R. G., Beisiegel, B. M., Ramalho, E., de Campos, C. B. & Boulhosa, R. L. (2013). Avaliação do risco de extinção da Onça-pintada Panthera onca (Linnaeus, 1758) no Brasil. Biodiversidade Brasileira 3(1): 122132.Google Scholar
Muwanika, V. B., Nyakaana, S., Siegismund, H. R. & Arctander, P. (2003). Phylogeography and population structure of the common warthog (Phacochoerus africanus) inferred from variation in mitochondrial DNA sequences and microsatellite loci. Heredity 91: 361372.CrossRefGoogle ScholarPubMed
Noss, A. J. (1998). The impacts of cable snare hunting on wildlife populations in the forests of the Central African Republic. Conservation Biology 12: 390398.Google Scholar
Oliver, W. L. R. (1993). Pigs, peccaries, and hippos. Status survey and conservation action plan. Gland: IUCN/SSC Pigs and Peccaries Specialist group and IUCN/SSC Hippos Specialist Group.Google Scholar
Oliver, W. L. R. (2008). Sus cebifrons. IUCN 2010: IUCN Red List of Threatened Species. Version 2010.1.Google Scholar
Painter, L. R. E. (1998). Gardeners of the forest: plant–animal interactions in a Neotropical forest ungulate community. PhD dissertation. Liverpool: University of Liverpool.Google Scholar
Peres, C. A. (1996). Population status of white-lipped (Tayassu pecari) and collared peccaries (T. tajacu) in hunted and unhunted Amazonian forest. Biological Conservation 77: 115123.CrossRefGoogle Scholar
Pfeffer, P. (1959). Biologie et migrations du sanglier de Borneo (Sus barbatus Müller 1869). Mammalia 23: 277303.Google Scholar
Pickford, M. (2013). Suids from the Pleistocene of Naungkwe Taung, Kayin State, Myanmar. Paleontological Research 16: 307317.Google Scholar
Pires, S. F. & Moreto, W. D. (2011). Preventing wildlife crimes: solutions that can overcome the ‘Tragedy of the Commons’. European Journal on Criminal Policy and Research 17: 101123.CrossRefGoogle Scholar
Por, F. D. (1992). Sooretama the Atlantic rain forest of Brazil. The Hague: SPB Academic Publishing.Google Scholar
Puri, R. K. (1997). Hunting knowledge of the Penan Benalui of East Kalimantan, Indonesia. Honolulu: Department of Anthropology, University of Hawaii.Google Scholar
Redford, K. H. & Robinson, J. G. (1987). The game of choice: patterns of Indian and colonist hunting in the neotropics. American Anthropoly 89: 650667.CrossRefGoogle Scholar
Reider, K. E., Carson, W. P. & Donnelly, M. A. (2013). Effects of collared peccary (Pecari tajacu) exclusion on leaf litter amphibians and reptiles in a Neotropical wet forest, Costa Rica. Biological Conservation 163: 9098.Google Scholar
Reyna-Hurtado, R. (2015). The giant forest hog (Hylochoerus meinertzhageni) and other terrestrial mammals of Kibale National Park, Uganda. Final report for National Geographic Committee of Research and Exploration, pp. 22.Google Scholar
Reyna-Hurtado, R., Rojas-Flores, E. & Tanner, G. W. (2009). Home range and habitat preferences of white-lipped peccary groups (Tayassu pecari) in a seasonal tropical forest of the Yucatan Peninsula, Mexico. Journal of Mammalogy 90: 11991209.CrossRefGoogle Scholar
Reyna-Hurtado, R., Naranjo, E., Chapman, C. A. & Tanner, G. W. (2010). Hunting and the conservation of a social ungulate: the white-lipped peccary Tayassu pecari in the Calakmul, Mexico. Oryx 44: 8896.Google Scholar
Reyna-Hurtado, R., Tumukunde, A., Chapman, C. A., et al. (2014). On the track of the Giant Forest Hog in Kibale, National Park, Uganda: a preliminary report on studying the species. Suiform Soundings 12: 3841.Google Scholar
Richard-Hansen, C., Surugue, N., Khazraie, K., Le Noc, M. & Grenand, P. (2014). Long-term fluctuations of white-lipped peccary populations in French Guiana. Mammalia 78: 291301.Google Scholar
Riley, J. (2002). Current Wildlife Conservation Society research and conservation of Sulawesi's suids. Asian Wild Pig News 2(2): 2630.Google Scholar
Robinson, J. & Bennett, E. (eds.). (2000). Hunting for sustainability in tropical forests. New York, NY: Columbia University Press.Google Scholar
Roldan, A. I. & Simonetti, J. A. (2001). Plant–mammal interactions in tropical Bolivian forests with different hunting pressures. Conservation Biology 15(3): 617623.Google Scholar
Romero, S. (2012). A forest under siege in Paraguay. New York Times, January 20, 2012.Google Scholar
SáAez-Royuela, C. & TellerÍIa, J. L. (1986). The increased population of the Wild Boar (Sus scrofa L.) in Europe. Mammal Review 16: 97101.Google Scholar
Semiadi, G. & Meijaard, E. (2006). Declining populations of the Javan warty pig Sus verrucosus. Oryx 40: 5056.Google Scholar
Silman, M., Terborg, J. W. & Kiltie, R. A. (2003). Population regulation of a dominant rain forest tree by a major seed predator. Ecology 84: 431438.Google Scholar
Solaymani-Mohammadi, S., Rezaian, M., Hooshyar, H., Mobedi, I. & Meamar, A. R. (2005). The parasites of the Eurasian wild boar, Sus scrofa, in Iran: an emerging implication for public health. Suiform Soundings 5: 2629.Google Scholar
Sowls, L. K. (1984). The peccaries. Tucson, AZ: University of Arizona Press.Google Scholar
Sowls, L. K. (1997). Javelinas and other peccaries. College Station, TX: Texas A & M University Press.Google Scholar
Suárez, E., Morales, M., Cueva, R., et al (2009). Oil industry, wild meat trade and roads: indirect effects of oil extraction activities in a protected area in north-eastern Ecuador. Animal Conservation 12(4): 364373.Google Scholar
Sunderlin, W. D., Dewi, S. & Puntodewo, A. (2007). Poverty and forests. Multi-country analysis of spatial association and proposed policy solutions. Bogor, Indonesia: Center for International Forestry Research (CIFOR).Google Scholar
Sunderlin, W. D., Dewi, S. & Puntodewo, A., et al. (2008). Why forests are important for global poverty alleviation: a spatial explanation. Ecology and Society 13(2): 24.Google Scholar
Taber, A. B. (1991). The status and conservation of the Chacoan peccary in Paraguay. Oryx 25: 147155.Google Scholar
Taber, A. B. (1993). The Chacoan Peccary (Catagonus wagneri). In Oliver, W. L. R. (ed.), Pigs, peccaries, and hippos, status survey and conservation action plan. Gland: IUCN, pp. 2228.Google Scholar
Taber, A., Altrichter, M., Harald, B. & Gongora, J. (2011). Family Tayassuidae (peccaries). In Wilson, D. E. & Mittermeier, R. A. (eds.), Handbook of the mammals of the world. Vol 2. Hoofed mammals. Barcelona: Lynx Edicions, pp. 292307.Google Scholar
Tirira, D. (2001). Libro Rojo de los Mamíferos del Ecuador. Sociedad para la Investigación y Monitoreo de la Biodiversidad Ecuatoriana (SIMBIOE)/Ecociencias/Ministerio del Ambiente/UICN. Publicación Especial sobre los Mamíferos del Ecuador, Quito, Ecuador.Google Scholar
Wilkie, D. S. & Carpenter, J. F. (1999). Bushmeat hunting in the Congo Basin. An assessment of impact and options for mitigation. Biodiversity Conservation 8: 927945.Google Scholar
Wilkie, D. S. & Godoy, R. A. (1996). Trade, indigenous rain forest economies and biological diversity. model predictions and directions for research. In Pérez, M. R. & Arnold, J. E. M. (eds.), Current issues in non-timber forest products research, Proceedings of the workshop ‘Research on NTFP’, Hot Spring, Zimbabwe 28 August–2 September 1995. Bogor, Indonesia: Center for International Forestry Research, pp. 83102.Google Scholar
Wilson, D.E. (1990). Mammals of La Selva, Costa Rica. In Alwyn, A. H. (ed.), Four neotropical rainforests. New Haven, CT: Yale University Press, pp. 273286.Google Scholar
Wu, G. S., Yao, Y. G., Qu, K. X., et al. (2007). Population phylogenomic analysis of mitochondrial DNA in wild boars and domestic pigs revealed multiple domestication events in East Asia. Genome Biology 8: R245.Google Scholar
Yalden, D. (1999). The history of British mammals. London: Academic Press.Google Scholar
Yang, S., Li, X., Li, K., Fan, B. & Tang, Z. (2014). A genome-wide scan for signatures of selection in Chinese indigenous and commercial pig breeds. BMC Genetics 15(15): 7.CrossRefGoogle ScholarPubMed

References

Austin, M. (2007). Species distribution models and ecological theory: a critical assessment and some possible new approaches. Ecological Modelling 200(1): 119.Google Scholar
Bell, D. & Oliver, W. (1991). The burning question and other problems relating to tall grassland management and the conservation of endangered species in the northern Indian sub-continent. Tropical Ecology.Google Scholar
Bell, D., Oliver, W. & Ghose, R. (1990). The hispid hare Caprolagus hispidus. In Chapman, J. A. & Flux, J. E. C. (eds.), Rabbits, hares and pikas: status survey and conservation action plan. Gland: IUCN, pp. 128136.Google Scholar
Brown, J. L. (2009). SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecology and Evolution 5(7): 694700.Google Scholar
Choudhury, A. (1998). Survey of grasslands in some parts of central and southern Assam: to assess their bio-diversity and socio-economic problem. Final report to WWF-India, New Delhi.Google Scholar
Choudhury, A. (2002). Distribution and conservation of the Gaur Bos gaurus in the Indian Subcontinent. Mammal Review 32(3): 199226.CrossRefGoogle Scholar
Dormann, C. F., McPherson, J. M., Araújo, M. B., et al. (2007). Methods to account for spatial autocorrelation in the analysis of species distributional data: a review. Ecography 30(5): 609628.Google Scholar
Elith, J., Phillips, S.J., Hastie, T., et al. (2011). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17(1): 4357.Google Scholar
Fleming, R. L. & Traylor, M. A. (1964). Further notes on Nepal birds. Chicago, IL: Chicago Natural History Museum.Google Scholar
Funk, S. M., Verma, S. K., Larson, G., et al. (2007). The pygmy hog is a unique genus: 19th century taxonomists got it right first time round. Molecular Phylogenetics and Evolution 45(2): 427436.Google Scholar
Graham, C. H., Ferrier, S., Huettman, F., Moritz, C. & Peterson, A. T. (2004). New developments in museum-based informatics and applications in biodiversity analysis. Trends in Ecology & Evolution 19(9): 497503.Google Scholar
Groves, C. P. (1981). Ancestors for the pigs: taxonomy and phylogeny of the genus Sus. Canberra: Department of Prehistory, Research School of Pacific Studies, Australian National University.Google Scholar
Hengeveld, K. (1990). The hierarchical structure of utterances. In Nuyts, J. (ed.), Layers and levels of representation in language theory. Amsterdam: John Benjamins, pp. 124.Google Scholar
Hodgson, B. (1847). On a new form of the hog kind or Suidae. Journal of the Asiatic Society of Bengal 16: 423428.Google Scholar
IUCN/SSC Re-introduction Specialist Group, Union internationale pour la conservation de la nature & de ses ressources. Re-introduction Specialist Group. (1998). IUCN guidelines for re-introductions. Oxford: Osprey Publishing.Google Scholar
Jerdon, T. C. (1847). Illustrations of Indian ornithology. Рипол Классик.Google Scholar
Jnawali, S., Baral, H., Lee, S., et al. (2011). The status of Nepal mammals: the national Red List series, with preface by Simon M. Stuart, Chair IUCN Species Survival Commission. Nepal: Department of National Parks and Wildlife Conservation Kathmandu, Nepal.Google Scholar
Kinloch (Colonel) (1885). Large game shooting in Thibet, The Himalayas, and Northern India. Calcutta: Thacker, Spink and Co.Google Scholar
Lomolino, M. V. H. & Lawrence, R. (eds.) (2004). Frontiers of biogeography: new directions in the geography of nature. Sunderland, MA: Sinauer Associates.Google Scholar
Lydekker, R. (1907). The game animals of India, Burma, Malaya, and Tibet: being a new and revised edition of the great and small game of India, Burma, and Tibet. R. Ward, limited.Google Scholar
Mallinson, J. (1977). Breeding of the pygmy hog Sus salvanius (Hodgson) in northern Assam. Journal of the Bombay National History Society 74: 288289.Google Scholar
Mellars, P., Gori, K. C., Carr, M., Soares, P. A. & Richards, M. B. (2013). Genetic and archaeological perspectives on the initial modern human colonization of southern Asia. Proceedings of the National Academy of Sciences of the United States of America 110(26): 1069910704.Google Scholar
Narayan, G., Oliver, W. L. R. & Deka, P. J. (2008). First captive bred pygmy hogs (Porcula salvania) reintroduced to Sonai Rupai Wildlife Sanctuary, Assam, India. Suiform Soundings 8(1): 1626.Google Scholar
Narayan, G., Deka, P. J., Oliver, W. L., Fa, J. E. & Islands, C. (2010). Conservation breeding and re-introduction of the pygmy hog in NW Assam, India. In Soorae, P. S. (ed.), Global re-introduction perspectives: additional case-studies from around the globe. Abu Dhabi: IUCN, p. 290.Google Scholar
Oliver, W. L. (1980). The pigmy hog: the biology and conservation of the pigmy hog and the hispid hare. Special Scientific Report.Google Scholar
Oliver, W. (1984). The distribution and status of the hispid hare Caprolagus hispidus the summarised findings of the 1984 pigmy hog/hispid hare field survey in northern Bangladesh, southern Nepal and northern India. Dodo, Journal of the Jersey Wildlife Preservation Trust 21: 632.Google Scholar
Oliver, W. L. (1985). The distribution and status of the hispid hare (Caprolagus hispidus): with some additional notes on the pigmy hog (Sus salvanius). Wildlife Preservation Trust.Google Scholar
Oliver, W. L. (1989). The pigmy hog: the biology and conservation of the pigmy hog, Sus (Porcula) salvanius and the hispid hare, Caprolagus hispidus. Jersey Wildlife Preservation Trust.Google Scholar
Oliver, W. (2006). Pygmy hogs in southern Nepal (or news at last on the so-called ‘Hormel Expedition’)? Suiform Soundings 6: 1922.Google Scholar
Oliver, W. L. R. & Deb Roy, S. (1993). The pygmy hog (Sus salvanius). In Oliver, W. L. R. (ed.), Pigs, peccaries and hippos: status survey and conservation action plan. Gland: IUCN, pp. 121129.Google Scholar
Oliver, W. L. & Santos, I. B. (1991). Threatened endemic mammals of the Atlantic forest region of south-east Brazil. Jersey: Jersey Wildlife Preservation Trust.Google Scholar
Oliver, W., Brisbin, I. & Oliver, W. (1993). Pigs, peccaries and hippos: status survey and action plan. Gland: IUCN World Conservation Union.Google Scholar
Osborne, P. E. & Seddon, P. J. (2012). Selecting suitable habitats for reintroductions: variation, change and the role of species distribution modelling. In Elwen, J. G., Armstrong, D. P., Parker, K. A. & Seddon, P. J. (eds.), Reintroduction biology: integrating science and management. Chichester: Wiley-Blackwell.Google Scholar
Phillips, S. J. (2008). Transferability, sample selection bias and background data in presence-only modelling: a response to Peterson et al. Ecography 31(2): 272278.Google Scholar
Phillips, S. J. & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31(2): 161175.Google Scholar
Pickford, M. (2013). Suids from the Pleistocene of Naungkwe Taung, Kayin State, Myanmar. Paleontological Research 16(4): 307317.Google Scholar
Pollok, F. W. T. & Thom, W. S. (1900). Wild sports of Burma and Assam, by Colonel Pollok … and WS Thom.Google Scholar
Rödder, D., Kielgast, J., Bielby, J., et al. (2009). Global amphibian extinction risk assessment for the panzootic chytrid fungus. Diversity 1(1): 5266.Google Scholar
Sanyal, A. K., De, D. K., Das, R. P. & Venkataraman, K. (2013). Feasibility study regarding re-introduction of pygmy hog (Porcula salvania Hodgson, 1847) at Gorumara National Park, Jalpaigui, West Bengal. Records of the Zoological Survey of India 113(1): 124.Google Scholar
Sanyal, P. (1995). A new report on pigmy hog Sus salvanius (Hodgson) from West Bengal. Journal of the Bombay National History Society 92(1): 116.Google Scholar
Shrestha, T. & Joshi, R. (1997). Biodiversity gap analysis: terrestrial ecoregions of the Himalaya (Nepal). Report submitted to WWF-Nepal Program, Lal Durbar, Katmandu, Nepal.Google Scholar
Stiels, D., Schidelko, K., Engler, J.O., van den Elzen, R. & Rödder, D. (2011). Predicting the potential distribution of the invasive Common Waxbill Estrilda astrild (Passeriformes: Estrildidae). Journal of Ornithology 152(30): 769780.Google Scholar
Swets, J. A. (1988). Measuring the accuracy of diagnostic systems. Science 240(4857): 1285.Google Scholar
Thapa, S. (2014). A checklist of mammals of Nepal. Journal of Threatened Taxa 6(8): 60616072.Google Scholar
Thuiller, W., Münkemüller, T., Lavergne, S., et al. (2013). A road map for integrating eco-evolutionary processes into biodiversity models. Ecology Letters 16(1): 94105.Google Scholar
Varela, S., Anderson, R. P., García-Valdés, R. & Fernández-González, F. (2014). Environmental filters reduce the effects of sampling bias and improve predictions of ecological niche models. Ecography 37(11): 10841091.Google Scholar
Whittaker, R. J., Araújo, M. B., Jepson, P., et al. (2005). Conservation biogeography: assessment and prospect. Diversity and Distributions 11(1): 323.Google Scholar
Wisz, M. S., Hijmans, R., Li, J., et al. (2008). Effects of sample size on the performance of species distribution models. Diversity and Distribution 14(5): 763773.Google Scholar

References

AFP. (2011). 50,000 feral pigs overrun U.S.–Mexican border. Extinction Protocol Notes. http://theextinctionprotocol.wordpress.com/2011/11/22/50000-feral-pigs-overrun-u-s-mexican-border/. Accessed 4 January 2012.Google Scholar
Alison, R. (2008). Open season – with reason. Winnipeg Free Press. www.winnipegfreepress.com/subscriber/westview/story/4234826p-4876758c.html. Accessed 17 November 2008.Google Scholar
Angier, N. (1984). Eliminating the Haitian swine. Time Magazine 124: 54.Google Scholar
Barrett, R. H. (1971). Ecology of the feral hog in Tehama County, California. PhD dissertation. Berkeley, CA: University of California.Google Scholar
Barrett, R. H., & Birmingham, G. H. (1994). Wild pigs. In Hygnstrom, S. E., Timm, R. M. & Larson, G. E. (eds.), Prevention and control of wildlife damage. Lincoln, NB: Great Plains Agricultural Council, University of Nebraska, pp. D65D70.Google Scholar
Barrett, R. H., Goatcher, B. L., Gogan, P. J. & Fitzhugh, E. L. (1988). Removing feral pigs from Annadel State Park. Transactions of the California–Nevada Section of the Wildlife Society 24: 4752.Google Scholar
Barrios-Garcia, M. N. & Ballari, S. A. (2012). Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biological Invasions 14: 22832300.Google Scholar
Beasley, J. C., Grazia, T. E., Johns, P. E. & Mayer, J. J. (2014). Habitats associated with vehicle collisions with wild pigs. Wildlife Research 40: 654660.Google Scholar
Belden, R. C. & Frankenberger, W. B. (1979). Brunswick hog study. Final performance report, P-R Project W-41-R, Study No. XIII-B-1. Gainesville, FL: Florida Fresh Water Fish and Game Commission Wildlife Research Laboratory.Google Scholar
Bevins, S. N., Pedersen, K., Lutman, M. W., Gidlewski, T. & Deliberto, T. J. (2014). Consequences associated with the recent range expansions of nonnative feral swine. BioScience 64: 291299.Google Scholar
Bostelaar, R. (2014). Shoot to kill: wild boars are back in eastern Ontario. Ottawa Citizen. http://ottawacitizen.com/news/local-news/shoot-to-kill-the-wild-boars-are-back-in-eastern-ontario. Accessed 30 March 2015.Google Scholar
Brisbin, I. L. Jr., Geiger, R. A., Graves, H. B., et al. (1977). Morphological characteristics of two populations of feral swine. Acta Theriologica 22(4): 7585.Google Scholar
BCMFLNRO (British Columbian Ministry of Forests, Lands and Natural Resource Operations). (2014). Province takes aim at feral pigs. Information Bulletin. www2.news.gov.bc.ca/news_releases_2013-2017/2014FLNR0021-000322.htm. Accessed 20 March 2014.Google Scholar
Borroto-Páez, R., Woods, C. A. & Sergile, F. E. (2012). Terrestrial mammals of the West Indies: contributions. Gainesville, FL: Florida Museum of Natural History and Wacahoota Press.Google Scholar
Brook, R. K. & van Beest, F. M. (2014). Feral wild boar distribution and perceptions of risk on the central Canadian prairies. Wildlife Society Bulletin 38: 486494.Google Scholar
Burton, J. L., Drigo, M., Li, Y., et al. (2012). A model for evaluating hunting and contraception as feral hog population control methods. In Westervelt, J. D. & Cohen, G. L. (eds.), Ecologist-developed spatially-explicit dynamic landscape models. New York, NY: Springer, pp. 133150.Google Scholar
Campbell, T. A. & Long, D. B. (2007). Species-specific visitation and removal of baits for delivery of pharmaceuticals to feral swine. Journal of Wildlife Diseases 43: 485–91.Google Scholar
Campbell, T. A. & Long, D. B. (2009). Feral swine damage and damage management in forested ecosystems. Forest Ecology and Management 257: 23192326.Google Scholar
Campbell, T. A., Lapidge, S. J. & Long, D. B. (2006). Using baits to deliver pharmaceuticals to feral swine in southern Texas. Wildlife Society Bulletin 34: 11841189.Google Scholar
Conover, M. R. (2007). America's first feral hog war. Human–Wildlife Conflicts 1: 129131.Google Scholar
Copado, F., de Aluja, A. S., Mayagoitia, L. & Galindo, F. (2004). The behavior of free ranging pigs in the Mexican tropics and its relationships with human feces consumption. Applied Animal Behavior Sciences 88: 243252.Google Scholar
Cowley, P. (2011). Board wants boar free province. Red Deer Advocate. www.reddeeradvocate.com/news/provincial/Board_wants_boar_free_province_132238323.html. Accessed 11 September 2014.Google Scholar
Crosby, A. (1972). The Columbian Exchange. Westport, Connecticut.Google Scholar
Dokken, B. (1999). Manitoba declares war on wild boar. Grand Forks Herald, 8 March: 1A and 5A.Google Scholar
Donkin, R. A. (1985). The peccary – with observations on the introduction of pigs to the New World. Transactions of the American Philosophical Society 75: 1152.Google Scholar
Elliott, C. (1977). Hawgs ain't all gravy. Outdoor Life 159: 6263, 110111, 115.Google Scholar
Engeman, R. M., Smith, H. T., Severson, R., et al. (2004). Damage reduction estimates and benefit-cost ratios for feral swine control from the last remnant of a basin marsh system in Florida. Environmental Conservation 31(3): 207211.Google Scholar
Engeman, R. M., Stevens, A., Allen, J., et al. (2007). Feral swine management for conservation of an imperiled wetland habitat: Florida's vanishing seepage slopes. Biological Conservation 134: 440446.Google Scholar
Ensminger, M. E. (1961). Swine science. Danville, IL: The Interstate Printers & Publishers.Google Scholar
Fritze, R. A. (2002). Wild boars in SK. Canadian Firearms Digest 4: 13.Google Scholar
Gipson, P. S., Hlavachick, B. & Berger, T. (1998). Range expansion by wild hogs across the central United States. Wildlife Society Bulletin 26: 279286.Google Scholar
Hamrick, B., Smith, M., Jaworowski, C. & Strickland, B. (2011). A landowner's guide for wild pig management – practical methods for wild pig control. Publication 2659. Starkville, MI: Mississippi State University Extension Service, Mississippi State University.Google Scholar
Harris, A., Fulton, M., Stefanson, B. & Lysyshyn, D. (2001). Working together: the role of external agents in the development of agriculture-based industries. Saskatoon, Canada: The Centre for the Study of Co-operatives and the Department of Agricultural Economics, University of Saskatchewan.Google Scholar
Henry, V. G. (1970). Weights and body measurements of European wild hogs in Tennessee. Journal of the Tennessee Academy of Sciences 45(1): 2023.Google Scholar
Higginbotham, B. (2010). Outreach education effort summary: Feral hogs (2006-09). Overton, TX: Texas AgriLife Extension Service. Texas A&M University.Google Scholar
Higginbotham, B. (2013). Wild pig damage abatement education and applied research activities. Overton, TX: Texas A&M AgriLife Research and Extension Center. Texas A&M University.Google Scholar
Higginbotham, B., Clary, G., Hysmith, L. & Bodenchuk, M. (2008). Statewide Feral Hog Abatement Pilot Project, 2006–2007. Overton, TX: Texas AgriLife Extension Service, Texas A&M University.Google Scholar
Husson, A. M. (1960). De Zoogdieren van de Nederlandse Antillen. Curacao: Natuurwetenschappelijke Werkgroep Nederlandse Antillen.Google Scholar
Kaufman, K., Bowers, R. & Bowers, N. (2004). Kaufman focus guide to mammals of North America. New York, NY: Houghton Mifflin.Google Scholar
Kavanaugh, D. M. & Linhart, S. B. (2000). A modified bait for oral delivery of biological agents to raccoons and feral swine. Journal of Wildlife Diseases 36: 8691.Google Scholar
Killian, G. J., Miller, L. A., Rhyan, J., Dees, T. & Perry, D. (2003). Evaluation of GnRH contraceptive vaccine in captive feral swine in Florida. Proceedings of the Wildlife Damage Management Conference 10: 128133.Google Scholar
Lavelle, M. J., Vercauteren, K. C., Hefley, T. J., et al. (2011). Evaluation of fences for containing feral swine under simulated depopulation conditions. The Journal of Wildlife Management 75: 12001208.Google Scholar
Lever, C. (1985). Naturalized mammals of the world. London: Longman.Google Scholar
Lombardo, C. A. & Faulkner, K. R. (2000). Eradication of feral pigs (Sus scrofa) from Santa Rosa Island, Channel Islands National Park, California. In Browne, D. H., Chaney, H. & Mitchell, K. (eds.), Proceedings of the Fifth California Islands Symposium, Santa Barbara Museum of Natural History, California, USA. Santa Barbara, CA: Santa Barbara Museum of Natural History, pp. 300306.Google Scholar
Long, D. B., Campbell, T. A. & Massei, G. (2010). Evaluation of feral swine-specific feeder systems. Rangelands 32: 813.Google Scholar
Mayer, J. J. (2013). Wild pig attacks on humans. Proceedings of the Wildlife Damage Management Conference 15: 1725.Google Scholar
Mayer, J. J. (2014). Estimation of the number of wild pigs found in the United States. SRNS–STI–2014–00292. Aiken, SC: Savannah River Nuclear Solutions, LLC, Savannah River Site.Google Scholar
Mayer, J. J. & Brisbin, I. L. Jr. (1993). Distinguishing feral hogs from introduced wild boar and their hybrids: a review of past and present efforts. In Hanselka, C. W. & Cadenhead, J. F. (eds.), Feral swine: a compendium for resource managers. Kerrville, TX: Texas Agricultural Extension Service, pp. 2849.Google Scholar
Mayer, J. J. & Brisbin, I. L. Jr. (1995). Feral swine and their role in the conservation of global livestock genetic diversity. In Crawford, R. D., Lister, E. E. & Buckley, J. T. (eds.), Proceedings of the third global conference on conservation of domestic animal genetic resources. Warwickshire: Rare Breeds International, pp. 175179.Google Scholar
Mayer, J. J. & Brisbin, I. L. Jr. (2008). Wild pigs in the United States: their history, comparative morphology, and current status. Athens, GA: The University of Georgia Press.Google Scholar
Mayer, J. J. & Brisbin, I. L. Jr. (2009). Wild pigs: biology, damage, control techniques and management. SRNL-RP-2009-00869. Aiken, SC: Savannah River National Laboratory.Google Scholar
Mayer, J. J. & Johns, P. E. (2007). Characterization of wild pig–vehicle collisions. Proceedings of the Wildlife Damage Management Conference 12: 175187.Google Scholar
Mayer, J. J., Brisbin, I. L. Jr. & Sweeney, J. M. (1989). Temporal dynamics of color phenotypes in an isolated population of feral swine. Acta Theriologica 34(17): 247252.Google Scholar
Mayer, J. J., Campbell, T. A., Denkhaus, R. M., et al. (2012). Panel session: Legislation and wild pig management. In 2012 International Wild Pig Conference; Science and Management, Program and Abstracts. San Antonio, TX: p. 27.Google Scholar
McCann, B. E. & Garcelon, D. K. (2008). Eradication of feral pigs from Pinnacles National Monument. Journal of Wildlife Management 72: 12871295.Google Scholar
McCann, B. E., Matthew, M., Newman, R., et al. (2014). Mitochondrial diversity supports multiple origins for invasive pigs. Journal of Wildlife Management 78: 201213.Google Scholar
Mengak, M. T. (2012). 2012 Georgia Wild Pig Survey – final report. Athens, GA: Warnell School of Forestry and Natural Resources, University of Georgia, Athens.Google Scholar
Miller, L. A., Rhyan, J. & Killian, G. J. (2004). GonaCon, a versatile GnRH contraceptive for a large variety of pest animal problems. Proceedings of the Vertebrate Pest Conference 21: 269273.Google Scholar
Nelson, E., Heinemeier, J., Møhl, J. & Arneborg, J. (2012). Isotopic analysis of the domestic animals of Norse Greenland. Journal of the North Atlantic Special Volume 3: 7792.Google Scholar
Nettles, V. F., Corn, J. L., Erickson, G. A. & Jessup, D. A. (1989). A survey of wild swine in the United States for evidence of hog cholera. Journal of Wildlife Diseases 25: 6165.Google Scholar
NFSMS (National Feral Swine Mapping System). (2015). National Feral Swine Mapping System. http://swine.vet.uga.edu/nfsms/. Accessed 27 May 2015.Google Scholar
NPS (National Park Service). (2003). Sustained reduction plan for non-native wild hogs within Virgin Islands National Park – final environmental assessment. St. John, Virgin Islands: US Department of the Interior, National Park Service, Southeastern Region.Google Scholar
Parkes, J. P., Ramsey, D. S. L., Macdonald, N., et al. (2010). Rapid eradication of feral pigs (Sus scrofa) from Santa Cruz Island, California. Biological Conservation 143: 634641.Google Scholar
Pimentel, D. (2007). Environmental and economic costs of vertebrate species invasions into the United States. In Witmer, G. W., Pitt, W. C. & Fagerstone, K. A. (eds.), Managing vertebrate invasive species: proceedings of an international symposium. Fort Collins, CO: USDA/APHIS Wildlife Services, National Wildlife Research Center, pp. 28.Google Scholar
Pimentel, D., Zuniga, R. & Morrison, D. (2005). Update on the environmental and economic costs associated with alien-invasive species in the United States. Ecological Economics 52: 273288.Google Scholar
Quinn, J. H. (1970). Occurrence of Sus in North America. Geological Society of America, Abstracts 2: 298.Google Scholar
Rattan, J. M., Higginbotham, B. J., Long, D. B. & Campbell, T. A. (2010). Exclusion fencing for feral hogs at white-tailed deer feeders. The Texas Journal of Agriculture and Natural Resource 23: 8389.Google Scholar
Reidy, M. M., Campbell, T. A. & Hewett, D. G. (2008a). Evaluation of electric fencing to inhibit feral pig movements. Journal of Wildlife Management 72: 10121018.Google Scholar
Reidy, M. M., Campbell, T. A. & Hewitt, D. G. (2008b). Tetracycline as an ingestible biological marker for feral pigs. Proceedings of Vertebrate Pest Conference 23: 210212.Google Scholar
Reidy, M. M., Campbell, T. A. & Hewitt, D. G. (2011). A mark–recapture technique for monitoring feral swine populations. Rangeland Ecology & Management 64: 316318.Google Scholar
Rollins, D., Higginbotham, B. J., Cearley, K. A. & Wilkins, R. N. (2007). Appreciating feral hogs: extension education for diverse stakeholders in Texas. Human–Wildlife Conflicts 1: 192198.Google Scholar
Salinas, R. A., Stiver, W. H., Corn, J. L., et al. (2015). An individual-based model for feral hogs in Great Smoky Mountains National Park. Natural Resource Modeling 28: 1836.Google Scholar
Sauer, C. V. (1966). The early Spanish Main. Berkeley, CA: University of California Press.Google Scholar
Schuyler, P. T., Garcelon, D. K. & Escover, S. (2002). Eradication of feral pigs (Sus scrofa) on Santa Catalina Island, California, USA. In Veitch, C. R. & Clout, M. N. (eds.), Turning the tide: the eradication of invasive species. Cambridge: IUCN SSC Invasive Species Specialist Group, International Union for the Conservation of Nature and Natural Resources, pp. 274286.Google Scholar
Shi, W., Zheng, B., Zhang, Y. & Ditchkoff, S. (2010). Economic estimate of wild pig damage to farm land owners in Alabama. Proceedings of the 2010 International Wild Pig Symposium. 11–13 April 2010, Pensacola, FL, USA.Google Scholar
Smith, H. J. & Hawkes, A. B. (1978). Kidney worm infection in feral pigs in Canada with transmission to domestic swine. Canadian Veterinary Journal 19(2): 4043.Google Scholar
Sparklin, B. D., Mitchell, M. S., Hanson, L. B., Jolly, D. B. & Ditchkoff, S. S. (2009). Territoriality of feral pigs in a highly persecuted population on Fort Benning, Georgia. The Journal of Wildlife Management 73: 497502.Google Scholar
Stevens, R. L. (2010). The feral hog in Oklahoma. 2nd ed. Ardmore, OK: Samuel Roberts Noble Foundation.Google Scholar
Sweeney, J. M. (1970). Preliminary investigation of a feral hog (Sus scrofa) population on the Savannah River Plant, South Carolina. MS thesis, University of Georgia, Athens, Georgia, USA.Google Scholar
Sweeney, J. R., Sweeney, J. M. & Sweeney, S. W. (2003). Feral hog. In Feldhamer, G. A., Thompson, B. C. & Chapman, J. A. (eds.), Wild mammals of North America. 2nd ed. Baltimore, MD: Johns Hopkins University Press, pp. 11641179.Google Scholar
Timmons, J., Rattan, J., Campbell, T., et al. (2011). Using fences to exclude feral hogs from wildlife feeding stations. L-5533, 10-11. College Station, TX: Texas A&M AgriLife Extension, Texas A & M University.Google Scholar
Towne, C. W. & Wentworth, E. N. (1950). Pigs from cave to cornbelt. Norman, OK: University of Oklahoma Press.Google Scholar
USDA-APHIS (US Department of Agriculture–Animal and Plant Health Inspection Service). (2015). Final environmental impact statement - feral swine damage management: a national approach. Washington, DC: US Department of Agriculture.Google Scholar
Vésteinsson, O., McGovern, T. H. & Keller, C. (2002). Enduring impacts: social and environmental aspects of Viking age settlement in Iceland and Greenland. Archaeologia Islandica 2: 98136.Google Scholar
Villarreal González, J. G., de los Santos, G. S., Moreno Chacón, P. V., et al. (2010). Presencia, distribución y problemática del jabalí europeo y marrano alzado Sus scrofa en los ecositemas de Matorral Espinoso Tamaulipeco del Norte y Cnetro de Nuevo León, México. Cuenca Palo Blanco 6: 1219.Google Scholar
Wallace, B. (2005). The Norse in Newfoundland: L'Anse aux Meadows and Vinland. Newfoundland Studies 19: 11.Google Scholar
Weber, M. (1995). La Introduccion del jabalí Europeo a la Reserva de la Biosfera la Michilia, Durango: implicaciones ecologicas y epidimiologicas. Revista Mexicana de Mastozoologia 1: 6973.Google Scholar
West, B. C., Cooper, A. L. & Armstrong, J. B. (2009). Managing wild pigs: a technical guide. Human–Wildlife Interactions Monograph 1: 154.Google Scholar
Wiewandt, T. A. (1977). Ecology, behavior, and management of the Mona Island ground iguana, Cyclura stejnegeri. PhD dissertation. Ithaca, NY: Cornell University.Google Scholar
Wilcox, J. T., Ashehoug, E. T., Scott, C. A. & Van Vuren, D. H. (2004). A test of the Judas technique as a method for eradicating feral pigs. Transactions of the Western Section of the Wildlife Society 40: 120126.Google Scholar
Woodroffe, R., Hedges, S. & Durant, S. M. (2014). To fence or not to fence. Science 344: 4648.Google Scholar
Zadik, B. J. (2005). The Iberian pig in Spain and the Americas in the time of Columbus. MA thesis. Berkeley, CA: University of California.Google Scholar

References

Altrichter, M., Taber, A., Beck, H., et al. (2012). Range-wide declines of a key Neotropical ecosystem architect, the Near Threatened white-lipped peccary Tayassu pecari. Oryx 46(1): 8798.Google Scholar
Ballari, S. A., Cuevas, M. S., Cirignoli, S. & Valenzuela, A. E. J. (2015). Invasive wild boar in Argentina: using protected areas as a research platform to determine distribution, impacts and management. Biological Invasions 17(6): 15951602.Google Scholar
Barrios-Garcia, M. N. & Ballari, S. A. (2012). Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biological Invasions 14(11): 22832300.Google Scholar
Barrios-Garcia, M. N., Classen, A. T. & Simberloff, D. (2014). Disparate responses of above- and belowground properties to soil disturbance by an invasive mammal. Ecosphere 5(4): 113.Google Scholar
Batista, G. O. (2015). O javali (Sus scrofa Linnaeus, 1758 ) na região do Parque Nacional das Araucárias: percepções humanas e sua relação com regeneração de Araucaria angustifolia (Bert.) O. Ktze. Masters thesis. Florianópolis: Universidade Federal de Santa Catarina.Google Scholar
Beck, H. (2006). A review of peccary–palm interactions and their ecological ramifications across the Neotropics. Journal of Mammalogy 87(3): 519530.Google Scholar
Beck, H., Thebpanya, P. & Filiaggi, M. (2010). Do Neotropical peccary species (Tayassuidae) function as ecosystem engineers for anurans? Journal of Tropical Ecology 26(4): 407414.Google Scholar
Beck, H., Snodgrass, J. W. & Thebpanya, P. (2013). Long-term exclosure of large terrestrial vertebrates: implications of defaunation for seedling demographics in the Amazon rainforest. Biological Conservation 163: 115121.Google Scholar
Bonacic, C., Ohrens, O. & Hernández, F. (2010). Estudio de distribución y estimación poblacional de las especies exóticas invasoras: jabalí y ciervo rojo en Chile. Santiago: Laboratorio de Vida Silvestre Fauna Australis, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile.Google Scholar
Brasil. (2000). Lei n° 9.985, de 18 de julho de 2000. Brasília, Brasil: República Federativa do Brasil.Google Scholar
Brocardo, C. R. & Delgado, L.E., da, S. (2014). Records and conservation of white-lipped peccary in the region of Iguaçu National Park, Brazil. Suiform Soundings 13(1): 3843.Google Scholar
Canevari, M. & Vaccaro, O. (2007). Guía de mamíferos del sur de América del Sur. Buenos Aires: Literature of Latin America (LOLA).Google Scholar
Carpinetti, B. (2014). La Política del ‘Perro del Hortelano’. Caza Furtiva y Especies Exóticas en Bahía Samborombón. Avá 24: 17.Google Scholar
Cavalcanti, S. M. C. (2008). Predator–prey relationships and spatial ecology of jaguars in the southern Pantanal, Brazil: implications for conservation and management, Logan: All Graduate Theses and Dissertation. Available at: http://digitalcommons.usu.edu/etd/112.Google Scholar
Cavalcanti, S. M. C. & Gese, E. M. (2010). Kill rates and predation patterns of jaguars (Panthera onca) in the southern Pantanal, Brazil. Journal of Mammalogy 91(3): 722736.Google Scholar
Chiarello, A. G., Aguiar, L. M. D. S., Cerqueira, R., et al. (2005). Mamíferos ameaçados de extinção no Brasil. In Machado, A. B., Martins, C. S. & Drummond, G. M. (eds.), Lista da fauna brasileira ameaçada de extinção. Belo Horizonte: Biodiversitas, pp. 681880.Google Scholar
Choquenot, D., McIlroy, J. & Korn, T. (1996). Managing vertebrate pests: feral pigs. Canberra: Bureau of Resource Sciences/Australian Government Publishing Service.Google Scholar
Coblentz, B. E. & Baber, D. W. (1987). Biology and control of feral pigs on Isla Santiago, Galapagos, Ecuador. Journal of Applied Ecology 24(2): 403418.Google Scholar
Crawshaw, P.G., Mähler, J. K., Indrusiak, C. & Silvius, K. M. (2002). Ecology and conservation of the Jaguar (Panthera onca) in Iguaçu National Park, Brazil. In Silvius, K. M., Bodmer, R. E. & Fragoso, J. M. V. (eds.), People in nature: wildlife conservation in South and Central America. New York, NY: Columbia University Press, pp. 271285.Google Scholar
Cruz, J. B. & Cruz, F. (1987). Conservation of the dark-rumped petrel Pterodroma phaeopygia in the Galapagos Islands, Ecuador. Biological Conservation 42(4): 303311.Google Scholar
Cuevas, M. F., Novillo, A., Campos, C., Dacar, M. A. & Ojedo, R. A. (2010). Food habits and impact of rooting behaviour of the invasive wild boar, Sus scrofa, in a protected area of the Monte Desert, Argentina. Journal of Arid Environments 74(11): 15821585.Google Scholar
Daciuk, J. (1978). Estado actual de las espécies de mamíferos introducidos en la Subregión Aracuana (Rep. Argentina) y grado de coacción ejercido en algunos ecosistemas surcordilleranos. Anales de Parques Nacionales 14: 105130.Google Scholar
Data East Soft LLC. (2011). XTools Pro for ArcGIS® desktop. Version 8.0.0. Novosibirsk. Available at: www.dataeast.com.Google Scholar
Deberdt, A. J. & Scherer, S. B. (2007). O javali asselvajado: ocorrência e manejo da espécie no Brasil. Natureza & Conservação 5(2): 3144.Google Scholar
Desbiez, A. L. J. (2007). Wildlife conservation in the Pantanal: habitat alteration, invasive species and bushmeat hunting. PhD thesis. Canterbury: University of Kent Canterbury.Google Scholar
Desbiez, A. L. J., Keuroghlian, A., Piovezan, U. & Bodmer, R. E. (2009a). Population ecology of feral pigs in the Brazilian Pantanal, Corumbá: Embrapa Pantanal.Google Scholar
Desbiez, A. L. J., Santos, S. A., Keuroghlian, A. & Bodmer, R. E. (2009b). Niche partitioning among white-lipped peccaries (Tayassu pecari), collared peccaries (Pecari tajacu), and feral pigs (Sus scrofa). Journal of Mammalogy 90(1): 119128.Google Scholar
Desbiez, A. L. J., Keuroghlian, A., Piovezan, U. & Bodmer, R. E. (2011). Invasive species and bushmeat hunting contributing to wildlife conservation: the case of feral pigs in a Neotropical wetland. Oryx 45(1): 7883.Google Scholar
Desbiez, A. L. J., Keuroghlian, A., de Mello Beisiegel, B., et al. (2012). Avaliação do Risco de Extinção do Cateto Pecari tajacu Linnaeus, 1758, no Brasil. Biodiversiade Brasileira 2(3): 7484.Google Scholar
Donkin, R. A. (1985). The peccary: with observations on the introduction of pigs to the New World. American Philosophical Society 75(5): 1152.Google Scholar
ECOPAM. (2004). Plan de Manejo de la Reserva Provincial Parque Luro. Santa Rosa: Subsecretaría de Ecologia del Gobierno de La Pampa (ECOPAM).Google Scholar
Elton, C. S. (1958). The ecology of invasions by animals and plants. Boston, MA: Springer. Available at: http://link.springer.com/10.1007/978-1-4899-7214-9.Google Scholar
Emmons, L. H. (1987). Comparative feeding ecology of felids in a neotropical rainforest. Behavioral Ecology and Sociobiology 20(4): 271283. Available at: http://link.springer.com/10.1007/BF00292180.Google Scholar
ESRI. (2016). World Administrative Divisions. Environmental Systems Research Institute (ESRI)/DeLorme Publishing Company, Inc. Available at: www.esri.com [accessed 4 January 2016].Google Scholar
Estes, J. A., Terborgh, J., Brasheres, J. S., et al. (2011). Trophic downgrading of planet Earth. Science 333(6040): 301306.Google Scholar
FAO. (2007). Gridded livestock of the world 2007. Wint, W. & Robinson, T. (eds.). Rome: Food and Agriculture Organization of United Nations (FAO).Google Scholar
Fonseca, C., Sicuro, F. L., Pinto, I. A., et al. (2014). The wild boar expansion in Brazil: current status, problems and future perspectives. In 10th International Symposium on Wild Boar and Other Suids. Velenje, p. 80.Google Scholar
Frankenberg, S.T. (2005). Levantamento e avaliação da Portaria 138/02 e Instrução Normativa 25/04, que regulamentaram o controle do javali (Sus scrofa) no Rio Grande do Sul no período compreendido entre 2003 e 2005. Produto PNUD, Projeto BRA/01/037. Porto Alegre: Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis.Google Scholar
Galetti, M., Camargo, H., Siqueira, T., et al. (2015). Diet overlap and foraging activity between feral pigs and native peccaries in the Pantanal. PLoS ONE 10(11): e0141459.Google Scholar
García, E., Mora, L., Torres, P., Jercic, M. I. & Mercado, R. (2005). First record of human trichinosis in Chile associated with consumption of wild boar (Sus scrofa). Memórias do Instituto Oswaldo Cruz 100(1): 1718.Google Scholar
García, G., Vergara, J. & Lombardi, R. (2011). Genetic characterization and phylogeography of the wild boar Sus scrofa introduced into Uruguay. Genetics and Molecular Biology 34(2): 329337.Google Scholar
Ghione, S., Martino, D., Aldabe, J., et al. (2008). Biodiversidad. In PNUMA/CLAVES/DINAMA (ed.)., GEO Uruguay: informe del estado del ambiente. Montevideo: Programa de Naciones Unidas para el Medio Ambiente (PNUMA)/ Centro Latino Americano de Ecología Social (CLAES)/ Dirección Nacional de Medio Ambiente (DINAMA), pp. 180241.Google Scholar
GISD. (2016). Global Invasive Species Database: Sus scrofa. Available at: www.issg.org/database/species/distribution.asp?si=73&fr=1&sts=sss&lang=EN [Accessed 4 January 2016].Google Scholar
GISP. (2005). América do Sul invadida. Cape Town: Global Invasive Species Program (GISP).Google Scholar
Guimarães, T. C. S. (2015). Espécies Exóticas Invasoras da Fauna em Unidades de Conservação Federais no Brasil: Sistematização do Conhecimento e Implicações para o Manejo.Google Scholar
Hegel, C. G. Z. & Marini, M. Â. (2013). Impact of the wild boar, Sus scrofa, on a fragment of Brazilian Atlantic Forest Impacto. Neotropical Biology and Conservation 8(1): 1724.Google Scholar
Herrera, H. M., Abreu, U. G. P., Keuroghlian, A., Freitas, T. P. & Jansen, A. M. (2008). The role played by sympatric collared peccary (Tayassu tajacu), white-lipped peccary (Tayassu pecari), and feral pig (Sus scrofa) as maintenance hosts for Trypanosoma evansi and Trypanosoma cruzi in a sylvatic area of Brazil. Parasitology Research 103(3): 619624.Google Scholar
Herrero, J. & Luco, D. F. De (2003). Wild boars (Sus scrofa L.) in Uruguay: scavengers or predators? Mammalia 67(4): 485591.Google Scholar
Hofmann, G. S. (2013). Taiassuídeos simpátricos no norte do Pantanal brasileiro: implicações da estacionalidade climática, do uso da terra e da presença de uma espécie invasora nas interações competitivas entre caititus (Pecari tajacu) e queixadas (Tayassu pecari).Google Scholar
IAP. (2009). Planos de conservação para aves e mamíferos ameçados no Paraná - Planos Completos. Curitiba: Instituto Ambiental do Paraná (IAP).Google Scholar
IBAMA. (1995). Portaria Ibama N° 7 de 26 de janeiro de 1995 do Instituto Brasileiro do Meio Ambiente dos Recursos Naturais Renováveis (IBAMA). Diário Oficial da União 22(1): 13301333.Google Scholar
IBAMA. (2002). Portaria No 138, de 14 de outubro de 2002, do Instituto Brasileiro do Meio Ambiente e dos Recurso Naturais Renováveis (IBAMA). Diário Oficial da União 200(1): 114.Google Scholar
IBAMA. (2004). Instrução Normativa No 25 de 31 de março de 2004 do Instituto Brasileiro do Meio Ambiente e dos Recurso Naturais Renováveis (IBAMA). Diario Oficial da União 63(1): 91.Google Scholar
IBAMA. (2005). Instrução Normativa No 71 de 4 de agosto de 2005 do Instituto Brasileiro do Meio Ambiente e dos Recurso Naturais Renováveis (IBAMA). Diario Oficial da União 152(1): 2829.Google Scholar
IBGE. (2015). Malhas digitais. Malhas digitais. Available at: ftp://geoftp.ibge.gov.br/malhas_digitais/ [Accessed 31 December 2015].Google Scholar
Itow, S. (1995). Phytogeography and ecology of Scalesia (Compositae) endemic to the Galapagos Islands. Pacific Science 49(1): 1730.Google Scholar
IUCN. (2010). IUCN Red List of Threatened Species. Version 2010.4. International Union for Conservation of Nature (IUCN). Available at: www.iucnredlist.org [Accessed 27 October 2010].Google Scholar
IUCN & UNEP-WCMC. (2016). The World Database on Protected Areas (WDPA). International Union for Conservation of Nature (IUCN)/World Conservation Monitoring Centre of United Nations Environment Programme (UNEP-WCMC). Available at: www.protectedplanet.net [Accessed 4 January 2016].Google Scholar
Jackson, J. E. & Langguth, A. (1987). Ecology and status of pampas deer in the Argentinian Pampas and Uruguay. In Wemmer, C. M. (ed.), Biology and management of the Cervidae. Washington, DC: Smithsonian Institution Press, pp. 402410.Google Scholar
Jácomo, A.T., de, A. (2004). Ecologia manejo e conservação do queixada Tayassu pecari no Parque Nacional das Emas e em propriedades rurais de seu entorno. Universidade de Brasília.Google Scholar
Jaksic, F. M. (1998). Vertebrate invaders and their ecological impacts in Chile. Biodiversity and Conservation 7(11): 14271445.Google Scholar
Jaksic, F. M., Iriarte, J. A., Jiménez, J. E. & Martinez, D. R. (2002). Invaders without frontiers: cross-border invasions of exotic mammals. Biological Invasions 4: 157173.Google Scholar
Kaizer, M. C., Novaes, C. M. & Faria, M. B. (2014). Wild boar Sus scrofa (Cetartiodactyla, Suidae) in fragments of the Atlantic Forest, southeastern Brazil: new records and potential environmental impacts. Mastozoologia Neotropical 21(2): 343347.Google Scholar
Kashivakura, C. K., Furtado, M. M., Jácomo, A. T. A., et al. (2003). Brucelose em queixadas Tayassu pecari, de vida livre da região do Parque Nacional das Emas. XXV Conbregsso Brasileiro de Zoologia, pp. 217218.Google Scholar
Keuroghlian, A. & Eaton, D. (2009). Removal of palm fruits and ecosystem engineering in palm stands by white-lipped peccaries (Tayassu pecari) and other frugivores in an isolated Atlantic Forest. Biodiversity and Conservation 18: 17331750.Google Scholar
Keuroghlian, A., Eaton, D. P. & Desbiez, A. L. J. (2008). Habitat use by peccaries and feral pigs of the Southern Pantanal, Mato Grosso do Sul, Brazil. Suiform Soundings 8(2): 917.Google Scholar
Keuroghlian, A., Desbiez, A. L. J., de Mello Beisiegel, B., et al. (2012). Avaliação do Risco de Extinção do Queixada Tayassu pecari Link, 1795, no Brasil Alexine. Biodiversiade Brasileira 2(3): 84102.Google Scholar
Kiltie, R. A. (1981). Stomach contents of rain forest peccaries (Tayassu tajacu and T. pecari). Biotropica 13(3): 45.Google Scholar
Marocco, J. C. (2012). Fauna. In Plano de Manejo do Parque Estadual do Ibitiriá, pp. 88132. Porto Alegre: Secretaria Estadual do Meio Ambiente do Rio Grande do Sul.Google Scholar
MMA/CONABIO. (2009). Estratégia Nacional sobre Espécies Exóticas Invasoras. Resolução CONABIO n.o 05, de 21 de outubro de 2009. Brasília: Ministério do Meio Ambiente (MMA)/Comissão Nacional de Biodiversidade (CONABIO).Google Scholar
Mones, A. & Ximenez, A. (1980). Hallazgo de dos mamiferos extintos del Uruguay. Revista de la Facultad de Humanidades y Ciências (Série Ciências Biológicas) 1(12): 201206.Google Scholar
Myers, N., Mittermeier, R. A., Mittermeier, C. G., da Fonseca, G. A. & Kent, J. (2000). Biodiversity hotspots for conservation priorities. Nature 403(6772): 853858. Available at: www.ncbi.nlm.nih.gov/pubmed/10706275.Google Scholar
Navas, J. R. (1987). Los vertebrados exóticos introducidos en la Argentina. Revista del Museum Argentino de Ciências Naturales Zoologia 2: 737.Google Scholar
Nobre, A. B., Devids, C. C., Giovanelli, J. G. R., et al. (2013). Diagnóstico da população de javaporco (Sus scrofa) na RPPN Entre Rios, avaliando os possíveis impactos na fauna e flora da região de abrangência. In Plano de Manejo da RPPN Entre Rios. Angatuba: Suzano Papel e Celulose, pp. 457466.Google Scholar
Novillo, A. & Ojeda, R. A. (2008). The exotic mammals of Argentina. Biological Invasions 10(8): 13331344.Google Scholar
Ojeda, R. A., Novillo, A. & Cuevas, M. F. (2010). The exotic mammals of Argentina. In Settele, J., Penev, L., Georgiev, T., et al. (eds.), Atlas of biodiversity risk. Sofia: Pensoft Publishers, pp. 154155.Google Scholar
Oliveira, T. G. (2002). Ecología comparativa de la alimentación del jaguar y del puma en el neotrópico. In Medellín, R. A., Equihua, C., Chetkiewicz, C. L., et al. (eds.), El jaguar en el nuevo milenio. Mexico: Fondo de Cultura Económica/Universidad Nacional Autónoma de México/Wildlife Conservation Society, pp. 265288.Google Scholar
Oliveira-Santos, L. G. R., Dorazio, R. M., Tomas, W. M. & Santos Fernandez, F. A. (2011). No evidence of interference competition among the invasive feral pig and two native peccary species in a Neotropical wetland. Journal of Tropical Ecology 27(5): 557561.Google Scholar
Olson, D. M., Dinerstein, E., Wikramanayake, E. D., Burgess, N. D., et al. (2001). Terrestrial ecoregions of the world: a new map of life on Earth. BioScience 51(11): 933938.Google Scholar
Paine, C. E. T. & Beck, H. (2007). Seed predation by Neotropical rain forest mammals increases diversity in seedling recruitment. Ecology 88(12): 30763087.Google Scholar
Pedrosa, F., Salerno, R., Padilha, F. V. B. & Galetti, M. (2015). Current distribution of invasive feral pigs in Brazil: economic impacts and ecological uncertainty. Natureza & Conservação 13(1): 8487.Google Scholar
Pérez Carusi, L. C., Beade, M. S., Miñarro, F., et al. (2009). Relaciones espaciales y numéricas entre venados de las Pampas (Ozotoceros bezoarticus celer) y chanchos cimarrones (Sus scrofa) en el refugio de vida silvestre Bahía Samborombón, Argentina. Ecologia Austral 19(1): 6371.Google Scholar
Pescador, M., Sanguinetti, J., Pastore, H. & Peris, S. (2009). Expansion of the introduced wild boar (Sus scrofa) in the Andean region, Argentinean Patagonia. Galemys 21: 121132.Google Scholar
Poeta, A. P. (2015). Distribuição espacial de javalis asselvajados pelo estado do Rio Grande do Sul. O Biológico (Suplemento) 77: 57.Google Scholar
Reider, K. E., Carson, W. P. & Donnelly, M. A. (2013). Effects of collared peccary (Pecari tajacu) exclusion on leaf litter amphibians and reptiles in a Neotropical wet forest, Costa Rica. Biological Conservation 163: 9098.Google Scholar
Rosa, C. A. (2015). Mamíferos Exóticos Invasores no Brasil: situação atual, riscos potenciais e impactos da invasão de porcos selvagens em Florestas Tropicais Lavras, 2015. PhD thesis. Lavras: Universidade Federal de Lavras.Google Scholar
Salvador, C. H. (2012). Ecologia e manejo de javali (Sus scrofa L.) na América do Sul. PhD thesis. Rio de Janeiro: Universidade Federal do Rio de Janeiro.Google Scholar
Salvador, C. H. & Fernandez, F. A. S. (2014). Using the Eurasian wild boar phenotype as a basis to document a new process of invasion by Sus scrofa L. in a Neotropical biodiversity hotspot. Wildlife Biology in Practice 10(3): 2229.Google Scholar
Sampaio, A. B. & Schmidt, I. B. (2013). Espécies Exóticas Invasoras em Unidades de Conservação Federais do Brasil. Biodiversidade Brasileira 3(2): 3249.Google Scholar
Sanguinetti, J. & Kitzberger, T. (2010). Factors controlling seed predation by rodents and non-native Sus scrofa in Araucaria araucana forests: potential effects on seedling establishment. Biological Invasions 12(3): 689706.Google Scholar
Santiago Silva, V., Bordin, L. C., Trevisol, I. M., et al. (2013a). Survey of Toxoplasma gondii, Brucella spp., and Leptospira sp. antibody in Eurasian wild boar (Sus scrofa) from southern Brazil – partial results. In 2nd International Congress on Pathogens at the Human-Animal Interface (ICOPHAI): One Health for Sustainable Development. Porto de Galinhas: VPH-Biotech Global Consortium, p. 150.Google Scholar
Santiago Silva, V., Pellegrin, A.O., Mourão, G. M., et al. (2013b). Estruturação da vigilância epidemiológica e manejo populacional de suídeos asselvajados (Sus scrofa) para área livre de peste suína clássica do Brasil. O Biológico (Suplemento) 72(2): 33.Google Scholar
Santiago Silva, V., Rech, R. R., Silva, M. C., et al. (2013c). Muscular sparganosis in Eurasian wild boar (Sus scrofa) from southern Brazil. In 2nd International Congress on Pathogens at the Human–Animal Interface (ICOPHAI): One Health for Sustainable Development. Porto de Galinhas: VPH-Biotech Global Consortium, p. 151.Google Scholar
Santiago Silva, V., Trevisol, I. M., Kramer, B., et al. (2015). Monitoramento sorológico de Peste Suína Clássica em suídeos asselvajados (Sus scrofa) no estado de Santa Catarina. O Biológico (Suplemento) 77: 32.Google Scholar
Santos, M. B., Quintela, F. M., Oliveira, S. V., Costa, R. C. & Uarth, A. (2009). Javalis e porcos ferais (Suidae, Sus scrofa) na restinga de Rio Grande, Rio Grande do Sul, Brasil: ecossistemas de ocorrência e dados preliminares sobre impactos ambientais. In IX Congresso de Ecologia do Brasil. São Lourenço: Sociedade de Ecologia do Brasil, pp. 14.Google Scholar
Sicuro, F. L. & Oliveira, L. F. B. (2002). Coexistence of peccaries and feral hogs in the Brazilian Pantanal wetland: an ecomorphological view. Journal of Mammalogy 83(1): 207217.Google Scholar
Silman, M. R., Terborgh, J. W. & Kiltie, R. A. (2003). Population regulation of a dominant rain forest tree by a major seed predator. Ecology 84(2): 431438.Google Scholar
Skewes, O. & Bustos, P. A. (2011). Estudio de distribución, estimación poblacional y vigilancia epidemiológica, de las especies exóticas invasoras: Jabalí y Ciervo Rojo, en la Región del Maule, Chile. Informe Final Convenio ASPRECER-Universidad de Concepción. Chillán: Universidad de Concepción.Google Scholar
Skewes, O. & Jaksic, F. M. (2015). History of the introduction and present distribution of the European wild boar (Sus scrofa) in Chile. Mastozoología Neotropical 22(1): 113124.Google Scholar
Skewes, O., Rodriguez, R. & Jaksic, F. M. (2007). Trophic ecology of the wild boar (Sus scrofa) in Chile. Revista Chilena De Historia Natural 80(3): 295307.Google Scholar
Souza, C. deBender, D. & Bazilio, S. (2015). Registro de Sus scrofa (Artiodactyla – Suidae) na Reserva Biológica das Araucárias, Paraná. In de Mattos, P. P., Marques, A. C., Vogt, G. A., et al. (eds.), II Seminário de Pesquisas da Floresta Nacional de Três Barras. Colombo: Embrapa Florestas, pp. 7374.Google Scholar
Taber, A. B., Chalukian, S. C., Altrichter, M. & Zapata-Ríos, G. (2008). El destino de los arquitectos de los bosques neotropicales: evaluación de la distribución y el estado de conservación de los pecaríes labiados y los tapires de tierras bajas. Gland: Grupo Especialista de La CSE/UICN en Cerdos, Pecaríes y Hipopótamos.Google Scholar
Trovati, R. & Munerato, M. (2013). Occurrence record of Sus scrofa Linnaeus, 1758 (Mammalia: Artiodactyla) at Estação Ecológica de Itirapina, São Paulo state, Brazil. Check List 9(1): 136138.Google Scholar
Valério, L. A. J. (1999). Ocorrência e alimentação da linhagem javali (Sus scrofa Mammalia, Artiodactyla) em estado silvestre no sudoeste do Rio Grande do Sul. Master thesis. Porto Alegre: Universidade Federal do Rio Grande do Sul.Google Scholar
Weckel, M., Giuliano, W. & Silver, S. (2006a). Cockscomb revisited: jaguar diet in the Cockscomb Basin Wildlife Sanctuary, Belize. Biotropica 38(5): 687690. Available at: http://onlinelibrary.wiley.com/doi/10.1111/j.1744-7429.2006.00190.x/full [Accessed 12 September 2013].Google Scholar
Weckel, M., Giuliano, W. & Silver, S. (2006b). Jaguar (Panthera onca) feeding ecology: distribution of predator and prey through time and space. Journal of Zoology 270: 2530. Available at: http://doi.wiley.com/10.1111/j.1469-7998.2006.00106.x [Accessed 6 August 2013].Google Scholar
Ziller, S. R. & Dechoum, M. S. (2013). Plantas e vertebrados exóticos invasores em unidades de conservação no Brasil. Biodiversidade Brasileira 3(2): 431.Google Scholar

References

Alexiou, P. N. (1983). Effects of feral pigs (Sus scrofa) on subalpine vegetation at Smokers Gap, ACT. Proceedings of the Ecological Society of Australia 12: 135142.Google Scholar
Anonymous, . (2010). Feral pigs – invasive animals in Australia. Available at: www.environment.gov.au/topics/biodiversity/invasive-species/feral-animals-australia/feral-pigs. Accessed 10 February 2014.Google Scholar
Apollonio, M., Andersen, R. & Putman, R. (2010). European ungulates and their management in the 21st century. Cambridge: Cambridge University Press.Google Scholar
Baber, M., Moulton, H., Smuts-Kennedy, C., Gemmel, N. & Crossland, M. (2006). Discovery and spatial assessment of a Hochstetter's frog (Leiopelma hochstetteri) population found in Maungatautiri Scenic Reserve, New Zealand. New Zealand Journal of Ecology 33: 147156.Google Scholar
Baldwin, J. A. (1983). Pre-Cookian pigs in Australia? Journal of Cultural Geography 4: 1727.Google Scholar
Ballari, S. A., Cuevas, M. F., Cirignoli, S. & Valenzuela, A. E. J. (2015). Invasive wild boar in Argentina: using protected areas as a research platform to determine distribution, impacts and management. Biological Invasions 17: 15951602.Google Scholar
Bassett, I. E., Horner, I. J., Hough, E. G., et al. (2017). Ingestion of infected roots by feral pigs provides a minor vector pathway for kauri dieback disease Phytophthora agathidicida. Forestry.Google Scholar
Bengsen, A. J. & Cox, T. E. (2014). The role of rabbit and other invasive herbivore control in reducing Australia's greenhouse gas emissions. Canberra: PestSmart Toolkit publication, Invasive Animals Cooperative Research Centre.Google Scholar
Bengsen, A. J. & Sparkes, J. (2016). Can recreational hunting contribute to pest mammal control on public land in Australia? Mammal Review 46: 297310.Google Scholar
Bengsen, A. J., Leung, L. K.-P., Lapidge, S. J. & Gordon, I. J. (2011a). Using a general index approach to analyze camera-trap abundance indices. Journal of Wildlife Management 75(5): 12221227.Google Scholar
Bengsen, A. J., Leung, L. K.-P., Lapidge, S. J. & Gordon, I. J. (2011b). Testing target-specific feral pig baiting in a tropical rainforest. Ecological Management & Restoration 12(3): 226229.Google Scholar
Bengsen, A., Gentle, M. N., Mitchell, J. L., Pearson, H. E. & Saunders, G. (2014a). Feral pig management in Australia: current trends and future directions. In Timm, R. M. & O'Brien, J. M. (eds.), Proceedings of the 26th Vertebrate Pest Conference, Waikoloa, Hawaii, USA. Davis, CA: The Vertebrate Pest Council, University of California Davis, pp. 281286.Google Scholar
Bengsen, A. J., Gentle, M. N., Mitchell, J. L., Pearson, H. E. & Saunders, G. R. (2014b). Impacts and management of wild pigs in Australia. Mammal Review 44: 135147.Google Scholar
Bieber, C. & Ruf, T. (2005). Population dynamics of wild boar Sus scrofa: ecology, elasticity of growth rate and implications for the management of pulsed resource consumers. Journal of Applied Ecology 42: 12031213.Google Scholar
Biodiversity Data Inventory. (2008) Distribution of Feral Pig in New Zealand (2007). Department of Conservation Te Papa Atawhai. Available at: http://geoportal.doc.govt.nz/ArcGIS/rest/services/GeoportalServices/DOC_BDIPEST_FeralPFe_2007/MapServer. Accessed 25 February 2016.Google Scholar
Bomford, M. & Hart, Q. (2002). Non-indigenous vertebrates in Australia. In Pimentel, D. (ed.), Biological invasions: economic and environmental costs of alien plant, animal, and microbe species. London: CRC Press, pp. 2544.Google Scholar
Braysher, M. (1993). Managing vertebrate pests: principles and strategies. Canberra: Bureau of Resource Sciences, Australian Government Publishing Service.Google Scholar
Braysher, M., Buckmaster, A. J., Saunders, G. & Krebs, C. J. (2012). Principles underpinning best practice management of the damage due to pests in Australia. In Timm, R. M. (ed.), Proceedings of the 25th Vertebrate Pest Conference. Davis, CA: University of California Davis, pp. 300307.Google Scholar
Caley, P. (1993). The ecology and management of feral pigs in the ‘wet-dry’ tropics of the Northern Territory. MSc thesis. Canberra: University of Canberra.Google Scholar
Caley, P. & Ottley, B. (1995). The effectiveness of hunting dogs for removing feral pigs (Sus scrofa). Wildlife Research 22: 147154.Google Scholar
Centner, T. J. & Shuman, R. M. (2015). Governmental provisions to manage and eradicate feral swine in areas of the United States. AMBIO 44: 121130.Google Scholar
Challies, C. N. (1975). Feral pigs (Sus scrofa) on Auckland Island: status, and effects on vegetation and nesting seabirds. New Zealand Journal of Zoology 2: 479490.Google Scholar
Choquenot, D. & Hone, J. (2002). Using bioeconomic models to maximize benefits from vertebrate pest control: lamb predation by feral pigs. In Clark, L. (ed.), Human conflicts with wildlife: economic considerations, Proceedings of the Third NWRC Special Symposium. Fort Collins, CO: NWRC, pp. 6579.Google Scholar
Choquenot, D., McIlroy, J. & Korn, T. (1996). Managing vertebrate pests: feral pigs. Canberra: Bureau of Resource Sciences, Australian Government Publishing Service.Google Scholar
Choquenot, D., Lukins, B. & Curran, G. (1997). Assessing lamb predation by feral pigs in Australia's semi-arid rangelands. The Journal of Applied Ecology 34(6): 14451454.Google Scholar
Choquenot, D., Hone, J. & Saunders, G. (1999). Using aspects of predator–prey theory to evaluate helicopter shooting for feral pig control. Wildlife Research 26(3): 251261.Google Scholar
Clarke, C. M. H. & Dzieciolowski, R. (1991). Feral pigs in the northern South Island, New Zealand: I. Origin, distribution, and density. Journal of the Royal Society of New Zealand 21: 237247.Google Scholar
Coleman, M. C., Parkes, J. P. & Walker, K. J. (2001). Impact of feral pigs and other predators on macro-invertebrates, D'Urville Island. Conservation Advisory Science Notes 345. Wellington: Department of Conservation.Google Scholar
Cowled, B. D., Gifford, E., Smith, M., Staples, L. & Lapidge, S. J. (2006a). Efficacy of manufactured PIGOUT® baits for localised control of feral pigs in the semi-arid Queensland rangelands. Wildlife Research 33: 427437.Google Scholar
Cowled, B. D., Lapidge, S. J., Smith, M. & Staples, L. (2006b). Attractiveness of a novel omnivore bait, PIGOUT®, to feral pigs (Sus scrofa) and assessment of risks of bait uptake by non-target species. Wildlife Research 33: 651660.Google Scholar
Cowled, B. D., Aldenhoven, J., Odeh, I. A., et al. (2008a). Feral pig population structuring in the rangelands of eastern Australia: applications for designing adaptive management units. Conservation Genetics 9: 211224.Google Scholar
Cowled, B. D., Elsworth, P. & Lapidge, S. J. (2008b). Additional toxins for feral pig (Sus scrofa) control: identifying and testing Achilles' heels. Wildlife Research 35: 651662.Google Scholar
Cowled, B. D., Giannini, F., Beckett, S. D., et al. (2009). Feral pigs: predicting future distributions. Wildlife Research 36: 242251.Google Scholar
Davidson, J. (1984). The prehistory of New Zealand. Auckland: Longman Paul.Google Scholar
DEH (2005). Threat abatement plan for predation, habitat degradation, competition and disease transmission by feral pigs. Canberra: Department of Environment and Heritage.Google Scholar
Dexter, N. (2003). Stochastic models of foot and mouth disease in feral pigs in the Australian semi-arid rangelands. Journal of Applied Ecology 40: 293306.Google Scholar
Doran, R. J. & Laffan, S. W. (2005). Simulating the spatial dynamics of foot and mouth disease outbreaks in feral pigs and livestock in Queensland, Australia, using a susceptible–infected–recovered cellular automata model. Preventive Veterinary Medicine 70: 133152.Google Scholar
Doupé, R. G., Schaffer, J., Knott, M. J. & Dicky, P. W. (2009). A description of freshwater turtle habitat destruction by feral pigs in tropical north-eastern Australia. Herpetological Conservation and Biology 4: 331339.Google Scholar
Doupé, R. G., Mitchell, J., Knott, M. J., Davis, A. M. & Lymbery, A. J. (2010). Efficacy of exclusion fencing to protect ephemeral floodplain lagoon habitats from feral pigs (Sus scrofa). Wetlands Ecology and Management 18: 6978.Google Scholar
Edwards, G. P., Pople, A. R., Saalfeld, K. & Caley, P. (2004). Introduced mammals in Australian rangelands: future threats and the role of monitoring programmes in management strategies. Austral Ecology 29: 4050.Google Scholar
Elder, J. K., McKeon, G. M., Duncalfe, F., Ward, W. H. & Leutton, R. D. (1986). Epidemiological studies on the ecology of Leptospira interrogans serovars pomona and hardjo in Queensland. Preventive Veterinary Medicine 3: 501521.Google Scholar
Elledge, A. E., McAlpine, C. A., Murray, P. J. & Gordon, I. J. (2010). The impact of feral pigs on rainforest dynamics in north-eastern Australia. In Timm, R. M. & Fagerstone, K. A. (eds.), Proceedings of the 24th Vertebrate Pest Conference. Sacramento, CA: Vertebrate Pest Council, pp. 4652.Google Scholar
Ferris, B. (2010). The 2008–2009 aerial feral pig and feral goat shooting program: a case study in northern New South Wales, Australia. In Timm, R. M. & Fagerstone, K. A. (eds.), Proceedings of the 24th Vertebrate Pest Conference. Sacramento, CA: Vertebrate Pest Council, pp. 5963.Google Scholar
Finch, N., Murray, P., Hoy, J. & Baxter, G. (2014). Expenditure and motivation of Australian recreational hunters. Wildlife Research 41: 7683.Google Scholar
Fleming, P. J. S., Allen, B. L., Allen, L. R., et al. (2014). Management of wild canids in Australia: free-ranging dogs and red foxes. In Glen, A. S. & Dickman, C. R. (eds.), Carnivores of Australia: past, present and future. Collingwood: CSIRO Publishing. pp. 105149.Google Scholar
Flux, I. A. (2002). New Zealand white-capped mollymawk (Diomedea cauta steadi) chicks eaten by pigs (Sus scrofa). Notornis 49: 175176.Google Scholar
Fordham, D., Georges, A., Corey, B. & Brook, B. W. (2006). Feral pig predation threatens the indigenous harvest and local persistence of snake-necked turtles in northern Australia. Biological Conservation 133: 379388.Google Scholar
Fordham, D. A., Georges, A. & Brook, B. W. (2008). Indigenous harvest, exotic pig predation and local persistence of a long-lived vertebrate: managing a tropical freshwater turtle for sustainability and conservation. Journal of Applied Ecology 45: 5262.Google Scholar
Fraser, K. W., Cone, J. M. & Whitford, E. J. (2000). A revision of the established ranges and new populations of 11 introduced ungulate species in New Zealand. Journal of the Royal Society of New Zealand 30: 419437.Google Scholar
Geisser, H. & Reyer, H.-U. (2004). Efficacy of hunting, feeding, and fencing to reduce crop damage by wild boars. Journal of Wildlife Management 68: 939946.Google Scholar
Gentle, M. & Pople, A. (2013). Effectiveness of commercial harvesting in controlling feral-pig populations. Wildlife Research 40: 459469.Google Scholar
Gentle, M. N., Phinn, S. & Speed, J. (2010). Assessing pig damage in agricultural crops with remote sensing. Final Report to the Australian Pest Animal Management Program. Toowoomba: Department of Employment, Economic Development and Innovation.Google Scholar
Gentle, M., Speed, J. & Marshall, D. (2015). Consumption of crops by feral pigs (Sus scrofa) in a fragmented agricultural landscape. Australian Mammalogy 37: 194200.Google Scholar
Gong, W., Sinden, J., Braysher, M. & Jones, R. (2009). The economic impacts of vertebrate pests in Australia. Canberra: Invasive Animals Cooperative Research Centre.Google Scholar
Gongora, J., Fleming, P., Spencer, P. B. S., et al. (2004). Phylogenetic relationships of Australian and New Zealand feral pigs assessed by mitochondrial control region sequence and nuclear GPIP genotype. Molecular Phylogenetics and Evolution 33: 339348.Google Scholar
Hampton, J. O., Spencer, P. B. S., Alpers, D. L., et al. (2004). Molecular techniques, wildlife management and the importance of genetic population structure and dispersal: a case study with feral pigs. Journal of Applied Ecology 41: 735743.Google Scholar
Hampton, J. O., Higgs, T., Knight, T. & Spencer, P. B. S. (2005). DNA-based detection of free-ranging pigs of domestic origin, in Western Australia. Ecological Management and Restoration 6: 7678.Google Scholar
Hanson, L. B., Mitchell, M. S., Grand, J. B., et al. (2009). Effect of experimental manipulation on survival and recruitment of feral pigs. Wildlife Research 36: 185191.Google Scholar
Homel, R., Lincoln, R. & Herd, B. (1999). Risk and resilience: crime and violence prevention in Aboriginal communities. Australian & New Zealand Journal of Criminology 32: 182196.Google Scholar
Hone, J. (1994). Analysis of vertebrate pest control. Cambridge: Cambridge University Press.Google Scholar
Hone, J. (2002). Feral pigs in Namadgi National Park, Australia: dynamics, impacts and management. Biological Conservation 105(2): 231242.Google Scholar
Hone, J. (2006). Linking pasture, livestock productivity and vertebrate pest management. New Zealand Journal of Ecology 30(1): 1323.Google Scholar
Hone, J. (2007). Wildlife damage control. Collingwood: CSIRO Publishing.Google Scholar
Hone, J. (2012). Applied population and community ecology: the case of feral pigs in Australia. Chichester: Wiley-Blackwell.Google Scholar
Hone, J. & Stone, C. P. (1989). A comparison and evaluation of feral pig management in two National Parks. Wildlife Society Bulletin 17: 419425.Google Scholar
Izac, A. M. N. & O'Brien, P. H. (1991). Conflict, uncertainty and risk in feral pig management – the Australian approach. Journal of Environmental Management 32: 118.Google Scholar
King, C. M. (2005). The handbook of New Zealand mammals. 2nd ed. Oxford: Oxford University Press.Google Scholar
Koichi, K., Sangha, K. K., Cottrell, A. & Gordon, I. J. (2012). Aboriginal rangers' perspectives on feral pigs: are they a pest or resource? A case study in the Wet Tropics World Heritage Area of northern Queensland. Journal of Australian Indigenous Issues 15(1): 219.Google Scholar
Krull, C. R., & Egeter, B. (2016). Feral pig (Sus scrofa) predation of a green and golden bell frog (Litoria aurea). New Zealand Journal of Ecology 40(1): 191195.Google Scholar
Krull, C. R., Choquenot, D., Burns, B. R. & Stanley, M. C. (2013a). Feral pigs in a temperate rainforest ecosystem: disturbance and ecological impacts. Biological Invasions 15: 21932204.Google Scholar
Krull, C. R., Waipara, N. W., Choquenot, D., et al. (2013b). Absence of evidence is not evidence of absence: feral pigs as vectors of soil-borne pathogens. Austral Ecology 38: 534542.Google Scholar
Krull, C. R., Stanley, M. C., Burns, B. R., Choquenot, D. & Etherington, T. R. (2016). Reducing wildlife damage with cost-effective management programmes. PLoS ONE 11: 115.Google Scholar
Lapidge, S., Wishart, J., Staples, L., et al. (2012). Development of a feral swine toxic bait (HOG-GONE) and bait hopper (HOGHOPPER) in Australia and the USA. In Frey, S. N. (ed.), Proceedings of the 14th Wildlife Damage Management Conference, Nebraska City, pp. 1924.Google Scholar
Laurance, W. & Harrington, G. (1997). Ecological associations of feeding sites of feral pigs in the Queensland Wet Tropics. Wildlife Research 24: 579590.Google Scholar
Letts, G. A. (1962). Early livestock introductions to the ‘top-end’ of the Northern Territory. Australian Veterinary Journal 38: 282–7.Google Scholar
Li, A. Y., Williams, N., Fenwick, S. G., Hardy, G. E. S. J. & Adams, P. J. (2014). Potential for dissemination of Phytophthora cinnamomi by feral pigs via ingestion of infected plant material. Biological Invasions 16: 765774.Google Scholar
Long, J. L. (2003). Introduced mammals of the world: their history, distribution, and influence. Collingwood: CSIRO Publishing.Google Scholar
Lopez, J., Hurwood, D., Dryden, B. & Fuller, S. (2014). Feral pig populations are structured at fine spatial scales in tropical Queensland, Australia. PLoS ONE 9(3): e91657.Google Scholar
Lynes, B. C. & Campbell, S. D. (2000). Germination of mesquite (Prosopis pallida) seed following ingestion and excretion by feral pigs (Sus scrofa). Tropical Grasslands 34: 125128.Google Scholar
Mason, R., Fleming, P., Smythe, L., et al. (1998). Leptospira interrogans antibodies in feral pigs from New South Wales. Journal of Wildlife Diseases 34: 738743.Google Scholar
Massei, G., Roy, S. & Bunting, R. (2011). Too many hogs? A review of methods to mitigate impact by wild boar and feral hogs. Human–Wildlife Interactions 5: 7999.Google Scholar
Massei, G., Kindberg, J., Licoppe, A., et al. (2015). Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Management Science 71: 492500.Google Scholar
McIlroy, J. C. (1995). New techniques for an old problem – recent advances in feral pig control in Australia. Ibex JME 3: 241244.Google Scholar
McIlroy, J. C. (2001). Advances in New Zealand mammalogy 1990–2000: feral pig. Journal of The Royal Society of New Zealand 31: 225231.Google Scholar
McKnight, T. L. (1976). Friendly vermin: a survey of feral livestock in Australia. Berkeley, CA: University of California Press.Google Scholar
McLeod, R. (2004). Counting the cost: impact of invasive animals in Australia 2004. Canberra: Cooperative Research Centre for Pest Animal Control.Google Scholar
Melzer, R. I., Twyford, K. L., Rowston, C. & Augusteyn, J. D. (2009). Pest Arrest in Central Queensland: conserving biodiversity through pest management. Australasian Journal of Environmental Management 16: 227235.Google Scholar
Meurk, C. S. (2011). Loving nature, killing nature, and the crises of caring: an anthropological investigation of conflicts affecting feral pig management in Queensland, Australia. PhD thesis. Brisbane: The University of Queensland.Google Scholar
Meurk, C. S. (2014). The econo-techno-social design of invasive animal management: costs and benefits or beneficiaries and benefactors? Australian Geographer 45: 3752.Google Scholar
Miller, B. & Mullette, K. (1985). Rehabilitation of an endangered Australian bird: the Lord Howe Island woodhen, Tricholimnas sylvestris. Biological Conservation 34: 5595.Google Scholar
Ministry for Primary Industries (2016). Regional Pest Management – MAF. www.biosecurityperformance.maf.govt.nz/ Accessed 16 February 2016.Google Scholar
Mitchell, J. L. & Dorney, W. (2002). Monitoring systems for feral pigs: monitoring the economic damage to agricultural industries and the population dynamics of feral pigs in the Wet Tropics of Queensland. Report to the National Feral Animal Control Program. Queensland: Department of Natural Resources and Mines.Google Scholar
Mitchell, J., Dorney, W., Mayer, R. & McIlroy, J. (2007). Ecological impacts of feral pig diggings in north Queensland rainforests. Wildlife Research 34: 603608.Google Scholar
Nicholls, N. (1991). The El Niño/Southern Oscillation and Australian vegetation. Vegetatio 91: 2336.Google Scholar
NRIA (2012). Game Pigs. New Rural Industries Australia, Melbourne. Available at: www.nria.org.au/GamePigs. Accessed October 2012.Google Scholar
Nugent, G., Parkes, J.P., Dawson, N., & Caley, P. (1996). Feral pigs in New Zealand as conservation pests and as potential host for bovine tuberculosis. Unpublished Landcare Research Contract Report LC9596/54, 57 pp.Google Scholar
Parkes, J. (2006). Economic and environmental risks from feral pigs in Northland. Unpublished Northland Regional Council Report Number 217.Google Scholar
Pavlov, P. & Hone, J. (1982). The behaviour of feral pigs, Sus scrofa, in flocks of lambing ewes. Wildlife Research 9: 101109.Google Scholar
Pavlov, P., Hone, J., Kilgour, R. & Pedersen, H. (1981). Predation by feral pigs on Merino lambs at Nyngan, New South Wales. Australian Journal of Experimental Agriculture and Animal Husbandry 21: 570574.Google Scholar
Pearson, H. E., Toribio, J.-A. L. M. L., Hernandez-Jover, M., Marshall, D. & Lapidge, S. J. (2014). Pathogen presence in feral pigs and their movement around two commercial piggeries in Queensland, Australia. Veterinary Record 174: 325325.Google Scholar
Pech, R. P. & McIlroy, J. C. (1990). A model of the velocity of advance of foot and mouth disease in feral pigs. The Journal of Applied Ecology 27(2): 635650.Google Scholar
Phillips, N. D., La, T., Adams, P. J., et al. (2009). Detection of Brachyspira hyodysenteriae, Lawsonia intracellularis and Brachyspira pilosicoli in feral pigs. Veterinary Microbiology 134: 294299.Google Scholar
Plant, J. W., Marchant, R., Mitchell, T. D. & Giles, J. R. (1978). Neonatal lamb losses due to feral pig predation. Australian Veterinary Journal 54: 426429.Google Scholar
Productivity Commission (2002). Impact of a foot and mouth disease outbreak on Australia. Canberra: AusInfo.Google Scholar
Pullar, E. M. (1953). The wild (feral) pigs of Australia: their origin, distribution and economic importance. Memoirs of the National Museum, Melbourne 18: 723.Google Scholar
Reddiex, B., Forsyth, D. M., McDonald-Madden, E., et al. (2006). Control of pest mammals for biodiversity protection in Australia. I. Patterns of control and monitoring. Wildlife Research 33: 691709.Google Scholar
Richards, S. J., McDonald, K. R. & Alford, R. A. (1993). Declines in populations of Australia's endemic tropical rainforest frogs. Pacific Conservation Biology 1: 6677.Google Scholar
Ridoutt, C., Lee, A., Moloney, B., et al. (2014). Detection of brucellosis and leptospirosis in feral pigs in New South Wales. Australian Veterinary Journal 92: 343347.Google Scholar
Robertson, W. A. N. (1932). Milestones in the pastoral age of Australia. In Report of the 21st Meeting of the Australian and New Zealand Association of the Advancement of Science, pp. 295325.Google Scholar
Robinson, C. J., Smyth, D. & Whitehead, P. J. (2005). Bush tucker, bush pets, and bush threats: cooperative management of feral animals in Australia's Kakadu National Park. Conservation Biology 19: 13851391.Google Scholar
Saunders, G. (1993). Observations on the effectiveness of shooting feral pigs from helicopters in western New South Wales. Wildlife Research 20: 771776.Google Scholar
Saunders, G. & Bryant, H. (1988). The evaluation of a feral pig eradication program during a simulated exotic disease outbreak. Australian Wildlife Research 15: 7381.Google Scholar
Setter, M., Bradford, M., Dorney, B., et al. (2002). Pond apple: are the endangered cassowary and feral pig helping this weed to invade Queensland's wet tropics. In Jacob, H. S., Dodd, J. & Moore, J. H. (eds.), 13th Australian Weeds Conference Papers and Proceedings. Perth: Plant Protection Society of WA, pp. 173176.Google Scholar
Shapiro, L., Eason, C., Bunt, C., et al. (2016). Efficacy of encapsulated sodium nitrite as a new tool for feral pig management. Journal of Pest Science 89: 485495.Google Scholar
Sharp, T. & Saunders, G. (2014). Model code of practice: humane control of feral pigs. Canberra: Department of Sustainability, Environment, Water, Population and Communities.Google Scholar
Shoebridge, D. & Hopley, C. (2014). Amateur hunting: it's a blood-sport not a conservation measure. Nature New South Wales Spring 2014: 2829.Google Scholar
Spencer, P. B. S. & Hampton, J. O. (2005). Illegal translocation and genetic structure of feral pigs in Western Australia. Journal of Wildlife Management 69: 377384.Google Scholar
Taylor, D. L., Leung, L. K.-P. & Gordon, I. J. (2011). The impact of feral pigs (Sus scrofa) on an Australian lowland tropical rainforest. Wildlife Research 38: 437445.Google Scholar
Thompson, C. & Challies, C. N. (1988). Diet of feral pigs in the podocarp-tawa forests of the Urewera ranges. New Zealand Journal of Ecology 11: 7378.Google Scholar
Tipene, P. (1980). A stranger among us. New Zealand Journal of Agriculture 141: 7173.Google Scholar
Tisdell, C. A. (1982). Wild pigs: environmental pest or economic resource? Sydney: Pergamon Press.Google Scholar
Tisdell, C. A. & O'Brien, P. (1987). Feral pigs as a resource. In O'Brien, P. (ed.), Management of the feral pig in Australia: report of a workshop, Trangie, NSW. pp. 114.Google Scholar
Twigg, L. E., Lowe, T., Martin, G. & Everett, M. (2005). Feral pigs in north-western Australia: basic biology, bait consumption, and the efficacy of 1080 baits. Wildlife Research 32: 281296.Google Scholar
Twigg, L. E., Lowe, T., Everett, M. & Martin, G. (2006). Feral pigs in north-western Australia: population recovery after 1080 baiting and further control. Wildlife Research 33: 417425.Google Scholar
Vertebrate Pest Committee (2007). Australian Pest Animal Strategy: a national strategy for the management of vertebrate pest animals in Australia. Canberra: Department of the Environment and Water Resources.Google Scholar
Ward, M. P., Cowled, B. D., Galea, F., et al. (2013). Salmonella infection in a remote, isolated wild pig population. Veterinary Microbiology 162: 921929.Google Scholar
Webber, B. L., Norton, B. A. & Woodrow, I. E. (2010). Disturbance affects spatial patterning and stand structure of a tropical rainforest tree. Austral Ecology 35: 423434.Google Scholar
West, P. (2008). Assessing invasive animals in Australia 2008. Canberra: National Land & Water Resources Audit and Invasive Animals Cooperative Research Centre.Google Scholar
West, P. & Saunders, G. (2007). Pest animal survey 2004–2006: a review of the distribution, impacts and control of invasive animals throughout NSW and the ACT. Orange: NSW Department of Primary Industries.Google Scholar
Whytlaw, P. A., Edwards, W. & Congdon, B. C. (2013). Marine turtle nest depredation by feral pigs (Sus scrofa) on the Western Cape York Peninsula, Australia: implications for management. Wildlife Research 40: 377384.Google Scholar
Wilson, G., Dexter, N., O'Brien, P. & Bomford, M. (1992). Pest animals in Australia: a survey of introduced wild mammals. Canberra: Bureau of Rural Resources.Google Scholar
Wishart, J., Braysher, M., Lapidge, S., Sarre, S. & Hone, J. (2015). Observations on effects of feral pig (Sus scrofa) age and gender on diet. Wildlife Research 42: 470474.Google Scholar

References

Acevedo, P., Escudero, M. A., Muñoz, R. & Gortázar, C. (2006). Factors affecting wild boar abundance across an environmental gradient in Spain. Acta Theriologica 51: 327336.Google Scholar
Alexandrov, T., Kamenov, P., Stefanov, D. & Depner, K. (2011). Trapping as an alternative method of eradicating classical swine fever in a wild boar population in Bulgaria. Revue scientifique et technique (International Office of Epizootics) 30: 911916.Google Scholar
Allendorf, F. W., England, Ph. R., Luikart, G., Ritchie, P. A. & Ryman, N. (2008). Genetic effects of harvest on wild animal populations. Trends in Ecology and Evolution 23(6): 327337.Google Scholar
Andersen, R. & Holthe, V. (2010). Ungulates and their management in Denmark. In Apollonio, M., Andersen, R. & Putman, R. (eds.), European ungulates and their management in the 21st century. Cambridge: Cambridge University Press, pp. 7185.Google Scholar
Andersson, A., Aanismaa, R., Huusko, J. & Jensen, P. (2011). Behaviour of European wild boar (Sus scrofa) in connection with farrowing in an enclosure. Mammalian Biology 76(3): 332338.Google Scholar
Anonymous, . (2004). Regulation (EC) No 853/2004 of the European Parliament and of the Council of 29 April 2004 laying down specific hygiene rules for food of animal origin.Google Scholar
Antrop, M. (2004). Landscape change and the urbanization process in Europe. Landscape and Urban Planning 67: 926.Google Scholar
Ballesteros, C., Carrasco-García, R., Vicente, J., et al. (2009). Selective piglet feeders improve age-related bait specificity and uptake rate in overabundant Eurasian wild boar populations. Wildlife Research 36: 203221.Google Scholar
Barasona, J. A., López-Olvera, J. R., Beltrán-Beck, B., Gortázar, C., & Vicente, J. (2013). Trap-effectiveness and response to tiletamine–zolazepam and medetomidine anaesthesia in Eurasian wild boar captured with cage and corral traps. BMC Veterinary Research 9: 107.Google Scholar
Barasona, J. A., Latham, M. C., Acevedo, P., et al. (2014). Spatiotemporal interactions between wild boar and cattle: implications for cross-species disease transmission. Veterinary Research 45(1): 122.Google Scholar
Beringer, J., Hansen, L. P., Demand, J. A. & Sartwell, J. (2002). Efficacy of translocation to control urban deer in Missouri: costs, efficiency, and outcome. Wildlife Society Bulletin 30: 767774.Google Scholar
Bieber, C. & Ruf, T. (2005). Population dynamics in wild boar Sus scrofa: ecology, elasticity of growth rate and implications for the management of pulsed resource consumers. Journal of Applied Ecology 42: 12031213.Google Scholar
Bischof, R., Mysterud, A. & Swenson, J. E. (2008). Should hunting mortality mimic the patterns of natural mortality? Biology Letters 4: 307310.Google Scholar
Boadella, M., Vicente, J., Ruiz-Fons, F., de la Fuente, J., & Gortázar, C. (2012). Effects of culling Eurasian wild boar on the prevalence of Mycobacterium bovis and Aujeszky's disease virus. Preventive Veterinary Medicine 107(3): 214221.Google Scholar
Borowik, T., Cornulier, T. & Jędrzejewska, B. (2013). Environmental factors shaping ungulate abundance in Poland. Acta Theriologica 58: 403413.Google Scholar
Börner, K., Stillfried, M., Frantz, A. C., et al. (2013). Biological background data are needed in assessment of disease spread in the wild boar. In 31st IUGB Congress, International Union of Game Biologists, Brussels, Belgium, p. 274.Google Scholar
Cahill, S., Llimona, F., Cabañeros, L. & Colomardo, F. (2012). Characteristics of wild boar (Sus scrofa) habituation to urban areas in the Collserola Natural Park (Barcelona) and comparison with other locations. Animal Biodiversity and Conservation 35(2): 221233.Google Scholar
Camps, F., Rosell, C., Boronat, C., et al. (2012). Estudi d'accidentalitat provocada per animals en llibertat a la xarxa de carreteres de la Generalitat de Catalunya. Departament de Territori i Sostenibilitat. Direcció General de carreteres. Unpublished report, 212 pp.Google Scholar
Cellina, S. (2008). Effects of supplemental feeding on the body condition and reproductive state of wild boar Sus scrofa in Luxembourg. PhD thesis. University of Sussex.Google Scholar
Colino, V., Bosch, J., Reoyo, M. J. & Peris, S. (2012). Influence of new irrigated croplands on wild boar (Sus scrofa) road kills in NW Spain. Animal Biodiversity and Conservation 35(2): 247252.Google Scholar
Conover, M. (2002). Resolving human–wildlife conflicts: the science of wildlife damage management. Boca Raton, FL: Lewis.Google Scholar
Cozzi, M., Romano, S., Viccaro, M., Prete, C. & Persiani, G. (2015). Wildlife agriculture interactions, spatial analysis and trade-off between environmental sustainability and risk of economic damage. In Vastola, A. (ed.), The sustainability of agro-food and natural resource systems in the Mediterranean basin. Springer Open, pp. 209224.Google Scholar
Cruz, F., Josh, J. C., Campbell, K. & Carron, V. (2005). Conservation action in the Galàpagos: feral pig (Sus scrofa) eradication from Santiago Island. Biological Conservation 121: 473478.Google Scholar
Cutini, A., Chianucci, F., Chirichella, R. et al. (2013). Mast seeding in deciduous forests of the northern Apennines (Italy) and its influence on wild boar population dynamics. Annals of Forest Science 70(5): 493502.Google Scholar
Dezorzova-Tomanova, K., Smola, J., Trcka, I., Lamka, J. & Pavlik, I. (2006). Detection of Lawsonia intracellularis in wild boar and fallow deer bred in one game enclosure in the Czech Republic. Journal of Veterinary Medicine, Series B 53(1): 4244.Google Scholar
Díez-Delgado, I., Boadella, M., Martín-Hernando, M., et al. (2014). Complex links between natural tuberculosis and porcine circovirus type 2 infection in wild boar. BioMed Research International 2014: 765715.Google Scholar
Durio, P., Fogliato, D., Perrone, A. & Tessarin, N. (1995). The autumn diet of the wild boar (Sus scrofa) in an Alpine valley. Preliminary results. Ibex Journal of Mountain Ecology 3: 180183.Google Scholar
EFSA (2014). Evaluation of possible mitigation measures to prevent introduction and spread of African swine fever virus through wild boar. EFSA Journal 12(3): 3616, 23 pp.Google Scholar
Engeman, R. M., Constantin, B. U., Shwiff, S. A., et al. (2007). Adaptive and economic management methods for feral hog control in Florida. Human–Wildlife Conflicts 1: 178185.Google Scholar
Erkinaro, E., Heikura, K., Lindgren, E., Pulliainen, E. & Sulkava, S. (1982). Occurrence and spread of the wild boar (Sus scrofa) in eastern Fennoscandia. Memoranda Societatis pro Fauna Flora Fennica 58: 3947.Google Scholar
Fernández-de-Mera, I., Gortázar, C., Vicente, J., Höfle, U. & Fierro, Y. (2003). Wild boar helminths: risks in animal translocations. Veterinary Parasitology 115: 335341.Google Scholar
Fernández-Llario, P. & Mateos-Quesada, P. (2003). Population structure of the wild boar (Sus scrofa) in two Mediterranean habitats in the western Iberian Peninsula. Folia Zoologica 52(2): 143148.Google Scholar
Ferretti, F., Sforzi, A., Coats, J. & Massei, G. (2014). The BOSTM as a species-specific method to deliver baits to wild boar in a Mediterranean area. European Journal of Wildlife Research 60: 555558.Google Scholar
Focardi, F., Capizzi, D. & Monetti, D. (2000). Competition for acorns among wild boar (Sus scrofa) and small mammals in a Mediterranean woodland. Journal of Zoology 250(3): 329334.Google Scholar
Fournier-Chambrillon, C., Maillard, D. & Fournier, P. (1995). Diet of the wild boar (Sus scrofa L.) inhabiting the Montpellier garrigue. Ibex Journal of Mountain Ecology 3: 174179.Google Scholar
Gaillard, J-M., Delorme, D., Van Laere, G., Duncan, P. & Lebreton, J. D. (1997). Early survival in roe deer: causes and consequences of cohort variation in two contrasted populations. Oecologia 112: 502513.Google Scholar
Gamelon, M., Besnard, A., Gaillard, J.M., et al. (2011). High hunting pressure selects for earlier birth date: wild boar as a case study. Evolution 65: 31003112.Google Scholar
Genov, P. W., Massei, G. & Kostova, W. (1994). Die Nutzung des Wildschweins (Sus scrofa) in Europa in Theorie und Praxis. Z Jagdwiss 40: 263267.Google Scholar
Goedbloed, D. J., van Hooft, P., Lutz, W., et al. (2015). Increased Mycoplasma hyopneumoniae disease prevalence in domestic hybrids among free-living wild boar. EcoHealth 12: 571579.Google Scholar
Gómez, J. M., García, D. & Zamora, R. (2003). Impact of vertebrate acorn- and seedling-predators on a Mediterranean Quercus pyrenaica forest. Forest Ecology and Management 180: 125134.Google Scholar
Gortázar, Ch., Acevedo, P., Ruiz-Fons, F. & Vicente, J. (2006). Disease risks and overabundance of game species. European Journal of Wildlife Research 52 (2): 8187.Google Scholar
Gortázar, C., Torres, M. J., Vicente, J., et al. (2008). Bovine tuberculosis in Doñana Biosphere Reserve: the role of wild ungulates as disease reservoirs in the last Iberian lynx strongholds. PLoS ONE 3(7): e2776.Google Scholar
Gren, I. M., Häggmark-Svensson, T., Andersson, H., Jansson, G. & Jägerbrand, A. (2016). Using traffic data to estimate wildlife populations. Journal of Bioeconomics 18(1): 1731.Google Scholar
Groot Bruinderink, G. W. T. A. & Hazebroek, E. (1996a). Ungulate traffic collisions in Europe. Conservation Biology 10(4): 10591067.Google Scholar
Groot Bruinderink, G. W. T. A. & Hazebroek, E. (1996b). Wild boar (Sus scrofa scrofa L.) rooting and forest regeneration on podzolic soils in the Netherlands. Forest Ecology and Management 88: 7180.Google Scholar
Groot Bruinderink, G.W.T.A., Hazebroek, E. & van der Voot, H. (1994). Diet and condition of wild boar, Sus scrofa scrofa, without supplementary feeding. Journal of Zoology 233: 631648.Google Scholar
Haaverstada, O., Hjeljorda, O. & Wamb, H. K. (2014). Wild boar rooting in a northern coniferous forest – minor silviculture impact. Scandinavian Journal of Forest Research 29(1): 9095.Google Scholar
Hars, J., Rossi, S., Faure, E., et al. (2015). Risques sanitaires liés à l'importation de gibier sauvage d’élevage et de repeuplement. Santé animale-alimentation 66: 4850.Google Scholar
Herrera, J. (1995). Acorn predation and seedling production in a low-density population of cork oak (Quercus suber L.). Forestry Ecology and Management 76: 197201.Google Scholar
Hobbs, N. T. (1996). Modification of ecosystems by ungulates. Journal of Wildlife Management 60: 695713.Google Scholar
Huijser, M. P. & McGowen, P. T. (2010). Reducing wildlife–vehicle collisions. In Beckman, J. P., Clevenger, A. P., Huijser, M. & Hilty, J. A. (eds.), Safe passages. Highways, wildlife and habitat connectivity. Washington, DC: Island Press, pp. 5174.Google Scholar
Ignatavicius, G., Oskinis, V. & Vildaite, V. (2011). Investigation of the impact of wildlife–vehicle collision prevention installations on highway Vilnius-Panevėžys (Lithuania) traffic safety. Environmental Engineering (The 8th International Conference, 19–20 May, 2011, Vilnius, Lithuania), pp. 10801088.Google Scholar
Iuell, B., Bekker, G. J., Cuperus, R., et al. (2003). Wildlife and traffic: a European handbook for identifying conflicts and designing solutions. Cost Action 341. Habitat fragmentation due to transportation infrastructure. Zeist: KNNV Publishers.Google Scholar
Jánoska, F. (2010). Wild boar in Hungarian game hunting parks. In Chapman, N. G. & Hecker, K. (eds.), Proceedings of the International Symposium ‘Enclosures: a Dead-End?’ Sopron, Hungary, 2008, pp. 1427.Google Scholar
Jánoska, F. & Varju, J. (2009). Environmental studies in wild boar enclosures. In Náhlik, A. & Tari, T. (eds.), Proceedings of the 7th International Symposium on Wild Boar (Sus scrofa) and on Sub-order Suiformes. Sopron, Hungary, pp. 5253.Google Scholar
Jansen, A., Luge, E., Guerra, B., et al. (2007). Leptospirosis in urban wild boar, Berlin, Germany. Emerging Infectious Diseases 13(5): 739742.Google Scholar
Jędrzejewska, B., Jędrzejewski, W., Bunevich, A. N., Milkowski, L. & Krasinski, A. (1997). Factors shaping population densities and increased rates of ungulates in Bialowieza Primeval Forest (Poland and Belarus) in the 19th and 20th centuries. Acta Theriologica 42: 399451.Google Scholar
Jędrzejewski, W., Jędrzejewska, B., Okarma, H. & Ruprecht, A. L. (1992). Wolf predation and snow cover as mortality factors in the ungulate community of the Białowieża National Park, Poland. Oecologia 90: 2736.Google Scholar
Jędrzejewski, W., Jędrzejewska, B., Okarma, H., et al. (2000). Prey selection and predation by wolves in Białowieża Primeval Forest, Poland. Journal of Mammalogy 81: 197212.Google Scholar
Kanzaki, N., Perzanowski, K. & Nowosad, M. (1998). Factors affecting wild boar (Sus scrofa) population dynamics in Bieszczady, Poland. Gibier Faune Sauvage 15(3): 11711178.Google Scholar
Keuling, O., Baubet, E., Duscher, A., et al. (2013). Mortality rates of wild boar Sus scrofa L. in central Europe. European Journal of Wildlife Research 59(6): 805814.Google Scholar
Killian, G., Fagerstone, K. A., Kreeger, T., Miller, L. A. & Rhyan, J. (2007). Management strategies for addressing wildlife disease transmission: the case for fertility control. In Proceedings of the Wildlife Damage Management Conference, 9–12 April. Corpus Christi, Texas, USA, pp. 265271.Google Scholar
Kotulski, Y. & König, A. (2008). Wild boar in the Berlin city – a social empirical and statistical survey. Natura Croatica 17(4): 233246.Google Scholar
Kukushkin, S., Baborenko, E., Baybikov, T., Mikhalishin, V. & Domskiy, I. (2009). Seroprevalence of antibodies to main porcine infection pathogens in Wild Boar in some regions of Russia. Acta Silvatica Lignaria Hungarica 5: 147152.Google Scholar
Kullberg, Y. & Bergström, R. (2001). Winter browsing by large herbivores on deciduous seedlings in southern Sweden. Scandinavian Journal of Forest Research 16: 371378.Google Scholar
Lagos, L., Picos, J. & Valero, E., (2012). Temporal pattern of wild ungulate-related traffic accidents in northwest Spain. European Journal of Wildlife Research 58: 661668.Google Scholar
Lancia, R. A. (1994). Estimating the number of animals in wildlife populations. In Research and management techniques for wildlife and habitats. Bethesda, MD: The Wildlife Society.Google Scholar
Langbein, J., Putman, R. & Pokorny, B. (2011). Traffic collisions involving deer and other ungulates in Europe and available measures for mitigation. In Putman, R., Apollonia, M. & Andersen, R. (eds.), Ungulate management in Europe. Cambridge: Cambridge University Press, pp. 215259.Google Scholar
Larsen, D. R. & Johnson, P. S. (1998). Linking the ecology of natural oak regeneration to silviculture. Forest Ecology and Management 106(1,2): 17.Google Scholar
Lebocký, T. & Petrás, R. (2015). The influence of wild boar on the growth of forest trees and stands: a case study of a wild boar game preserve. Acta Silvatica and Lignaria Hungarica 11(1): 6575.Google Scholar
Licoppe, A., Prévot, C., Cahill, S., et al. (2014). Enquête internationale sur le sanglier en zone péri-urbaine. Forêt Wallonne 131: 316.Google Scholar
Lüpke, B.v. (1998). Silvicultural methods of oak regeneration with special respect to shade tolerant mixed species. Forest Ecology and Management 106: 1926.Google Scholar
Malo, J., Suárez, F. & Diez, A. (2004). Can we mitigate animal–vehicle accidents using predictive models? Journal of Applied Ecology 41: 701710.Google Scholar
Massei, G. & Cowan, D. P. (2014). Fertility control to mitigate human–wildlife conflicts: a review. Wildlife Research 41: 121.Google Scholar
Massei, G., Genov, P. V. & Staines, B. V. (1996). Diet, food availability and reproduction of wild boar in a Mediterranean coastal area. Acta Theriologica 41: 307320.Google Scholar
Massei, G., Cowan, D. P., Coats, J., et al. (2008). Effect of the GnRH vaccine GonaConTM on the fertility, physiology and behaviour of wild boar. Wildlife Research 35: 540547.Google Scholar
Massei, G., Quy, R., Gurney, J. & Cowan, D. P. (2010). Can translocations be used to manage human–wildlife conflicts? Wildlife Research 37: 428439.Google Scholar
Massei, G., Roy, S. & Bunting, R. (2011). Too many hogs? A review of methods to mitigate impact by wild boar and feral pigs. Human–Wildlife Interactions 5: 7999.Google Scholar
Massei, G., Cowan, D. P., Coats, J., et al. (2012). Long-term effects of immunocontraception on wild boar fertility, physiology and behaviour. Wildlife Research 39: 378385.Google Scholar
Massei, G., Cowan, D. P. & Eckery, D. C. (2014). Novel management methods: immunocontraception and other fertility control tools. In Putman, R. & Apollonio, M. (eds.), Behaviour and management of European ungulates. Dunbeath, Caithness, Scotland: Whittles Publishing, pp. 209235.Google Scholar
Massei, G., Kindberg, J., Licoppe, A., et al. (2015). Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Management Science 71(4): 492500.Google Scholar
Mayle, B. A., Peace, A. J. & Gill, R. M. A. (1999). How many deer? A field guide to estimating deer population size. Forestry Commission Field Book 18. Edinburgh: Forestry Commission.Google Scholar
McCann, B. E. & Garcelon, D. K. (2008). Eradication of feral pigs from Pinnacles National Monument. The Journal of Wildlife Management 72: 12871295.Google Scholar
Melis, C., Szafrañska, P. A., Jędrzejewska, B. & Barton, K. (2006). Biogeographical variation in the population density of wild boar (Sus scrofa) in western Eurasia. Journal of Biogeography 33(5): 803811.Google Scholar
Meng, X. J., Lindsay, D. S., & Sriranganathan, N. (2009). Wild boar as sources for infectious diseases in livestock and humans. Philosophical Transactions of the Royal Society B: Biological Sciences 364(1530): 26972707.Google Scholar
Miller, L. A., Gionfriddo, J., Fagerstone, K. A., Rhyan, J. & Killian, G. (2008). The single-shot GnRH imunocontraceptive vaccine (GonaConTM) in white-tailed deer: comparison of several GnRH preparations. American Journal of Reproductive Immunology 60: 214223.Google Scholar
Milner, J. M., Nilsen, E. B. & Andreassen, H. P. (2007). Demographic side effects of selective hunting in ungulates and carnivores. Conservation Biology 21: 3647.Google Scholar
Náhlik, A. & Sándor, Gy. (2003). Birth rate and offspring survival in a free-ranging wild boar Sus scrofa population. Wildlife Biology 9(Suppl. 1): 3742.Google Scholar
Navarro-Gonzalez, N., Casas-Díaz, E., Porrero, C. M., et al. (2013). Food-borne zoonotic pathogens and antimicrobial resistance of indicator bacteria in urban wild boar in Barcelona, Spain. Veterinary Microbiology 167: 686689.Google Scholar
Nores, C., Llaneza, L. & Álvarez, A. (2008). Wild boar Sus scrofa mortality by hunting and wolf Canis lupus predation: an example in northern Spain. Wildlife Biology 14: 4451.Google Scholar
O'Hara, K. L. (2001). The silviculture of transformation – a commentary. Forest Ecology and Management 151: 8186.Google Scholar
Okarma, H., Jędrzejewska, B., Jędrzejewski, W., Krasin´ski, Z. A. & Mitkowski, L. (1995). The roles of predation, snow cover, acorn crop, and man-related factors on ungulate mortality in Białowieża Primeval Forest, Poland. Acta Theriologica 40: 197217.Google Scholar
Ostfeld, R. S. & Keesing, F. (2000). Pulsed resources and community dynamics of consumers in terrestrial ecosystems. Tree 15: 232237.Google Scholar
Piorr, A., Ravetz, J. & Tosics, I. (2011). Peri-urbanisation in Europe: towards a European policy to sustain urban–rural futures. Frederiksberg: Academic Books Life Sciences.Google Scholar
Podgórski, T., Baś, G., Jędrzejewska, B., et al. (2013). Spatiotemporal behavioral plasticity of wild boar (Sus scrofa) under contrasting conditions of human pressure: primeval forest and metropolitan area. Journal of Mammalogy 94: 109119.Google Scholar
Powell, D. M. (2004). Pigs (Suidae). In Kleiman, D. G., Geist, V. & McDade, M. (eds.), Grzimek's animal life encyclopedia. 2nd ed., Volume 15, Mammals IV. Farmington Hills, MI: Gale, pp. 275290.Google Scholar
Putman, R. J., Apollonio, M. & Andresen, R. (2011). Ungulate management in Europe: problems and practices. Cambridge: Cambridge University Press.Google Scholar
Putman, R. J., Langbein, J., Watson, P., Green, P. & Cahill, S. (2014). The management of urban populations of ungulates. In Putman, R. & Apollonio, M. (Eds.), Behaviour and management of European ungulates. Dunbeath, Caithness, Scotland: Whittles Publishing, pp. 148177.Google Scholar
Reidy, M. M., Campbell, T. A. & Hewitt, D. G. (2008). Evaluation of electric fencing to inhibit feral pig movements. The Journal of Wildlife Management 72: 10121018.Google Scholar
Rosell, C., Alvarez, G., Cahill, S., et al. (2003). COST 341. La fragmentación del hábitat en relación con las infraestructuras de transporte en España. OA Parques Nacionales. Ministerio de Medio Ambiente. 349 pp.Google Scholar
Rosell, C., Fernández-Bou, M., Camps, F., et al. (2013). Animal–vehicle collisions: a new cooperative strategy is needed to reduce the conflict. Proceedings ICOET 2013 International Conference on Ecology and Transportation. Scottsdale, Arizona.Google Scholar
Rossi, S., Fromont, E., Pontier, D., et al. (2005). Incidence and persistence of classical swine fever in free-ranging wild boar (Sus scrofa). Epidemiology and Infection 133: 559568.Google Scholar
Rossi, S., Staubach, C., Blome, S., et al. (2015). Controlling of CSFV in European wild boar using oral vaccination: a review. Frontiers in Microbiology 6: 1141.Google Scholar
Rosvold, J. & Andersen, R. (2008). Wild boar in Norway – is climate a limiting factor? NTNU Vitenskapsmuseet. Rapport Zoologisk Serie 2008 1: 123.Google Scholar
Ruiz-Fons, F., Segalés, J., & Gortázar, C. (2008). A review of viral diseases of the European wild boar: effects of population dynamics and reservoir role. The Veterinary Journal 176(2): 158169.Google Scholar
Sáenz-de-Santa-María, A. & Tellería, J. L. (2015). Wildlife–vehicle collisions in Spain. European Journal of Wildlife Research 61: 399406.Google Scholar
Saunders, G., Kay, B. & Nicol, H. (1993). Factors affecting bait uptake and trapping success for feral pigs (Sus scrofa) in Kosciusko National Park. Wildlife Research 20: 653665.Google Scholar
Schroeder, R. L. & Vangilder, L. D. (1997). Tests of wildlife habitat models to evaluate oak-mast production. Wildlife Society Bulletin 25(3): 639646.Google Scholar
Schütz, J.-P. (1999). Close-to-nature silviculture: is this concept compatible with species diversity? Forestry 72(4): 359366.Google Scholar
Segura, A., Acevedo, P., Rodríguez, O., Naves, J. & Obeso, J. R. (2014). Biotic and abiotic factors modulating wild boar relative abundance in Atlantic Spain. European Journal of Wildlife Research 60: 469476.Google Scholar
Seiler, A. (2004). Trends and spatial patterns in ungulate–vehicle collisions in Sweden. Wildlife Biology 10: 301310.Google Scholar
Servanty, S., Gaillard, J-M., Toïgo, C., Brandt, S. & Baubet, E. (2009). Pulsed resources and climate induced variation in the reproductive traits of wild boar under high hunting pressure. Journal of Animal Ecology 78(6): 12781290.Google Scholar
Shaw, M. W. (1968). Factors affecting the natural regeneration of sessile oak (Quercus petraea) in North Wales: II. acorn losses and germination under field conditions. Journal of Ecology 56(3): 647660.Google Scholar
Spitz, F. (1992). General model of the spatial and social organization of the Wild Boar (Sus scrofa L). In Spitz, F., Janeau, G., Gonzales, G. & Aulagnier, S. (eds.), Proceedings of the International Symposium ‘Ongulés/Ungulates 91’, Toulouse, France, pp. 385389.Google Scholar
Spitz, F. (1999). Sus scrofa Linnaeus, 1758. In Mitchell-Jones, A. J., Amori, G., Bogdanowicz, W., et al. (eds.), The atlas of European mammals. London: T and AD Poyser, pp. 380381.Google Scholar
Standovár, T. & Kenderes, K. (2003). A review on natural stand dynamics in beechwoods of east central Europe. Applied Ecology and Environmental Research 1(1–2): 1946.Google Scholar
Stubbe, C., Mehlitz, S., Peukert, R., et al. (1989). Lebensraumnutzung und Populationsumsatz des Schwarzwildes in der DDR – Ergebnisse der Wildmarkierung. Beitr. zur Jagd- und Wildforschung 16: 212231.Google Scholar
Sweitzer, R. A. & Van Vuren, D.H. (2002). Rooting and foraging effects of wild pigs on tree regeneration and acorn survival in California's oak woodland ecosystems. USDA Forest Service General Technical Report 219231.Google Scholar
Syrjala, P., Oksanen, A., Halli, O., Peltoniemi, O. & Heinonen, M. (2010). Metastrongylus spp. infection in farmed wild boar (Sus scrofa) in Finland. Acta Veterinaria Scandinavica (52): 12.Google Scholar
Thurfjell, H., Spong, G., Olsson, M. & Ericsson, G. (2015). Avoidance of high traffic levels results in lower risk of wild boar-vehicle accidents. Landscape and Urban Planning 133: 98104.Google Scholar
Toïgo, C., Servanty, S., Gaillard, J-M., Brandt, S. & Baubet, E. (2010). Disentangling natural from hunting mortality in an intensively hunted wild boar population. The Journal of Wildlife Management 72(7): 15321539.Google Scholar
Torrellas, M. (2014). Ungulate–vehicle collisions in Catalonia: Identifying the main landscape and road-related variables describing the most hazardous road locations. Master's degree report. Unpublished. 23 pp.Google Scholar
Truvé, J. (2004). Pigs in space: movement, dispersal and geographic expansion of wild boar (Sus scrofa) in Sweden. Dissertation, University of Göteborg.Google Scholar
Vetter, S. G., Ruf, T., Bieber, C. & Arnold, W. (2015). What is a mild winter? Regional differences in within-species responses to climate change. PLoS ONE 10(7): e0132178.Google Scholar
Vicente, J., Seglés, J., Höfle, U., et al. (2004). Epidemiological study on porcine circovirus type 2 (PCV2) infection in the European wild boar (Sus scrofa). Veterinary Research 35: 243253.Google Scholar
Vicente, J., Höfle, U., Garrido, J. M., et al. (2007). Risk factors associated with the prevalance of tuberculosis-like lesions in fenced wild boar and red deer in south central Spain. Veterinary Research 38: 451464.Google Scholar
Vicente, J., Barasona, J. A., Acevedo, P., et al. (2013). Temporal trend of tuberculosis in wild ungulates from Mediterranean Spain. Transboundary and Emerging Diseases 60(Suppl. 1): 92103.Google Scholar
Vilaça, S.T., Biosa, D., Zachos, F., et al. (2014). Mitochondrial phylogeography of the European wild boar: the effect of climate on genetic diversity and spatial lineage sorting across Europe. Journal of Biogeography 41: 987998.Google Scholar
Watt, A. S. (1919). On the causes of failure of natural regeneration in British oakwoods. Journal of Ecology 7(3/4): 173203.Google Scholar
Welander, J. (1995). Are wild boar a future threat to the Swedish flora? Ibex Journal of Mountain Ecology 3: 165167.Google Scholar
West, B. C., Cooper, A. L. & Armstrong, J. B. (2009). Managing wild pigs. A technical guide. Human–Wildlife Interaction Monograph. Berryman Institute (1): 150.Google Scholar
Williams, B. L., Holtfreter, R. W., Ditchkoff, S. S. & Grand, J. B. (2011). Trap style influences wild pig behavior and trapping success. The Journal of Wildlife Management 75: 432436.Google Scholar
Wilson, C. J. (2014). The establishment and distribution of feral wild boar (Sus scrofa L.) in England. Wildlife Biology in Practice 10: 16.Google Scholar
Zuberogoitia, I., del Real, J., Torres, J. J., et al. (2014). Ungulate vehicle collisions in a peri-urban environment: consequences of transportation infrastructures planned assuming the absence of ungulates. PLoS ONE 9(9): e107713.Google Scholar

References

Albrycht, M., Merta, D., Bobek, J. & Ulejczyk, S. (2016). The demographic pattern of wild boar (Sus scrofa) inhabiting fragmented forest in north-eastern Poland. Baltic Forestry 22(2): 251258.Google Scholar
Amici, A., Serrani, F., Rossi, C. M. & Primi, R. (2012). Increase in crop damage caused by wild boar (Sus scrofa L): the ‘refuge effect’. Agronomy for Sustainable Development 32: 683692.Google Scholar
Andrzejewski, R. & Jezierski, W. (1978). Management of wild boar population and its effects on commercial land. Acta Theriologica 33: 309339.Google Scholar
Apollonio, M., Andersen, R. & Putman, R. (eds.). (2010). European ungulates and their management in the 21st century. Cambridge: Cambridge University Press.Google Scholar
Barrios-Garcia, M. N. & Ballari, S. A. (2012). Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biological Invasions 14(11): 22832300.Google Scholar
Bieber, C. & Ruff, T. (2005). Population dynamics in wild boar Sus scrofa: ecology, elasticity of growth rate and implications for the management of pulsed resource consumers. Journal of Applied Ecology 42: 12031213.Google Scholar
Bleir, N. & Szemethy, L. (2003). Factors influencing agricultural damages. Vadbiologia 10: 3641 [in Hungarian with English summary].Google Scholar
Bleier, N., Lehoczki, R., Ujvary, D., Szemethy, L. & Csanyi, S. (2012). Relationships between wild ungulate density and crop damage in Hungary. Acta Theriologica 57: 351359.Google Scholar
Blome, S., Gabriel, C. & Beer, M. (2013). Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Research 173: 122130.Google Scholar
Bobek, B. (1973). Net production of small rodents in a deciduous forest. Acta Theriologica 18: 403434.Google Scholar
Bobek, J. (2016). Charakterystyka szkod wyrzadzanych przez dziki w uprawach rolnych na terenie polnocno-zachodniej czesci wojewodztwa warminsko-mazurskiego. PhD dissertation. Pedagogical University of Cracow, 36 pp.Google Scholar
Bobek, B., Furtek, J., Bobek, J., Merta, D. & Wojciuch-Płoskonka, M. (2017). Spatio-temporal characteristics of crop damage caused by wild boar in north-eastern Poland. Crop Protection 93: 106112.Google Scholar
Bratton, S. P. (1975). The effect of the European wild boar, Sus scrofa, on gray beech forest in Great Smoky Mountains. Ecology 56: 13561366.Google Scholar
Briedermann, L. (1990). Schwarzwild. Berlin: VEB.Google Scholar
Budna, E., Grzybowska, L. & Karczewicz, A. (2007). Forestry 2007. Warsaw: Central Statistical Office, Agricultural Statistic Division.Google Scholar
Cahil, L., Llimona, F., Cabaneros, S. & Calomardo, F. (2009). Habituation of wild boar in a metropolitan area: characterisation, conflicts and solutions in Collserola Park, Barcelona. In Nahlik, A. & Tari, T. (eds.), Proc. 7th Int. Symp. Wild Boar (Sus scrofa) and on suborder Suiformes: Sopron, Hungary, pp. 2527.Google Scholar
Cai, J., Zeng, Y., Li, C., Jiang, Z. & Bravery, B. D. (2008). Factors affecting crop damage by wild boar and methods of mitigation in a giant panda reserve. European Journal of Wildlife Research 54: 723728.Google Scholar
Calenge, C., Maillard, D., Fournier, P. & Fouque, C. (2004). Efficiency of spreading maize in the garrigues to reduce wild boar (Sus scrofa) damage to Mediterranean vineyards. European Journal of Wildlife Research 50(3): 112120.Google Scholar
Cavagnuolo, L., Bellezza, P., Bonanni, M., et al. (2015). Management of the pest species: what was planned and not done for the boar in the province of Rieti (Lazio Italy). Abstracts of the 10th European Vertebrate Pest Management Conference, no. 125.Google Scholar
Cellina, S. (2008). Effects of supplemental feeding on the body condition and reproductive state of wild boar Sus scrofa in Luxembourg. PhD thesis. Brighton: University of Sussex, 141 pp.Google Scholar
Cellina, S. (2014). Dos and don'ts in European wild boar (Sus scrofa) management or: Why can't we agree on releasing, feeding, poisoning, trapping, shooting 24/7, …. Abstracts of the 10th International Symposium on Wild Boar and other Suids, no. 14.Google Scholar
Chauhan, N. P. S., Barwal, K. S. & Kumar, D. (2009). Human–wild pig conflict in selected states in India and mitigation strategies. Acta Silvatica and Lignaria Hungarica 5: 189197.Google Scholar
Chen, J. (2006). Investigation into wildlife damage and prevention measures in Fujian Province. Forest Prospect and Design 140142 [in Chinese with English summary].Google Scholar
Cherenkov, A. Y. (2004). Distribution of wild boar numbers in the Tula region. In Vestnik. Moscow: RGAZU, pp. 8485 [in Russian].Google Scholar
Conover, M. R. (2002). Resolving human–wildlife conflicts: the science of wildlife damage management. Boca Raton, FL: Lewis.Google Scholar
Danilkin, A. A. (2002). Pigs (Suidae). Mammals of Russia and adjacent countries. Moscow: GEOS [in Russian].Google Scholar
Danilov, P. I. (2009). New mammals in the Russian European North. Karelian Research Center, RAS. Petrozavodsk [in Russian].Google Scholar
Drozd, L. (1988). Influence of dispersion of forest complexes on the damage by wild boar in field crops in microregion of Central-East. Sylwan 11–12: 7984.Google Scholar
Economov, A. V. & Domsky, I. (2014). Negative effects of wild boar (Sus scrofa L.) on birds nesting on the ground in European northeast Russia. Abstracts of the 10th International Symposium on Wild Boar and other Suids, no. 100.Google Scholar
Elliger, A., Linderoth, P., Pegel, M. & Seitler, S. (2001). Ergebnisse einer landesweiten Befragung zur Schwarzwildbewirtschaftung. WFS-Mitteilungen, Nr. 4/2001: 14.Google Scholar
Faliński, J. B. (1986). Succession, regeneration and fluctuation in the Bialowieza Forest (NE Poland). In Temporal and spatial patterns of vegetation dynamics. Dordrecht: Springer, pp. 115128.Google Scholar
Frąckowiak, W., Gorczyca, S., Merta, D. & Wojciuch-Ploskonka, M. (2013). Factors affecting the level of damage by wild boar in farmland in north-eastern Poland. Pest Management Science 69: 362366.Google Scholar
Galhano-Alves, J. P. (2004). Man and wild boar, a study in Monteshimo Natural Park, Portugal. Galemys 16: 223230.Google Scholar
Geisser, H. & Reyer, H. U. (2004). Efficacy of hunting, feeding, and fencing to reduce crop damage by wild boars. Journal of Wildlife Management 68: 939946.Google Scholar
Genov, P. (1981). Significance of natural biocenoses and agrocenoses as the source of food for wild boar (Sus scrofa L.). Ekologia Polska 29: 117136.Google Scholar
Genov, P., Tonini, V. & Massei, G. (1995). Crop damage by wild ungulates in a Mediterranean area. In Botev, N. (ed.), The game and man. Proceedings. Sofia: IUGB, pp. 214215.Google Scholar
Gomez, J. M., García, D. & Zamora, R. (2003). Impact of vertebrate acorn- and seedling-predators on a Mediterranean Quercus pyrenaica forest. Forest Ecology and Management 180: 125134.Google Scholar
Goryńska, W. (1981). Method of determining relations between the extent of damage in farm crops, big game numbers and environmental conditions. Acta Theriologica 26: 469481.Google Scholar
Groot Bruinderink, G. W. T. A. & Hazebroek, E. (1996). Wild boar (Sus scrofa L.) rooting and forest regeneration on podzolic soils in the Netherlands. Forest Ecology and Management 88: 7180.Google Scholar
Grzybowska, L., Pac, T. & Raczkoska, J. (2014). Forestry 2014. Warsaw: Central Statistical Office, Agricultural Statistic Division.Google Scholar
Guilbert, B. (2011). L'indemnisation des degates de grand giber en France. Unpublished paper presented during International Conference on Damages inflicted by game held by the Association of Clerks and Assessors in Poland. 14–16 October 2011, Będlewo, 62-060 Stęszew, Poland.Google Scholar
Guldemond, A., Dijkman, W. & Keuper, D. (2015). Wilde zwijnen op weg in Nederland. (Wild boar on the road in The Netherlands). Report CLM 873. Culemborg: CLM.Google Scholar
Hadjisterkotis, E. & Heise-Pavlov, P. M. (2006). The failure of the introduction of wild boar Sus scrofa in the island of Cyprus: a case study. European Journal of Wildlife Research 52: 213215.Google Scholar
Hahn, N. & Eisfeld, D. (1998). Diet and habitat use of wild boar (Sus scrofa) in SW Germany. Gibier Faune Sauvage 15: 595606.Google Scholar
Hearn, R., Watkins, C. & Balzaretti, R. (2014). The cultural and land use implications of the reappearance of wild boar in North West Italy: a case study in the Val di Vara. Journal of Rural Studies 36: 5263.Google Scholar
Herrero, J., García-Serrano, A., Counto, S., Ortuno, V. M. & García-Gonzalez, R. (2006). Diet of wild boar (Sus scrofa L) and crop damage in an intensive agroecosystem. European Journal of Wildlife Research 52: 245250.Google Scholar
Hohmann, U. (2014). Wild boar business in Europe – a cost–benefit analysis. Abstracts of the 10th International Symposium on Wild Boar and other Suids, no. 20.Google Scholar
Honda, T. (2007). Factors affecting crop damage by wild boar: the analysis using census data of agriculture and forestry. Journal of the Japanese Forestry Society 89: 249252 [in Japanese with English summary].Google Scholar
Honda, T. & Sugita, M. (2007). Environmental factors affecting damage by wild boars (Sus scrofa) to rice fields in Yamanashi Prefecture, central Japan. Mammal Study 32: 173176.Google Scholar
Hone, J. & Atkinson, B. (1983). Evaluation of fencing to control feral hog movement. Australian Wildlife Research 10: 499505.Google Scholar
Jelenko, I., Kopušar, N. & Pokorny, B. (2013). The impact of soil properties on wild boar rooting on grassland. Zlatorogov zbornik 2: 6779 [in Slovenian].Google Scholar
Keuling, O., Stier, N. & Roth, M. (2009). Commuting, shifting or remaining? Different spatial usage patterns of wild boar Sus scrofa L. in forest and field crops during summer. Mammalian Biology 74: 145152.Google Scholar
Kniżewska, W. & Rekiel, A. (2015). Evaluation of variation in game damage caused by the European wild boar (Sus scrofa L) in two forested hunting regions during the 2005/2006 and 2012/2013 seasons. Roczniki Naukowe Polskiego Towarzystwa Zootechnicznego 11: 8193 [in Polish with English summary].Google Scholar
Kristiansson, H. (1985). Crop damage by wild boar in Central Sweden. Proceedings of the 17th Congress of the International Union of Game Biologists, Brussels, Belgium, pp. 605609.Google Scholar
Kubacki, T. (1972). Wstępne informacje o badaniach nad wybiórczością żerową dzika różnych odmian ziemniaków. Zachodni Poradnik Łowiecki 1: 1321 [in Polish].Google Scholar
Labudzki, L., Gorecki, G., Skubis, J. & Wlazelko, M. (2009). Changes in the rate of wild boar damage to Zielonka Game Investigation Centre field crops in 2004–2007. Scientarium Polonorum Acta – Silvarum Colendarum Ratio et Industria Lignaria 8: 3944.Google Scholar
Langbein, J., Putman, R. & Pokorny, B. (2011). Traffic collisions involving deer and other ungulates in Europe and available measures for mitigation. In Putman, R., Apollonio, M. & Andersen, R. (eds.), Ungulate management in Europe. Cambridge: Cambridge University Press, pp. 215259.Google Scholar
Lemel, J. (1999). Populationstillvaxt, dynamik och spridning has vildsvinet Sus scrofa, i mellevsta Sverige. Nykoping, Sweden: Svenska Jagareforbundet.Google Scholar
Li, L., Wang, J. & Shi, J. (2010b). Human–wild boar conflict: current status, causes and countermeasures. Journal of Sichuan Zoology 29: 642645 [in Chinese with English summary].Google Scholar
Li, L., Wang, J. & Shi, J., et al. (2010c). Factors influencing local people's attitudes towards wild boar in Taohangling National Nature Reserve of Jiangxi Province, China. Procedia Environmental Sciences 2: 18461856.Google Scholar
Li, L., Jianbin, S., Jing, W., et al. (2013). Factors influencing wild boar damage in Taohongling National Nature Reserve in China: a model approach. European Journal of Wildlife Research 59: 179184.Google Scholar
Li, T., Zhang, M., Han, J. & Jin, Ch. (2010a). Survey of population quantity of wild boars and their damage to the crop on Zhangguangcai mountains in Heilongjiang. Chinese Journal of Wildlife 31(02): 99103 [in Chinese with English summary].Google Scholar
Linderoth, P. & Elliger, A. (2002): Schwarzwildschäden an landwirtschaftlichen Kulturen in Baden-Württemberg im Jagdjahr 2000/2001. WFS-Mitteilungen, Nr. 1/2002: 14.Google Scholar
Lipowski, A. (2003). European wild boar (Sus scrofa L.) as a reservoir of infection diseases for domestic pigs. Medycyna Weterynaryjna 59: 861863 [in Polish with English summary].Google Scholar
Lissmann, G. (2011). Monetary compensation for agricultural crop damage by wildlife in Germany. Unpublished paper presented during International Conference on Damages inflicted by game held by the Association of Clerks and Assessors in Poland. 14–16 October 2011, Będlewo, 62-060 Stęszew, Poland.Google Scholar
Litvinov, V. P. (2004). Number of hunting mammal species in hunting economies and national reserves of Volga–Akhtuba flood lands. In Man and animals. Astrakhan, pp. 9597. Astrakhansky State University [in Russian].Google Scholar
Ma, J., Xiao, W., Zhang, W. & Zhou, X. (2008). An investigation of residents acceptance of wild boar and influencing factors in Hunchun Natural Reserve. Resources Science 30(6): 876882.Google Scholar
Mackin, R. (1970). Dynamics of damage caused by wild boar to different agricultural crops. Acta Theriologica 15(27): 447458.Google Scholar
Makarov, W., Domsky, D. P. & Boev, B. V. (2014). African swine fever of wild boar in Russian Federation. Abstracts of the 10th International Symposium on Wild Boar and other Suids, no. 122.Google Scholar
Markov, N. J. (1997). Population dynamics of wild boar, Sus scrofa in Sverdlovsk Oblast and its relation to climatic factors. Ekologiya 29(4): 305310.Google Scholar
Massei, G., Roy, S. & Bunting, R. (2011). Too many hogs? A review of methods to mitigate impact by wild boar and feral hogs. Human–Wildlife Interaction 5: 7999.Google Scholar
Massei, G., Kindberg, J., Licoppe, A., et al. (2015). Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Management Science 71: 492500.Google Scholar
McDevitt, A. D., Carden, R. F., Coscia, J. & Frantz, A. C. (2013). Are wild boars roaming Ireland once more? European Journal of Wildlife Research 59: 761764.Google Scholar
Morelle, K. & Lejeune, P. (2015). Seasonal variations of wild boar Sus scrofa distribution in agricultural landscapes: a species distribution modeling approach. European Journal of Wildlife Research 61: 4556.Google Scholar
Novosel, H., Piria, M., Safner, R., Kutnjak, H. & Sprem, N. (2012). The game damages on agricultural crops in Croatia. Journal of Central European Agriculture 13(4): 631642.Google Scholar
Ohtsuka-Ito, E. & Kanzaki, N. (1998). Population trends of the Japanese wild boar during Showa era. Wildlife Conservation Japan 3: 95105 [in Japanese with English summary].Google Scholar
Ovsukowa, N. E. (1996). Wild boar. In Resources of the Russia main hunting animal species and hunting lands (1991–1995). Moscow, pp. 7778. State Service of Monitoring the Hunting Resources of Russia [in Russian].Google Scholar
Pagani, P. & Rijks, J. (2015). African swine fever in wild boar and African wild suids. Utrecht: Dutch Wildlife Health Center, Uniwersiteit Utrecht.Google Scholar
Pejsak, Z., Truszczynski, M., Kozak, E. & Markowska-Daniel, I. (2014). Epidemiological analysis of two first cases of African swine fever in wild boars in Poland. Medycyna Weterynaryjna 70(6): 369372 [in Polish with English summary].Google Scholar
Pileviciene, S., Jurgelevicius, V., Pridotkas, G. & Paulauskas, A. (2016). African swine fever in wild boar population: Lithuanian experience. Abstracts of the 11th International Symposium on Wild Boar & Other Suids, no. 46.Google Scholar
Plisko, J. D. (1965). Geographical distribution and ecology of Lumbricidae in Poland. Fragmenta Faunistica 12: 57108.Google Scholar
Podgórski, T. (2016). Slow spread of African swine fever in Poland – the role of wild boar behaviour and management. Abstracts of the 11th International Symposium on Wild Boar & Other Suids, no. 48.Google Scholar
Primini, R., Pelorosso, R., Ripa, M. N. & Amici, A. (2009). A statistical GIS-based analysis of wild boar Sus scrofa traffic collisions in a Mediterranean area. Italian Journal of Animal Science 8: 649651.Google Scholar
Rosvold, J. & Andersen, R. (2008). Wild boar in Norway – is climate a limiting factor? Zoologisk rapport. Trondheim: Norges Teknisk – Naturvitenskapelige Universitet Trondheim, pp. 123.Google Scholar
Saito, M., Momose, H. & Mihira, T. (2011). Both environmental factors and countermeasures affect wild boar damage to rice paddies in Boso Peninsula Japan. Crop Protection 30: 10481054.Google Scholar
Saito, M., Koike, F., Momose, H., et al. (2012). Forecasting the range expansion of a recolonising wild boar Sus scrofa population. Wildlife Biology 18(4): 383392.Google Scholar
Saniga, M. (2002). Nest loss and chick mortality in capercaillie (Tetrao urogallus) and hazel grouse (Bonasa bonasia) in West Carpathians. Folia Zoologica 51: 205214.Google Scholar
Saulich, M.I. (2008). Sus scrofa L. In Afonin, A. N., Greene, S. L., Dzyubenko, N. I. & Frolov, A. N. (eds.), Interactive agricultural ecological atlas of Russia and neighboring countries. www.agroatlas.ru/en/content/pests/Sus_scrofa/index.htmlGoogle Scholar
Schlageter, A. & Haag-Wackernagel, D. (2011). Effectiveness of solar blinkers as a means of crop protection from wild boar damage. Crop Protection 30: 12161222.Google Scholar
Schlageter, A. & Haag-Wackernagel, D. (2012). A gustatory repellent for protection of agricultural land from wild boar damage: an investigation on effectiveness. Journal of Agricultural Science 4: 6168.Google Scholar
Schley, L., Dufrene, M., Krier, A. & Frantz, A. C. (2008). Patterns of crop damage by wild boar (Sus scrofa) in Luxembourg over a 10-year period. European Journal of Wildlife Research 54: 589599.Google Scholar
Serebiennikov, V. I. & Kirichenko, Y. M. (2004). Biological resources of hunting economy in the Amur region: condition, use, protection. In Problems of ecology and rational use of natural resources in the Far East region. Blagoveshchensk, pp. 217222. Blagoveshchensk State University [in Russian].Google Scholar
Servanty, S., Gaillard, J. M., Ronchi, F., et al. (2011). Influence of harvesting pressure on demographic tactics: implications for wildlife management. Journal of Applied Ecology 48(4): 835843.Google Scholar
Settimio, A., Bonanni, M., Cardone, A., et al. (2015). The changed strategies in the claiming of hunted wild boars in the province of Rieti (Italy). Abstracts of the 10th European Vertebrate Pest Management Conference, no. 169.Google Scholar
Storch, I. (1994). Habitat and survival of capercaillie Tetrao urogallus nests and broods in the Bavarian Alps. Biological Conservation 70(3): 237243.Google Scholar
Suter, S. (2014). Wild boar habitat use and their impact on ground breeding birds in the wetland nature reserve ‘Grande Caricaie’. Abstracts of the 10th International Symposium on Wild Boar and other Suids, no. 62.Google Scholar
Thapa, S. (2010). Effectiveness of crop protection methods against wildlife damage: a case study of two villages at Bardia National Park, Nepal. Crop Protection 29: 12971304.Google Scholar
Thurfjell, H., Ball, J. P., Ahlen, P. A., et al. (2009). Habitat use and spatial patterns of wild boar Sus scrofa L: agricultural fields and edges. European Journal of Wildlife Research 55: 517523.Google Scholar
Tumidajowicz, D. (1971). Phenology of increase of underground organs of the herb layer plants in the deciduous Tilio–Carpinetum association of the Niepolomice Forest. Bulletin Academy Polish Sciences 19(12): 795799.Google Scholar
Vassant, J., Jullien, J. M. & Branolt, S. (1992). Reducing wild boar damage to wheat and oats in summer: study of the effectiveness of maize distribution in the forest. In Bobek, B., Perzanowski, K. & Reglin, W. L. (eds.), Global trends in wildlife management. Krakow: Jagiellonian University, pp. 7987.Google Scholar
Vidrih, M. & Trdan, S. (2008). Evaluation of different designs of temporary electric fence systems for the protection of maize against wild boar (Sus scrofa L., Mammalia, Suidae). Acta Agriculturae Slovenica 91: 343349.Google Scholar
Wilson, C. J. (2004). Rooting damage in farmland in Dorset, southern England, caused by feral wild boar Sus scrofa. Mammal Review 34: 331335.Google Scholar
Wójcik, M. & Hołaś Krajewska, I. (2008). O szacowaniu szkód łowieckich. Poland: Wydawnictwo Paratechnica.Google Scholar
Zhang, D. & Liu, B. (2012). Survey and control of wild boar Sus scrofa damage in Qingyun Forest, Heilongjiang Province. Chinese Journal of Wildlife 33(2), 5963 [in Chinese with English summary].Google Scholar
Zhang, X., Sun, X. & Li, Y. (2009). Preliminary study on compensation for damage of emblement by wild boar in Tai Bai Mountain Nature Reserve. Acta Agricultura Boreali – Occidentalis Sinica 6: 394396.Google Scholar

References

Amici, A. & Serrani, F. (2004). Linee guida per la gestione del cinghiale (Sus scrofa) nella Provincia di Viterbo. Viterbo, Italy: Università della Tuscia, Dipartimento di Produzioni Animali – Provincia di Viterba, Assessorato Agricoltura, Caccia e Pesca.Google Scholar
Apollonio, M., Mattioli, L., Scandura, M., et al. (2004). Wolves in the Casentinesi Forests: insights for wolf conservation in Italy from a protected area with a rich wild prey community. Biological Conservation 120: 249260.Google Scholar
ARP. (2010). The wildlife management in protected areas of Lazio region. Unpublished report, Regional Park Agency of Lazio Region, Italy.Google Scholar
Badino, D. (2007). Studio pr un progetto di human dimension nel comune di Amatrice (RI): pianificazione e realizzazione di un'indagine conoscitiva. Parco Nazionale del Gran Sasso e dei Monti della Laga, Assergi (AQ). Retrieved from www.gransassolagapark.it/Pdf/progetti/PNGSLprogetti107-1.pdf.Google Scholar
Bath, A. J. (1996). Increasing the applicability of human dimensions research to large predators. Journal of Wildlife Research 1: 215220.Google Scholar
Blanchard, K. A. (2000). Rachel Carson and the human dimensions of fish and wildlife management. Human Dimensions of Wildlife 5: 5266.Google Scholar
Bobek, B., Furtec, J., Wojciuch-Płoskonka, M. & Ziobrowski, M. (2010). Population of wild boar (Sus scrofa) in split of Vistula river and its conflict with man. Retrieved from www.vjagd.at/wp-content/uploads/bookOfAbstractsWildBoarNov10.pdf.Google Scholar
Boonmann-Berson, S. (2012). Managing the wild boar: perceptions from science, policy and society. Retrieved from http://ecpr.eu/Events/PaperDetails.aspx?PaperID=5916&EventID=6Google Scholar
Brook, R. K. & Beest, F. M. (2014). Feral wild boar distribution and perceptions of risk on the central Canadian prairies. Wildlife Society Bulletin 38: 486494.Google Scholar
Cahill, S., Llimona, F., Cabañeros, L., et al. (2010). Wild boar (Sus scrofa) habituation to humans and suburban landscapes: local perspectives on an increasingly global phenomenon with complex management implications. Retrieved from www.vjagd.at/wp-content/uploads/bookOfAbstractsWildBoarNov10.pdf.Google Scholar
Carbonetti, B., Pomeroy, R. & Richards, D. L. (2014). Overcoming the lack of political will in small scale fisheries. Marine Policy 44: 295301.Google Scholar
Carnevali, L. & Scacco, M. (2009). Indagine sull'atteggiamento della popolazione residente e non nei confronti del cinghiale (Sus scrofa) nel parco regionale dei Colli Euganei relazione tecnica n. 3.3. Ozzano Emilia: Istituto Nazionale Fauna Selvatica.Google Scholar
Choquenot, D., McIlroy, J. & Korn, T. (1996). Managing vertebrate pests: feral pigs. Canberra: Bureau of Resource Sciences, Australian Government Publishing Service. Retrieved from www.pestsmart.org.au/wp-content/uploads/2010/03/Managing-vertebrate-pests-feral-pigs.pdf.Google Scholar
Choudhury, A. (2004). Human–elephant conflicts in Northeast India. Human Dimensions of Wildlife 9: 261270.Google Scholar
D'Ippolito, C. (2008). Wilderness perceptions and the case of feral hogs in Congaree National Park. Retrieved from www.academia.edu/4165301/Wilderness_Perceptions_and_the_Case_of_Feral_Hogs_in_Congaree_National_Park.Google Scholar
Decker, D. J., Brown, T. L. & Siemer, W. F. (2001). Human dimensions of wildlife management in North America. Bethesda, MD: The Wildlife Society.Google Scholar
Decker, D. J., Riley, S. J. & Siemer, W. F. (2012). Human dimensions of wildlife management, 2nd ed. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Dovers, S., Feary, S., Martin, A., et al. (2015). Engagement and participation in protected area management: who, why, how and when? In Worboys, G. L., Lockwood, M., Kothari, A., Feary, S. & Pulsford, I. (eds.), Protected area governance and management. Canberra: ANU Press, pp. 413440.Google Scholar
Dutton, J. & Clayton, H. (2010). Public perception of wild boar in the forest of Dean, England, potential implications for their future management. Retrieved from www.vjagd.at/wp-content/uploads/bookOfAbstractsWildBoarNov10.pdf.Google Scholar
Ebihara, I. (2010). The ecological characteristics of snare hunting of Ryukyu wild boar in Iriomote Island, the south of Japan. Retrieved from www.vjagd.at/wp-content/uploads/bookOfAbstractsWildBoarNov10.pdf.Google Scholar
Ericsson, G., Heberlein, T.A., Karlosson, J., Bjärvall, A. & Lundvall, A. (2004). Support for hunting as a means of wolf (Canis lupus) population control in Sweden. Wildlife Biology 10: 269276.Google Scholar
Fogarty, E. (2007). National distribution and stakeholder attitudes toward feral pigs. Masters Thesis. Starkville, MS: Mississippi State University.Google Scholar
Frank, B. (2016). Human–wildlife conflicts, the need to include tolerance and coexistence: an introductory comment. Society and Natural Resources 29(6): 738743.Google Scholar
Frank, B. & Bath, A. J. (2012). Does it matter where people live? Wildlife management across protected area boundaries. Journal of Science and Management of Protected Areas (SAMPAA) 1: 1221.Google Scholar
Frank, B., Monaco, A. & Bath, A. J. (2015). Beyond standard wildlife management: a pathway to encompass human dimensions findings in wild boar management. European Journal of Wildlife Research 61(5): 723730.Google Scholar
Frassanito, A. G. (2005). Verso la gestione partecipativa della problematica cinghiale nel Parco Nazionale del Gargano. Dissertation. Univesità degli Studi di Roma La Sapienza.Google Scholar
Frederick, J. (1998). Overview of wild pig damage in California. Vertebrate Pest Conference 18: 8286.Google Scholar
Fuse, A. (2012). Frequency of feeding Japanese boars (Sus scrofa leucomystax) and behavioral sequence in an examination of the interaction of humans and boars in Higashinada ward, Kobe city. Retrieved from www.academia.edu/4941943/9th_International_Symposium_on_Wild_Boar_and_other_Suids_Abstract_BookGoogle Scholar
Glikman, J. A. & Frank, B. (2011). Human dimensions of wildlife in Europe: the Italian way. Human Dimensions of Wildlife 16(5): 368377.Google Scholar
Gore, M. L., Siemer, W. F., Shanahan, J. E., Schuefele, D. & Decker, D. J. (2005). Effects on risk perception of media coverage of a black bear-related human fatality. Wildlife Society Bulletin 33: 507516.Google Scholar
Gore, M. L., Knuth, B. A., Curtis, P. D. & Shanahan, J. E. (2007). Campground manager and user perceptions of risk associated with negative human–black bear interactions. Human Dimensions of Wildlife 12: 3143.Google Scholar
Goulding, M. L. & Roper, T. J. (2002). Press responses to the presence of free-living wild boar (Sus scrofa) in southern England. Mammal Review 32: 272282.Google Scholar
Hall, D. & Hall, I. (1996). Practical social research: project work in the community. Malaysia: Macmillan Press.Google Scholar
Harada, M., Kanzaki, N., Maruyama, N. & Imaki, H. (2001). The present condition and problems of game hunting in Yamanashi prefecture, central Japan. Wildlife Conservation Japan 6: 2532.Google Scholar
Harper, E. E., Miller, C. A. & Vaske, J. J. (2014). Hunter perceptions of risk, social trust, and management of chronic wasting disease in Illinois. Human Dimensions of Wildlife 20(5): 114.Google Scholar
Hasanagas, N., Birtsas, P. & Sokos, C. (2009). Characteristics and attitudes of wild boar hunters in comparison with other hunters. In Proceedings of 7th International Symposium on Wild Boar (Sus scrofa) and on Sub-order Suiformes, pp. 1415.Google Scholar
Higginbotham, B. (2013). Wild pig damage abatement education and applied research activities. Retrieved from http://overton.tamu.edu/files/2013/06/Wild-Pig-Damage-Abatement-Education-Applied-Research-Activites.pdf.Google Scholar
Jenkins, J. & Keal, A. (2004). The Adirondack atlas. Syracuse, NY: Syracuse University Press.Google Scholar
Kaczensky, P. (1999). Large carnivore predation on livestock in Europe. Ursus 11: 5972.Google Scholar
Kaltenborn, B. P., Bjerke, T. & Nyahongo, J. (2006). Living with problem animals-self-reported fear of potentially dangerous species in the Serengeti region, Tanzania. Human Dimensions of Wildlife 11: 397409.Google Scholar
Kanzaki, N. & Kodera, Y. (1995). Present status of feral crossbred of pig × wild boar in Japan. International symposium on wild boar (Sus scrofa) and on sub-order suiformes. Ibex Journal of Mountain Ecology 3: 250.Google Scholar
Kanzaki, N. & Otsuka, E. (1995). Recent prosperity of wild boar commercialization in Japan. International symposium on wild boar (Sus scrofa) and on sub-order Suiformes. Ibex Journal of Mountain Ecology 3: 249.Google Scholar
Kanzaki, N. & Otsuka-Ito, E. (1997). Changes in the hunting and trading of wild boar in the Showa Era of Japan. Wildlife Conservation Japan 2: 169183.Google Scholar
Keuling, O. (2009). Managing wild boar considerations for wild boar management based on game biology data. Retrieved from www.qucosa.de/fileadmin/data/qucosa/documents/3892/Keuling_Diss_V2.pdf.Google Scholar
Keuling, O. (2012). Human dimension in wild boar management. Retrieved from www.academia.edu/4941943/9th_International_Symposium_on_Wild_Boar_and_other_Suids_Abstract_BookGoogle Scholar
Keuling, O., Strauß, E. & Siebert, U. (2016). Regulating wild boar populations is ‘somebody else's problem’! Human dimension in wild boar management. Science of The Total Environment 554–555: 311319.Google Scholar
Koichi, K. (2012). The perceived environmental and socio-economic impacts of feral pigs (Sus scrofa): a re-examination of their perceived pest status, and management implications. MSc thesis. Townsville: James Cook University.Google Scholar
Koichi, K., Cottrell, A., Sangha, K. K. & Gordon, I. J. (2012a). Are feral pigs (Sus scrofa) a pest to rainforest tourism? Journal of Ecotourism 11: 132148.Google Scholar
Koichi, K., Kaur, K., Cottrell, A., & Gordon, I. (2012b). Aboriginal rangers' perspectives on feral pigs: are they a pest or a resource? A case study in the wet tropics world heritage area of Northern Queensland. Journal of Australian Indigenous Issues 15: 219.Google Scholar
Kotulski, Y. & Konig, A. (2007). Wildlife management is not about ‘wild animals’, it is about ‘wild people’. The Berlin public and the wild boars – downtown! Hystrix, the Italian Journal of Mammalogy 26: 323.Google Scholar
Kotulski, Y. & Konig, A. (2008). Conflict, crises and challenges: wild boar in the Berlin city – a social empirical and statistical survey. Natura Croatica 17(4): 233246.Google Scholar
Invasive Animals CRC. (2014). Case study: feral pig management in tropical rainforests in Queensland. Retrieved from www.pestsmart.org.au/feral-pig-management-in-tropical-rainforests-of-queensland/.Google Scholar
ISTAT. (2004). Rapporto annuale 2004. Istituto Nazionale di Statistica. Retrieved from www.istat.it. Accessed 1 March 2009.Google Scholar
Lauber, B. T. & Knuth, B. A. (2004). Effects of information on attitudes toward suburban deer management. Wildlife Society Bulletin 32: 322331.Google Scholar
Li, L., Wang, J., Shi, J., et al. (2010). Factors influencing local people's attitudes towards wild boar in Taohongling National Nature Reserve of Jiangxi Province, China. Procedia Environmental Sciences 2: 18461856.Google Scholar
Licoppe, A., Prévot, C., Heymans, M., et al. (2013). Wild boar/feral pig in (peri-) urban areas. International survey report as an introduction to the workshop on ‘Managing wild boar in human-dominated landscapes’. International Union of Game Biologists – Congress IUGB. Retrieved from www.iugb2013.org/docs/Urban%20wild%20boar%20survey.pdfGoogle Scholar
Linkie, M., Dinata, Y., Nofrianto, A. & Leader-Williams, N. (2007). Patterns and perceptions of wildlife crop raiding in and around Kerinci Seblat National Park, Sumatra. Animal Conservation 10: 127135.Google Scholar
Lohr, C. A., Lepczyk, C. A. & Johnson, E. D. (2014). The islands are different: human perceptions of game species in Hawaii. Environmental Management 54: 814827.Google Scholar
Lutton, C., Beck, B. B., Vicente, J., et al. (2010). Risk factors associated with wildlife–livestock transmission of bovine tuberculosis in Spain. Retrieved from www.vjagd.at/wp-content/uploads/bookOfAbstractsWildBoarNov10.pdfGoogle Scholar
Madden, F. (2004). Creating coexistence between humans and wildlife: global perspectives on local efforts to address human–wildlife conflict. Human Dimensions of Wildlife 9: 247257.Google Scholar
Madden, F. & McQuinn, B. (2014). Conservation's blind spot: the case for conflict transformation in wildlife conservation. Biological Conservation 178: 97106.Google Scholar
Maguire, L. A. (2004). What can decision analysis do for invasive species management? Risk Analysis 24: 859868.Google Scholar
Maguire, L., Jenkins, P. & Nugent, G. (1997). Research as a route to consensus? Feral ungulate control in Hawaii. North American Wildlife and Natural Resources Conference 62: 135145.Google Scholar
Marega, M. & Urataric, N. (2011). On stakeholder engagement in preparation of integrated management plans for protected areas. Retrieved from www.natreg.eu/uploads/Guidelines_stakeholder%20engagement_final.pdf.Google Scholar
Mason, R. J. & Fleming, P. J. S. (1999). Australian hunters and the surveillance of feral pigs for exotic diseases. Wildlife Society Bulletin 27: 395402.Google Scholar
Massei, G., Sugoto, R. & Bunting, R. (2011). Too many hogs? A review of methods to mitigate impact by wild boar and feral hogs. Human Wildlife Interactions Journal 5: 7999.Google Scholar
Mengak, M. T. (2012). 2012 Georgia wild pig survey: final report. Retrieved from www.berrymaninstitute.org/files/uploads/pdf/Georgia%20Wild%20Pig%20Survey.pdf.Google Scholar
Mengak, M. T., Miller, C. A. & Harper, E. E. (2015). Attitudes and financial impact of wild pigs in the United States. Retrieved from www.researchgate.net/publication/281865372_Attitudes_and_financial_impact_of_wild_pigs_in_the_United_States.Google Scholar
Meriggi, A. & Lovari, S. (1996). A review of wolf predation in southern Europe: does the wolf prefer wild prey to livestock? Journal of Applied Ecology 33: 15611571.Google Scholar
Messmer, T. A. (2000). The emergence of human–wildlife conflict management: turning challenges into opportunities. International Biodeterioration and Biodegradation 45: 97102.Google Scholar
Messmer, T.A. (2009). Human–wildlife conflicts: emerging challenges and opportunities. Human–Wildlife Conflicts 3: 1017.Google Scholar
Meurk, C. S. (2011). Loving nature, killing nature, and the crises of caring: an anthropological investigation of conflicts affecting feral pig management in Queensland, Australia. DPhil thesis. Brisbane: The University of Queensland. Retrieved from www.ssaa.org.au/hunting/educational-resources/2012-02-15_loving-nature-killing-nature-and-the-crises-of-caring.pdfGoogle Scholar
Miller, C. A., Campbell, L. K. & Yeagle, J. A. (2000). Attitudes of homeowners in the Greater Chicago Metropolitan Region toward nuisance wildlife. Job completion report, federal aid in wildlife restoration W-112-R-10. Human Dimensions Program Report SR-00-02. Champaign, IL: Illinois Natural History Survey.Google Scholar
Miller, C. A., Harper, E. E., Mengak, M. T., & Vaske, J. J. (2015). Landowner preferences for wild pig management in Illinois. Retrieved from www.researchgate.net/publication/281865381_Landowner_preferences_fro_wild_pig_management_in_Illinois.Google Scholar
Monaco, A., Carnevali, L. & Toso, S. (2010). Linee guida per la gestione del cinghiale (Sus scrofa) nelle aree protette. 2° edizione. Quad. Cons. Natura, 34. Italy: Min. Ambiente – ISPRA.Google Scholar
Mounet, C. & Keogh, B. (2006). Attitudes of the farming community towards the wolf, the wild boar and those in favour of their presence: a conflict of use and representation. Revue de Géographie Alpine 94(4): 99109.Google Scholar
Noble, K. (1996). Sustainable best practice feral pig management in Queensland wet tropics: final report to the vertebrate pest program. Townsville, Australia.Google Scholar
O'Brien, P. H. (1987). Socio-economic and biological impact of the feral pig in New South Wales: an overview and alternative management plan. The Australian Rangeland Journal 9: 96101.Google Scholar
Oliver, O. & Walton, C. (2004). Pests in Queensland baseline survey 2003: a survey of primary producers and residents of regional centres and large country towns. Natural Resources Mines and Energy, Qld Government.Google Scholar
Pontuale, S. (2009). Human dimension nella gestione del cinghiale nella riserva naturale regionale del lago di Vico. Dissertation. Univesità degli Studi di Roma La Sapienza.Google Scholar
Prévot, C. & Alain, L. (2012). Wild boar (Sus scrofa L.) monitoring in the military camp of Marche-en-Famenne (Belgium): an example of synergy between militaries, hunters, naturalists, foresters and hunting administration. Retrieved from www.academia.edu/4941943/9th_International_Symposium_on_Wild_Boar_and_other_Suids_Abstract_BookGoogle Scholar
Putman, R., Apollonio, M. & Andersen, R. (2011). Ungulate management in Europe: problems and practices. New York, NY: Cambridge University Press.Google Scholar
Raik, D. B., Siemer, W. F. & Decker, D. J. (2005). Intervention and capacity considerations in community-based deer management: the stakeholder's perspective. Human Dimensions of Wildlife 10: 259272.Google Scholar
Reynolds, J. C. & Tappen, S. C. (1996). Control of mammalian predators in game management and conservation. Mammal Review 26: 103127.Google Scholar
Rollins, D. (1993). Statewide attitude survey on feral hogs in Texas. In Hanselka, C. W. & Cadenhead, J. F. (eds.), Feral swine: a compendium for resource managers. Kerrville, TX: Texas Agricultural Extension Service, pp. 18.Google Scholar
Rulli, M. & Savini, S. (2008). Studio di human dimension sulla presenza del cinghiale nel parco regionale di Veio. Italy: Istituto di EcologiaApplicata.Google Scholar
Ryan, M. (2011). Understanding the conflict between wild boar and humans in the department of the Moselle, France. Retrieved from https://sites.google.com/a/mespom.eu/mespom-theses/theses-defended-in-2011.Google Scholar
Scillitani, L., Monaco, A. & Toso, S. (2010). Do intensive drive hunts affect wild boar (Sus scrofa) spatial behaviour in Italy? Some evidences and management implications. European Journal Wildlife Resource 56: 307318.Google Scholar
Sekhar, N. U. (1998). Crop and livestock depredation caused by wild animals in protected areas: the case of Sariska Tiger Reserve, Rajasthan, India. Environmental Conservation 2: 160171.Google Scholar
Sheskin, I. M. (1985). Survey research for geographers. Washington, DC: Association of American Geographers.Google Scholar
Shuster, G. (2012). The management of feral pig socio-ecological systems in Far North Queensland, Australia. Doctoral thesis. Antioch University, New England, Australia. Retrieved from https://etd.ohiolink.edu/!etd.send_file?accession=antioch1357345563&disposition=inlineGoogle Scholar
Tamaki, Y., Kanzaki, N. & Maruyama, N. (1998). The present condition and attitudes of hunters in Saitama and Tochigi prefectures. Wildlife Conservation Japan 3: 7384.Google Scholar
Toïgo, C., Servanty, S., Gaillard, J. M., Brandt, S. & Baubet, E. (2008). Disentangling natural from hunting mortality in an intensively hunted wild boar population. Journal of Wildlife Management 72: 15321539.Google Scholar
Trygg, E. B. (2014). An Investigation of human–wild boar conflict – the perceived need for economical compensation among farmers due to crop damage caused by wild boars – a case study in Arboga, Sweden. Retrieved from www.diva-portal.org/smash/get/diva2:727481/FULLTEXT02.pdf.Google Scholar
Tsachalidis, E. P. & Konstantopoulos, P. (2006). Comparison of traits of Sus scrofa and Lepus europaeus hunters in Peloponnesus, South Hellas. In Proceedings VI international symposium on wild boar and sub-order Suiformes.Google Scholar
Tsachalidis, E. P. & Hadjisterkotis, E. (2008). Wild boar hunting and socioeconomic trends in Northern Greece, 1993–2002. European Journal Wildlife Resource 54: 643649.Google Scholar
Tsachalidis, E. P., Konstantopoulos, P. & Giannakopoulos, A. L. (2008). Personal characteristic and hunting behaviour of wild boar hunters in Peloponnesus, South Hellas. In 7th International Symposium on Wild Boar (Sus scrofa) and on sub-order Suiformes.Google Scholar
Ueda, G. & Kanzaki, N. (2005). Wild boar hunters profile in Shimane prefecture, Western Japan. Wildlife Biology in Practice 1(2): 146151.Google Scholar
Vaske, J. J. (2008). Survey research and analysis. Application in parks, recreation and human dimensions. State College, PA: Venture Publishing, Inc.Google Scholar
Vergne, T., Guinat, C., Petkova, P., et al. (2014). Attitudes and beliefs of pig farmers and wild boar hunters towards reporting of African swine fever in Bulgaria, Germany and the western part of the Russian Federation. Transboundary and Emerging Diseases Aug 6. doi: 10.1111/tbed.12254.Google Scholar
Wilson, R. S. (2008). Balancing emotion and cognition: a case for decision aiding in conservation efforts. Conservation Biology 22(6): 14521460.Google Scholar
Woodroffe, R. (2000). Predators and people: using human densities to interpret declines of large carnivores. Animal Conservation 3: 165173.Google Scholar
Woodroffe, R., Thirgood, S. & Rabinowitz, A. (2005). People and wildlife: conflict or coexistence? Cambridge: Cambridge University Press.Google Scholar

References

Ai, H., Fang, X., Yang, B., et al. (2015). Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nature Genetics 47: 217225.Google Scholar
Amaral, A. J., Megens, H. J., Crooijmans, R. P. M. A., Heuven, H. C. M. & Groenen, M. A. M. (2008). Linkage disequilibrium decay and haplotype block structure in the pig. Genetics 179: 569579.Google Scholar
Artois, M., Depner, K. R., Guberti, V., et al. (2002). Classical swine fever (hog cholera) in wild boar in Europe. Scientific and Technical Reviews 21: 287303.Google Scholar
Balick, D. J., Do, R., Cassa, C. A., Reich, D. & Sunyaev, S. R. (2015). Dominance of deleterious alleles controls the response to a population bottleneck. PLoS Genetics 11: e1005436.Google Scholar
Booth, W. D. (1995). Wild boar farming in the United Kingdom. IBEX Journal of Mountain Ecology 3: 245248.Google Scholar
Bosse, M. (2015). The hybrid nature of pig genomes: unraveling the mosaic haplotype structure in wild and commercial Sus scrofa populations. Doctoral thesis. Wageningen University. Retrieved from http://edepot.wur.nl/338856.Google Scholar
Bosse, M., Megens, H. J., Madsen, O., et al. (2012). Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape. PLoS Genetics 8: e1003100.Google Scholar
Bosse, M., Madsen, O., Megens, H. J., et al. (2014a). Hybrid origin of European commercial pigs examined by an in-depth haplotype analysis on chromosome 1. Frontiers in Genetics 5: 442.Google Scholar
Bosse, M., Megens, H. J., Frantz, L. A. F., et al. (2014b). Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression. Nature Communications 5: 4392.Google Scholar
Bosse, M., Megens, H. J., Madsen, O., et al. (2014c). Untangling the hybrid nature of modern pig genomes: a mosaic derived from biogeographically distinct and highly divergent Sus scrofa populations. Molecular Ecology 23: 40894102.Google Scholar
Bosse, M., Megens, H. J., Madsen, O., (2015). Using genome-wide measures of coancestry to maintain diversity and fitness in endangered and domestic pig populations. Genome Research 25: 970981.Google Scholar
Cahill, S., Llimona, F. & Gràcia, J. (2003). Spacing and nocturnal activity of wild boar Sus scrofa in a Mediterranean metropolitan park. Wildlife Biology 9(Suppl. 1): 313.Google Scholar
Conedera, G., Ustulin, M., Barco, L., et al. (2014). Outbreak of atypical Salmonella choleraesuis in wild boars in North Eastern Italy. In Paulsen, P., Bauer, A. & Smulders, F. J. M. (eds.), Trends in game meat hygiene: from forest to fork. Wageningen: Wageningen Academic Publishers, pp. 151160.Google Scholar
Delibes-Mateos, M. & Delibes, A. (2013). Pets becoming established in the wild: free-living Vietnamese potbellied pigs in Spain. Animal Biodiversity and Conservation 36: 209215.Google Scholar
Fang, M. & Andersson, L. (2006). Mitochondrial diversity in European and Chinese pigs is consistent with population expansions that occurred prior to domestication. Proceedings of the Royal Society B 273: 18031810.Google Scholar
Fernández, A. I., Muñoz, M., Alves, E., et al. (2014). Recombination of the porcine X chromosome: a high density linkage map. BMC Genetics 15: 148.Google Scholar
Ferreira, E., Souto, L., Soares, A. M. V. M. & Fonseca, C. (2009). Genetic structure of the wild boar population in Portugal: evidence of a recent bottleneck. Mammalian Biology 74: 274285.Google Scholar
Fisher, R. A. (1930). The genetical theory of natural selection. Oxford: Clarendon Press.Google Scholar
Fonseca, C. (2004). Population dynamics and management of wild boar (Sus scrofa L.) in Central Portugal and Southeastern Poland. Doctoral thesis. University of Aveiro, Portugal.Google Scholar
Frantz, A. C., Zachos, F. E., Kirschning, J., et al. (2012). Genetic evidence for introgression between domestic pigs and wild boars (Sus scrofa) in Belgium and Luxembourg: a comparative approach with multiple marker systems. Biological Journal of the Linnean Society 110: 104115.Google Scholar
Frantz, L. A. F. (2015). Speciation and domestication in Suiformes: a genomic perspective. Doctoral thesis. Wageningen University.Google Scholar
Frantz, L. A. F., Schraiber, J. G., Madsen, O., et al. (2013). Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus. Genome Biology 14: R107.Google Scholar
Frantz, L. A. F., Madsen, O., Megens, H. J., Groenen, M. A. M. & Lohse, K. (2014). Testing models of speciation from genome sequences: divergence and asymmetric admixture in Island South-East Asian Sus species during the Plio–Pleistocene climatic fluctuations. Molecular Ecology 23: 55665574.Google Scholar
Frantz, L. A., Schraiber, J. G., Madsen, O., et al. (2015a). Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nature Genetics 47: 11411148.Google Scholar
Frantz, L. A., Madsen, O., Megens, H. J., et al. (2015b). Evolution of Tibetan wild boars. Nature Genetics 47: 188189.Google Scholar
Frantz, L., Meijaard, E., Gongora, J., et al. (2016). The revolution of Suidae. Annual Review of Animal Biosciences 4: 6185.Google Scholar
Fu, Y. X. & Li, W. H. (1993). Statistical tests of neutrality of mutations. Genetics 133: 693709.Google Scholar
Funk, S. M., Verma, S. K., Larson, G., et al. (2007). The pygmy hog is a unique genus: 19th century taxonomists got it right first time round. Molecular Phylogenetics and Evolution 45: 427436.Google Scholar
Garza, J. C. & Williamson, E. G. (2001). Detection of reduction in population size using data from microsatellite loci. Molecular Ecology 10: 305318.Google Scholar
Gattepaille, L. M., Jakobsson, M. & Blum, M. G. (2013). Inferring population size changes with sequence and SNP data: lessons from human bottlenecks. Heredity 110: 409419.Google Scholar
Ghigi, A. (1911). Ricerche faunistiche e sistematiche sui mammiferi d'Italia che formano oggetto di caccia. Natura 2: 289337.Google Scholar
Giuffra, E., Kijas, J.M., Amarger, V., et al. (2000). The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154: 17851791.Google Scholar
Goedbloed, D. J., Megens, H. J., Van Hooft, P., et al. (2013a). Genome-wide single nucleotide polymorphism analysis reveals recent genetic introgression from domestic pigs into Northwest European wild boar populations. Molecular Ecology 22: 856866.Google Scholar
Goedbloed, D. J., van Hooft, P., Megens, H. J., et al. (2013b). Reintroductions and genetic introgression from domestic pigs have shaped the genetic population structure of Northwest European wild boar. BMC Genetics 14: 43.Google Scholar
Goedbloed, D. J., van Hooft, P., Lutz, W., et al. (2015). Increased Mycoplasma hyopneumoniae disease prevalence in domestic hybrids among free-living wild boar. Ecohealth 12: 571579.Google Scholar
Gortázar, C., Vicente, J., Fierro, Y., et al. (2002). Natural Aujeszky's disease in a Spanish wild boar population. Annals of the New York Academy of Science 969: 210212.Google Scholar
Goulding, M. (2011). Native or alien? The case of the wild boar in Britain. In Rotherham, I. D. & Lambert, R. A. (eds.), Invasive and introduced plants and animals. Human perceptions, attitudes and approaches to management. Abingdon: Earthscan from Routledge, pp. 289300.Google Scholar
Groenen, M. A. M., Archibald, A. L., Uenishi, H., et al. (2012). Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491: 393398.Google Scholar
Groves, C. P. & Grubb, P. (2011). Ungulate taxonomy. Baltimore, MD: Johns Hopkins University Press.Google Scholar
Hajji, G. E. M. & Zachos, F. E. (2011). Mitochondrial and nuclear DNA analyses reveal pronounced genetic structuring in Tunisian wild boar Sus scrofa. European Journal of Wildlife Research 57: 449456.Google Scholar
Harris, S. & Yalden, D. W. (2008). Mammals of the British Isles: handbook. London: Mammal Society.Google Scholar
Herrero-Medrano, J. M., Megens, H. J., Groenen, M. A., et al. (2013). Conservation genomic analysis of domestic and wild pig populations from the Iberian Peninsula. BMC Genetics 14: 106.Google Scholar
Hoelzel, R. A. (1999). Impact of population bottlenecks on genetic variation and the importance of life-history; a case study of the northern elephant seal. Biological Journal of the Linnean Society 68: 2339.Google Scholar
Iacolina, L., Scandura, M., Goedbloed, D. J., et al. (2016). Genomic diversity and differentiation of a managed island wild boar population. Heredity 116: 6067.Google Scholar
Knight, J. (2003). Wild boar. In Waiting for wolves in Japan: an anthropological study of people–wildlife relations. New York, NY: Oxford University Press.Google Scholar
Jordt, A. M., Lange, M., Kramer-Schadt, S., et al. (2015). Spatio-temporal modeling of the invasive potential of wild boar – a conflict-prone species-using multi-source citizen science data. Preventive Veterinary Medicine 124: 3444.Google Scholar
Larson, G., Dobney, K., Albarella, U., et al. (2005). Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307: 16181621.Google Scholar
Larson, G., Albarella, U., Dobney, K., et al. (2007). Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. Proceedings of the National Academy of Sciences of the USA 104: 1527615281.Google Scholar
Li, M., Tian, S., Jin, L., et al. (2013). Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nature Genetics 45: 14311438.Google Scholar
Manunza, A., Zidi, A., Yeghoyan, S., et al. (2013). A high throughput genotyping approach reveals distinctive autosomal genetic signatures for European and Near Eastern wild boar. PLoS ONE 8: e55891.Google Scholar
Manunza, A., Amills, M., Noce, A., et al. (2016). Romanian wild boars and Mangalitza pigs have a European ancestry and their genomes harbour genetic signatures compatible with past population bottlenecks. Scientific Reports 6: 29913.Google Scholar
Massei, G. & Genov, P. (2004). The environmental impact of wild boar. Galemys 16: 135145.Google Scholar
Matiuti, M., Bogdan, A.T., Crainiceanu, E. & Matiuti, C. (2010). Research regarding the hybrids resulted from the domestic pig and the wild boar. Scientific Papers in Animal Science and Biotechnologies 43: 188191.Google Scholar
McDevitt, A. D., Carden, R. F., Coscia, I. & Frantz, A. C. (2013). Are wild boars roaming Ireland once more? European Journal of Wildlife Research 59(5): 761764.Google Scholar
Megens, H. J., Crooijmans, R. P. M. A., San Cristobal, M., et al. (2008). Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication. Genetics, Selection, Evolution 40: 103128.Google Scholar
Murakami, K., Yoshikawa, S., Konishi, S., et al. (2014). Evaluation of genetic introgression from domesticated pigs into the Ryukyu wild boar population on Iriomote Island in Japan. Animal Genetics 45: 517523.Google Scholar
Oliver, W. & Leus, K. (2008). Sus scrofa. The IUCN Red List of Threatened Species 2008: e.T41775A10559847. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T41775A 10559847.en.Google Scholar
Ottoni, C., Flink, L. G., Evin, A., et al. (2013). Pig domestication and human-mediated dispersal in western Eurasia revealed through ancient DNA and geometric morphometrics. Molecular Biology and Evolution 30: 824832.Google Scholar
Porter, V. (1993). Pigs: a handbook to the breeds of the world. New York, NY: Cornell University Press.Google Scholar
Ramírez, O., Ojeda, A., Tomàs, A., et al. (2009). Integrating Y-chromosome, mitochondrial, and autosomal data to analyze the origin of pig breeds. Molecular Biology and Evolution 26: 20612072.Google Scholar
Ramos, A. M., Crooijmans, R. P., Affara, N. A., et al. (2009). Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS ONE 4: e6524.Google Scholar
Risco, D., Fernández-Llario, P., Cuesta, J. M., et al. (2013). Fatal outbreak of systemic pasteurellosis in a wild boar (Sus scrofa) population from southwest Spain. Journal of Veterinary Diagnostic Investigation 25: 791794.Google Scholar
Rosvold, J. & Andersen, R. (2008). Wild boar in Norway – is climate a limiting factor? NTNU Vitenskapsmuseet Rapport Zoologiske Serie 1: 123.Google Scholar
Rubin, C. J., Megens, H. J., Martinez Barrio, A., et al. (2012). Strong signatures of selection in the domestic pig genome. Proceedings of the National Academy of Sciences of the USA 109: 1952919536.Google Scholar
Scandura, M., Iacolina, L., Crestanello, B., et al. (2008). Ancient vs. recent processes as factors shaping the genetic variation of the European wild boar: are the effects of the last glaciation still detectable? Molecular Ecology 17: 174517462.Google Scholar
Scandura, M., Iacolina, L. & Apollonio, M. (2011). Genetic diversity in the European wild boar Sus scrofa: phylogeography, population structure and wild × domestic hybridization. Mammalian Reviews 41: 125137.Google Scholar
Slatkin, M. (2008). Linkage disequilibrium – understanding the evolutionary past and mapping the medical future. Nature Reviews in Genetics 9: 477485.Google Scholar
Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585595.Google Scholar
Vernesi, C., Crestanello, B., Pecchioli, E., et al. (2003). The genetic impact of demographic decline and reintroduction in the wild boar (Sus scrofa): a microsatellite analysis. Molecular Ecology 12: 585595.Google Scholar
Vitti, J. J., Grossman, S. R. & Sabeti, P. C. (2013). Detecting natural selection in genomic data. Annual Reviews in Genetics 47: 97120.Google Scholar
White, S. (2011). From globalized pig breeds to capitalist pigs: a study in animal cultures and evolutionary history. Environmental History 16: 94120.Google Scholar
Wilkinson, S., Lu, Z. H., Megens, H. J., et al. (2013). Signatures of diversifying selection in European pig breeds. PLoS Genetics 9: e1003453.Google Scholar
Yalden, D. (1999). The history of British mammals. London: Poyser Natural History.Google Scholar

References

Adlhoch, C., Wolf, A., Meisel, H., et al. (2009). High HEV presence in four different wild boar populations in East and West Germany. Veterinary Microbiology 139: 270278.Google Scholar
Alexandrov, T., Stefanov, D., Kamenov, P., et al. (2013). Surveillance of foot-and-mouth disease (FMD) in susceptible wildlife and domestic ungulates in Southeast of Bulgaria following a FMD case in wild boar. Veterinary Microbiology 166: 8490.Google Scholar
Algers, B., Blokhuis, H., Bøtner, A., et al. (2009). Porcine brucellosis (Brucella suis). Scientific opinion of the Panel on Animal Health and Welfare. The EFSA Journal 1144: 1112.Google Scholar
Altrichter, M., Taber, A., Beck, H., et al. (2012). Range-wide declines of a key Neotropical ecosystem architect, the Near Threatened white-lipped peccary Tayassu pecari. Oryx 46: 8798.Google Scholar
Artois, M., Depner, K. R., Guberti, V., et al. (2002). Classical swine fever (hog cholera) in wild boar in Europe. Revue Scientifique et Technique – Office International des Épizooties 21: 287304.Google Scholar
Arzt, J., Baxt, B., Grubman, M. J., et al. (2011). The pathogenesis of foot-and-mouth disease II: viral pathways in swine, small ruminants, and wildlife; myotropism, chronic syndromes, and molecular virus–host interactions. Transboundary and Emerging Diseases 58: 305326.Google Scholar
Barasona, J. A., VerCauteren, K. C., Saklou, N., Gortazar, C. & Vicente, J. (2013). Effectiveness of cattle operated bump gates and exclusion fences in preventing ungulate multi-host sanitary interaction. Preventive Veterinary Medicine 111: 4250.Google Scholar
Barasona, J., Latham, M., Acevedo, P., et al. (2014). Spatiotemporal interactions between wild boar and cattle: implications for cross-species disease transmission. Veterinary Research 45: 111.Google Scholar
Barman, N. N., Bora, D. P., Tiwari, A. K., et al. (2012). Classical swine fever in the pygmy hog. Revue Scientifique et Technique, Office Nationale des Epizooties, 31: 919930.Google Scholar
Barth, S., Geue, L., Hinsching, A., et al. (2017). Experimental evaluation of faecal Escherichia coli and Hepatitis E Virus as biological indicators of contacts between domestic pigs and Eurasian wild boar. Transboundary and Emerging Diseases 64: 487494.Google Scholar
Blome, S., Gabriel, C. & Beer, M. (2013). Pathogenesis of African swine fever in domestic pigs and European wild boar. Virus Research 173: 122130.Google Scholar
Blomström, A. L., Ståhl, K., Masembe, C., et al. (2012). Viral metagenomic analysis of bushpigs (Potamochoerus larvatus) in Uganda identifies novel variants of Porcine parvovirus 4 and Torque teno sus virus 1 and 2. Virology Journal 9: 192.Google Scholar
Boadella, M., Gortázar, C., Vicente, J. & Ruiz-Fons, F. (2012a). Wild boar: an increasing concern for Aujeszky's disease control in pigs? BMC Veterinary Research 8: 7.Google Scholar
Boadella, M., Barasona, J. A., Pozio, E., et al. (2012b). Spatio-temporal trends and risk factors for Trichinella species infection in wild boar (Sus scrofa) populations of central Spain: a long-term study. International Journal for Parasitology 42: 739745.Google Scholar
Brook, R. & McLachlan, S. (2008). Trends and prospects for local knowledge in ecological and conservation research and monitoring. Biodiversity and Conservation 17: 35013512.Google Scholar
Brook, R. K. & McLachlan, S. M. (2009). Transdisciplinary habitat models for elk and cattle as a proxy for bovine tuberculosis transmission risk. Preventive Veterinary Medicine 91: 197208.Google Scholar
Campbell, T. A., DeYoung, R. W., Wehland, E. M., et al. (2008). Feral swine exposure to selected viral and bacterial pathogens in southern Texas. Journal of Swine Health and Production 16: 312315.Google Scholar
Carpentier, A., Chaussade, H., Rigaud, E., et al. (2012). High Hepatitis E Virus seroprevalence in forestry workers and in wild boars in France. Journal of Clinical Microbiology 50: 28882893.Google Scholar
Carrasco-Garcia, R., Barasona, J., Gortazar, C., et al. (2015). Wildlife and livestock use of extensive farm resources in South Central Spain: implications for disease transmission. European Journal of Wildlife Research 62: 65. doi:10.1007/s10344-015-0974-9Google Scholar
Castro, A., Brombila, T., Bersano, J. & al, S. H. e. (2014). Swine infectious agents in Tayassu pecari and Pecari tajacu tissue samples from Brazil. Journal of Wildlife Diseases 50: 205209.Google Scholar
Chiari, M., Ferrari, N., Bertoletti, M., et al. (2015). Long-term surveillance of Aujeszky's disease in the Alpine wild boar (Sus scrofa). EcoHealth 12(4): 563570. doi: 10.1007/s10393-015-1064-xGoogle Scholar
Corn, J., Lee, R., Erickson, G. & Murphy, C. (1987). Serologic survey for evidence of exposure to vesicular stomatitis virus, pseudorabies virus, brucellosis and leptospirosis in collared peccaries from Arizona. Journal of Wildlife Diseases 23: 551557.Google Scholar
Cowie, C. E., Hutchings, M. R., Barasona, J. A., et al. (2016). Interactions between four species in a complex wildlife: livestock disease community: implications for Mycobacterium bovis maintenance and transmission. European Journal of Wildlife Research 62: 51.Google Scholar
De Freitas, T. T., Keuroghlian, A., Eaton, D., et al. (2010). Prevalence of Leptospira interrogans antibodies in free-ranging Tayassu pecari of the Southern Pantanal, Brazil, an ecosystem where wildlife and cattle interact. Tropical Animal Health and Production 42: 16951703.Google Scholar
Desbiez, A., Santos, S., Keuroghlian, A. & Bodmer, R. E. (2009). Niche partitioning among white-lipped peccaries (Tayassu pecari ), collared peccaries (Pecari tajacu), and feral pigs (Sus scrofa). Journal of Mammalogy 90: 207217.Google Scholar
Dohna, H. z., Peck, D. E., Johnson, B. K., Reeves, A. & Schumaker, B. A. (2014). Wildlife–livestock interactions in a western rangeland setting: quantifying disease-relevant contacts. Preventive Veterinary Medicine 113: 447456.Google Scholar
EFSA (2015). Scientific opinion on African swine fever – EFSA Panel on Animal Health and Welfare (AHAW). EFSA Journal 8(3): 1556.Google Scholar
Everett, H., Crooke, H., Gurrala, R., et al. (2011). Experimental infection of common warthogs (Phacochoerus africanus) and bushpigs (Potamochoerus larvatus) with classical swine fever virus. I: susceptibility and transmission. Transboundary and Emerging Diseases 58: 128134.Google Scholar
Fragoso, J. M. V. (2004). A long-term study of white-lipped peccary (Tayassu pecari) population fluctuations in northern Amazonia – anthropogenic versus “natural” causes. In Silvius, K. M., Bodmer, R. E. & Fragoso, J. M. V. (eds.), People in nature: wildlife conservation in South and Central America. New York, NY: Columbia University Press, pp. 286296.Google Scholar
Gavier-Widen, D., Ståhl, K., Neimanis, A. S., et al. (2015). African swine fever in wild boar in Europe: a notable challenge. Veterinary Record 176: 199200.Google Scholar
Gers, S., Vosloo, W., Drew, T., et al. (2011). Experimental infection of common warthogs (Phacochoerus africanus) and bushpigs (Potamochoerus larvatus) with classical swine fever virus II: a comparative histopathological study. Tranboundary and Emerging Dieases 58: 135144.Google Scholar
Godfroid, J., Garin-Bastuji, B., Saegerman, C. & Blasco, J. M. (2013). Brucellosis in terrestrial wildlife. Revue Scientifique et Technique, Office Nationale des Epizooties 32: 2742.Google Scholar
Gresham, C., Gresham, C., Duffy, M., Faulkner, C. & Patton, S. (2002). Increased prevalence of Brucella suis and pseudorabies virus antibodies in adults of isolated feral swine population in coastal South California. Journal of Wildlife Diseases 38: 653656.Google Scholar
Harmsen, B. J., Foster, R. J., Silver, S. C., Ostro, L. E. T., & Doncaster, C. P. (2009). Spatial and temporal interactions of sympatric jaguars (Panthera onca) and pumas (Puma concolor) in a Neotropical forest. Journal of Mammalogy 90: 612620. doi: 10.1644/08-MAMM-A-140R.1Google Scholar
Hill, D. E., Dubey, J. P., Baroch, J. A., et al. (2014). Surveillance of feral swine for Trichinella spp. and Toxoplasma gondii in the USA and host-related factors associated with infection. Veterinary Parasitology 205: 653665.Google Scholar
Ito, F., Vasconcellos, S. & Bernardi, F. (1998). Evidência sorologica de brucelose e leptospirose e parasitismo por ixodideos em animais silvestres do Pantanal sul mato grossense,. Ars Veterinaria 14: 302310.Google Scholar
Jori, F. (2014). African swine fever and the risks of its spread to new territories and wild pig species. Suiform Soundings 13: 2124.Google Scholar
Jori, F. & Bastos, A. D. S. (2009). Role of wild suids in the epidemiology of African swine fever. EcoHealth 6: 296310.Google Scholar
Jori, F., Gálvez, H., Mendoza, P., Céspedes, M. & Mayor, P. (2009). Monitoring of leptospirosis seroprevalence in a colony of captive collared peccaries (Tayassu tajacu) from the Peruvian Amazon. Research in Veterinary Science 86: 383387.Google Scholar
Jori, F., Brahmbhatt, D., Fosgate, G. T., et al. (2011). A questionnaire-based evaluation of the veterinary cordon fence separating wildlife and livestock along the boundary of the Kruger National Park, South Africa. Preventive Veterinary Medicine 100: 210220.Google Scholar
Jori, F., Vial, L., Penrith, M. L., et al. (2013). Review of the sylvatic cycle of African swine fever in sub-Saharan Africa and the Indian ocean. Virus Research 173: 212227.Google Scholar
Jori, F., Relun, A., Trabucco, B., et al. (2017). Assessment of wild boar/domestic pig interactions and implications for disease risk management in Corsica. Frontiers in Veterinary Science (in press).Google Scholar
Jori, F., Laval, M., Maestrini, O., et al. (2016). Assessment of domestic pigs, wild boars and feral hybrid pigs as reservoirs of Hepatitis E Virus in Corsica, France. Viruses 8: 236; doi:10.3390/v8080236Google Scholar
Kaare, M. T., Picozzi, K., Mlengeya, T., et al. (2007). Sleeping sickness – a re-emerging disease in the Serengeti? Travel Medicine and Infectious Diseases 5: 117124.Google Scholar
Karesh, W. B., Uhart, M., Painter, L., et al. (1998). Health evaluation of white lipped peccary populations in Bolivia. Omaha, NB: American Association of Wildlife Veterinarians, pp. 445449.Google Scholar
Kjaer, L. J., Schauber, E. M. & Nielsen, C. K. (2008). Spatial and temporal analysis of contact rates in female white-tailed deer. The Journal of Wildlife Management 72: 18191825.Google Scholar
Kreizinger, Z., Foster, J. T., Rónai, Z., et al. (2014). Genetic relatedness of Brucella suis biovar 2 isolates from hares, wild boars and domestic pigs. Veterinary Microbiology 172: 492498.Google Scholar
Kukielka, E., Barasona, J. A., Cowie, C. E., et al. (2013). Spatial and temporal interactions between livestock and wildlife in South Central Spain assessed by camera traps. Preventive Veterinary Medicine 112: 213221.Google Scholar
Kukielka, D., Rodriguez-Prieto, V., Vicente, J. & Sánchez-Vizcaíno, J. M. (2015a). Constant Hepatitis E Virus (HEV) circulation in wild boar and red deer in Spain: an increasing concern source of HEV zoonotic transmission. Transboundary and Emerging Diseases 63: e360368. doi: 10.1111/tbed.1231Google Scholar
Kukielka, E., Jori, F., Martínez López, B., et al. (2015b). Evaluation of the wild and domestic pig interactions and their association with African swine fever outbreaks using structured questionnaires and spatio-temporal modelling. In 14th International Conference on Veterinary Epidemiology and Economic, Mérida, Mexico.Google Scholar
Kukielka, E., Jori, F., Martínez López, B., et al. (2016). Interactions between wild and domestic pigs at the interface of Murchison Falls National Park, Northern Uganda. Frontiers in Veterinary Science, 3. https://doi.org/10.3389/fvets.2016.00031Google Scholar
Lahm, S. A., Kombila, M., Swanepoel, R. & Barnes, R. F. (2007). Morbidity and mortality of wild animals in relation to outbreaks of Ebola haemorrhagic fever in Gabon, 1994–2003. Transactions for the Royal Society of Tropical Medicine and Hygiene 101: 6478.Google Scholar
Latham, A. D. M. & Latham, M. C. (2015). The GPS craze: six questions to address before deciding to deploy GPS technology on wildlife. New Zealand Journal of Ecology 39: 143152.Google Scholar
Leslie, D. M. & Huffman, B. A. (2015). Potamochoerus porcus (Artiodactyla: Suidae). Mammalian Species 47: 1531.Google Scholar
Long, J. A., Nelson, T. A., Webb, S. L. & Kenneth, L. G. (2014). A critical examination of indices of dynamic interaction for wildlife telemetry studies. The Journal of Animal Ecology 83: 12161233.Google Scholar
Lord, V. & Lord, R. (1991). Brucella suis infections in collared peccaries in Venezuela. Journal of Wildlife Diseases 27: 477481.Google Scholar
Mannelli, A., Sotgia, S., Patta, C., et al. (1998). Temporal and spatial patterns of African swine fever in Sardinia. Preventive Veterinary Medicine 35: 297306.Google Scholar
Martinez-Lopez, B., Alexandrov, T., Mur, L., Sànchez-Vizcaino, F. & Sànchez-Vizcaino, J. (2014). Evaluation of the spatial patterns and risk factors, including backyard pigs, for classical swine fever occurrence in Bulgaria using a Bayesian model. Geospatial Health 8: 489501.Google Scholar
Massei, G., Roy, S. & Bunting, R. (2011). Too many hogs? A review of methods to mitigate impact by wild boar and feral hogs. Human–Wildlife Interactions 5: 7999.Google Scholar
Meier, R., Ruiz-Fons, F. & Ryser-Degiorgis, M. (2015). A picture of trends in Aujeszky's disease virus exposure in wild boar in the Swiss and European contexts. BMC Veterinary Research 11: 277.Google Scholar
Meijaard, E. (2000) Bearded pig (Sus barbatus). Ecology, conservation status, and research methodology. Bogor, Indonesia: World Wildlife Fund for Nature (WWF), CIFOR and Ecosense Consultants. www.researchgate.net/publication/236898567Google Scholar
Mendoza, A., Céspedes, M., Gálvez, H., Mayor, P. & Jori, F. (2007). Antibodies against Leptospira spp. in captive collared peccaries, Peru. Emerging Infectious Diseases 13: 793794.Google Scholar
Meng, X. J., Lindsay, D. S. & Sriranganathan, N. (2009). Wild boars as sources for infectious diseases in livestock and humans. Philosophical Transactions of the Royal Society of London, B Biological Sciences 364: 26972707, doi: 10.1098/rstb.2009.0086Google Scholar
Meunier, N. V., Sebulime, P., White, R. G. & Kock, R. (2017). Wildlife–livestock interactions and risk areas for cross-species spread of bovine tuberculosis. The Onderstepoort Journal of Veterinary Research 84(1): e1e10. doi:10.4102/ojvr.v84i1.1221Google Scholar
Miguel, E., Grosbois, V., Caron, A., et al. (2013). Contacts and foot and mouth disease transmission from wild to domestic bovines in Africa. Ecosphere 4: 132. http://dx.doi.org/10.1890/ES12-00239.1Google Scholar
Miller, M., Buss, P., De Klerk-Lorist, L., et al. (2015). Application of rapid serologic tests for detection of Mycobacterium bovis infection in free-ranging warthogs (Phacochoerus africanus). Implications for antemortem disease screening. Journal of Wildlife Diseases 52: 180182. doi: 10.7589/2015-07-186.Google Scholar
Miller, R. S. & Sweeney, S. J. (2013). Mycobacterium bovis (bovine tuberculosis) infection in North American wildlife: current status and opportunities for mitigation of risks of further infection in wildlife populations. Epidemiology & Infection 141: 13571370.Google Scholar
Monger, V. R., Stegeman, J. A., Dukpa, K., Gurung, R. B. & Loeffen, W. L. A. (2016). Evaluation of oral bait vaccine efficacy against classical swine fever in village backyard pig farms in Bhutan. Transboundary and Emerging Diseases 63: e211e218.Google Scholar
Mukaratirwa, S., La Grange, L. & Pfukenyi, D. M. (2013). Trichinella infections in animals and humans in sub-Saharan Africa: a review. Acta Tropica 125: 8289.Google Scholar
Müller, T., Hahn, E. C., Tottewitz, F., et al. (2011). Pseudorabies virus in wild swine: a global perspective. Archives of Virology 156: 1691.Google Scholar
Muñoz-Mendoza, M., Marreros, N., Boadella, M., et al. (2013). Wild boar tuberculosis in Iberian Atlantic Spain: a different picture from Mediterranean habitat. BMC Veterinary Research 9: 176.Google Scholar
Mur, L., Boadella, M., Martinez-Lopez, B., et al. (2012). Monitoring of African swine fever in the wild boar population of the most recent endemic area of Spain. Transboundary and Emerging Diseases 59: 526531.Google Scholar
Mur, L., Atzeni, M., Martínez-López, B., et al. (2014). Thirty-five-year presence of African swine fever in Sardinia: history, evolution and risk factors for disease maintenance. Transboundary and Emerging Diseases 63: e165e177. doi: 10.1111/tbed.12264Google Scholar
Nava, A. (2008) Espécies sentinelas para a Mata Atlântica: As conseqüências epidemiológicas da fragmentação florestal no Pontal do Paranapanema. PhD thesis. Universidade de São Paulo (USP), 147 pp.Google Scholar
Nava, A. & Cullen, L. (2003). Peccaries as sentinel species: conservation, health and training in Atlantic Forest Fragments, Brazil. Suiform Soundings 3: 1516.Google Scholar
Nieto-Pelegrín, E., Rivera-Arroyo, B. & Sánchez-Vizcaíno, J. M. (2015). First detection of antibodies against African swine fever virus in faeces samples. Transboundary and Emerging Diseases 62: 594602.Google Scholar
Nugent, G., Gortazar, C. & Knowles, G. (2015). The epidemiology of Mycobacterium bovis in wild deer and feral pigs and their roles in the establishment and spread of bovine tuberculosis in New Zealand wildlife. New Zealand Veterinary Journal 63: 54675467.Google Scholar
OIE (2015) WAHID Disease information. Retrieved from www.oie.int/wahis_2/public/wahid.php/Diseaseinformation/Diseaseoutbreakmaps/ (accessed 9 December 2015).Google Scholar
Okoth, E., Gallardo, C., Macharia, J. M., et al. (2013). Comparison of African swine fever virus prevalence and risk in two contrasting pig-farming systems in south-west and Central Kenya. Preventive Veterinary Medicine 110: 198205.Google Scholar
Oura, C. A. L., Powell, P. P., Anderson, E. & Parkhouse, R. M. E. (1998). The pathogenesis of African swine fever in the resistant bushpig. Journal of General Virology 79: 14391443.Google Scholar
Paes, R. C. D. S., Fonseca Junior, A. A., Monteiro, L. A. R. C., et al. (2013). Serological and molecular investigation of the prevalence of Aujeszky's disease in feral swine (Sus scrofa) in the subregions of the Pantanal wetland, Brazil. Veterinary Microbiology 165: 448454.Google Scholar
Pannwitz, G., Freuling, C., Denzin, N., et al. (2012). A long-term serological survey on Aujeszky's disease virus infections in wild boar in East Germany. Epidemiology and Infection 140: 348–58. doi:10.1017/S0950268811000033Google Scholar
Paton, D. & Greiser-Wilke, I. (2003). Classical swine fever – an update. Research in Veterinary Science 75: 169178.Google Scholar
Paton, D. J., McGoldrick, A., Greiser-Wilke, I., et al. (2000). Genetic typing of classical swine fever virus. Veterinary Microbiology 73: 137157.Google Scholar
Pavio, N., Laval, M., Maestrini, O., et al. (2016). Possible foodborne transmission of Hepatitis E Virus from domestic pigs and wild boars from Corsica. Emerging Infectious Diseases 22: 21972199. doi:10.3201/eid2212.160612Google Scholar
Payne, A., Rossi, S., Lacour, S., et al. (2011). Bilan sanitaire du sanglier vis-à-vis de la trichinellose, de la maladie d'Aujeszky, de la brucellose, de l'hépatite E et des virus influenza porcins en France. Bulletin en Epidémiologie, Santé Animale et Alimentation 44: 28.Google Scholar
Payne, A., Chappa, S., Hars, J., Dufour, B. & Gilot-Fromont, E. (2016). Wildlife visits to farm facilities assessed by camera-traps in a bovine tuberculosis infected area in France. European Journal of Wildlife Disease 62: 3342.Google Scholar
Pérez, J., Fernandez, A. I., Sierra, M. A., et al. (1998). Serological and immunohistochemical study of African swine fever in wild boar in Spain. The Veterinary Record 143: 136139.Google Scholar
Pozio, E., Rinaldi, L., Marucci, G. & Musella, V. e. a. (2009). Hosts and habitats of Trichinella spiralis and Trichinella britovi in Europe. International Journal for Parasitology 39: 7179.Google Scholar
Rahman, H., Chakraborty, A., Deka, P., Narayan, G. & Prager, R. (2001). An outbreak of Salmonella enteritidis infection in pygmy hogs (Sus salvanius). Tropical Animal Health and Production 33: 95102.Google Scholar
Ravaomanana, J., Jori, F., Vial, L., et al. (2011). Assessment of interactions between African swine fever virus, bushpigs (Potamochoerus larvatus), Ornithodoros ticks and domestic pigs in north-western Madagascar. Transboundary and Emerging Diseases 58: 247254.Google Scholar
Real, V. V., Dutra, V., Nakazato, L., et al. (2010). PCR of Salmonella spp., Streptococcus suis, Brucella abortus and Porcine circovirus type 2 in free-living and captive peccaries. Revista Brasileira de Saúde e Produção Animal, Salvador 11(3): 858864.Google Scholar
Reyna-Hurtado, R., Moreira-Ramírez, J. F., Briceño-Méndez, M., et al. (2014). White-lipped peccaries with skin problems in the Maya Forest. Suiform Soundings 13: 2932.Google Scholar
Rivera, G. H., Cárdenas, P. L., Ramírez, V. M., et al. (2013). Infección por orbivirus en huanganas (Tayassu pecari) de Madre de Dios. Revista de Investigaciones Veterinarias del Perú 24: 544550.Google Scholar
Rossi, S., Hars, J., Garin-Bastuji, B., et al. (2008). Résultats de l'enquête nationale sérologique menée chez le sanglier sauvage (2000–2004). Bulletin Epidémiologique, Santé Animale et Alimentation 29: 7.Google Scholar
Rossi, S., Staubach, C., Blome, S., et al. (2015). Controlling of CSFV in European wild boar using oral vaccination: a review. Frontiers in Microbiology 6: 1141.Google Scholar
Rowlands, R. J., Michaud, V., Heath, L., et al. (2008). African swine fever virus isolate, Georgia, 2007. Emerging Infectious Diseases 14: 18701874.Google Scholar
Ruiz-Fons, F. (2017). A review of the current status of relevant zoonotic pathogens in wild swine (Sus scrofa) populations: changes modulating the risk of transmission to humans. Transboundary and Emerging Diseases 64: 6888. doi:10.1111/tbed.12369Google Scholar
Ruiz-Fons, F., Vidal, D., Höfle, U., Vicente, J. & Gortázar, C. (2007). Aujeszky's disease virus infection patterns in European wild boar. Veterinary Microbiology 120: 241250.Google Scholar
Rwego, I. B., Gillespie, T. R., Isabirye-Basuta, G. & Goldberg, T. L. (2008). High rates of Escherichia coli transmission between livestock and humans in rural Uganda. Journal of Clinical Microbiology 46: 31873191.Google Scholar
Sanchez-Vizcaino, J. M., Mur, L. & Martinez-Lopez, B. (2013). African swine fever (ASF): five years around Europe. Veterinary Microbiology 165: 4550.Google Scholar
Sánchez-Vizcaíno, J. M., Mur, L., Gomez-Villamandos, J. C. & Carrasco, L. (2015). An update on the epidemiology and pathology of African swine fever. Journal of Comparative Pathology 152: 921.Google Scholar
Sato, Y., Sato, H., Naka, K., et al. (2011). A nationwide survey of hepatitis E virus (HEV) infection in wild boars in Japan: identification of boar HEV strains of genotypes 3 and 4 and unrecognized genotypes. Archives of Virology 156: 13451358.Google Scholar
Shome, B., Shome, R., Bujarbaruah, K., et al. (2010). Investigation of haemorrhagic enteritis in pygmy hogs (Sus salvanius) from India. Revue Scientifique et Technique, Office Nationale des Epizooties 29: 687693.Google Scholar
Stahl, K., Ogweng, P., Okoth, E., et al. (2014). Understanding the dynamics and spread of African swine fever at the wildlife livestock interface: insights into the potential role of the bushpig Potamochoerus larvatus. Suiform Soundings 13: 2429.Google Scholar
Thiry, D., Mauroy, A., Pavio, N., et al. (2017). Hepatitis E Virus and related viruses in animals. Transboundary and Emerging Diseases 64: 3752. doi:10.1111/tbed.12351Google Scholar
Thomas, L., De Glanville, W., Cook, E. & Fèvre, E. (2013). The spatial ecology of free-ranging domestic pigs (Sus scrofa) in western Kenya. BMC Veterinary Research 9: 46.Google Scholar
Trabucco, B., Charrier, F., Jori, F., et al. (2014). Stakeholder's practices and representations of contact between domestic and wild pigs: a new approach for disease risk assessment? Acta Agriculturae Slovenia 4: 117122.Google Scholar
Trolliet, F., Huynen, M., Vermeulen, C. & Hambuckers, A. (2014). Use of camera traps for wildlife studies. A review. Biotechnologie Agronomie Société et Environnement 18(3): 446454.Google Scholar
Vergne, T., Gogin, A. & Pfeiffer, D. U. (2017). Statistical exploration of local transmission routes for African swine fever in pigs in the Russian Federation, 2007–2014. Transboundary and Emerging Diseases 64: 504512. doi: 10.1111/tbed.12391Google Scholar
Watarai, M., Ito, N., Omata, Y. & Ishiguro, N. (2006). A serological survey of Brucella spp. in free-ranging wild boar (Sus scrofa leucomystax) in Shikoku, Japan. Journal of Veterinary Medical Science 68: 11391141.Google Scholar
Weaver, G. V., Domenech, J., Thiermann, A. R. & Karesh, W. B. (2013). Foot and mouth disease: a look from the wild side. Journal of Wildlife Diseases 49: 759785.Google Scholar
Wiethoelter, A. K., Beltrán-Alcrudo, D., Kock, R. & Mor, S. M. (2015). Global trends in infectious diseases at the wildlife–livestock interface. Proceedings of the National Academy of Sciences 112: 96629667.Google Scholar
Woodford, M. H. (1982). Tuberculosis in wildlife in the Ruwenzori National Park, Uganda (Part II). Tropical Animal Health and Production 14: 155160.Google Scholar
Woodger, N. G. & Hosegood, O. M. (2011). PMWS associated with diarrhoea and illthrift in a captive red river hog (Potamochoerus porcus). The Veterinary Record 168: 512.Google Scholar
Wu, N., Abril, C., Hinicacute, V., et al. (2011). Free-ranging wild boar: a disease threat to domestic pigs in Switzerland? Journal of Wildlife Diseases 47: 868879.Google Scholar
Wu, N., Abril, C., Thomann, A., et al. (2012). Risk factors for contacts between wild boar and outdoor pigs in Switzerland and investigations on potential Brucella suis spill-over. BMC Veterinary Research 8: 112.Google Scholar
Wyckoff, C., Henke, S. E., Campbell, T., Hewitt, D. G. & Vercauteren, K. C. (2009). Feral swine contact with domestic swine: a serologic survey and assessment of potential for disease transmission. Journal of Wildlife Diseases 45: 422429.Google Scholar

References

Arrington, D. A. & Koebel, J. W. (1999). Effects of rooting by feral hogs, Sus scrofa L. on the structure of a flood plain vegetation assemblage. Wetlands 19(3): 535544.Google Scholar
Barrios-Garcia, M. N. & Ballari, S. A. (2012). Impact of wild boar (Sus scrofa) in its introduced and native range: a review. Biological Invasions 14(11): 22832300.Google Scholar
Barrios-Garcia, M. N. & Simberloff, D. (2013). Linking the pattern to the mechanism: how an exotic mammal promotes plant invasions. Austral Ecology 38(8): 884890.Google Scholar
Barrios-García, M. N., Classen, A. T. & Simberloff, D. (2014). Disparate responses of above and belowground properties to soil disturbance by an invasive mammal. Ecosphere 5(4): 113.Google Scholar
Belsky, A. J. (1987). The effects of grazing: confounding of ecosystem, community and organism scales. American Naturalist 129: 777783.Google Scholar
Bengsen, A. J., Gentle, M. N., Mitchell, J. L., Pearson, H. E. & Saunders, G. R. (2014). Impacts and management of wild pigs Sus scrofa in Australia. Mammal Review 44(2): 135147.Google Scholar
Beshkov, V. (1984). [On the distribution, relative abundance and protection of tortoises in Bulgaria]. Ecology, BAS, Sofia, 14: 1434. [In Bulgarian.]Google Scholar
Borczyński, M. (1973). [The effect of rooting by wild boars on the species composition and number proportions in the herb layer under the condition of three types of environment.] Prace Komisji Nauk Rolniczych i Komisji Nauk Leśnych 36: 318. [In Polish.]Google Scholar
Boughton, E., Boughton, H. & Raoul, K. (2014). Modification by an invasive ecosystem engineer shifts a wet prairie to a monotypic stand. Biological Invasion 16(10): 21052114.Google Scholar
Bratton, S. P. (1974). The effect of the European wild boar (Sus scrofa) on the high-elevation vernal flora in Great Smoky Mountains National Park. Bulletin of the Torrey Botanical Club 101(4): 198206.Google Scholar
Bratton, S. P. (1975). The effect of the European wild boar, Sus scrofa, on Gray Beech Forest in the Great Smoky Mountains. Ecology 56(6): 13561366.Google Scholar
Bromley, G. F. (1964). [Ussuri wild boar. The science.] Moscow, 105 pp. [In Russian.]Google Scholar
Brunet, J., Hedwall, P. O., Holmstrom, E., & Wahlgren, E. (2016). Disturbance of the herbaceous layer after invasion of an eutrophic temperate forest by wild boar. Nordic Journal of Botany 34: 120128.Google Scholar
Bueno, C. G. & Jimenez, J. J. (2014). Livestock grazing activities and wild boar rooting affect alpine earthworm communities in the Central Pyrenees (Spain). Applied Soil Ecology 83: 7178.Google Scholar
Bueno, C. G., Barrio, I. C., García-González, R., Alados, C. L. & Gómez García, D. (2011a). Assessment of wild boar rooting on ecological and pastoral values of alpine Pyrenean grasslands. Pirineos. Revista de Ecología de Montaña 166: 5167.Google Scholar
Bueno, C. G., Reiné, R., Alados, C. L. & Gómez-García, D. (2011). Effects of large wild boar disturbances on alpine soil seed banks. Basic and Applied Ecology 12(2): 125133.Google Scholar
Bueno, C. G., Azorín, J., Gómez-García, D., Alados, C. L. & Badía, D. (2013). Occurrence and intensity of wild boar disturbances: effects on the physical and chemical soil properties of alpine grasslands. Plant Soil 373: 243256.Google Scholar
Bulakhov, V. (1975). [Influence of burrowing activity of wild boar on the physico-chemical properties of soils of biogeocenotic forest ecosystems.] In Hoofed animals. Fauna of USSR: ecology, morphology, utilization, and conservation, Moscow: Nauka, 1975, pp. 159161. [In Russian.]Google Scholar
Burrascano, S., Giarrizzo, E., Bonacquisti, S., et al. (2014). Quantifying Sus scrofa rooting effects on the understorey of the deciduous broadleaf forests in Castelporziano Estate (Italy). Rendiconti Lincei 26(3): 317324.Google Scholar
Carpio, A. J., Castro-López, J., Guerrero-Casado, J., et al. (2014a). Effect of wild ungulate density on invertebrates in a Mediterranean ecosystem. Animal Biodiversity and Conservation 37(2): 115125.Google Scholar
Carpio, A. J., Guerrero-Casado, J., Tortosa, F. S., & Vicente, J. (2014b). Predation of simulated red-legged partridge nests in big game estates from South Central Spain. European Journal of Wildlife Research 60(2): 391394.Google Scholar
Challies, C. N. (1975). Feral pigs (Sus scrofa) on Auckland Island: status and effects on vegetation and nesting sea birds. New Zealand Journal of Zoology 2(4): 479490.Google Scholar
Chavarria, P. M., Lopez, R. R., Bowser, G. & Silvy, N. J. (2007). A landscape-level survey of feral hog impacts to natural resources of the Big Thicket National Preserve. Human–Wildlife Conflicts 1(2): 199204.Google Scholar
Cocca, G., Sturaro, E., Dal Compare, L. & Ramanzin, M. (2007). Wild boar (Sus scrofa) damages to mountain grassland. A case study in the Belluno province, eastern Italian Alps. Italian Journal of Animal Science 6(1): 845847.Google Scholar
Cole, R. J. & Litton, C. M. (2014). Vegetation response to removal of non-native feral pigs from Hawaiian tropical montane wet forest. Biological Invasions 16(1): 125140.Google Scholar
Cole, R. J., Litton, C. M., Koontz, M. J. & Loh, R. K. (2012). Vegetation recovery 16 years after feral pig removal from a wet Hawaiian forest. Biotropica 44(4): 463471.Google Scholar
Cuevas, M. F., Novillo, A., Campos, C., Dacar, M. A. & Ojeda, R. A. (2010). Food habits and impact of rooting behavior of the invasive wild boar, Sus scrofa, in a protected area of the Monte Desert, Argentina. Journal of Arid Environments 74: 15821585.Google Scholar
Cuevas, M. F., Mastrantonio, L., Ojeda, R. A. & Jaksic, F. M. (2012). Effects of wild boar disturbance on vegetation and soil properties in the Monte Desert, Argentina. Mammalian Biology 77: 299306.Google Scholar
Cushman, J. H., Tierney, T. A. & Hinds, J. M. (2004). Variable effects of feral pig disturbances on native and exotic plants in a Californian grassland. Ecological Applications 14(6): 17461756.Google Scholar
Desbiez, A., Santos, S., Keuroghlian, A. & Bodmer, R. E. (2009). Niche partitioning among white-lipped peccaries (Tayassu pecari), collared peccaries (Pecari tajacu), and feral pigs (Sus scrofa). Journal of Mammalogy 90: 119128.Google Scholar
Donlan, C. J., Campbell, K., Cabrera, W., et al. (2007). Recovery of the Galapagos rail (Laterallus spilonotus) following the removal of invasive mammals. Biological Conservation 138: 520524.Google Scholar
Doupé, R. G., Schaffer, J., Knott, M. J., & Dicky, P. W. (2009). A description of freshwater turtle habitat destruction by feral pigs in tropical north-eastern Australia. Herpetological Conservation and Biology 4(3): 331339.Google Scholar
Doupé, R. G., Mitchell, J., Knott, M. J., Davis, A. M. & Lymbery, A. J. (2010). Efficacy of exclusion fencing to protect ephemeral floodplain lagoon habitats from feral pigs (Sus scrofa). Wetlands Ecology and Management 18: 6978.Google Scholar
Dovrat, G., Perevolotsky, A. & Ne'eman, G. (2012). Wild boars as seed dispersal agents of exotic plants from agricultural lands to conservation areas. Journal of Arid Environments 78: 4954.Google Scholar
Dovrat, G., Perevolodsky, A. & Ne'eman, G. (2014). The response of Mediterranean herbaceous community to soil disturbance by native wild boars. Plant Ecology 215: 531541.Google Scholar
Dunkell, D., Bruland, G., Evensen, C. & Litton, M. (2011). Runoff, sediment transport and effects of feral pig (Sus scrofa) exclusion in a forested Hawaiian watershed. Pacific Science 65(2): 175194.Google Scholar
Dvornikov, M. & Dvornikova, N. (1989). On the effect of wild boar rooting activity on the herbaceous vegetation of forest biocenoses of Ilmensky Nature Reserve. In Ecology, morphology, management and conservation of wild ungulates 2. Moscow, pp. 200201. [In Russian.]Google Scholar
Ebert, C., Knauer, F., Spielberger, B., Thiele, B. & Hohmann, U. (2012). Estimating wild boar Sus scrofa population size using faecal DNA and capture–recapture modelling. Wildlife Biology 18: 142152.Google Scholar
Emiljanova, L. (1989). The change in the productivity of the soil cover in the Poro wild boar (Sus scrofa L.) in forest and analog ecosystems. In Ecology, morphology, management and conservation of wild ungulates 2. Moscow, pp. 204205. [In Russian.]Google Scholar
Engeman, R. M., Smith, H. T., Severson, R., et al. (2004). The amount and economic cost of feral swine damage to the last remnant of a basin marsh system in Florida. Journal for Nature Conservation 12(3): 143147.Google Scholar
Engeman, R. M., Stevens, A., Allen, J., et al. (2007). Feral swine management for conservation of an imperiled wetland habitat: Florida's vanishing seepage slopes. Biological Conservation 134: 440446.Google Scholar
Engeman, R. M., Massei, G., Sage, M., & Gentle, M. N. (2013). Monitoring wild pig populations: a review of methods. Environmental Science and Pollution Research 20(11): 80778091.Google Scholar
Estivgneev, O. I., Korotkov, V. N., Braslavskaja, T. Yu. & Chupachenko, V. G. (1999). Wild boar and cyclic microsuccessions in the herbaceous cover of broad-leaved forests in Nerusso-Desnjansk woodlands. Bulletin of Moscow Society of Naturalists. Biological Series 104(6): 38. [In Russian.]Google Scholar
Fagiani, S., Fipaldini, D., Santarelli, L., et al. (2014). Monitoring protocols for the evaluation of the impact of wild boar (Sus scrofa) rooting on plants and animals in forest ecosystems. Hystrix 25: 18.Google Scholar
Fedosenko, A. & Zirjakowyj, V. (1984). [Wild boar] (Sus scrofa Linnaeus 1758). In Mlekopitaustie Kazahstana. Alma Ata: Nauka, pp. 146187. [In Russian.]Google Scholar
Filonov, K. (1989). Ungulates and large predators in Wildlife Reserves. Moscow: Nauka, [In Russian with English summary.]Google Scholar
Focardi, S., Capizzi, D. & Monetti, D. (2000). Competition for acorns among wild boar (Sus scrofa) and small mammals in a Mediterranean woodland. Journal of Zoology 250(3): 329334.Google Scholar
Focardi, S., Gaillard, J. M., Ronchi, F. & Rossi, S. (2008). Survival of wild boars in a variable environment: unexpected life-history variation in an unusual ungulate. Journal of Mammalogy 89(5): 11131123.Google Scholar
Fordham, D., Georges, A., Corey, B. & Brook, B. W. (2006). Feral pig predation threatens the indigenous harvest and local persistence of snake-necked turtles in northern Australia. Biological Conservation 133(3): 379388.Google Scholar
Franzetti, B., Ronchi, F., Marini, F., et al. (2012). Nocturnal line transect sampling of wild boar (Sus scrofa) in a Mediterranean forest: long-term comparison with capture–mark–resight population estimates. European Journal of Wildlife Research 58(2): 385402.Google Scholar
Fujinuma, J. & Harrison, R. D. (2012). Wild pigs (Sus scrofa) mediate large-scale edge effects in a lowland tropical rainforest in Peninsular Malaysia. PLoS ONE 7(5): e37321.Google Scholar
Gamelon, M., Gaillard, J-M., Servanty, S., et al. (2012). Making use of harvest information to examine alternative management scenarios: a body weight-structured model for wild boar. Journal of Applied Ecology 49: 833841.Google Scholar
Genard, M. & Lescourret, F. (1985). Le sanglier (Sus scrofa scrofa L.) et les diaspores dans le sud de la France. Revue d'Ecologie (Terre Vie) 40: 343353. [In French.]Google Scholar
Génard, M., Lescourret, F. & Durrieu, G. (1988). Mycophagie chez le Sanglier et hypothèses sur son rôle dans la dissémination des spores de champignons hypogés. Canadian Journal of Zoology 66: 23242327.Google Scholar
Genov, P. (1981). Significance of natural biocenoses and agrocenoses as the source of food for wild boar (Sus scrofa L.). Ecologia Polska 29: 117136.Google Scholar
Genov, P. & Ahmed, A. (2014). Cicada orni L. in the food of wild boar in the Regional Park Maremma – Toscana, Italy. Ecologia Balkanica 5: 7173.Google Scholar
Gómez, J. M. & Hódar, J. A. (2008). Wild boar (Sus scrofa) affect the recruitment rate and spatial distribution of holm oak (Quercus ilex). Forest Ecology and Management 256: 13841389.Google Scholar
Gómez, J. M., García, D. & Zamora, R. (2003). Impact of vertebrate acorn- and seedling-predators on a Mediterranean Quercus pyrenaica forest. Forest Ecology and Management 180: 125134.Google Scholar
Groot-Bruinderink, G. W. T. A. & Hazebroek, E. (1996). Wild boar (Sus scrofa scrofa L.) rooting and forest regeneration on podzolic soils in the Netherlands. Forest Ecology and Management 88: 7180.Google Scholar
Haaverstad, O., Hjeljord, O. & Wam, H. K. (2014). Wild boar rooting in a northern coniferous forest – minor silviculture impact. Scandinavian Journal of Forest Research 29(1): 9095.Google Scholar
Haber, A. (1952). In defense of the wild boar. The Polish Hunter 6: 58. [In Polish.]Google Scholar
Hegel, C. G. Z. & Marini, M. Â. (2013). Impact of the wild boar, Sus scrofa, on a fragment of Brazilian Atlantic Forest. Neotropical Biology and Conservation 8(1): 1724.Google Scholar
Heinken, T. & Raudnitschka, D. (2002). Do wild ungulates contribute to the dispersal of vascular plants in central European forests by epizoochory? A case study in NE Germany. Forstwissenschaftliches Centralblatt 121(4): 179194.Google Scholar
Hone, J. (2002). Feral pigs in Namadgi National Park, Australia: dynamics, impacts and management. Biological Conservation 105: 231242.Google Scholar
Howe, T. D., Singer, F. J. & Ackerman, B. B. (1981). Forage relationships of European wild boar invading northern hardwood forest. Journal of Wildlife Management 45(3): 748754.Google Scholar
Ickes, K., Dewalt, S. J. & Appanah, S. (2001). Effects of native pigs (Sus scrofa) on woody understorey vegetation in a Malaysian lowland rain forest. Journal of Tropical Ecology 17: 191206.Google Scholar
Ickes, K., Dewalt, S. J. & Thomas, S. C. (2003). Resprouting of woody saplings following stem snap by wild pigs in a Malaysian rain forest. Journal of Ecology 91: 222233.Google Scholar
Ickes, K., Paciorek, C. & Thomas, S. (2005). Impacts of nest construction by native pigs (Sus scrofa) on lowland Malaysian rain forest saplings. Ecology 86: 15401547.Google Scholar
Janilajtis, Z. (1984). The influence of wild boar on anthills. Proceeedings of the Academy of Sciences of the Republic of Belarus, Series of Biological Sciences 2: 112113.Google Scholar
Jolley, D., Ditchkoff, S., Sparklin, B., et al. (2010). Estimate of herpetofauna depredation by a population of wild pigs. Journal of Mammalogy 91: 519524.Google Scholar
Jones, C. G., Lawton, J. H. & Shachak, M. (1997). Positive and negative effects of organism as physical ecosystem engineers. Ecology 78: 19461957.Google Scholar
Kaller, M. D. & Kelso, W. E. (2003). Effects of feral swine on water quality in a coastal bottomland stream. Proceedings of the Annual Conference of the Southeastern Association of Fish and Wildlife Agencies 57: 291298.Google Scholar
Kaller, M. D. & Kelso, W. E. (2006). Swine activity alters invertebrate and microbial communities in a Coastal Plain watershed. American Midland Naturalist 156(1): 163177.Google Scholar
Kaller, M. D., Hudson, J. D. III, Achberger, E. C. & Kelso, W. E. (2007). Feral hog research in western Louisiana: expanding populations and unforeseen consequences. Human–Wildlife Conflicts 1(2): 168177.Google Scholar
Kaplan, D. (2005). The enigma of the establishment of Quercus ithaburensis park forest in northern Israel: co-evolution of wild boar and men? Wildlife Biology in Practice 1(2): 95107.Google Scholar
Koehler, W. (1954). Possibilities of using the wild boar within the biological method. Rocznik Nauk Leśnich 4(111): 125140 [In Polish.]Google Scholar
Kotanen, P. M. (1995). Responses of vegetation to changing regime of disturbance: effects of feral pigs in a Californian coastal prairie. Ecography 18(2): 190199.Google Scholar
Krull, Ch., Choquenot, D., Burns, B. & Stanley, M. (2013). Feral pigs in a temperate rainforest ecosystem: disturbance and ecological impacts. Biological Invasions 15: 21932204.Google Scholar
Kuiters, A. T. & Slim, P. A. (2002). Regeneration of mixed deciduous forest in a Dutch forest–heathland, following a reduction of ungulate densities. Biological Conservation 105(1): 6574.Google Scholar
Lacki, M. J. & Lancia, R. A. (1986). Effects of wild pigs on beech growth in Great Smoky Mountains National Park. The Journal of Wildlife Management 50(4): 655659.Google Scholar
Lebedeva, L. (1956). [On the composition of summer fed wild boar in the mountainous area of Greater Caucasus Reserve.] Učebnie zapiski Učebnie zapiski Mskogo Gosudarstvenogo Pedagogičevskogo Instituta. 61(4–5): 105271. [In Russian.]Google Scholar
Lebedeva, L. & Kachanova, A. (1955). [On feeding and rooting activity boar in the forest reserve Belovezha]. Učebnie zapiski Mskogo Gosudarstvenogo Pedagogičevskogo Instituta 38(3): 2345. [In Russian.]Google Scholar
Lincoln, N. K. (2014). Effect of various monotypic forest canopies on earthworm biomass and feral pig rooting in Hawaiian wet forests. Forest Ecology and Management 331: 7984.Google Scholar
Lubcenko, K. (1973). [Boar of Voronesskom Reserve]. Bulletin MOIP, Biologia 78(3): 1729. [In Russian.]Google Scholar
Lyang, D. & Lee, K. (2010). Responses of an herbaceous community to wild boar (Sus scrofa coreanus Heude) disturbance in a Quercus mongolica forest at Mt. Jeombong, Korea. Journal of Ecology and Field Biology 33(3): 205216.Google Scholar
Lynes, B. C. & Campbell, S. D. (2000). Germination and viability of mesquite (Prosopis pallida) seed following ingestion and excretion by feral pigs (Sus scrofa). Tropical Grasslands 34: 125128.Google Scholar
Massei, G. & Genov, P. (2004). The environmental impact of wild boar. Galemys 16: 135145.Google Scholar
Massei, G., Kindberg, J., Licoppe, A., et al. (2015). Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Management Science 71(4): 492500.Google Scholar
Medway, D. (2001). Pigs and petrels on the Poor Knights islands. New Zealand Natural Sciences 26: 8790.Google Scholar
Melstrom, R. T. (2014). Managing apparent competition between the feral pigs and native foxes of Santa Cruz Island. Ecological Economics 107: 157162.Google Scholar
Mitchell, J., Dorney, W., Mayer, R. & McIlroy, J. (2008). Ecological impacts of feral pig diggings in north Queensland rainforests. Wildlife Research 34(8): 603608.Google Scholar
Mohr, D., Cohnstaedt, L. W. & Topp, W. (2005). Wild boar and red deer affect soil nutrients and soil biota in steep oak stands of the Eifel. Soil Biology and Biochemistry 37(4): 693700.Google Scholar
Moody, A. & Jones, J. A. (2000). Soil response to canopy position and feral pig disturbance beneath Quercus agrifolia on Santa Cruz Island, California. Applied Soil Ecology 14: 269281.Google Scholar
Morelle, K., Lehaire, F. & Lejeune, P. (2014). Is wild boar heading towards movement ecology? A review of trends and gaps. Wildlife Biology 20: 196205.Google Scholar
Murphy, M. J., Inman-Narahari, F., Ostertag, R., & Litton, C. M. (2014). Invasive feral pigs impact native tree ferns and woody seedlings in Hawaiian forest. Biological Invasions 16(1): 6371.Google Scholar
Palacio, S., Bueno, C. G., Azorín, J., Maestro, M. & Gómez-García, D. (2013). Wild-boar disturbance increases nutrient and C stores of geophytes in subalpine grasslands. American Journal of Botany 100(9): 17901799.Google Scholar
Parkes, J. P., Easdale, T. A., Williamson, W. M. & Forsyth, D. M. (2015). Causes and consequences of ground disturbance by feral pigs (Sus scrofa) in a lowland New Zealand conifer–angiosperm forest. New Zealand Journal of Ecology 39(1): 3442.Google Scholar
Pavlov, P. & Edwards, E. (1995). Feral pig ecology in Cape Tribulation National Park, North Queensland, Australia. Ibex, Journal of Mountain Ecology 3: 148151.Google Scholar
Picard, M. & Baltzinger, C. (2012). Hitch-hiking in the wild: should seeds rely on ungulates? Plant Ecology and Evolution 145(1): 2430.Google Scholar
Piroznikow, E. (1998). The influence of natural and experimental disturbance on emergence and survival of seedlings in an oak–linden–hornbeam (Tilio–Carpinetum) forest. Polish Journal of Ecology 46: 137156.Google Scholar
Plhal, R., Kamler, J., Homolka, M. & Adamec, Z. (2011). An assessment of the applicability of photo trapping to estimate wild boar population density in a forest environment. Folia Zoologica 60: 237246.Google Scholar
Plhal, R., Kamler, J. & Homolka, M. (2014). Faecal pellet group counting as a promising method of wild boar population density estimation. Acta Theriologica 59: 561569.Google Scholar
Pokrovsky, V. (1950). [Wild boar and muskrats in the river delta Amu Dary]. Priroda 7: 7172. [In Russian.]Google Scholar
Rakov, N. V. (1970). Causes of mortality of the wild boar and its interrelation with predators in the Amur territory. Zoologicheskii Zhurnal 49(8): 12201228.Google Scholar
Risch, A. C., Wirthner, S., Busse, M. D., Page-Dumroese, D. S. & Schütz, M. (2010). Grubbing by wild boars (Sus scrofa L.) and its impact on hardwood forest soil carbon dioxide emissions in Switzerland. Oecologia 164: 773784.Google Scholar
Roda, F. (2014). Impact du sanglier sauvage (Sus scrofa) sur le oiseaux nicheurs de Provence. HAL-01022400v1. [In French.]Google Scholar
Roemer, G. W., Coonan, T. J., Garcelon, D. K., Bascompte, J. & Laughrin, L. (2001). Feral pigs facilitate hyperpredation by golden eagles and indirectly cause the decline of the island fox. Animal Conservation 4(4): 307318.Google Scholar
Rusakov, O. S. & Timofeeva, E. K. (1984). Wild boar: ecology, resources and economic significance in the north-west USSR. Leningrad: Leningrad University Press, pp. 1204. [In Russian.]Google Scholar
Salerni, E., Gardin, L., Baglioni, F. & Perini, C. (2013). Effects of wild boar grazing on the yield of summer truffle (Tuscany, Italy). Acta Mycologica 48(1): 7380.Google Scholar
Sanguinetti, J. & Kitzberger, T. (2010). Factors controlling seed predation by rodents and non-native Sus scrofa in Araucaria araucana forests: potential effects on seedling establishment. Biological Invasions 12: 689706.Google Scholar
Saniga, M. (2002). Nest loss and chick mortality in capercaillie (Tetrao urogallus) and hazel grouse (Bonasa bonasia) in West Carpathians. Folia Zoologica 51(3): 205214.Google Scholar
Schauss, M. E., Coletto, H. J. & Kutilek, M. J. (1990). Population characteristics of wild pigs, Sus scrofa, in eastern Santa Clara County, California. California Fish and Game 76(2): 6877.Google Scholar
Selva, N., Berezowska-Cnota, T. & Elguero-Claramunt, I. (2014). Unforeseen effects of supplementary feeding: ungulate baiting sites as hotspots for ground-nest predation. PLoS ONE 9(3): e90740.Google Scholar
Servanty, S., Gaillard, J-M., Ronchi, F., et al. (2011). Influence of harvesting pressure on demographic tactics: implications for wildlife management. Journal of Applied Ecology 48: 835843.Google Scholar
Siemann, E., Carrillo, J., Gabler, C., Zipp, R. & Rogers, W. (2009). Experimental test of the impacts of feral hogs on forest dynamics and processes in the southeastern US. Forest Ecology and Management 258: 546553.Google Scholar
Sierra, C. (2001). El cerdo cimarró (Sus scrofa, Suidae) en la Isla del Coco, Costa Rica: Composición de su dieta, estado reproductivo y genética. Revista de Biologia Tropical 49: 11471157. [In Spanish.]Google Scholar
Sims, N. K., John, E. A. & Stewart, A. J. (2014). Short-term response and recovery of bluebells (Hyacinthoides non-scripta) after rooting by wild boar (). Plant Ecology 215(12): 14091416.Google Scholar
Singer, F. J., Swank, W. T. & Clebsch, E. E. C. (1984). Effects of wild pig rooting in a deciduous forest. Journal of Wildlife Management 48(2): 464473.Google Scholar
Śliwa, E. (1956). The role of wild boar in the control of insect pests of the forest. Łowiec polski 6: 11. [In Polish.]Google Scholar
Sludskij, A. (1956). Wild boar morphology, ecology, economic and epidemiological importance. Alma Ata Kazakhstan: The Academy of Sciences of the Kazakh SSR, pp. 1200. [In Russian.]Google Scholar
Solomatin, A. (1972). Boar in Turgai plateau and the natural environment. Bulletin of Moscow Society of Naturalists 48: 238251. [In Russian.]Google Scholar
Stone, C. (1991). Feral pig (Sus scrofa) research and management in Hawaii. In Spitz, F. & Barrett, R. H. (eds.), Biology of Suidae. Briancon, France: Imprimerie des Escartons, pp. 141154.Google Scholar
Sweitzer, R. A. & Van Vuren, D. H. (2002). Rooting and foraging effects of wild pigs on tree regeneration and acorn survival in California's oak woodland ecosystem. USDA Forest Service General Technical Reports PSW-GTR 184: 219231.Google Scholar
Taylor, D. L., Leung, L. P. & Gordon, I. J. (2011). The impact of feral pigs (Sus scrofa) on an Australian lowland tropical rainforest. Wildlife Research 38(5): 437445.Google Scholar
Tierney, T. A. & Cushman, J. H. (2006). Temporal changes in native and exotic vegetation and soil characteristics following disturbances by feral pigs in a California grassland. Biological Invasions 8(5): 10731089.Google Scholar
Timofeeva, E. (1980). Effect of wild boar on the forest-steppe vegetation with oak predominance. Hoofed animals. In Fauna of USSR: ecology, morphology, utilization, and protection. Moskow: Nauka, pp. 207208. [In Russian.]Google Scholar
Tsarev, S. (1979). Seasonal variations of the wild boar rest places. Vestnik Leningradskogo Universiteta Biologiya 4(21): 2228. [In Russian.]Google Scholar
Vanschoenwinkel, B., Waterkeyn, A., Vandecaetsbeek, T., et al. (2008). Dispersal of freshwater invertebrates by large terrestrial mammals: a case study with wild boar (Sus scrofa) in Mediterranean wetlands. Freshwater Biology 53: 22642273.Google Scholar
Voronin, A. (1975). Boar adapting to the conditions of the southern Podmoscovie. Hoofed animals. In Fauna of USSR: ecology, morphology, utilization, and protection. Moscow: Nauka, pp. 7273. [In Russian.]Google Scholar
Welander, J. (1995). Are wild boars a threat to the Swedish flora? Ibex, Journal of Mountain Ecology 3: 165167.Google Scholar
Wilcox, J. T. & Van Vuren, D. H. (2009). Wild pigs as predators in oak woodlands of California. Journal of Mammalogy 90: 114118.Google Scholar
Wirthner, S., Frey, B., Busse, M. D., Schütz, M. & Risch, A. C. (2011). Effects of wild boar (Sus scrofa L.) rooting on the bacterial community structure in mixed-hardwood forest soils in Switzerland. European Journal of Soil Biology 47: 296302.Google Scholar
Wirthner, S., Schütz, M., Page-Dumroese, D. S., et al. (2012). Do changes in soil properties after rooting by wild boars (Sus scrofa) affect understory vegetation in Swiss hardwood forests? Canadian Journal of Forest Research 42(3): 585592.Google Scholar
Źila, B. (1955). Forest management in Topolčansk. Economic importance of wild boar in the forest biocenosis. Les 2: 117121. [In Slovak.]Google Scholar

References

Aide, T. M., Clark, M. L., Grau, H. R., et al. (2013). Deforestation and reforestation of Latin America and the Caribbean (2001–2010). Biotropica 45: 262271.Google Scholar
Altrichter, M., Taber, A., Noss, A., Maffei, L. & Campos, J. (2015). Catagonus wagneri. The IUCN Red List of Threatened Species 2015: e.T4015A72587993. http://dx.doi.org/10.2305/IUCN.UK.2015-2.RLTS.T4015A72587993.en. Downloaded 17 October 2016.Google Scholar
Altrichter, M., Desbiez, A., Beck, H., Yanosky, A. & Campos, J. (2016). Chacoan peccary Catagonus wagneri conservation strategy. Suiform Soundings 15(1): 4452.Google Scholar
Anonymous, . (1916). Tijdschrift ‘De Prins’. 2 September 1916. Uitgeverij N.J. Boon, Amsterdam.Google Scholar
Asa, C. S. & Porton, I. J. (2010). Contraception as a management tool for controlling surplus animals. In Kleiman, D. G., Thompson, K. V. & Bear, C. K. (eds.), Wild mammals in captivity – principles and techniques for zoo management. 2nd ed. Chicago, IL: The University of Chicago Press, pp. 469482.Google Scholar
AZA (2014). 2014 Annual Report on Conservation and Science – Highlights. Association of Zoos and Aquariums. www.aza.org/assets/2332/aza_arcshighlights_2014_web.pdfGoogle Scholar
Ballou, J. D., Lacy, R.C. & Pollak, J. P. (2010a). PMx: software for demographic and genetic analysis and management of pedigreed populations. Brookfield, IL: Chicago Zoological Society.Google Scholar
Ballou, J. D., Lees, C., Faust, L. J., et al. (2010b). Demographic and genetic management of captive populations. In Kleiman, D. G., Thompson, K. V. & Bear, C. K. (eds.), Wild mammals in captivity – principles and techniques for zoo management. 2nd ed. Chicago, IL: The University of Chicago Press, pp. 219252.Google Scholar
Barnosky, A. D., Matzke, N., Tomiya, S., et al. (2011). Has the Earth's sixth mass extinction already arrived? Nature 471: 5157.Google Scholar
Barongi, R., Fisken, F. A., Parker, M. & Gusset, M. (eds.) (2015). Committing to conservation: The World Zoo and Aquarium Conservation Strategy. Gland: WAZA Executive Office.Google Scholar
Bingaman Lackey, L. (2010). Records, studbooks, regional zoo associations, and ISIS. In Kleiman, D. G., Thompson, K. V. & Bear, C. K. (eds.), Wild mammals in captivity – principles and techniques for zoo management. 2nd ed. Chicago, IL: The University of Chicago Press, pp. 504510.Google Scholar
Boitard, P. (1851). Le Jardin des Plantes: description et murs des mammifères de la Menagerie et du Museum d'histoire naturelle. Paris: G. Barba.Google Scholar
Bulk, S. (2014). News from the conservation breeding activities for the Javan Warty Pig in Cikananga. Suiform Soundings 13(1): 56.Google Scholar
Byers, O., Lees, C., Wilcken, J. & Schwitzer, C. (2013). The ‘One Plan Approach’: the philosophy and implementation of CBSG's approach to integrated species conservation planning. WAZA Magazine 14: 25.Google Scholar
Cardozo, R., Caballero, J., Arévalos, S. & Palacios, F. (2014). Informe Técnico: Resultados del Monitoreo Mensual de los Cambios de Uso de la Tierra, Incendios e Inundaciones en el Gran Chaco Americano. Periodo de Monitoreo: Enero de 2014. Fundación Guyra Paraguay. Available from www.centromandela.com/wp-content/uploads/2014/02/Informe-extendido-enero2014-Gran-Chaco-1.pdf Downloaded on 8 July 2016.Google Scholar
Direktorat Konservasi Keanekaragaman Hayati. (2015). Strategi dan Rencana Aksi Konservasi Babirusa (Babyrousa babyrussa) tahun 2013–2022. Jakarta: Direktorat Konservasi Keanekaragaman Hyati.Google Scholar
d'Huart, J. P. (1993). The forest hog (Hylochoerus meinertzhageni). In Oliver, W. L. R. (ed.), Pigs, peccaries and hippos. Status survey and conservation action plan. Gland: IUCN SSC Pigs and Peccaries Specialist Group and IUCN SSC Hippos Specialist Group. IUCN, pp. 8493.Google Scholar
d'Huart, J. P., Nowak-Kemp, M. & Butynski, T. M. (2013). A seventeenth-century French painting of a warthog. Archives of Natural History 40(2): 360362.Google Scholar
de Jong, Y. A., Cumming, D., d'Huart, J. & Butynski, T. (2016). Phacochoerus africanus. The IUCN Red List of Threatened Species 2016: e.T41768A44140445. http://dx.doi.org/10.2305/IUCN.UK.2016-2.RLTS.T41768A44140445.en. Downloaded 20 October 2016.Google Scholar
de Man, D., Leus, K. & Holst, B. (2016). Creating a flexible future. Zooquaria Summer 2016 Special Issue: 2425.Google Scholar
Dirzo, R., Young, H. S., Galetti, M., et al. (2014). Defaunation in the Anthropocene. Science 345: 401406.Google Scholar
EAZA. (2010). 21st century zoos and aquariums; good for animals, good for people – the socio-economic impact of EAZA zoos and aquariums for the European Union. Amsterdam: EAZA Executive Office.Google Scholar
European Union. (1999). Council Directive 1999/22/EC of 29 March 1999 relating to the keeping of wild animals in zoos. Official Journal L 094, 09/04/1999: 00240026.Google Scholar
Faust, L. J., Bergstrom, Y. M., Thompson, S. D. & Bier, L. (2009). PopLink version 2.1. Chicago, IL: Lincoln Park Zoo.Google Scholar
Ferraz, K. M. P. M. B., Angelieri, C. C. S., Altrichter, M., et al. (2016). Predicting the current distribution of the Chacoan peccary (Catagonus wagneri) in the Gran Chaco. Suiform Soundings 15(1): 5363.Google Scholar
Forsyth, S. (2016). Island dwellers – a mixed exhibit of Visayan warty pigs (Sus cebifrons negrinos) and spotted deer (Rusa alfredi) at Colchester Zoo, UK. Suiform Soundings 14(2): 2528.Google Scholar
Frankham, R., Ballou, J. D. & Briscoe, D. A. (2010). Introduction to conservation genetics (2nd ed.). Cambridge: Cambridge University Press.Google Scholar
Garson, J. G. (1883). Notes on the anatomy of Sus salvanius (Porcula salvania, Hodgson). Part 1 – External characters and visceral anatomy. Proceedings of the Scientific Meetings of the Zoological Society of London 1883: 413418.Google Scholar
Genov, P. V. (1999). A review of the cranial characteristics of the wild boar (Sus scrofa Linnaeus, 1758), with systematic conclusions. Mammal Review 29: 205238.Google Scholar
Groves, C. P. (2008). Current views on the taxonomy and zoogeography of the genus Sus. In Albarella, U., Dobney, K., Ervynck, A. & Rowley-Conwy, P. (eds.), Pigs and humans: 10,000 years of interaction. Oxford: Oxford University Press, pp. 1529.Google Scholar
Groves, C.P. & Grubb, P. (2011). Ungulate taxonomy. Baltimore, MD: The Johns Hopkins University Press.Google Scholar
Gusset, M. & Dick, G. (2011). The global reach of zoos and aquariums in visitor numbers and conservation expenditures. Zoo Biology 30: 566569.Google Scholar
Hansen, M. C., Potapov, P. V., Moore, R., et al. (2013). High-resolution global maps of 21st-century forest cover change. Science 342: 850853.Google Scholar
Holland, J., Burvenich, P. & Putnam, A. (2014). Population analysis and breeding and transfer plan for red river hog (Potamochoerus porcus) AZA Species Survival Plan® yellow program. Chicago, IL: Population Management Center Lincoln Park Zoo.Google Scholar
IUCN SSC. (2014). Guidelines on the use of ex situ management for species conservation. Version 2.0. Gland: IUCN Species Survival Commission.Google Scholar
IUDZG/CBSG. (1993). The world zoo conservation strategy – the role of the zoos and aquaria of the world in global conservation. Brookfield, IL: Chicago Zoological Society.Google Scholar
Lee, R. J., Gorog, A. J., Dwiyahreni, A., et al. (2005). Wildlife trade and implications for law enforcement in Indonesia: a case study from North Sulawesi. Biological Conservation 123: 477488.Google Scholar
Leus, K. & Macdonald, A.A. (1997). From babirusa (Babyrousa babyrussa) to domestic pig: the nutrition of swine. Proceedings of the Nutrition Society 56: 10011012.Google Scholar
Leus, K., Bland, K. P., Dhondt, A. A. & Macdonald, A. A. (1996). Ploughing behaviour of Babyrousa babyrussa (Suidae, Mammalia) suggests a scent-marking function. Journal of Zoology 238: 209219.Google Scholar
Leus, K., Morgan, C. A. & Dierenfeld, E. S. (2001). Nutrition. In Fischer, M. (ed.), Babirusa (Babyrousa babyrussa) husbandry manual. Silver Spring, MD: American Association of Zoos and Aquariums, pp. 1225.Google Scholar
Leus, K., Macdonald, A. A., Goodall, G., et al. (2004). Light and scanning electron microscopy of the cardiac gland region of the stomach of the Babirusa (Babyrousa babyrussa – Suidae Mammalia). Comptes Rendus Biologies 327: 735743.Google Scholar
Leus, K., Macdonald, A., Burton, J. & Rejeki, I. (2016). Babyrousa celebensis. The IUCN Red List of Threatened Species 2016: e.T136446A44142964. http://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T136446A44142964.en. Downloaded 18 October 2016.Google Scholar
Leus, K., Holland, J., Nugroho, J., et al. (2016a). Global collaboration to conserve three threatened Indonesian animal taxa: Babirusa, Anoa and Banteng. Suiform Soundings 15(1): 2731.Google Scholar
Leus, K., Altrichter, M., Desbiez, A., et al. (2016b). A Vortex population viability analysis model for the Chacoan peccary (Catagonus wagneri). Suiform Soundings 15(1): 6476.Google Scholar
Macdonald, A. A. & Leus, K. (1995). Creating a public understanding of the biology of the babirusa (Babyrousa babyrussa) within a caring zoo environment. IBEX: Journal of Mountain Ecology 3: 3740.Google Scholar
Macdonald, A. A., Burton, J. & Leus, K. (2008a). Babyrousa babyrussa. The IUCN Red List of Threatened Species 2008: e.T2461A9441445. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T2461A9441445.en. Downloaded 18 October 2016Google Scholar
Macdonald, A. A., Mitchell, S., Signorella, A. & Leus, K. (2008b). Ultrastructural characterization of the epithelium that constitutes the cardiac gland epithelial ‘honeycomb’ in the stomach of the babirusa (Babyrousa babyrussa). Comptes Rendus Biologies 331: 3241.Google Scholar
Macdonald, A. A., Leus, K., Masaaki, I. & Burton, J. (2016). Babyrousa togeanensis. The IUCN Red List of Threatened Species 2016: e.T136472A44143172. http://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T136472A44143172.en. Downloaded 18 October 2016.Google Scholar
Meijaard, E. (2014). A literature review of ecological separation between Sus verrucosus and Sus scrofa. Suiform Soundings 12(2): 1826.Google Scholar
Meijaard, E., d'Huart, J. P. & Oliver, W. L. R. (2011). Family Suidae (pigs). In Wilson, D. E. & Mittermeier, R. A. (eds.), Handbook of the mammals of the world. Vol. 2. Hoofed mammals. Barcelona: Lynx Edicions, pp. 248291.Google Scholar
Meijaard, E., Leus, K. & Burton, J. (2014). Think pig: results from our first Wild Pig Specialist Group Meeting for South East and South Asia. Suiform Soundings 12(2): 49.Google Scholar
Meijaard, E. M., Meijaard, E., Leus, K. & Macdonald, A. A. (2016). First observations on Moluccan babirusa (Babyrousa babyrussa). A translation from a recently rediscovered 1770 book that describes the Babirusa on Buru Island. Suiform Soundings 15(1): 1619.Google Scholar
Meritt, D., Quick, M. & Bryan, C. B. (2014). Population analysis and breeding and transfer plan Chacoan peccary (Catagonus wagneri) AZA Species Survival Plan® yellow program. Chicago, IL: Population Management Center Lincoln Park Zoo.Google Scholar
McGowan, P., Traylor-Holzer, K. & Leus, K. (2016). IUCN guidelines for determining when and how ex situ management should be used in species conservation. Conservation Letters 10(3): 361366.Google Scholar
Miller, C., DeGesero, S. & Bryan, C. G. (2016). Population analysis and breeding and transfer plan – Visayan warty pig (Sus cebifrons) AZA Species Survival Plan® yellow program. Chicago, IL: Population Management Center Lincoln Park Zoo.Google Scholar
Milner-Gulland, E. J. & Clayton, L. (2002). The trade in babirusas and wild pigs in North Sulawesi, Indonesia. Ecological Economics 42: 165183.Google Scholar
Mohr, E. (1960). Wilde Schweinen. Neue Brehm-Bucherei no. 247. Wittenberg-Lutherstadt: Ziemsen Verlag.Google Scholar
Narayan, G. & Deka, P. J. (2016). Recovery of critically endangered pygmy hog (Porcula salvania). Pygmy Hog Conservation Programme. EcoSystems-India.Google Scholar
Narayan, G., Oliver, W. L. R., Fa, J. E. & Funk, S. M. (2008a). Das Zwergwildschwein. In Macdonald, A. A. & Ganslosser, U. (eds.), Wild Schweine und Flusspferde. Erlangen: Filander Verlag, pp. 203223.Google Scholar
Narayan, G., Deka, P. & Oliver, W. (2008b). Porcula salvania. The IUCN Red List of Threatened Species 2008: e.T21172A9254675. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T21172A9254675.en. Downloaded 17 October 2016.Google Scholar
Newbold, T., Hudson, L. N., Arnell, A. P., et al. (2016). Has land use pushed terrestrial biodiversity beyond the planetary boundary? A global assessment. Science 353: 288291.Google Scholar
Oliver, W. (2008a). Sus cebifrons. The IUCN Red List of Threatened Species 2008: e.T21175A9244915. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T21175A9244915.en. Downloaded 17 October 2016.Google Scholar
Oliver, W. L. R. (2008b). Taxonomie und Schutz der wilden Schweinen der Philippinen. In Macdonald, A. A. & Ganslosser, U. (eds.), Wilde Schweine und Flusspferde. Erlangen: Filander Verlag, pp. 233249.Google Scholar
Oliver, W. L. R., Narayan, G. & Raj, M. (1997). The pigmy hog Sus salvanius conservation programme: background description and report on progress to end December 1996. Dodo: Journal of the Jersey Wildlife Preservation Trust 33: 4574.Google Scholar
Penfold, L. M., Powell, D., Traylor-Holzer, K. & Asa, C. S. (2014). ‘Use it or Lose it’: characterization, implications and mitigation of female fertility in captive wildlife. Zoo Biology 33: 2028.Google Scholar
Pritchard, D. J., Fa, J. E., Oldfield, S. & Harrop, S. R. (2011). Bringing the captive closer to the wild: redefining the role of ex situ conservation. Oryx 46: 1823.Google Scholar
Przybylska, L. (2014). EEP Visayan Warty Pig Studbook Sus cebifrons negrinus. Poznan: Zoo Poznan.Google Scholar
Quick, M. (2012). North American Regional Studbook Chacoan Peccary (Catagonus wagneri). Wichita, KS: Sedgwick County Zoo.Google Scholar
Quoy, J. R. C. & Gaimard, J. P. (1830) Voyage de découvertes de l'Astrolabe, Zoologie, 1. Tastu, J.: Paris: 125132.Google Scholar
Rademaker, M. (2016). ‘Warty Watch’ – putting the spotlight on Indonesia's most distinct pig. Suiform Soundings 14(1): 1421.Google Scholar
Rademaker, M., Rode-Margono, J. & Tritto, A. (2016). Behaviour of wild-caught and captive-born Javan warty pigs (Sus verrucosus) and implications for reintroduction. Suiform Soundings 14(1): 513.Google Scholar
Redford, K. H., Jensen, D. B. & Breheny, J. J. (2013). The long overdue death of the ex situ and in situ dichotomy in species conservation. WAZA magazine 14: 1922.Google Scholar
Reiter, J. (2012). EEP studbook for the Red River Hog (Potamochoerus porcus pictus). Duisburg: Zoo Duisburg.Google Scholar
Reyna, R., Jori, F., Querouil, S. & Leus, K. (2016). Potamochoerus porcus. The IUCN Red List of Threatened Species 2016: e.T41771A100469961. Downloaded 18 October 2016.Google Scholar
Rookmaaker, L. C. (1989). The zoological exploration of southern Africa 1650–1790. Rotterdam & Brookfield: A. A. Balkema.Google Scholar
Semiadi, G. & Meijaard, E. (2006). Declining populations of the Javan warty pig Sus verrucosus. Oryx 40: 5056.Google Scholar
Semiadi, G. & Sözer, R. (2008). The establishment of a conservation breeding program for Javan warty pig (Sus verrucosus). Proposal. Cininong & Sukabumi, Indonesia: Research Center for Biology LIPI & Cikananga Species Conservation Center.Google Scholar
Semiadi, G., Rademaker, M. & Meijaard, E. (2016). Sus verrucosus. The IUCN Red List of Threatened Species 2016: e.T21174A44139369. http://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T21174A44139369.en. Downloaded 18 October 2016.Google Scholar
Smith, L. & Sullivan, S. (2015). Population analysis and breeding and transfer plan common warthog (Phacochoerus africanus) AZA Species Survival Plan® yellow programme. Chicago, IL: Population Management Center Lincoln Park Zoo.Google Scholar
Species360. (2013). SPARKS (Single Population Analysis and Records Keeping System). Version 1.66. Eagan, MN: Species360.Google Scholar
Taber, A. B., Doncaster, C. P., Neris, N. N. & Colman, F. H. (1993). Ranging behavior and population dynamics of the Chacoan peccary, Catagonus wagneri. Journal of Mammalogy 74: 443454.Google Scholar
Taber, A. B., Altrichter, M., Beck, H. & Gongora, J. (2011). Family Tayassuidae (peccaries). In Wilson, D. E. & Mittermeier, R. A. (eds.), Handbook of the mammals of the world. Volume 2. Hoofed mammals. Barcelona: Lynx Edicions, pp. 292307.Google Scholar
Traylor-Holzer, K., Leus, K. & McGowan, P. (2013). Integrating assessment of ex situ management options into species conservation planning. WAZA Magazine 14: 69.Google Scholar
Traylor-Holzer, K., Leus, K. & Byers, O. (2017). Integrating ex situ management options as part of a One Plan Approach to species conservation. In Minteer, B. A., Maienschein, J. & Collins, J. P. (eds.), The ark and beyond. Chicago, IL: University of Chicago Press.Google Scholar
Tuijn, P. & Van der Feen, P. J. (1969). On some eighteenth century animal portraits of interest for systematic zoology. Bijdragen tot de Dierkunde 39: 6977.Google Scholar
Vercammen, P. & Habets, K. (2006). Warthog (Phacochoerus africanus) husbandry guidelines. Sharjah, UAE: Breeding Centre for Endangered Arabian Wildlife.Google Scholar
Vercammen, P. & Mason, D. R. (1993). The warthogs (Phacochoerus africanus and P. aethiopicus). In Oliver, W. L. R. (ed.), Pigs, peccaries and hippos. Status survey and conservation action plan. Gland: IUCN SSC Pigs and Peccaries Specialist Group and IUCN SSC Hippos Specialist Group, pp. 7584.Google Scholar
WAZA. (2005). Building a future for wildlife: The World Zoo and Aquarium Conservation Strategy. Bern: WAZA.Google Scholar

References

Allen, H. K., Donato, J., Wang, H. H., et al. (2010). Call of the wild: antibiotic resistance genes in natural environments. Nature Reviews Microbiology 8: 251259.Google Scholar
Allen, S. E., Boerlin, P., Janecko, N., et al. (2011). Antimicrobial resistance in generic Escherichia coli isolates from wild small mammals living in swine farm, residential, landfill, and natural environments in southern Ontario, Canada. Applied and Environmental Microbiology 77(3): 882888.Google Scholar
Barlow, M. (2009). What antimicrobial resistance has taught us about horizontal gene transfer. In Horizontal gene transfer: genomes in flux. Totowa, NJ: Humana Press, pp. 397411.Google Scholar
Baums, C. G., Verkühlen, G. J., Rehm, T., et al. (2007). Prevalence of Streptococcus suis genotypes in wild boars of Northwestern Germany. Applied and Environmental Microbiology 73(3): 711717.Google Scholar
Caleja, C., de Toro, M., Gonçalves, A., et al. (2011). Antimicrobial resistance and class I integrons in Salmonella enterica isolates from wild boars and Bísaro pigs. International Microbiology 14(1): 1924.Google Scholar
Capita, R. & Alonso-Calleja, C. (2013). Antibiotic-resistant bacteria: a challenge for the food industry. Critical Reviews in Food Science and Nutrition 53(1): 1148.Google Scholar
Chiari, M., Zanoni, M., Tagliabue, S., Lavazza, A. & Alborali, L.G. (2013). Salmonella serotypes in wild boars (Sus scrofa) hunted in northern Italy. Acta Veterinaria Scandinavica 55(1): 1.Google Scholar
Costa, D., Poeta, P., Sáenz, Y., et al. (2006). Detection of Escherichia coli harbouring extended-spectrum β-lactamases of the CTX-M, TEM and SHV classes in faecal samples of wild animals in Portugal. Journal of Antimicrobial Chemotherapy 58(6): 13111312.Google Scholar
D'Costa, V. M., Griffiths, E., & Wright, G. D. (2007). Expanding the soil antibiotic resistome: exploring environmental diversity. Current Opinion in Microbiology 10(5): 481489.Google Scholar
D'Costa, V. M., King, C. E., Kalan, L., et al. (2011). Antibiotic resistance is ancient. Nature 477(7365): 457461.Google Scholar
Decastelli, L., Giaccone, V. & Mignone, W. (2014). Bacteriological examination of meat of wild boars shot down in Piedmont and Liguria, Italy. Journal of Mountain Ecology 3.Google Scholar
Dias, D., Torres, R. T., Fonseca, C., Mendo, S., & Caetano, T. (2015). Assessment of antimicrobial resistance levels and presence of pathogenic bacteria in Portuguese wild ungulates. Research in Microbiology 166(7): 584593.Google Scholar
Díaz-Sánchez, S., Sánchez, S., Herrera-León, S., et al. (2013). Prevalence of Shiga toxin-producing Escherichia coli, Salmonella spp. and Campylobacter spp. in large game animals intended for consumption: relationship with management practices and livestock influence. Veterinary Microbiology 163(3): 274281.Google Scholar
European Medicines Agency (EMA) & European Centre for Disease Prevention and Control (ECDC). (2009). The bacterial challenge: time to react a call to narrow the gap between multidrug-resistant bacteria in the EU and development of new antibacterial agents. Stockholm.Google Scholar
European Medicines Agency (EMA) & European Surveillance of Veterinary Antimicrobial Consumption (ESVAC). (2016). Sales of veterinary antimicrobial agents in 29 European countries in 2014. (EMA/61769/2016).Google Scholar
Fisher, K. & Phillips, C. (2009). The ecology, epidemiology and virulence of Enterococcus. Microbiology 155(6): 17491757.Google Scholar
Fonseca, C. & Correia, F. (2008). O Javali. Colecção Património Natural Transmontano. João, Azevedo Editor. [In Portuguese.]Google Scholar
Gilliver, M. A., Bennett, M. B., Hazel, S. M. & Hart, C. A. (1999). Antibiotic resistance found in wild rodents. Nature 401: 233234.Google Scholar
Grave, K., Torren-Edo, J., Muller, A., et al. (2014). Variations in the sales and sales patterns of veterinary antimicrobial agents in 25 European countries. Journal of Antimicrobial Chemotherapy 69: 22842291.Google Scholar
Havelaar, A. H., Ivarsson, S., Löfdahl, M. & Nauta, M.J. (2013). Estimating the true incidence of campylobacteriosis and salmonellosis in the European Union 2009. Epidemiology and Infection 141(2): 293302.Google Scholar
Jones, K. E., Patel, N. G., Levy, M., et al. (2008). Global trends in emerging infectious diseases. Nature 451(7181): 990993.Google Scholar
Karesh, W. B., Dobson, A., Lloyd-Smith, J. O., et al. (2012). Ecology of zoonoses: natural and unnatural histories. The Lancet 380(9857): 19361945.Google Scholar
Kozak, G. K., Boerlin, P., Janecko, N., Reid-Smith, R. J. & Jardine, C. (2009). Antimicrobial resistance in Escherichia coli isolates from swine and wild small mammals in the proximity of swine farms and in natural environments in Ontario, Canada. Applied and Environmental Microbiology 75(3): 559566.Google Scholar
Kronvall, G., Giske, C. G. & Kahlmeter, G. (2011). Setting interpretive breakpoints for antimicrobial susceptibility testing using disk diffusion. International Journal of Antimicrobial Agents 38(4): 281290.Google Scholar
Laxminarayan, R., Duse, A., Wattal, C., et al. (2013). Antibiotic resistance – the need for global solutions. The Lancet Infectious Diseases 13(12): 10571098.Google Scholar
Levy, S. B. & Marshall, B. (2004). Antibacterial resistance worldwide: causes, challenges and responses. Nature Medicine 10: S122S129.Google Scholar
Li, X. Z., Mehrotra, M., Ghimire, S. & Adewoye, L. (2007). β-Lactam resistance and β-lactamases in bacteria of animal origin. Veterinary Microbiology 121(3): 197214.Google Scholar
Literak, I., Dolejska, M., Radimersky, T., et al. (2010). Antimicrobial-resistant faecal Escherichia coli in wild mammals in central Europe: multiresistant Escherichia coli producing extended-spectrum beta-lactamases in wild boars. Journal of Applied Microbiology 108(5): 17021711.Google Scholar
Macdonald, D. & Laurenson, M. K. (2006). Infectious disease: inextricable linkages between human and ecosystem health. Biological Conservation 131: 143150.Google Scholar
Massei, G., Kindberg, J., Licoppe, A., et al. (2015). Wild boar populations up, numbers of hunters down? A review of trends and implications for Europe. Pest Management Science 71(4): 492500.Google Scholar
Mather, A. E., Matthews, L., Mellor, D. J., et al. (2011). An ecological approach to assessing the epidemiology of antimicrobial resistance in animal and human populations. Proceedings of the Royal Society of London B: Biological Sciences 279(1733): 16301639.Google Scholar
Meng, X. J., Lindsay, D. S. & Sriranganathan, N. (2009). Wild boars as sources for infectious diseases in livestock and humans. Philosophical Transactions of the Royal Society of London B: Biological Sciences 364(1530): 26972707.Google Scholar
Mentaberre, G., Porrero, M. C., Navarro-Gonzalez, N., et al. (2013). Cattle drive Salmonella infection in the wildlife–livestock interface. Zoonoses and Public Health 60(7): 510518.Google Scholar
Mokracka, J., Koczura, R. & Kaznowski, A. (2012). Transferable integrons of Gram-negative bacteria isolated from the gut of a wild boar in the buffer zone of a national park. Annals of Microbiology 62(2): 877880.Google Scholar
Navarro-Gonzalez, N., Mentaberre, G., Porrero, C. M., et al. (2012). Effect of cattle on Salmonella carriage, diversity and antimicrobial resistance in free-ranging wild boar (Sus scrofa) in northeastern Spain. PLoS ONE 7(12): 51614.Google Scholar
Navarro-Gonzalez, N., Casas-Díaz, E., Porrero, C. M., et al. (2013). Food-borne zoonotic pathogens and antimicrobial resistance of indicator bacteria in urban wild boars in Barcelona, Spain. Veterinary Microbiology 167(3): 686689.Google Scholar
Navarro-Gonzalez, N., Velarde, R., Porrero, M. C., et al. (2014). Lack of evidence of spill-over of Salmonella enterica between cattle and sympatric Iberian ibex (Capra pyrenaica) from a protected area in Catalonia, NE Spain. Transboundary and Emerging Diseases 61(4): 378384.Google Scholar
Österblad, M., Norrdahl, K., Korpimäki, E. & Huovinen, P. (2001). Antibiotic resistance: How wild are wild mammals? Nature 409: 3738.Google Scholar
Ostfeld, R. S., Glass, G. E. & Keesing, F. (2005). Spatial epidemiology: an emerging (or re-emerging) discipline. Trends in Ecology & Evolution 20(6): 328336.Google Scholar
Poeta, P., Costa, D., Igrejas, G., Rodrigues, J. & Torres, C. (2007). Phenotypic and genotypic characterization of antimicrobial resistance in faecal enterococci from wild boars (Sus scrofa). Veterinary Microbiology 125(3): 368374.Google Scholar
Reisen, W. K. (2010). Landscape epidemiology of vector-borne diseases. Annual Review of Entomology 55: 461483.Google Scholar
Rwego, I. B., Isabirye-Basuta, G., Gillespie, T. R. & Goldberg, T. L. (2008). Gastrointestinal bacterial transmission among humans, mountain gorillas, and livestock in Bwindi Impenetrable National Park, Uganda. Conservation Biology 22(6): 1600–7.Google Scholar
Schierack, P., Römer, A., Jores, J., et al. (2009). Isolation and characterization of intestinal Escherichia coli clones from wild boars in Germany. Applied and Environmental Microbiology 75(3): 695702.Google Scholar
Singer, R. S., Ward, M. P. & Maldonado, G. (2006). Can landscape ecology untangle the complexity of antibiotic resistance? Nature Reviews Microbiology 4(12): 943952.Google Scholar
Sjölund, M., Bonnedahl, J., Hernandez, J., et al. (2008). Dissemination of multidrug-resistant bacteria into the Arctic. Emerging Infectious Diseases 14(1): 7072.Google Scholar
Thaller, M.C., Migliore, L., Marquez, C., et al. (2010). Tracking acquired antibiotic resistance in commensal bacteria of Galapagos land iguanas: no man, no resistance. PLoS ONE 5(2): 8989.Google Scholar
Vieira-Pinto, M., Morais, L., Caleja, C., et al. (2011). Salmonella sp. in game (Sus scrofa and Oryctolagus cuniculus). Foodborne Pathogens and Disease 8(6): 739740.Google Scholar
Wahlstrom, H., Tysen, E., Olsson Engvall, E., et al. (2003). Survey of Campylobacter species, VTEC O157 and Salmonella species in Swedish wildlife. Veterinary Record 153(3): 7480.Google Scholar
Ward, M. J., Gibbons, C. L., McAdam, P. R., et al. (2014). Time-scaled evolutionary analysis of the transmission and antibiotic resistance dynamics of Staphylococcus aureus clonal complex 398. Applied and Environmental Microbiology 80(23): 72757282.Google Scholar
Wellington, E. M., Boxall, A. B., Cross, P., et al. (2013). The role of the natural environment in the emergence of antibiotic resistance in Gram-negative bacteria. The Lancet Infectious Diseases 13(2): 155165.Google Scholar
Woolhouse, M. & Farrar, J. (2014). Policy: an intergovernmental panel on antimicrobial resistance. Nature 509: 555557.Google Scholar
World Health Organization (WHO). (2012). Critically important antimicrobials for human medicine. Geneva: WHO.Google Scholar
World Health Organization (WHO). (2014). Antimicrobial resistance: global report on surveillance. World Health Organization. http://apps.who.int/iris/bitstream/10665/112642/1/9789241564748_eng.pdfGoogle Scholar
World Health Organization (WHO). (2016). Ebola situation report. http://apps.who.int/ebola/ebola-situation-reportsGoogle Scholar
Zottola, T., Montagnaro, S., Magnapera, C., et al. (2013). Prevalence and antimicrobial susceptibility of Salmonella in European wild boar (Sus scrofa); Latium Region – Italy. Comparative Immunology, Microbiology and Infectious Diseases 36(2): 161168.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×