Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-m42fx Total loading time: 0 Render date: 2024-07-22T16:33:32.519Z Has data issue: false hasContentIssue false

13 - Applications of electrochromic devices

Published online by Cambridge University Press:  10 August 2009

Paul Monk
Affiliation:
Manchester Metropolitan University
Roger Mortimer
Affiliation:
Loughborough University
David Rosseinsky
Affiliation:
University of Exeter
Get access

Summary

Introduction

While the applications of electrochromism are ever growing, all devices utilising electrochromic colour modulation fall within two broad, overlapping categories according to the mode of operation: electrochromic devices (ECDs) operating by transmission (see schematic in Figure 13.1) or by reflection (see the schematic representation in Figure 13.2).

Several thousand patents have been filed to describe various electrochromic species and devices deemed worthy of commercial exploitation, so the field is vast. Much duplication is certain in such patents, but it is clear how large scale are the investments directed toward implementing electrochromism as viable in displays or light modulation. In this field, vital details of compositions are often well hidden, as these comprise the valued intellectual property rights on which substantial financial considerations rest.

The most common applications are electrochromic mirrors and windows, as below. These and other applications are reviewed at length by Lampert (1998), who cites all the principal manufacturers of electrochromic goods worldwide, and also several novel applications.

Reflective electrochromic devices: electrochromic car mirrors

Mirrors, which obviously operate in a reflectance mode, illustrate the first application of electrochromism (cf. Figure 13.2). Self-darkening electrochromic mirrors, for automotive use at night, disallow the lights of following vehicles to dazzle by reflection from the driver's or the door mirror. Here an optically absorbing electrochromic colour is evoked over the reflecting surface, reducing reflection intensity and thereby alleviating driver discomfort. However, total opacity is to be avoided as muted reflection must persist in the darkened state.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Lampert, C. M.Smart switchable glazing for solar energy and daylight control. Sol. Energy Mater. Sol. Cells, 52, 1998, 207–21.CrossRefGoogle Scholar
Bange, K. and Gambke, T.Electrochromic materials for optical switching devices. Adv. Mater., 2, 1992, 10–16.CrossRefGoogle Scholar
Byker, H. J., Gentex Corporation. Single-compartment, self-erasing, solution-phase electrochromic devices, solutions for use therein and uses thereof. US Patent 4,902,108, 1990.
[Online] at www.gentex.com/auto_how_nvs_work.html (accessed 6 September 2005).
Byker, H. J.Commercial developments in electrochromics. Proc. Electrochem. Soc., 94–2, 1994, 1–13.Google Scholar
Schierbeck, K. L., Donnelly Corporation. Digital electrochromic mirror system. US Patent 06089721, 2000.
Baucke, F. G. K.Electrochromic mirrors with variable reflectance. Rivista della Staz. Sper. Vetro, 6, 1986, 119–22.Google Scholar
Baucke, F. G. K.Electrochromic mirrors with variable reflectance. Sol. Energy Mater, 16, 1987, 67–77.CrossRefGoogle Scholar
Baucke, F. G. K.Reflecting electrochromic devices – construction, operation and application. Proc. Electrochem. Soc., 20–4, 1990, 298–311.Google Scholar
Baucke, F. G. K., Bange, K. and Gambke, T.Reflecting electrochromic devices. Displays, 9, 1988, 179–87.CrossRefGoogle Scholar
Baucke, F. G. K.Beat the dazzlers. Schott Information, 1, 1983, 11–13.Google Scholar
Gentex announces new Intelligent high-beam headlamp control technology: miniature camera to control vehicle high beams. Machine Vision Online, 2004.
Gesheva, K., Ivanova, T. and Hamelmann, F.Optical coatings of CVD-transition metal oxides as functional layers in ‘smart windows’ and X-ray mirrors. J. Optoelectronics Adv. Mater., 7, 2005, 1243–52.Google Scholar
Svensson, J. S. E. M. and Granqvist, C. G.Electrochromic coatings for ‘smart windows’. Sol. Energy Mater., 12, 1985, 391–402.CrossRefGoogle Scholar
[Online] at www.bfrc.org/Technical_Publications-Thermal_definitions.htm (accessed 6 September 2005).
[Online] at home.howstuffworks.com/smart-window.htm and home.howstuffworks.com/smart-window2.htm (accessed 6 September 2005).
Granqvist, C. G., Azens, A., Isidorsson, J., Kharrazi, M., Kullman, L., Lindstrom, T., Niklasson, G. A., Ribbing, C.-G., Rönnow, D., Strømme Mattson, M. and Veszelei, M.Towards the smart window: progress in electrochromics. J. Non-Cryst. Solids, 218, 1997, 273–9.CrossRefGoogle Scholar
Rauh, R. D.Electrochromic windows: an overview. Electrochim. Acta, 44, 1999, 3165–76.CrossRefGoogle Scholar
Bell, J. M., Skryabin, I. L., Matthews, J. P. and Matthews, J. P. Windows. In Schwartz, M. (ed.), Encyclopedia of Smart Materials, New York, Wiley, 2002, vol. 2, pp. 1134–45.CrossRefGoogle Scholar
Azens, A. and Granqvist, C. G.Electrochromic smart windows: energy efficiency. J. Solid State Electrochem., 7, 2003, 64–8.CrossRefGoogle Scholar
Mbise, G. W., Bellac, D., Niklasson, G. A. and Granqvist, C. G.Angular selective window coatings: theory and experiments. J. Phys. D., 30, 1997, 2103–22.CrossRefGoogle Scholar
Demiryont, H.A review on electrochromic devices for automotive glazing. Proc. SPIE, 1536, 1991, 2–28.CrossRefGoogle Scholar
[Online] at eetd.lbl.gov/EA/mills/Lab2Mkt/Windows.html (accessed 6 September 2005).
Lee, E. S. and DiBartolomeo, D. L.Application issues for large-area electrochromic windows in commercial buildings. Sol. Energy Mater. Sol. Cells, 71, 2002, 465–91.CrossRefGoogle Scholar
Harary, J. M. Automated window shading, available [online] at www.earthtoys.com/emagazine.php?issue_number = 02.09.01&article = harary (accessed 6 September 2005).
[Online] at www.consumerenergycenter.org/homeandwork/homes/inside/windows/future.html (accessed 6 September 2005).
Griffiths, P., Eames, P., Lo, S. and Norton, B.Energy and environmental life-cycle analysis of advanced windows. Renewable Energy, 8, 1996, 219–22.CrossRefGoogle Scholar
Syrrakou, E., Papaefthimiou, S. and Yianoulis, P.Environmental assessment of electrochromic glazing production. Sol. Energy Mater. Sol. Cells, 85, 2005, 205–40.CrossRefGoogle Scholar
[Online] at www.nrel.gov/buildings/windows/producers.html (accessed 6 September 2005).
[Online] at www.sage-ec.com/pages/technol.html (accessed 6 September 2005).
[Online] at www.chem.ufl.edu/∼reynolds (accessed 19 June 2007).
[Online] at www.nrel.gov/buildings/windows.html (accessed 6 September 2005).
[Online] at www.rjfalkner.com/page.cfm?pageid=2241 (accessed 2 April 2006).
[Online] at http://windows.lbl.gov/materials/Chromogenics/ec_radiance/ simulations.html (accessed 6 September 2005).
[Online] at www.saint-gobain-recherche.com/anglais/index.htm (accessed 6 September 2005).
[Online] at www.chromogenics.se/index_eng.htm (accessed 5 September 2005).
Azens, A., Gustavsson, G., Karmhag, R. and Granqvist, C. G.Electrochromic devices on polyester foil. Solid State Ionics, 165, 2003, 1–5.CrossRefGoogle Scholar
Buyan, M., Brühwiler, P. A., Azens, A., Gustavsson, G., Karmhag, R. and Granqvist, C. G.Facial warming and tinted helmet visors. Int. J. Ind. Ergonomics, 36, 2006, 11–16.CrossRefGoogle Scholar
Zinzi, M.Office worker preferences of electrochromic windows: a pilot study. Buildings and Environment, 41, 2005, 1262–73.CrossRefGoogle Scholar
Siddle, J., Pilkington PLC, personal communication, 1991.
Munro, B., Kramer, S., Zapp, P., Krug, H. and Schmidt, H.All sol–gel electrochromic system for plate glass. J. Non-Cryst. Solids, 218, 1997, 185–8.CrossRefGoogle Scholar
Rottkay, K., Ozer, N., Rubin, M. and Richardson, T.Analysis of binary electrochromic tungsten oxides with effective medium theory. Thin Solid Films, 308–309, 1997, 50–5.CrossRefGoogle Scholar
Fang, G. J., Yao, K.-L. and Liu, Z.-L.Fabrication and electrochromic properties of double layer WO3(V)/V2O5(Ti) thin films prepared by pulsed laser ablation technique. Thin Solid Films, 394, 2001, 63–70.CrossRefGoogle Scholar
Mathew, J. G. H., Sapers, S. P., Cumbo, M. J., O'Brien, N. A., Sargent, R. B., Raksha, V. P., Lahaderne, R. B. and Hichwa, B. P.Large area electrochromics for architectural applications. J. Non-Cryst. Solids, 218, 1997, 342–6.CrossRefGoogle Scholar
Rougier, A., Blyr, A., Garcia, J., Zhang, Q. and Impey, S. A.Electrochromic W–M–O (M = V, Nb) sol–gel thin films: a way to neutral colour. Sol. Energy Mater. Sol. Cells, 71, 2002, 343–57.CrossRefGoogle Scholar
Bell, J. M., Barczynska, J., Evans, L. A., MacDonald, K. A., Wang, J., Green, D. C. and Smith, G. B.Electrochromism in sol–gel deposited TiO2 films. Proc. SPIE, 2255, 1994, 324–31.CrossRefGoogle Scholar
Gao, W., Lee, S.-H., Benson, D. K. and Branz, H. M.Novel electrochromic projection and writing device incorporating an amorphous silicon carbide photodiode. J. Non-Cryst. Solids, 266–9, 2000, 1233–7.CrossRefGoogle Scholar
Impey, S. A., Garcia-Miguel, J. L., Allen, S., Blyr, A., Bouessay, I. and Rougier, A.Colour neutrality for thin oxide films from pulsed laser deposition and sol–gel. Proc. Electrochem. Soc., 2003–17, 2003, 103–18.Google Scholar
Klein, J. D., Yen, A., Rauh, R. D. and Causon, S. L.Near-infrared electrochromism in LixC60 films. Appl. Phys. Lett., 63, 1993, 599–601.CrossRefGoogle Scholar
Kulak, A. I., Kokorin, A. I., Meissner, D., Ralchenko, V. G., Vlasou, I. I., Kondratyuk, A. V. and Kulak, T. I.Electrodeposition of nanostructured diamond-like films by oxidation of lithium acetylide. Electrochem. Commun., 5, 2003, 301–5.CrossRefGoogle Scholar
Richardson, T. J.New electrochromic mirror systems. Solid State Ionics, 165, 2003, 305–8.CrossRefGoogle Scholar
Manevich, R. M. L., Shamritskaya, I. G., Sokolova, L. A. and Kolotyrkin, Y. M.The electroreflection spectra of anodically oxidized iridium and adsorption of water. Russ. J. Electrochem., 32, 1996, 1237–44.Google Scholar
Rönnow, D., Kullman, L. and Granqvist, C. G.Spectroscopic light scattering from electrochromic tungsten-oxide-based films. J. Appl. Phys., 80, 1996, 423–30.CrossRefGoogle Scholar
Goldner, R. B., Mendelsohn, D. H., Alexander, J., Henderson, W. R., Fitzpatrick, D., Haas, T. E., Sample, H. H., Rauh, R. D., Parker, M. A. and Rose, T. L.High near-infrared reflectivity modulation with polycrystalline electrochromic WO3 films. Appl. Phys. Lett., 43, 1983, 1093–5.CrossRefGoogle Scholar
Otero, T. F. and Bengoechea, M.In situ absorption-reflection study of polypyrrole composites – switching stability. Electrochim. Acta, 41, 1996, 1871–6.CrossRefGoogle Scholar
Pages, H., Topart, P. and Lemordant, D.Wide band electrochromic displays based on thin conducting polymer films. Electrochim. Acta, 46, 2001, 2137–43.CrossRefGoogle Scholar
Schlotter, P.High contrast electrochromic tungsten oxide layers. Sol. Energy Mater. Sol. Cells, 16, 1987, 39–46.CrossRefGoogle Scholar
[Online] at www.chemsoc.org/chembytes/ezine/2002/ashton_jun02.htm (accessed 16 March 2006).
[Online] at www.Gentex.com (accessed 29 March 2006).
[Online] at www.ppg.com/gls_ppgglass/aircraft/22779.pdf (accessed 29 March 2006).
[Online] at www.nikon.co.jp/main/eng/portfolio/about/history/ corporate_history.htm (accessed 6 September 2005).
Taylor, D. J., Cronin, J. P., Allard, L. F. and Birnie, D. P.Microstructure of laser-fired, sol–gel-derived tungsten oxide films. Chem, Mater., 8, 1996, 1396–401.CrossRefGoogle Scholar
Agnihotry, S. A., Saini, K. K. and Chandra, S.Physics and technology of thin film electrochromic displays, part I: physicochemical properties. Ind. J. Pure Appl. Phys., 24, 1986, 19–33.Google Scholar
Agnihotry, S. A., Saini, K. K. and Chandra, S.Physics and technology of thin film electrochromic displays, part II: device technology. Ind. J. Pure Appl. Phys., 24, 1986, 34–40.Google Scholar
Faughnan, B. W. and Crandall, R. S. Electrochromic devices based on WO3. In Pankove, J. L. (ed.), Display Devices, Berlin, Springer-Verlag, 1980, pp. 181–211.CrossRefGoogle Scholar
[Online] at www.elecdesign.com/Articles/ArticleID/15783/15783.html (accessed 19 June 2007).
Byker, H. J.Electrochromics and polymers. Electrochim. Acta, 46, 2001, 2015–22.CrossRefGoogle Scholar
[Online] at www.napa.ufl. edu/2001news/colors.htm (accessed 6 September 2005).
Tadashi, N. Cash card having electrochromic indicator. Japanese Patent, JP 59,197,980, 1984.
[Online] at www.mobileread.com/forums/showthread.php?threadid = 3375 (accessed 27 January 2006).
Schoot, C. J., Ponjeé, J. J., Dam, H. T., Doorn, R. A. and Bolwijn, P. J.New electrochromic memory device. Appl. Phys. Lett., 23, 1973, 64–5.CrossRefGoogle Scholar
[Online] at www.moonwatch.com/article.html (accessed 6 September 2005. The webpage comprises a journalistic account entitled ‘The Moonwatch story’.).
Ando, E., Kawakami, K., Matsuhiro, K. and Masuda, Y.Performance of amorphous-WO3/LiClO4–PC electrochromic displays. Displays, 6, 1985, 3–10.CrossRefGoogle Scholar
Kaneko, N., Tabata, J. and Miyoshi, T.Electrochromic device watch display. SID Int. Symp. Digest, 12, 1981, 74–5.Google Scholar
Schoot, C. J., Bolwijn, P. T., Dam, H. T., Doorn, R. A., Ponjeé, J. J. and Houten, G.Elektrochrome Anzeige mit Speichereigenschaften (Electrochrome displays with storage properties: construction and functioning of storage-type electrochrome cell), Elektronikpraxis, 10, 1975, 11–14 [in German].Google Scholar
Barclay, D. J. and Martin, D. H. Electrochromic displays. in Howells, E. R. (ed.), Technology of Chemicals and Materials for the Electronics Industry, Chichester, Ellis Horwood, 1984, 266–76.Google Scholar
Advanced electrochromic displays find markets. Printed Electronics Review, 2005; available [online] at www.idtechex.com/printelecreview/en/articles/00000149.asp (accessed 14 September 2005).
Freeman, W., Rosseinsky, D., Jiang, H. and Soutar, A., Finisar Corporation. Control systems for electrochromic devices. US Patent 6,940,627 B2, 2005.
Talmay, P. US Patent 2,319,765, 1943; as cited in Granqvist, C. G., Handbook of Inorganic Electrochromic Materials, Amsterdam, Elsevier, 1995.Google Scholar
Talmay, P. US Patent 2,281,013, 1942; as cited in Granqvist, C. G., Handbook of Inorganic Electrochromic Materials, Amsterdam, Elsevier, 1995.Google Scholar
Mortimer, R. J. and Warren, C. P.Cyclic voltammetric studies of Prussian blue and viologens within a paper matrix for electrochromic printing applications. J. Electroanal. Chem., 460, 1999, 263–6.CrossRefGoogle Scholar
Rosseinsky, D. R. and Monk, J. L.Thin layer electrochemistry in a paper matrix: electrochromography of Prussian blue and two bipyridilium systems. J. Electroanal. Chem., 270, 1989, 473–8.CrossRefGoogle Scholar
Balanson, R. D., Corker, G. A. and Grant, B. D.IBM Technical Disclosure Bulletin, 26, 1983, 2930, as cited in ref. 75.
Monk, P. M. S., Delage, F. and Costa Vieira, S. M.Electrochromic paper: utility of electrochromes incorporated in paper. Electrochim. Acta, 46, 2001, 2195–202.CrossRefGoogle Scholar
Monk, P. M. S., Turner, C. and Akhtar, S. P.Electrochemical behaviour of methyl viologen in a matrix of paper. Electrochim. Acta, 44, 1999, 4817–26.CrossRefGoogle Scholar
John, S. A. and Ramaraj, R.Electrochemical, in situ spectrocyclic voltammetric and electrochromic studies of phenosafranine in Nafion® film. J. Electroanal. Chem., 424, 1997, 49–59.CrossRefGoogle Scholar
Ganesan, V., John, S. A. and Ramaraj, R.Multielectrochromic properties of methylene blue and phenosafranine dyes incorporated into Nafion® film. J. Electroanal. Chem., 502, 2001, 167–73.CrossRefGoogle Scholar
[Online] at www.ntera.ie/nano.pdf (accessed 27 January 2006).
Shimizu, Y. and Furuta, Y.An opto-electrochemical phosphate-ion sensor using a cobalt-oxide thin-film electrode. Solid State Ionics, 113–15, 1998, 241–5.CrossRefGoogle Scholar
Shimizu, Y., Furuta, Y. and Yamashita, T.Optical phosphate-ion sensor based on electrochromism of metal-oxide thin-film electrode. Trans. Inst. Elect. Eng. Jpn., 119, 1999, 285–9.Google Scholar
Talaie, A., Lee, J. Y., Lee, Y. K., Jang, J., Romagnoli, J. A., Taguchi, T. and Maeder, E.Dynamic sensing using intelligent composite: an investigation to development of new pH sensors and electrochromic devices. Thin Solid Films, 363, 2000, 163–6.CrossRefGoogle Scholar
James, S. A., Ray, A. K., Thorpe, S. C. and Cook, M. J.Thermopower of copper tetra(4-tert-butyl)phthalocyanine Langmuir–Blodgett films. Thin Solid Films, 226, 1993, 3–5.Google Scholar
Wright, J. D., Roisin, P., Rigby, G. R., Nolte, R. J. M., Cook, M. J. and Thorpe, S. C.Crowned and liquid-crystalline phthalocyanines as gas-sensor materials. Sens. Actuators, B13, 1993, 276–80.CrossRefGoogle Scholar
Cole, A., McIlroy, R. J., Thorpe, S. C., Cook, M. J., McMurdo, J. and Ray, A. K.Substituted phthalocyanine gas sensors. Sens. Actuators, B13–14, 1993, 416–19.CrossRefGoogle Scholar
Ray, A. K., Mukhopadhyay, S. and Cook, M. J.Hopping conduction in Langmuir–Blodgett films of amphiphilic phthalocyanine molecules. Thin Solid Films, 229, 1993, 8–10.CrossRefGoogle Scholar
Crouch, D., Thorpe, S. C., Cook, M. J., Chambrier, I. and Ray, A. K.Langmuir–Blodgett films of an asymmetrically substituted phthalocyanine: improved gas-sensing properties. Sens. Actuators, B18–19, 1994, 411–14.CrossRefGoogle Scholar
Lukas, B., Silver, J., Lovett, D. R. and Cook, M. J.Electrochromism in the octapentyloxy nickel phthalocyanines and related phthalocyanines. Chem. Phys. Lett., 241, 1995, 351–4.CrossRefGoogle Scholar
Baker, P. S., Petty, M. C., Monkman, A. P., McMurdo, J., Cook, M. J. and Pride, R.A hybrid phthalocyanine/silicon field-effect transistor sensor for NO2. Thin Solid Films, 285, 1996, 94–7.CrossRefGoogle Scholar
Azens, A., Kullman, L. and Granqvist, C. G.Ozone coloration of Ni and Cr oxide films. Sol. Energy Mater. Sol. Cells, 76, 2003, 147–53.CrossRefGoogle Scholar
Yahaya, M. B., Salleh, M. M. and Yusoff, N. Y. N.Electrochromic sensor using porphyrin thin films to detect chlorine. Proc. SPIE, 5276, 2004, 422–7.CrossRefGoogle Scholar
Schiffrin, D. J. New Applications of Electrochromism: Displays, Light Modulation and Printing Meeting, Scientific Societies Lecture Hall, London, 3 April 1991, presentation.
Schweiger, D., Georg, A., Graf, W. and Wittwer, V.Examination of the kinetics and performance of a catalytically switching (gasochromic) device. Sol. Energy Mater. Sol. Cells, 54, 1998, 99–108.CrossRefGoogle Scholar
Georg, A., Graf, W., Neumann, R. and Wittwer, V.The role of water in gasochromic WO3 films. Thin Solid Films, 384, 2001, 269–75.CrossRefGoogle Scholar
Georg, A., Graf, W., Neumann, R. and Wittwer, V.Stability of gasochromic WO3 films. Sol. Energy Mater. Sol. Cells, 63, 2000, 165–76.CrossRefGoogle Scholar
Opara Krašovec, U., Orel, B., Georg, A. and Wittwer, V.The gasochromic properties of sol–gel WO3 films with sputtered Pt catalyst. Sol. Energy, 68, 2000, 541–51.CrossRefGoogle Scholar
Shanak, H., Schmitt, H., Nowoczin, J. and Ziebert, C.Effect of Pt-catalyst on gasochromic WO3 films: optical, electrical and AFM investigations. Solid State Ionics, 171, 2004, 99–106.CrossRefGoogle Scholar
Georg, A., Graf, W., Neumann, R. and Wittwer, V.Mechanism of the gasochromic coloration of porous WO3 films. Solid State Ionics, 127, 2000, 319–28.CrossRefGoogle Scholar
Salinga, C., Weis, H. and Wuttig, M.Gasochromic switching of tungsten oxide films: a correlation between film properties and coloration kinetics. Thin Solid Films, 414, 2002, 288–95.CrossRefGoogle Scholar
Wittwer, V., Datz, M., Ell, J., Georg, A., Graf, W. and Walze, G.Gasochromic windows. Sol. Energy Mater. Sol. Cells, 84, 2004, 305–14.CrossRefGoogle Scholar
Shaver, P.Activated tungsten oxide gas detectors. Appl. Phys. Lett, 11, 1967, 255–7.CrossRefGoogle Scholar
Dwyer, D. G.Surface chemistry of gas sensors: H2S on WO3 films. Sens. Actuators, B5, 1991, 155–9.CrossRefGoogle Scholar
Solis, J. L., Saukko, S., Kish, L., Granqvist, C. G. and Lantto, V.Semiconductor gas sensors based on nanostructured tungsten oxide. Thin Solid Films, 391, 2001, 255–60.CrossRefGoogle Scholar
Solis, J. L., Saukko, S., Kish, L. B., Granqvist, C. G. and Lantto, V.Nanocrystalline tungsten oxide thick-films with high sensitivity to H2S at room temperature. Sens. Actuators, B77, 2001, 316–21.CrossRefGoogle Scholar
Heszler, P., Reyes, L. F., Hoel, A., Landstrome, L., Lantto, V. and Granqvist, C. G.Nanoparticle films made by gas phase synthesis: comparison of various techniques and sensor applications. Proc. SPIE, 5055, 2003, 106–19.CrossRefGoogle Scholar
Tomchenko, A. A., Emelianov, I. L. and Khatko, V. V.Tungsten trioxide-based thick-film NO sensor: design and investigation. Sens. Actuators, B57, 1999, 166–70.CrossRefGoogle Scholar
Tomchenko, A. A., Khatko, V. V. and Emelianov, I. L.WO3 thick-film gas sensors. Sens. Actuators, B46, 1998, 8–14.CrossRefGoogle Scholar
Ho, J.-J.Novel nitrogen monoxide (NO) gas sensors integrated with tungsten trioxide (WO3)/pin structure for room temperature operation. Solid State Electronics, 47, 2003, 827–30.CrossRefGoogle Scholar
Khatko, V., Guirado, F., Hubalek, J., Llobet, E. and Correig, Z.X-Ray investigation of nanopowder WO3 thick films. Physica Status Solidi, 202, 2005, 1973–9.CrossRefGoogle Scholar
Monk, P. M. S., Mortimer, R. J. and Rosseinsky, D. R.Electrochromism: Fundamentals and Applications, Weinheim, VCH, 1995.CrossRefGoogle Scholar
Pantaloni, S., Passerini, S. and Scrosati, B.Solid state thermoelectrochromic device. J. Electrochem. Soc., 134, 1987, 753–75.CrossRefGoogle Scholar
Colley, R. A., Budd, P. M., Owen, J. R. and Balderson, S.Poly[oxymethylene-oligo(oxyethylene)] for use in subambient temperature electrochromic devices. Polym. Int., 49, 2000, 371–6.3.0.CO;2-7>CrossRefGoogle Scholar
Bailey, J. C. Eveready Battery Company. Electrochromic thin film state-of-charge detector for on-the-cell application. US Patent 05458992, 1995.
Kojima, K. and Terao, M.Proposal of a multi-information-layer electrically selectable optical disk (ESD) using the same optics as DVD. Proc. SPIE, 5069, 2003, 300–5.CrossRefGoogle Scholar
[Online] at www.nttc.edu/resources/funding/awards/dod/1998sbir/982army.asp (accessed 6 September 2005).
Brace, K., Hayden, B. E., Russell, K. E. and Owen, J. R.A parallel optical screen for the rapid combinatorial analysis of electrochemical materials. Adv. Mater., 18, 2006, 3253–70.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×