Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-23T10:18:12.766Z Has data issue: false hasContentIssue false

12 - Miscellaneous organic electrochromes

Published online by Cambridge University Press:  10 August 2009

Paul Monk
Affiliation:
Manchester Metropolitan University
Roger Mortimer
Affiliation:
Loughborough University
David Rosseinsky
Affiliation:
University of Exeter
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Kodama, K.Methods of Quantitative Inorganic Analysis, New York, Interscience, 1963, ch. 15.Google Scholar
Hünig, S.Stable radical ions. Pure Appl. Chem., 15, 1967, 109–22.CrossRefGoogle Scholar
Michaelis, L., Schubert, M. P. and Gramick, S.The free radicals of the type of Wurster's salts. J. Am. Chem. Soc., 61, 1939, 1981–92.CrossRefGoogle Scholar
Michaelis, L.Semiquinones, the intermediate steps of reversible organic oxidation–reduction. Chem. Rev., 16, 1935, 243–86.CrossRefGoogle Scholar
Ling-Ling, W., Jin, L. and Zhong-Hua, L.Spectroelectrochemical studies of poly-o-phenylenediamine, part 1: in situ resonance Raman spectroscopy. J. Electroanal. Chem., 417, 1996, 53–8.Google Scholar
Long, J. W., Rhodes, C. P., Young, A. L. and Rolison, D. R.Ultrathin, protective coatings of poly(o-phenylenediamine) as electrochemical porous gates: making mesoporous MnO2 nanoarchitectures stable in acid electrolytes. Nano Lett., 3, 2003, 1155–61.CrossRefGoogle Scholar
Nishikitani, Y., Kobayashi, M., Uchida, S. and Kubo, T.Electrochemical properties of non-conjugated electrochromic polymers derived from aromatic amine derivatives. Electrochim. Acta, 46, 2001, 2035–40.Google Scholar
Yano, J. and Yamasaki, S.Three-color electrochromism of an aramid film containing polyaniline and poly(o-phenylenediamine). Synth. Met., 102, 1999, 1157.CrossRefGoogle Scholar
Zhang, A. Q., Cui, C. Q., Chen, Y. Z. and Lee, J. Y.Synthesis and electrochromic properties of poly-o-aminophenol. J. Electroanal. Chem., 373, 1994, 115–21.CrossRefGoogle Scholar
Ho, K.-C., Fang, J. G., Hsu, Y.-C. and Yu, F.-C.A study on the electro-optical properties of HV and TMPD with their application in electrochromic devices. Proc. Electrochem. Soc., 2003–17, 2003, 266–78.Google Scholar
Ho, K.-C., Fang, Y.-W., Hsu, Y.-C. and Chen, L.-C.The influences of operating voltage and cell gap on the performance of a solution-phase electrochromic device containing HV and TMPD. Solid State Ionics, 165, 2003, 279–87.CrossRefGoogle Scholar
Leventis, N., Muquo, C., Liapis, A. I., Johnson, J. W. and Jain, A.Characterisation of 3 × 3 matrix arrays of solution-phase electrochromic cells. J. Electrochem. Soc., 145, 1998, L55–8.CrossRefGoogle Scholar
Theiste, D., Baumann, K. and Giri, P.Solution phase electrochromic devices with near infrared attenuation. Proc. Electrochem. Soc., 2003–17, 2003, 199–207.Google Scholar
Desbène-Monvernay, A., Lacaze, P.-C. and Dubois, J.-E.Polaromicrotribometric (PMT) and IR, ESCA, EPR spectroscopic study of colored radical films formed by the electrochemical oxidation of carbazoles, part I: carbazole and N-ethyl, N-phenyl and N-carbazyl derivatives. J. Electroanal. Chem., 129, 1981, 229–41.Google Scholar
Zhi, J. F., Baba, R. and Fujishima, A.An electrochemical study of some spirobenzopyran derivatives in dimethylformamide. Ber. Bunsen.-Ges. Phys. Chem., 100, 1996, 1802–7.CrossRefGoogle Scholar
Zhi, J. F., Baba, R., Hashimoto, K. and Fujishima, A.A multifunctional electrooptical molecular device: the photoelectrochemical behavior of spirobenzopyrans in dimethylformamide. Ber. Bunsen.-Ges. Phys. Chem., 99, 1995, 32–9.CrossRefGoogle Scholar
Zhi, J. F., Baba, R., Hashimoto, K. and Fujishima, A.Photoelectrochromic properties of a spirobenzopyran derivative. J. Photochem. Photobiol., A92, 1995, 91–7.Google Scholar
Kim, S. H. and Huang, S. H.Electrochromic properties of functional squarylium dyes. Dyes Pigm., 36, 1998, 139–48.CrossRefGoogle Scholar
Ronlán, A., Hammerich, O. and Parker, V. D.Anodic oxidation of methoxybibenzyls: products and mechanism of the intramolecular cyclization. J. Am. Chem. Soc., 95, 1973, 7132–8.Google Scholar
Ronlán, A., Coleman, J., Hammerich, O. and Parker, V. D.Anodic oxidation of methoxybiphenyls: effect of the biphenyl linkage on aromatic cation radical and dication stability. J. Am. Chem. Soc., 96, 1974, 845–9.Google Scholar
Grant, B., Clecak, N. J. and Oxsen, M.Study of the electrochromism of methoxyfluorene compounds. J. Org. Chem., 45, 1980, 702–5.CrossRefGoogle Scholar
Desbène-Monvernay, A., Lacaze, P. C. and Cherigui, A.UV-visible spectroelectrochemical study of some para- and ortho-benzoquinoid compounds: comparative evaluation of their electrochromic properties. J. Electroanal. Chem., 260, 1989, 75–90.Google Scholar
Dubois, J. E., Desbène-Monvernay, A., Cherigui, A. and Lacaze, P. C.Ortho-chloranil – a new electrochromic material. J. Electroanal. Chem., 169, 1984, 157–66.Google Scholar
Yashiro, M. and Sato, K.A new electrochromic material: 1,4-benzoquinone in a non-aqueous solution. Jpn. J. Appl. Phys., 20, 1981, 1319–20.CrossRefGoogle Scholar
Gater, V. K., Liu, M. D., Love, M. D. and Leidner, C. R.Quinone molecular films derived from aminoquinones. J. Electroanal. Chem., 257, 1988, 133–46.CrossRefGoogle Scholar
Gater, V. K., Love, M. D., Liu, M. D. and Leidner, C. R.Quinone molecular films derived from 1,5-diaminoanthraquinone. J. Electroanal. Chem., 235, 1987, 381–5.CrossRefGoogle Scholar
Desbène-Monvernay, A., Lacaze, P. C., Dubois, J. E. and Cherigui, A.Ion-pair effects on the electroreduction and electrochromic properties of ortho-chloranil in dipolar aprotic solvents. J. Electroanal. Chem., 216, 1987, 203–12.Google Scholar
Cherigui, A., Desbène-Monvernay, A. and Lacaze, P.-C.Electrochromism of the o-CA/o-CA− system in display cells. J. Electroanal. Chem., 240, 1988, 321–4.CrossRefGoogle Scholar
Yano, J.Electrochromism of polyaniline film incorporating a red quinone 1-amino-4-bromoanthraquinone-2-sulfonate. J. Electrochem. Soc., 144, 1997, 477–81.CrossRefGoogle Scholar
Ueno, T., Hirai, Y. and Tani, C.Three color switching electrochromic display using organic redox-pair dyes. Jpn. J. Appl. Phys., 24, 1985, L178–80.CrossRefGoogle Scholar
Byker, H. J., Gentex Corporation. Single-compartment, self-erasing, solution-phase electrochromic devices, solutions for use therein and uses thereof. US Patent No. 4,902,108, 1990.
[online] at www.gentex.com/auto_how_nvs_work.html (accessed 6 September 2005).
[online] at http://uk.cars.yahoo.com/010419/4/749k.html (accessed 25 July 2003).
Byker, H. J.Electrochromics and polymers. Electrochim. Acta, 46, 2001, 2015–22.CrossRefGoogle Scholar
Byker, H. J.Commercial developments in electrochromics. Proc. Electrochem. Soc., 94–2, 1994, 1–13.Google Scholar
Yasuda, A. and Seto, J.Electrochromic properties of vacuum-evaporated organic thin films, part 4: the case of 2,4,7-trinitro-9-fluorenylidene malononitrile. J. Electroanal. Chem., 303, 1991, 161–9.CrossRefGoogle Scholar
Higuchi, H., Ichioka, K., Kawai, H., Fujiwara, K., Ohkita, M., Tsuji, T. and Suzuki, T.Three-way-output response system by electric potential: UV-vis, CD, and fluorescence spectral changes upon electrolysis of the chiral ester of tetracyanoanthraquinodimethane. Tetrahedron Lett., 45, 2004, 3027–30.CrossRefGoogle Scholar
Kaufman, F. B. and Engler, E. M.Solid-state spectroelectrochemistry of crosslinked donor bound polymer films. J. Am. Chem. Soc., 101, 1979, 547–9.CrossRefGoogle Scholar
Kaufman, F. B., Schroeder, A. H., Engler, E. M. and Patel, V. V.Polymer-modified electrodes: a new class of electrochromic materials. Appl. Phys. Lett., 36, 1980, 422–5.CrossRefGoogle Scholar
Hirai, Y. and Tani, C.Electrochromism for organic materials in polymeric all-solid-state systems. Appl. Phys. Lett, 43, 1983, 704–5.CrossRefGoogle Scholar
Day, R. W., Inzelt, G., Kinstle, J. F. and Chambers, J. Q.Tetracyanoquinodimethane-modified electrodes. J. Am. Chem. Soc., 104, 1982, 6804–5.CrossRefGoogle Scholar
Inzelt, G., Day, R. W., Kinstle, J. F. and Chambers, J. Q.Spectroelectrochemistry of tetracyanoquinodimethane modified electrodes. J. Electroanal. Chem., 161, 1984, 147–61.CrossRefGoogle Scholar
Inzelt, G., Day, R. W., Kinstle, J. F. and Chambers, J. Q.Electrochemistry and electron spin resonance of tetracyanoquinodimethane modified electrodes: evidence for mixed-valence radical anions in the reduction process. J. Phys. Chem., 87, 1983, 4592–8.CrossRefGoogle Scholar
Kaufman, F. B. New organic materials for use as transducers in electrochromic display devices. Conference Record of the IEEE, Biennial Display Research Conference, New York, 1978, p. 23–5.
Torrance, J. B., Scott, B. A., Welber, B., Kaufman, F. B. and Seiden, P. E.Optical properties of the radical cation tetrathiafulvalenium (TTF+) in its mixed-valence and monovalence halide salts. Phys. Rev., B19, 1979, 730–41.CrossRefGoogle Scholar
Kaufman, F. B., Schroeder, A. H., Engler, E. M., Kramer, S. R. and Chambers, J. Q.Ion and electron transport in stable, electroactive tetrathiafulvalene polymer coated electrodes. J. Am. Chem. Soc., 102, 1980, 483–8.CrossRefGoogle Scholar
Tsutsumi, H., Nakagawa, Y., Miyazaki, K., Morita, M. and Matsuda, Y.Polymer gel films with simple organic electrochromics for single-film electrochromic devices. J. Polym. Chem., 30, 1992, 1725–9.CrossRefGoogle Scholar
Calvert, J. M., Manuccia, T. J. and Nowak, R. J.A polymeric solid-state electrochromic cell. J. Electrochem. Soc., 133, 1986, 951–3.CrossRefGoogle Scholar
Kuwabata, S., Mitsui, K. and Yoneyama, H.Preparation of polyaniline films doped with methylene blue-bound Nafion and the electrochromic properties of the resulting films. J. Electroanal. Chem., 281, 1990, 97–107.CrossRefGoogle Scholar
Tsutsumi, H., Nakagawa, Y. and Tamura, K.Single-film electrochromic devices with polymer gel films containing aromatic electrochromics. Sol. Energy Mater. Sol. Cells, 39, 1995, 341–8.CrossRefGoogle Scholar
Tsutsumi, H., Nakagawa, Y., Miyazaki, K., Morita, M. and Matsuda, Y.Single polymer gel film electrochromic device. Electrochim. Acta, 37, 1992, 369–70.CrossRefGoogle Scholar
Goldie, D. M., Hepburn, A. R., Maud, J. M. and Marshall, J. M.Carrier mobility studies of carbazole modified polysiloxanes. Mol. Cryst. Liq. Cryst., 234, 1993, 777–82.Google Scholar
Goldie, D. M., Hepburn, A. R., Maud, J. M. and Marshall, J. M.Dynamics of colouration and bleaching in cross-linked carbazole modified polysiloxane thin films. Synth. Met., 55, 1993, 1650–5.CrossRefGoogle Scholar
Goldie, D. M., Hepburn, A. R., Maud, J. M. and Marshall, J. M.Characterisation and application of carbazole modified polysiloxanes in electrochemical displays. Mol. Cryst. Liq. Cryst., 234, 1993, 627–34.Google Scholar
Maud, J. M., Vlahov, A., Goldie, D. M., Hepburn, A. R. and Marshall, J. M.Carbazolylalkyl substituted cyclosiloxanes: synthesis and properties. Synth. Met., 55, 1993, 890–5.CrossRefGoogle Scholar
Bartlett, I. D., Marshall, J. M. and Maud, J. M.Characterization and application of carbazole modified polysiloxanes to electrochromic displays. J. Non-Cryst. Solids, 198–200, 1996, 665–8.CrossRefGoogle Scholar
Hepburn, A. R., Marshall, J. M. and Maud, J. M.Novel electrochromic films via anodic oxidation of carbazolyl substituted polysiloxanes. Synth. Met., 43, 1991, 2935–8.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×