Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-12T00:32:50.145Z Has data issue: false hasContentIssue false

18 - Dislocation mobility

Published online by Cambridge University Press:  14 August 2009

John J. Gilman
Affiliation:
University of California, Los Angeles
Get access

Summary

Introduction

Since dislocations “multiply” as they move (i.e., they increase their length), and since they are almost always present initially in structural materials, their most important property is their mobility. If this is very small, as it is in covalently bonded crystals like silicon at temperatures below the Debye temperature (about 920 K in Si), the material is brittle, tending to fracture before it deforms plastically. If the mobility is large, as it is in nearly perfect gold, or copper, crystals, then the material is very ductile, or malleable. Such crystals may be hammered violently without fracturing them.

The range of dislocation mobilities is very large as measured by the stress needed to move a dislocation at an observable rate in a laboratory experiment. This range starts at zero in a nearly perfect metal, and ends at about G/4π in a covalent crystal, where G is the appropriate shear modulus (G of the (111) plane is about 5 Mbar for diamond). At the high end of this range, the velocity is proportional to the applied stress so the mobility is liquid like, and the material has no intrinsic barrier to dislocation motion (if finite barriers are observed, i.e., finite yield stresses, they result from extrinsic factors). At the low end of the range, the mobility is intrinsic, determined by the chemical structure of the crystal.

The extrinsic factors that create finite yield stresses are numerous.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, H. and Haasen, P. (1968). Dislocations and plastic flow in the diamond structure, Solid State Phys., 22, 28Google Scholar
Alexander, H. (1979). Models of dislocation structure, Proc. Int. Symp. on Dislocations in Tetrahedrally Coordinated Semiconductors, J. Phys. Coll. C6, 40, C6–1Google Scholar
Andrade, E. N. da C. (1934). Philos. Mag., 17, 497, 698
Becker, R. (1925). Phys. Z., 26, 919
Burdett, J. K. and Price, S. L. (1982). Application of Woodward–Hoffmann ideas to solid-state polymorphic phase transitions with specific reference to polymerization of S2N2 and the black phosphorous to A7 (arsenic) structural transformation, Phys. Rev. B, 25, 5778CrossRefGoogle Scholar
Burdett, J. K. (1995). Chemical Bonding in Solids, p. 298. New York: Oxford University Press
Chen, H. S., Gilman, J. J., and Head, A. K. (1964). Dislocation multipoles and their role in strain-hardening, J. Appl. Phys., 35, 2502CrossRefGoogle Scholar
Chou, C. P., Davis, L. A., and Narasimhan, M. C. (1977). Elastic constants of metallic glasses, Scr. Metall., 11, 417CrossRefGoogle Scholar
Cohen, M. L. (1991). Philos. Trans. R. Soc. London, Ser. A, 334, 501CrossRef
Cottrell, A. H. (1953). Dislocations and Plastic Flow in Crystals, p. 74. Oxford: Oxford University Press
Coulson, C. A. (1952). Valence, p. 71. Oxford: Clarendon Press
Dey, B. N. (1967). J. Appl. Phys., 38, 4144CrossRef
Duesbery, M. S. and Richardson, G. Y. (1991). The dislocation core in crystalline materials, Solid State Mater. Sci., 17, 1Google Scholar
Foreman, A. J., Jaswon, M. A., and Wood, J. K. (1951). Proc. Phys. Soc. A, 64, 156CrossRef
Frank, F. C. (1992). Body-centered cubic: a close-packed structure, Philos. Mag. Lett., 66, 81CrossRefGoogle Scholar
Galligan, J. M., Lin, T. H., and Pang, C. S. (1977). Electron–dislocation interaction in copper, Phys. Rev. Lett., 38, 405CrossRefGoogle Scholar
Galligan, J. M., Goldman, P. D., Motowildo, L., and Pellegrino, J. (1986). J. Appl. Phys., 59, 3747CrossRef
Gilman, J. J. (1956). Plastic anisotropy of zinc monocrystals, J. Met., October, 2Google Scholar
Gilman, J. J. (1959). Plastic anisotropy of LiF and other rocksalt-type crystals, Acta Metall., 7, 608CrossRefGoogle Scholar
Gilman, J. J. (1960). The plastic resistance of crystals, Aust. J. Phys., 13, 327CrossRefGoogle Scholar
Gilman, J. J. and Johnston, W. G. (1960). Behavior of individual dislocations in strain-hardened LiF crystals, J. Appl. Phys., 31, 687CrossRefGoogle Scholar
Gilman, J. J. (1961). Prismatic glide in cadmium, Trans. Metall. Soc. AIME, 221, 456Google Scholar
Gilman, J. J. and Johnston, W. G. (1962). Dislocations in lithium fluoride crystals. In Solid State Physics, ed. F. Seitz and D. Turnbull, Volume 13, p. 147. New York: Academic PressCrossRef
Gilman, J. J. (1965). Dislocation mobility in crystals, J. Appl. Phys., 36 (10), 3195CrossRefGoogle Scholar
Gilman, J. J. (1968a). Dislocation motion in a viscous medium, Phys. Rev. Lett., 20, 157CrossRefGoogle Scholar
Gilman, J. J. (1968b). Escape of dislocations from bound states by tunneling, J. Appl. Phys., 39, 6068CrossRefGoogle Scholar
Gilman, J. J. (1968c). The plastic response of solids. In Dislocation Dynamics, ed. A. R. Rosenfeld, G. T. Hahn, A. L. Bement, and R. I. Jaffee, p. 3. New York: McGraw-Hill
Gilman, J. J. (1970). Hardnesses of carbides and other refractory hard metals, J. Appl. Phys., 41 (4), 1664CrossRefGoogle Scholar
Gilman, J. J. (1973). Hardness of pure alkali halides, J. Appl. Phys., 44 (3), 982CrossRefGoogle Scholar
Gilman, J. J. (1975). Flow of covalent solids at low temperatures, J. Appl. Phys., 46, 5110CrossRefGoogle Scholar
Gilman, J. J. (1993a). Shear-induced metallization, Philos. Mag. B, 67, 207CrossRefGoogle Scholar
Gilman, J. J. (1993b). Why silicon is hard, Science, 261, 1436CrossRefGoogle Scholar
Gilman, J. J. (1995a). Mechanism of shear-induced metallization, Czech. J. Phys., 45, 913CrossRefGoogle Scholar
Gilman, J. J. (1995b). Quantized dislocation mobility. In Micromechanics of Advanced Materials, ed. S. N. G. Chu, P. K. Liaw, R. J. Arsenault, K. Sadananda, K. S. Chan, W. W. Gerberich, C. C. Chau, and T. M. Kung, p. 3. Warrendale, PA: The Minerals, Metals, & Materials Society
Gilman, J. J. (1996a). Bordoni internal friction via dislocation dipole orientation junctions. In The Johannes Weertman Symposium, ed. by R. J. Arsenault, D. Cole, T. Gross, C. Kostorz, P. Liaw, S. Parameswaran, and H. Sizek, p. 411. Pittsburgh, PA: The Minerals, Metals & Materials Society
Gilman, J. J. (1996b). Mechanochemistry, Science, 274, 65CrossRefGoogle Scholar
Greenman, W. F., Vreeland, T., and Wood, D. S. (1967). J. Appl. Phys., 38, 4011CrossRef
Grimvall, G. and Thiessen, M. (1986). The strength of interatomic forces, Science of Hard Materials, Inst. Phys. Conf. Ser. No. 75, p. 61. Bristol: Adam Hilger
Hahn, G. L. (1962). Acta Metall., 10, 727CrossRef
Hirth, J. P. and Lothe, J. (1968). The Theory of Dislocations. New York: McGraw-Hill
Johnston, W. G. and Gilman, J. J. (1960). Dislocation multiplication in lithium fluoride crystals, J. Appl. Phys., 31, 632CrossRefGoogle Scholar
Johnston, W. G. (1962). Effects of impurities on the flow stress of LiF crystals, J. Appl. Phys., 33, 2050CrossRefGoogle Scholar
Kobelev, N. P., Soifer, Ya. M., and Al'shits, V. I. (1971). Relationship between viscous and relaxation components of the dislocation attenuation of high-frequency ultrasound in copper, Sov. Phys. Solid State, 21 (4), 680Google Scholar
Kojima, H. and Suzuki, T. (1968). Electron drag and flow stress in niobium and lead at 4.2 K, Phys. Rev. Lett., 21, 896CrossRefGoogle Scholar
Kveder, V., Omling, P., Grimmeiss, H. G., and Osipyan, Yu. A. (1991). Optically detected magnetic resonance of dislocations in silicon, Phys. Rev. B, 43, 6569CrossRefGoogle ScholarPubMed
Ledbetter, H. (1991). Atomic frequency and elastic constants, Z. Metallkd., 82 (11), 820Google Scholar
Li, J. C. M. (2000). Charged dislocations and the plasto-electric effect in ionic crystals, Mater. Sci. Eng., 287A, 265CrossRefGoogle Scholar
Love, A. E. H. (1944). A Treatise on the Mathematical Theory of Elasticity, 4th edn., p. 221. New York: Dover Publications. 1st edn., Cambridge University Press, Cambridge, 1892
Mason, W. P. (1968). Dislocation drag mechanisms and their effects on dislocation velocities. In Dislocation Dynamics, ed. A. R. Rosenfeld, G. T. Hahn, A. L. Bement, and R. I. Jaffee, p. 487. New York: McGraw-Hill
McColm, I. J. (1990). Ceramic Hardness, p. 93. London: Plenum PressCrossRef
Murr, L. E. (1975). Interfacial Phenomena in Metals and Alloys, p. 165, Reading MA: Addison-Wesley
Nabarro, F. R. N. (1987). Theory of Crystal Dislocations, pp. 120 and 257ff. New York: Dover Publications
Nabarro, F. R. N. (1997). Theoretical and experimental estimates of the Peierls stress, Philos. Mag. A, 75, 703CrossRefGoogle Scholar
Nadgornyi, E. (1988). Dislocation dynamics and mechanical properties of crystals. In Progress in Materials Science, Volume 31, ed. J. W. Christian, P. Haasen, and T. B. Massalski, pp. 251–264. Oxford: PergamonCrossRef
Orowan, E. (1934). Z. Phys., 89, 605, 614, 634CrossRef
Parr, R. G. and Yang, W. (1989). Density Functional Theory of Atoms and Molecules. New York: Oxford University Press
Pearson, R. G. (1997). Chemical Hardness. New York: Wiley-VCH
Peierls, R. E. (1940). Proc. Phys. Soc., 52, 34CrossRef
Pharr, G. M., Oliver, W. C., and Harding, D. S. (1991). New evidence for a pressure-induced phase transformation during the indentation of silicon, J. Mater. Res., 6, 1129CrossRefGoogle Scholar
Polanyi, M. (1934). Z. Phys., 89, 660CrossRef
Powers, R. W. (1954). Internal friction in solid solutions of oxygen–tantalum, Acta Metall., 3, 135. He “cooked” b.c.c. metal wires in ultrahigh vacuum for long periods, until their Snoek effect internal-friction peaks became very small. The wires were then very softCrossRefGoogle Scholar
Price, D. L., and Cooper, B. R. (1989). Phys. Rev. B, 39, 4945CrossRef
Price, D. L., Cooper, B. R., and Wills, J. M. (1992). Phys. Rev. B, 46, 11368CrossRef
Reif, F. (1965). Fundamentals of Statistical and Thermal Physics. New York: McGraw-Hill
Sachs, G. and Weerts, J. (1930). Z. Phys., 62, 473CrossRef
Shih, H. C. (1963). Color changes in the compound AuAl2 induced by imperfections, M. S. Thesis, Metallurgical Engineering, University of Illinois, Urbana, IL
Sleezwyk, A. W. (1963). Philos. Mag., 8, 1467CrossRef
Sumino, K. (1989). Inst. Phys. Conf. Ser., 104, 245
Suzuki, H. (1968). Motion of dislocations in body-centered cubic crystals. In Dislocation Dynamics, ed. A. R. Rosenfeld, G. T. Hahn, A. L. Bement, and R. I. Jaffee, p. 679. New York: McGraw-Hill
Taylor, G. I. (1934). The mechanism of plastic deformation of crystals. Part I. Theoretical, Proc. R. Soc. London, Ser. A, 145, 362CrossRefGoogle Scholar
Teter, D. M. (1998). Computational alchemy: the search for new superhard materials, Mater. Res. Soc. Bull., 23 (1), 22CrossRefGoogle Scholar
Trefilov, V. I. and Mil'man, Yu. V. (1964). Aspects of the plastic deformation of crystals with covalent bonds, Sov. Phys. Dokl., 8, 1240Google Scholar
Vitek, V. (1974). Cryst. Lattice Defects, 5, 1
Volterra, V. (1907). Sur l'equilibre des corps elastiques multiplement connexes, Paris, Ann. Ec. Norm. Ser. 3, 24, 401–517Google Scholar
Woodward, R. B. and Hoffmann, R. (1970). The Conservation of Orbital Symmetry. Weinheim: Verlag Chemie

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Dislocation mobility
  • John J. Gilman, University of California, Los Angeles
  • Book: Electronic Basis of the Strength of Materials
  • Online publication: 14 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541247.020
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Dislocation mobility
  • John J. Gilman, University of California, Los Angeles
  • Book: Electronic Basis of the Strength of Materials
  • Online publication: 14 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541247.020
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Dislocation mobility
  • John J. Gilman, University of California, Los Angeles
  • Book: Electronic Basis of the Strength of Materials
  • Online publication: 14 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541247.020
Available formats
×