Skip to main content Accessibility help
×
Hostname: page-component-7479d7b7d-m9pkr Total loading time: 0 Render date: 2024-07-12T00:27:15.600Z Has data issue: false hasContentIssue false

16 - Macroscopic plastic deformation

Published online by Cambridge University Press:  14 August 2009

John J. Gilman
Affiliation:
University of California, Los Angeles
Get access

Summary

Some solids are very hard and brittle, while others are soft and ductile. These differing behaviors are related to differences in resistance to plastic flow. Continuum mechanics cannot account for the differences. A quantum theory is required. In the case of plastic flow there are two levels of quantization that must be considered. The first is that, unlike elasticity, plastic flow is not a homogeneous process. It requires the inhomogeneous creation and propagation of dislocation lines. The displacements at these lines are quantized. The second is that dislocation lines themselves do not move homogeneously, except in simple metals. Kinks form on the lines. The displacements at these kinks localize and quantize the mobility process. Therefore, the wave mechanics of the bonding electrons determines the kink mobilities which in turn determine hardness and softness. Only by combining classical and quantum mechanics can a complete solid mechanics theory be developed.

Strong structures fail either because elastic deflections become too large in them, or because plastic flow occurs leading to large plastic deflections, or worse to fracture. Thus an understanding of the nature of plastic resistance is important for the design of strong structures. The subject is very complex because plastic flow is so very heterogeneous, at virtually every one of the 12 levels of aggregation from atoms to large engineering structures. At each level the heterogeneity manifests itself in different ways, all of which tend to be complicated. Therefore, no attempt will be made here to discuss the subject as a whole.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Gilman, J. J. (1969). Micromechanics of Flow in Solids, Chapter 3. New York: McGraw-Hill
Hollomon, J. H. and Jaffe, L. D. (1947). Ferrous Metallurgical Design. New York: Wiley
Tietz, T. E. and Dorn, J. (1949). The effect of strain histories on the work hardening of metals. In Cold Working of Metals, p. 163. Cleveland, OH: American Society for Metals

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Macroscopic plastic deformation
  • John J. Gilman, University of California, Los Angeles
  • Book: Electronic Basis of the Strength of Materials
  • Online publication: 14 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541247.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Macroscopic plastic deformation
  • John J. Gilman, University of California, Los Angeles
  • Book: Electronic Basis of the Strength of Materials
  • Online publication: 14 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541247.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Macroscopic plastic deformation
  • John J. Gilman, University of California, Los Angeles
  • Book: Electronic Basis of the Strength of Materials
  • Online publication: 14 August 2009
  • Chapter DOI: https://doi.org/10.1017/CBO9780511541247.018
Available formats
×