Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-7drxs Total loading time: 0 Render date: 2024-07-19T15:30:26.576Z Has data issue: false hasContentIssue false

6 - Current transfer over dendrites

Published online by Cambridge University Press:  03 May 2010

Sergiy Mikhailovich Korogod
Affiliation:
Dniepropetrovsk National University, Ukraine
Suzanne Tyč-Dumont
Affiliation:
CNRS, Marseille
Get access

Summary

Currents flowing between dendritic sites redistribute charges over the dendritic space. The spatial maps of the net current are complementary to the those of the membrane voltage. The current density maps show contributions, positive or negative, of different dendritic sites to the core current flowing in the dendrites. In neurons, the currents are transferred by ions, which are not only elementary charges but also elementary amounts of substance. The current flow into or out of a unitary volume of the dendritic space changes the amount of substance per unit volume, that is the concentration. Both electrical and chemical signalling in neurons is concentration dependent. The well-known examples include the Nernst equilibrium potentials for the transmembrane ion currents, the concentration-dependent currents such as calcium-dependent potassium current, concentration-dependent ion pumps in the plasma membrane and in the membrane of intracellular organelles, and finally ion concentration-dependent intracellular biochemical reactions of many vitally important substances. Hence, the current density maps are necessary for understanding the contribution of the current flow and substance fluxes across the membrane to the dynamics of ion concentration over the dendritic space.

Charge transfer ratio

The charge transfer ratio also called the relative effectiveness of the charge transfer, was first introduced by Barrett and Crill (1974) to characterize the contributions from different individual dendritic sites to the total somatopetal current transferred to the soma.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrett, J. N. and Crill, W. E. (1974). Influence of dendritic location and membrane properties on the effectiveness of synapses on cat motoneurons. J. Physiol., 239:325–345.CrossRef
Jack, J. J. B., Noble, D. and Tsien, R. W. (1975). Electric Current Flow in Excitable Cells, Oxford: Oxford University Press.Google Scholar
Korogod, S. M. (1996). Electro-geometrical coupling in non-uniform branching dendrites. Consequences for relative synaptic effectiveness. Biol. Cybern., 74:85–93.CrossRef
Rall, W. (1989). Cable theory for dendritic neurons. In Koch, C. and Segev, I. (eds.), Methods in Neuronal Modeling, p. 9–62, Cambridge, Mass: MIT Press.
Taylor, R. E. (1963). Cable theory. In Nastuk, W. L. (ed.), Physical Techniques in Biological Research, Vol. 6, p. 219–262, New York: Academic Press.

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×