Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-cnmwb Total loading time: 0 Render date: 2024-07-23T10:27:09.072Z Has data issue: false hasContentIssue false

14 - Fundamentals of device construction

Published online by Cambridge University Press:  10 August 2009

Paul Monk
Affiliation:
Manchester Metropolitan University
Roger Mortimer
Affiliation:
Loughborough University
David Rosseinsky
Affiliation:
University of Exeter
Get access

Summary

Fundamentals of ECD construction

All electrochromic devices are electrochemical cells, so each contains a minimum of two electrodes separated by an ion-containing electrolyte. Since the colour and optical-intensity changes occurring within the electrochromic cell define its utility, the compositional changes within the ECD must be readily seen under workplace illumination. In practice, high visibility is usually achieved by fabricating the cell with one or more optically transparent electrodes (OTEs), as below.

Electrochromic operation of the ECD is effected via an external power supply, either by manipulation of current or potential. Applying a constant potential in ‘potentiostatic coloration’ is referred to in Chapter 3, while imposing a constant current is said to be ‘galvanostatic’. Galvanostatic coloration requires only two electrodes, but a true potentiostatic measurement requires three electrodes (Chapter 3), so an approximation to potentiostatic control, with two electrodes, is common.

The electrolyte between the electrodes is normally of high ionic conductivity (although see p. 386). In ECDs of types I and II, the electrolyte viscosity can be minimised to aid a rapid response. For example, a liquid electrolyte (that actually comprises the electrochromes) is employed in the world's best-selling ECD, the Gentex rear-view mirror described in Section 13.2. The electrolyte in a type-III cell is normally solid or at least viscoelastic, e.g. a semi-solid or polymer, as below.

In fact, virtually all the type-III cells in the literature are designed to remain solid during operation, as ‘all-solid-state devices’, or ‘ASSDs’.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baucke, F. G. K.Electrochromic applications. Mater. Sci. Eng. B, 10, 1991, 285–92.CrossRefGoogle Scholar
Baucke, F. G. K.Electrochromic mirrors with variable reflectance. Rivista della Staz. Sper. Vetro, 6, 1986, 119–22.Google Scholar
Baucke, F. G. K.Electrochromic mirrors with variable reflectance. Sol. Energy Mater., 16, 1987, 67–77.CrossRefGoogle Scholar
Baucke, F. G. K.Reflecting electrochromic devices – construction, operation and application. Proc. Electrochem. Soc., 20–4, 1990, 298–311.Google Scholar
Baucke, F. G. K., Bange, K. and Gambke, T.Reflecting electrochromic devices. Displays, 9, 1988, 179–87.CrossRefGoogle Scholar
Baucke, F. G. K.Beat the dazzlers. Schott Information, 1, 1983, 11–13.Google Scholar
Baucke, F. G. K.Reflectance control of automotive mirrors. Proc. SPIE, IS4, 1990, 518–38.Google Scholar
Baucke, F. G. K. and Duffy, J. A.Darkening glass by electricity. Chem. Br., 21, 1985, 643–6 and 653.
Baucke, F. G. K., Duffy, J. A. and Smith, R. I.Optical absorption of tungsten bronze thin films for electrochromic applications. Thin Solid Films, 186, 1990, 47–51.CrossRefGoogle Scholar
Baucke, F. G. K. and Gambke, T.Electrochromic materials for optical switching devices. Adv. Mater., 2, 1990, 10–16.Google Scholar
Ashrit, P. V.Dry lithiation study of nanocrystalline, polycrystalline and amorphous tungsten trioxide thin-films. Thin Solid Films, 385, 2001, 81–8.CrossRefGoogle Scholar
Ashrit, P. V., Benaissa, K., Bader, G., Girouard, F. E. and Truong, V.-V.Lithiation studies on some transition metal oxides for an all-solid thin film electrochromic system. Solid State Ionics, 59, 1993, 47–57.CrossRefGoogle Scholar
Yonghong, Y., Jiayu, Z., Peifu, G. and Jinfa, T.Study on the WO3 dry lithiation for all-solid-state electrochromic devices. Sol. Energy Mater. Sol. Cells, 46, 1997, 349–55.CrossRefGoogle Scholar
Yonghong, Y., Jiayu, Z., Peifu, G. and Jinfa, T.Study on the dry lithiation of WO3 films. Acta Energiae Solaris Sinica, 19, 1998, 371–375 [in Chinese]; as cited at www.engineering village 372.org (accessed 16 December 2004).Google Scholar
Ashrit, P. V.Structure dependent electrochromic behaviour of WO3 thin films under dry lithiation. Proc. SPIE, 3789, 1999, 158–69.CrossRefGoogle Scholar
Taj, A. and Ashrit, P. V.Dry lithiation of nanostructured sputter deposited molybdenum oxide thin films. J. Mater. Sci., 39, 2004, 3541–4.CrossRefGoogle Scholar
Azens, A. and Granqvist, C. G.Electrochromic smart windows: energy efficiency. J. Solid State Electrochem., 7, 2003, 64–8.CrossRefGoogle Scholar
Azens, A., Kullman, L. and Granqvist, C. G.Ozone coloration of Ni and Cr oxide films. Sol. Energy Mater. Sol. Cells, 76, 2003, 147–53.CrossRefGoogle Scholar
Linford, R. G. Electrical and electrochemical properties of ion conducting polymers. In Scrosati, B. (ed.), Applications of Electroactive Polymers, London, Chapman and Hall, 1993, pp. 1–28.CrossRefGoogle Scholar
Livage, J. and Ganguli, D.Sol–gel electrochromic coatings and devices: a review. Sol. Energy Mater. Sol. Cells, 68, 2001, 365–81.CrossRefGoogle Scholar
Byker, H. J.Electrochromics and polymers. Electrochim. Acta, 46, 2001, 2015–22.CrossRefGoogle Scholar
Mitsui Chemicals Inc. Ion conductive macromolecular gel electrolyte and solid battery using ion-conductive macromolecular gel electrolyte. Japanese Patent 2000-207934-A, 2000.
Deb, S. K.Optical and photoelectric properties and colour centres in thin films of tungsten oxide. Philos. Mag., 27, 1973, 801–22.CrossRefGoogle Scholar
Oi, T., Miyake, K. and Uehara, K.Electrochromism of WO3/LiAlF4/LiIn thin-film overlayers. J. Appl. Phys., 53, 1982, 1823.CrossRefGoogle Scholar
Goldner, R. B., Haas, T., Seward, G., Wong, G., Norton, P., Foley, G., Berera, G., Wei, G., Schulz, S. and Chapman, R.Thin film solid state ionic materials for electrochromic smart windowTM glass. Solid State Ionics, 28–30, 1988, 1715–21.CrossRefGoogle Scholar
Goldner, R. B. Electrochromic smart windowTM glass. In Chowdari, B. V. R. and Radhakrishna, S. (eds.), Proceedings of the International Seminar on Solid State Ionic Devices, Singapore, World Publishing Co., 1988, pp. 379–89.CrossRefGoogle Scholar
Goldner, R. B., Arntz, F. O., Berera, G., Haas, T. E., Wei, G., Wong, K. K. and Yu, P. C.A monolithic thin-film electrochromic window. Solid State Ionics, 53–6, 1992, 617–27.CrossRefGoogle Scholar
Goldner, R. B., Arntz, F. O., Dickson, K., Goldner, M. A., Haas, T. E., Liu, T. Y., Slaven, S., Wei, G., Wong, K. K. and Zerigian, P.Some lessons learned from research on a thin film electrochromic window. Solid State Ionics, 70–1, 1994, 613–18.CrossRefGoogle Scholar
Kuwabara, K. and Noda, Y.Potential wave-form measurements of an electrochromic device, WO3/Sb2O5/C, at coloration–bleaching processes using a new quasi-reference electrode. Solid State Ionics, 61, 1993, 303–8.CrossRefGoogle Scholar
Vaivars, G., Kleperis, J. and Lusis, A.Antimonic acid hydrate xerogels as proton electrolytes. Solid State Ionics, 61, 1993, 317–21.CrossRefGoogle Scholar
Lusis, A.Solid state ionics and optical materials technology for energy efficiency, solar energy conversion and environmental control. Proc. SPIE, 1536, 1991, 116–24.CrossRefGoogle Scholar
Granqvist, C. G., Azens, A., Hjelm, A., Kullman, L., Niklasson, G. A., Rönnow, D., Mattson, Strømme M., Veszelei, M. and Vaivars, G.Recent advances in electrochromics for smart windows applications. Sol. Energy, 63, 1998, 199–216.CrossRefGoogle Scholar
Corbella, C., Vives, M., Pinyol, A.et al. Influence of the porosity of RF sputtered Ta2O5 thin films on their optical properties for electrochromic applications. Solid State Ionics, 165, 2003, 15–22.CrossRefGoogle Scholar
Hutchins, M. G., Butt, N. S., Topping, A. J., Porqueras, I., Person, C. and Bertran, E.Tantalum oxide thin film ionic conductors for monolithic electrochromic devices. Proc. SPIE, 4458, 2001, 120–7.CrossRefGoogle Scholar
Kitao, M., Akram, H., Machida, H. and Urabe, K.Ta2O5 electrolyte films and solid-state EC cells. Proc. SPIE, 1728, 1992, 165–72.CrossRefGoogle Scholar
Kitao, M., Akram, H., Urabe, K. and Yamada, S.Properties of solid-state electrochromic cells using Ta2O5 electrolyte. J. Electron. Mater., 21, 1992, 419–22.CrossRefGoogle Scholar
Klingler, M., Chu, W. F. and Weppner, W.Three-layer electrochromic system. Sol. Energy Mater. Sol. Cells, 39, 1995, 247–55.CrossRefGoogle Scholar
Özer, N., He, Y. and Lampert, C. M.Ionic conductivity of tantalum oxide films prepared by sol–gel process for electrochromic devices. Proc. SPIE, 2255, 1994, 456–66.CrossRefGoogle Scholar
Sone, Y., Kishimoto, A. and Kudo, T.Amorphous tantalum oxide proton conductor derived from peroxo-polyacid and its application for EC device. Solid State Ionics, 70–1, 1994, 316–20.CrossRefGoogle Scholar
Cantao, M. P., Laurenco, A., Gorenstein, A., Torresi, Córdoba S. I. and Torresi, R. M.Inorganic oxide solid state electrochromic devices. Mater. Sci. Eng. B, 26, 1994, 157–61.CrossRefGoogle Scholar
Howe, A. T., Sheffield, S. H., Childs, P. E. and Shilton, M. G.Fabrication of films of hydrogen uranyl phosphate tetrahydrate and their use as solid electrolytes in electrochromic displays. Thin Solid Films, 67, 1980, 365–70.CrossRefGoogle Scholar
Azens, A., Kullman, L., Vaivars, G., Nordborg, H. and Granqvist, C. G.Sputter-deposited nickel oxide for electrochromic applications. Solid State Ionics, 113–15, 1998, 449–56.CrossRefGoogle Scholar
Larsson, A.-L. and Niklasson, G. A.Infrared emittance modulation of all-thin-film electrochromic devices. Mater. Lett., 58, 2004, 2517–20.CrossRefGoogle Scholar
Larsson, A.-L. and Niklasson, G. A.Optical properties of electrochromic all-solid-state devices. Sol. Energy Mater. Sol. Cells, 84, 2004, 351–60.CrossRefGoogle Scholar
Sluis, P. and Mercier, V. M. M.Solid state Gd–Mg electrochromic devices with ZrO2Hx electrolyte. Electrochim. Acta, 46, 2001, 2167–71.CrossRefGoogle Scholar
Mercier, V. M. M. and Sluis, P.Toward solid-state switchable mirrors using a zirconium oxide proton conductor. Solid State Ionics, 145, 2001, 17–24.CrossRefGoogle Scholar
Randin, J.-P.Ion-containing polymers as semisolid electrolytes in WO3-based electrochromic devices. J. Electrochem. Soc., 129, 1982, 1215–20.CrossRefGoogle Scholar
Kim, E., Rhee, S. B., Shin, J.-S., Lee, K.-Y. and Lee, M.-H.All solid-state electrochromic window based on poly(aniline N-butylsulfonate)s. Synth. Met., 85, 1997, 1367–8.CrossRefGoogle Scholar
Pennisi, A. and Simone, F.An electrochromic device working in absence of ion storage counter-electrode. Sol. Energy Mater. Sol. Cells, 39, 1995, 333–40.CrossRefGoogle Scholar
Choy, J.-H., Kim, Y.-I., Kim, B.-W., Campet, G., Portier, J. and Huong, P. V.Grafting mechanism of electrochromic PAA–WO3 composite film. J. Solid State Chem., 142, 1999, 368–73.CrossRefGoogle Scholar
Choy, J.-H., Kim, Y.-I., Park, N.-G., Campet, G. and Grenier, J.-C.New solution route to poly(acrylic acid)/WO3 hybrid film. Chem. Mater., 12, 2000, 2950–6.CrossRefGoogle Scholar
Ohno, H. and Yamazaki, H.Preparation and characteristics of all solid-state electrochromic display with cation-conductive polymer electrolytes. Solid State Ionics, 59, 1993, 217–22.CrossRefGoogle Scholar
Randin, J.-P.Chemical and electrochemical stability of WO3 electrochromic films in liquid electrolytes. J. Electron. Mater., 7, 1978, 47–63.CrossRefGoogle Scholar
Monk, P. M. S., Turner, C. and Akhtar, S. P.Electrochemical behaviour of methyl viologen in a matrix of paper. Electrochim. Acta, 44, 1999, 4817–26.CrossRefGoogle Scholar
Zukowska, G., Williams, J., Stevens, J. R., Jeffrey, K. R., Lewera, A. and Kulesza, P. J.The application of acrylic monomers with acidic groups to the synthesis of proton-conducting polymer gels. Solid State Ionics, 167, 2004, 123–30.CrossRefGoogle Scholar
Inaba, H., Iwaku, M., Nakase, K., Yasukawa, H., Seo, I. and Oyama, N.Electrochromic display device of tungsten trioxide and Prussian blue films using polymer gel electrolyte of methacrylate. Electrochim. Acta, 40, 1995, 227–32.CrossRefGoogle Scholar
Syrrakou, E., Papaefthimiou, S. and Yianoulis, P.Environmental assessment of electrochromic glazing production. Sol. Energy Mater. Sol. Cells, 85, 2005, 205–40.CrossRefGoogle Scholar
Nishikawa, M., Ohno, H., Kobayashi, T., Tsuchida, E. and Hirohashi, R.All solid-state electrochromic device containing poly[oligo(oxyethylene) methylmethacrylate]/LiClO4 hybrid polymer ion conductor. J. Soc. Photogr. Sci. Technol. Jpn., 81, 1988, 184–90 [in Japanese].Google Scholar
Bohnke, O., Frand, G., Rezrazi, M., Rousselot, C. and Truche, C.Fast ion transport in new lithium electrolytes gelled with PMMA, 1: influence of polymer concentration. Solid State Ionics, 66, 1993, 97–104.CrossRefGoogle Scholar
Deepa, M., Sharma, N., Agnihotry, S. A., Singh, S., Lal, T. and Chandra, R.Conductivity and viscosity of liquid and gel electrolytes based on LiClO4, LiN(CF3SO2)2 and PMMA. Solid State Ionics, 152–3, 2002, 253–8.CrossRefGoogle Scholar
Stevens, J. R., Such, K., Cho, N. and Wieczorek, W.Polyether-PMMA adhesive electrolytes for electrochromic applications. Sol. Energy Mater. Sol. Cells, 39, 1995, 223–37.CrossRefGoogle Scholar
Su, L., Fang, J., Xiao, Z. and Lu, Z.An all-solid-state electrochromic display device of Prussian blue and WO3 particulate film with a PMMA gel electrolyte. Thin Solid Films, 306, 1997, 133–6.CrossRefGoogle Scholar
Su, L., Lu, Z. and Xiao, Z.All solid-state electrochromic device with PMMA gel electrolyte. Mater. Chem. Phys., 52, 1998, 180–3.CrossRefGoogle Scholar
Tsutsumi, N., Ueda, Y. and Kiyotsukuri, T.Measurement of the internal electric field in a poly(vinylidene fluoride)/poly(methyl methacrylate) blend. Polymer, 33, 1992, 3305–7.CrossRefGoogle Scholar
Vondrak, J., Reiter, J., Velicka, J. and Sedlarikova, M.PMMA-based aprotic gel electrolytes. Solid State Ionics, 170, 2004, 79–82.CrossRefGoogle Scholar
Rauh, R. D., Wang, F., Reynolds, J. R. and Meeker, D. L.High coloration efficiency electrochromics and their application to multi-color devices. Electrochim. Acta, 46, 2001, 2023–9.CrossRefGoogle Scholar
Reynolds, J. R., Kumar, A., Reddinger, J. L., Sankaran, B., Sapp, S. A. and Sotzing, G. A.Unique variable-gap polyheterocycles for high-contrast dual polymer electrochromic devices. Synth. Met., 85, 1997, 1295–8.CrossRefGoogle Scholar
Sönmez, G., Schwendeman, I., Schottland, P., Zong, K. and Reynolds, J. R.N-Substituted poly(3,4-propylenedioxypyrrole)s: high gap and low redox potential switching electroactive and electrochromic polymers. Macromolecules, 36, 2003, 639–47.CrossRefGoogle Scholar
Sotzing, G. A., Reddinger, J. L., Reynolds, J. R. and Steel, P. J.Redox active electrochromic polymers from low oxidation monomers containing 3,4-ethylenedioxythiophene (EDOT). Synth. Met., 84, 1997, 199–201.CrossRefGoogle Scholar
Welsh, D. M., Kumar, A., Morvant, M. C. and Reynolds, J. R.Fast electrochromic polymers based on new poly(3,4-alkylenedioxythiophene) derivatives. Synth. Met., 102, 1999, 967–8.CrossRefGoogle Scholar
Pennisi, A., Simone, F., Barletta, G., Di Marco, G. and Lanza, M.Preliminary test of a large electrochromic window. Electrochim. Acta, 44, 1999, 3237–43.CrossRefGoogle Scholar
Varshney, P., Deepa, M., Agnihotry, S. A. and Ho, K. C.Photo-polymerized films of lithium ion conducting solid polymer electrolyte for electrochromic windows (ECWs). Sol. Energy Mater. Sol. Cells, 79, 2003, 449–58.CrossRefGoogle Scholar
Pedone, P., Armand, M. and Deroo, D.Voltammetric and potentiostatic studies of the interface WO3/polyethylene oxide–H3PO4. Solid State Ionics, 28–30, 1988, 1729–32.CrossRefGoogle Scholar
Agnihotry, S. A., Ahmad, S., Gupta, D. and Ahmad, S.Composite gel electrolytes based on poly(methylmethacrylate) and hydrophilic fumed silica. Electrochim. Acta, 49, 2004, 2343–9.CrossRefGoogle Scholar
Agnihotry, S. A., Nidhi, P. and Sekhon, S. S.Li+ conducting gel electrolyte for electrochromic windows. Solid State Ionics, 136–7, 2000, 573–6.CrossRefGoogle Scholar
Aliev, A. E. and Shin, H. W.Image diffusion and cross-talk in passive matrix electrochromic displays. Displays, 23, 2002, 239–47.CrossRefGoogle Scholar
Andrei, M., Roggero, A., Marchese, L. and Passerini, S.Highly conductive solid polymer electrolyte for smart windows. Polymer, 35, 1994, 3592–7.CrossRefGoogle Scholar
Antinucci, M., Chevalier, B. and Ferriolo, A.Development and characterisation of electrochromic devices on polymeric substrates. Sol. Energy Mater. Sol. Cells, 39, 1995, 271–87.CrossRefGoogle Scholar
Asano, T., Kubo, T. and Nishikitani, Y.Durability of electrochromic windows fabricated with carbon-based counterelectrode. Proc. SPIE, 3788, 1999, 84–92.CrossRefGoogle Scholar
Kuwabara, K., Sugiyama, K. and Ohno, M.All-solid-state electrochromic device, 1: electrophoretic deposition film of proton conductive solid electrolyte. Solid State Ionics, 44, 1991, 313–18.CrossRefGoogle Scholar
Kuwabara, K., Ohno, M. and Sugiyama, K.All-solid-state electrochromic device, 2: characterization of transition-metal oxide thin films for counter electrode. Solid State Ionics, 44, 1991, 319–23.CrossRefGoogle Scholar
Nishio, K. and Tsuchiya, T.Electrochromic thin films prepared by sol–gel process. Sol. Energy Mater. Sol. Cells, 68, 2001, 279–93.CrossRefGoogle Scholar
Scrosati, B.Ion conducting polymers and related electrochromic devices. Mol. Cryst. Liq. Cryst., 190, 1990, 161–70.Google Scholar
Lianyong, S., Hong, W. and Zuhong, L.All solid-state electrochromic smart window of electrodeposited WO3 and Prussian blue film with PVC gel electrolyte. Supramol. Sci., 5, 1998, 657–9.Google Scholar
Su, L., Xiao, Z. and Lu, Z.All solid-state electrochromic window of electrodeposited WO3 and prussian blue film with PVC gel electrolyte. Thin Solid Films, 320, 1998, 285–9.CrossRefGoogle Scholar
Chopra, K. L., Major, S. and Pandya, D. K.Transparent conductors: a status review. Thin Solid Films, 102, 1983, 1–46.CrossRefGoogle Scholar
Lynam, N. R.Transparent electronic conductors. Proc. Electrochem. Soc., 90–2, 1990, 201–31.Google Scholar
Granqvist, C. G.Transparent conductive electrodes for electrochromic devices – a review. Appl. Phys. A, 57, 1993, 19–24.CrossRefGoogle Scholar
Granqvist, C. G. and Hultåker, A.Transparent and conducting ITO films: new developments and applications. Thin Solid Films, 411, 2002, 1–5.CrossRefGoogle Scholar
Ohta, H., Nomura, K., Hiramatsu, H., Ueda, K., Kamiya, T., Hirano, M. and Hosono, H.Frontier of transparent oxide semiconductors. Solid-State Electron., 47, 2003, 2261–7.CrossRefGoogle Scholar
Di Marco, G., Lanza, M., Pennisi, A. and Simone, F.Solid state electrochromic device: behaviour of different salts on its performance, Solid State Ionics, 127, 2000, 23–9.CrossRefGoogle Scholar
Papaefthimiou, S., Leftheriotis, G. and Yianoulis, P.Study of WO3 films with textured surfaces for improved electrochromic performance. Solid State Ionics, 139, 2001, 135–44.CrossRefGoogle Scholar
Vroon, Z. A. E. P. and Spee, C. I. M. A.Sol–gel coatings on large area glass sheets for electrochromic devices. J. Non-Cryst. Solids, 218, 1997, 189–95.CrossRefGoogle Scholar
Michalak, F. M. and Owen, J. R.Parasitic currents in electrochromic devices. Solid State Ionics, 86–8, 1996, 965–70.CrossRefGoogle Scholar
Ho, K.-C., Singleton, D. E. and Greenberg, C. B.Effect of cell size on the performance of electrochromic windows. Proc. Electrochem. Soc., 90–2, 1990, 349–64.Google Scholar
Nagai, J., Kamimori, T. and Mizuhashi, M.Transmissive electrochromic device. Proc. SPIE, 562, 1985, 39–45.CrossRefGoogle Scholar
Jeong, D. J., Kim, W.-S. and Sung, Y. E.Improved electrochromic response time of nickel hydroxide thin films by ultra-thin nickel metal underlayer. Jpn. J. Appl. Phys., 40, 2001, L708–10.CrossRefGoogle Scholar
He, T., Ma, Y., Cao, Y., Yang, W. and Yao, J.Enhanced electrochromism of WO3 thin film by gold nanoparticles. J. Electroanal. Chem., 514, 2001, 129–32.CrossRefGoogle Scholar
Yao, J. N., Yang, Y. A. and Loo, B. H.Enhancement of photochromism and electrochromism in MoO3/Au and MoO3/Pt thin films. J. Phys. Chem. B, 102, 1998, 1856–60.CrossRefGoogle Scholar
Haranahalli, A. R. and Holloway, P. H.The influence of metal overlayers on electrochromic behavior of tungsten trioxide films. J. Electronic Mater., 10, 1981, 141–72.CrossRefGoogle Scholar
Haranahalli, A. R. and Dove, D. B.Influence of a thin gold surface layer on the electrochromic behavior of WO3 films. Appl. Phys. Lett., 36, 1980, 791–3.CrossRefGoogle Scholar
Inoue, E., Kawaziri, K. and Izawa, A.Deposited Cr2O3 as a barrier in a solid-state WO3 electrochromic cell. Jpn. J. Appl. Phys., 16, 1977, 2065–6.CrossRefGoogle Scholar
Stocker, R. J., Singh, S., Uitert, L. G. and Zydzik, G. J.Efficiency and humidity dependence of WO3–insulator electrochromic display structures. J. Appl. Phys., 50, 1979, 2993–4.CrossRefGoogle Scholar
Yoshimura, T., Watanabe, M., Kiyota, K. and Tanaka, M.Electrolysis in electrochromic device consisting of WO3 and MgF2 thin films. Jpn. J. Appl. Phys., 21, 1982, 128–32.CrossRefGoogle Scholar
Michalak, F. and Aldebert, P.A flexible electrochromic device based on colloidal tungsten oxide and polyaniline. Solid State Ionics, 85, 1996, 265–72.CrossRefGoogle Scholar
Bessière, A., Badot, J.-C., Certiat, M.-C., Livage, J., Lucas, V. and Baffier, N.Sol–gel deposition of electrochromic WO3 thin film on flexible ITO/PET substrate. Electrochim. Acta, 46, 2001, 2251–6.CrossRefGoogle Scholar
Bessière, A., Duhamel, C., Badot, J.-C., Lucas, V. and Certiat, M.-C.Study and optimization of a flexible electrochromic device based on polyaniline. Electrochim. Acta, 49, 2004, 2051–5.CrossRefGoogle Scholar
Coleman, J. P., Lynch, A. T., Madhukar, P. and Wagenknecht, J. H.Printed, flexible electrochromic displays using interdigitated electrodes. Sol. Energy Mater. Sol. Cells, 56, 1999, 395–418.CrossRefGoogle Scholar
Mecerreyes, D., Marcilla, R., Ochoteco, E., Grande, H., Pomposo, J. A., Vergaz, R. and Pena, Sarchez J. M.A simplified all-polymer flexible electrochromic device. Electrochim. Acta, 49, 2004, 3555–9.CrossRefGoogle Scholar
Pichot, F., Ferrere, S., Pitts, J. R. and Gregg, B. A.Flexible photoelectrochromic windows. J. Electrochem. Soc., 146, 1999, 4324–6.CrossRefGoogle Scholar
Azens, A., Gustavsson, G., Karmhag, R. and Granqvist, C. G.Electrochromic devices on polyester foil. Solid State Ionics, 165, 2003, 1–5.CrossRefGoogle Scholar
Paoli, M.-A., Nogueira, A. F., Machado, D. A. and Longo, C.All-polymeric electrochromic and photoelectrochemical devices: new advances. Electrochim. Acta, 46, 2001, 4243–9.CrossRefGoogle Scholar
Liu, J. and Coleman, J. P.Nanostructured metal oxides for printed electrochromic displays. Mater. Sci. Eng. A, 286, 2000, 144–8.CrossRefGoogle Scholar
Azens, A., Avendaño, E., Backholm, J., Berggren, L., Gustavsson, G., Karmhag, R., Niklasson, G. A., Roos, A. and Granqvist, C. G.Flexible foils with electrochromic coatings: science, technology and applications. Sol. Energy Mater. Sol. Cells, 119, 2005, 214–23.Google Scholar
Bertran, E., Corbella, C., Vives, M., Pinyol, A., Person, C. and Porqueras, I.RF sputtering deposition of Ag/ITO coatings at room temperature. Solid State Ionics, 165, 2003, 139–48.CrossRefGoogle Scholar
Hultåker, A., Jarrendahl, K., Lu, J., Granqvist, C. G. and Niklasson, G. A.Electrical and optical properties of sputter deposited tin doped indium oxide thin films with silver additive. Thin Solid Films, 392, 2001, 305–10.CrossRefGoogle Scholar
Brotherston, I. D., Mudigonda, D. S. K., Osborn, J. M., Belk, J., Chen, J., Loveday, D. C., Boehme, J. L., Ferraris, J. P. and Meeker, D. L.Tailoring the electrochromic properties of devices via polymer blends, copolymers, laminates and patterns. Electrochim. Acta, 44, 1999, 2993–3004.CrossRefGoogle Scholar
Yu, P. C., Backfisch, D. L., Slobodnik, J. B. and Rukavina, T. G., PPG Industries Ohio, Inc. Fabrication of electrochromic device with plastic substrates. US Patent 06136161, 2000.
Rousselot, C., Gillet, P. A. and Bohnke, O.Electrochromic thin films deposited onto polyester substrates. Thin Solid Films, 204, 1991, 123–31.CrossRefGoogle Scholar
Liu, G. and Richardson, T. J.Sb–Cu–Li electrochromic mirrors. Sol. Energy Mater. Sol. Cells, 86, 2005, 113–21.CrossRefGoogle Scholar
Edwards, M. O. M., Andersson, M., Gruszecki, T., Petterson, H., Thunman, R., Thuraisingham, G., Vestling, L. and Hagfeldt, A.Charge–discharge kinetics of electric-paint displays. J. Electroanal. Chem., 565, 2004, 175–84.CrossRefGoogle Scholar
Edwards, M. O. M., Boschloo, G., Gruszecki, T., Petterson, H., Sohlberg, R. and Hagfeldt, A.‘Electric-paint displays’ with carbon counter electrodes. Electrochim. Acta, 46, 2001, 2187–93.CrossRefGoogle Scholar
Edwards, M. O. M., Gruszecki, T., Pettersson, H., Thuraisingham, G. and Hagfeldt, A.A semi-empirical model for the charging and discharging of electric-paint displays. Electrochem. Commun., 4, 2002, 963–7.CrossRefGoogle Scholar
Nishikitani, Y., Asano, T., Uchida, S. and Kubo, T.Thermal and optical behavior of electrochromic windows fabricated with carbon-based counterelectrode. Electrochim. Acta, 44, 1999, 3211–17.CrossRefGoogle Scholar
Wang, J., Tian, B. M., Nascomento, V. B. and Angnes, L.Performance of screen-printed carbon electrodes fabricated from different carbon inks. Electrochim. Acta, 43, 1998, 3459–65.CrossRefGoogle Scholar
Yu, P., Popov, B. N., Ritter, J. A. and White, R. E.Determination of the lithium ion diffusion coefficient in graphite. J. Electrochem. Soc., 146, 1999, 8–14.CrossRefGoogle Scholar
Backfisch, D. L., PPG Industries Ohio, Inc. Method for laminating a composite device. US Patent 06033518, 2000.
Backfisch, D. L., PPG Industries Ohio, Inc. Method for sealing a laminated electrochromic device edge. US Patent 05969847, 2000.
Tonar, W. L., Bauer, F. T., Bostwick, D. J. and Stray, J. A., Gentex Corporation. Clip for use with transparent conductive electrodes in electrochromic devices. US Patent 06064509, 2000.
Pettersson, H., Gruszecki, T., Johansson, L.-H., Edwards, M. O. M., Hagfeldt, A. and Matuszczyk, T.Direct-driven electrochromic displays based on nanocrystalline electrodes. Displays, 25, 2004, 223–30.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×