Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-wxhwt Total loading time: 0 Render date: 2024-07-11T00:28:31.647Z Has data issue: false hasContentIssue false

1 - Introduction

Published online by Cambridge University Press:  15 December 2009

Ian E. McCarthy
Affiliation:
Flinders University of South Australia
Erich Weigold
Affiliation:
Australian National University, Canberra
Get access

Summary

The detailed study of the motion of electrons in the field of a nucleus has been made possible by quite recent developments in experimental and calculational techniques. Historically it is one of the newest of sciences. Yet conceptually and logically it is very close to the earliest beginnings of physics. Its fascination lies in the fact that it is possible to probe deeper into the dynamics of this system than of any other because there are no serious difficulties in the observation of sufficiently-resolved quantum states or in the understanding of the elementary two-body interaction.

The utility of the study is twofold. First the understanding of the collisions of electrons with single-nucleus electronic systems is essential to the understanding of many astrophysical and terrestrial systems, among the latter being the upper atmosphere, lasers and plasmas. Perhaps more important is its use for developing and sharpening experimental and calculational techniques which do not require much further development for the study of the electronic properties of multinucleus systems in the fields of molecular chemistry and biology and of condensed-matter physics.

For many years after Galileo's discovery of the basic kinematic law of conservation of momentum, and his understanding of the interconversion of kinetic and potential energy in some simple terrestrial systems, there was only one system in which the dynamical details were understood. This was the gravitational two-body system, whose understanding depended on Newton's discovery of the 1/r law governing the potential energy. By understanding the dynamics we mean keeping track of all the relevant energy and momentum changes in the system and being able to predict them accurately.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Introduction
  • Ian E. McCarthy, Flinders University of South Australia, Erich Weigold, Australian National University, Canberra
  • Book: Electron-Atom Collisions
  • Online publication: 15 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511564109.002
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Introduction
  • Ian E. McCarthy, Flinders University of South Australia, Erich Weigold, Australian National University, Canberra
  • Book: Electron-Atom Collisions
  • Online publication: 15 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511564109.002
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Introduction
  • Ian E. McCarthy, Flinders University of South Australia, Erich Weigold, Australian National University, Canberra
  • Book: Electron-Atom Collisions
  • Online publication: 15 December 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511564109.002
Available formats
×