Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-26T19:17:35.886Z Has data issue: false hasContentIssue false

Part II - Noise and Electronic Interfaces

Published online by Cambridge University Press:  23 December 2021

Marco Tartagni
Affiliation:
University of Bologna
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Further Reading

Baghdady, E. J., Lincoln, R. N., and Nelin, B. D., Short-term frequency stability: Characterization, theory, and measurement. Proc. IEEE, vol. 53, pp. 704722, 1965.CrossRefGoogle Scholar
Brillouin, L., Science and Information Theory, 2nd ed. Mineola, NY: Dover Publications, 1962.CrossRefGoogle Scholar
Cutler, L. S. and Searle, C. L., Some aspects of the theory and measurement of frequency fluctuations in frequency standards. Proc. IEEE, vol. 54, pp. 136154, 1966.CrossRefGoogle Scholar
Drakhlis, B., Calculate oscillator jitter by using phase-noise analysis, Microwaves RF, vol. 40, no. 2, pp. 109119, 2001.Google Scholar
Feynman, R. P., Robert, B. L., Sands, M., and Gottlieb, M. A., The Feynman Lectures on Physics. Reading, MA: Pearson/Addison-Wesley, 1963.Google Scholar
Gabrielson, T. B., Mechanical-thermal noise in micromachined acoustic and vibration sensors. IEEE Trans. Electron Devices, vol. 40, pp. 903909, 1993.CrossRefGoogle Scholar
Hajimiri, A., and Lee, T. H., A general theory of phase noise in electrical oscillators. IEEE J. Solid-State Circuits, vol. 33, pp. 179194, 1998.CrossRefGoogle Scholar
Hajimiri, A., and Lee, T. H., The Design of Low Noise Oscillators. Norwell, MA: Kluwer Academic, 2003.Google Scholar
Hajimiri, A., Limotyrakis, S., and Lee, T. H., Jitter and phase noise in ring oscillators. IEEE J. Solid-State Circuits, vol. 34, pp. 790804, 1999.CrossRefGoogle Scholar
Ham, D., and Hajimiri, A.,Virtual damping and Einstein relation in oscillators, IEEE J. Solid-State Circuits, vol. 38, no. 3, pp. 407418, Mar. 2003.Google Scholar
Herzel, F., and Razavi, B., A study of oscillator jitter due to supply and substrate noise. IEEE Trans. Circuits Syst. II: Analog Digital Signal Process., vol. 46, pp. 5662, 1999.Google Scholar
Johnson, J. B., Thermal agitation of electricity in conductors. Nature, 119, p. 50, 1927.CrossRefGoogle Scholar
Johnson, J. B., Thermal agitation of electricity in conductors. Phys. Rev., 541, pp. 97129, 1927.Google Scholar
Keshner, M. S., 1/F Noise. Proc. IEEE, vol. 70, pp. 212218, 1982.CrossRefGoogle Scholar
Lee, T. H., and Hajimiri, A., Oscillator phase noise: A tutorial. IEEE J. Solid-State Circuits, vol. 35, 2000.CrossRefGoogle Scholar
Leeson, D. B., A simple model of feedback oscillator noise spectrum. Proc. IEEE, vol. 54, pp. 329330, 1966.Google Scholar
MacDonald, D. K. C., Noise and Fluctuations. New York: John Wiley & Sons, 1962.Google Scholar
McNeill, J. A., Jitter in ring oscillators, 1994.Google Scholar
Nyquist, H., Thermal agitation of electric charge in conductors. Phys.Rev., 32, pp. 110113, 1928.CrossRefGoogle Scholar
Phillips, J., and Kundert, K., An introduction to cyclostationary noise. Cust. Integr. Circuits Conf. pp. 143, 2000.Google Scholar
Razavi, B., A study of phase noise in CMOS oscillators. IEEE J. Solid-State Circuits, vol. 31, pp. 331343, 1996.CrossRefGoogle Scholar
Rice, S. O., Mathematical analysis of random noise. Bell System Tech. J. 23, pp. 282332, 1944.Google Scholar
Sarpeshkar, R., Delbruck, T., and Mead, C. A., White noise in MOS transistors and resistors. IEEE Circuits Devices Mag., vol. 9, pp. 2329, 1993.CrossRefGoogle Scholar

Further Reading

Crescentini, M., Bennati, M., Carminati, M., and Tartagni, M., “Noise limits of CMOS current interfaces for biosensors: A review,” IEEE Trans. Biomed. Circuits Syst., vol. 8, no. 2, pp. 278–92, April 2014.CrossRefGoogle ScholarPubMed
Enz, C. C., and Temes, G. C., “Circuit techniques for reducing the effects of opamp imperfections: Autozeroing, correlated double sampling, and chopper stabilization,” Proc. IEEE, vol. 84, no. 11, pp. 15841614, 1997.Google Scholar
Gray, P. R., Hurst, P. J., Lewis, S. H., and Meyer, R. G., Analysis and Design of Analog Integrated Circuits, 4th ed. New York: John Wiley & Sons, 2001.Google Scholar
Gregorian, R., and Temes, G. C. Analog MOS Integrated Circuits. New York: John Wiley & Sons, 1987. Kester, W. Ed., The Data Conversion Handbook. Philadelphia; Elsevier, 2004.Google Scholar
Kulah, H., Chae, J., Yazdi, N., and Najafi, K.Noise analysis and characterization of a sigma-delta capacitive microaccelerometer,” IEEE J. Solid-State Circuits, vol. 41, no. 2, pp. 352361, February 2007.CrossRefGoogle Scholar
Lee, T. H., The Design of CMOS Radio-Frequency Integrated Circuits, 2nd ed. Cambridge: Cambridge University Press, 2004.Google Scholar
Mondal, S. and Hall, D. A., “An ECG chopper amplifier achieving 0.92 NEF and 0.85 PEF with AC-coupled inverter-stacking for noise efficiency enhancement,” Proc. IEEE Int. Symp. Circuits Syst., no. c, pp. 25, 2017.Google Scholar
Muller, R. Gambini, S.and Rabaey, J. M.A 0.013 mm2, 5 μ W, DC-coupled neural signal acquisition ic with 0.5 v supply,” IEEE J. Solid-State Circuits, vol. 47, no. 1, pp. 232243, 2012.Google Scholar
Rothe, H., and Dahlke, W., “Theory of noisy fourpoles,” Proc. IRE, vol. 44, no. 6, pp. 811818, June 1957.CrossRefGoogle Scholar
Steyaert, M. S. J., Sansen, W. M. C., and Zhongyuan, C., “A micropower low-noise monolithic instrumentation amplifier for medical purposes,” IEEE J. Solid-State Circuits, vol. 22, no. 6, pp. 11631168, 1987.CrossRefGoogle Scholar
Tartagni, M., and Guerrieri, R.A fingerprint sensor based on the feedback capacitive sensing scheme,” IEEE J. Solid State Circuits, vol. 33, no. 1, pp. 133142, 1998.CrossRefGoogle Scholar

Further Reading

Abidi, A. A. and Meyer, R. G., Noise in relaxation oscillators, IEEE J. Solid-State Circuits, vol. 18, pp. 794802, 1983.CrossRefGoogle Scholar
Barbe, D. F., Imaging devices using the charge-coupled concept, Proc. IEEE, vol. 63, no. 1, pp. 3867, 1975.CrossRefGoogle Scholar
Danneels, H., Coddens, K., and Gielen, G. A fully-digital, 0.3 V, 270 nW capacitive sensor interface without external references, in 2011 Proceedings of the ESSCIRC (ESSCIRC), 2011, pp. 287290.Google Scholar
Enz, C. C. and Temes, G. C., Circuit techniques for reducing the effects of opamp imperfections: Autozeroing, correlated double sampling, and chopper stabilization, Proc. IEEE, vol. 84, no. 11, pp. 15841614, 1996.CrossRefGoogle Scholar
Henzler, S., Time-to-Digital Converters, vol. 29. Dordrecht: Springer, 2010.Google Scholar
Jang, T., Jeong, S., Jeon, D., Choo, K. D., Sylvester, D., and Blaauw, D., A noise reconfigurable all-digital phase-locked loop using a switched capacitor-based frequency-locked loop and a noise detector, IEEE J. Solid-State Circuits, vol. 53, no. 1, pp. 5065, 2018.Google Scholar
Kester, W. Ed., The Data Conversion Handbook. Philadelphia: Elsevier, 2004.Google Scholar
Navid, R. Lee, T. H., and Dutton, R. W., Minimum achievable phase noise of RC oscillators, IEEE J. Solid-State Circuits, vol. 40, no. 3, pp. 630637, March 2005.CrossRefGoogle Scholar
Nutt, R., Digital time intervalometer, Rev. Sci. Instrum., vol. 39, no. 9, pp. 13421345, Sept. 1968.CrossRefGoogle Scholar
Pallas-Areny, R. and Webster, J., Sensors and Signal Conditioning. Hoboken, NJ: John Wiley & Sons, 2001.Google Scholar
Park, M. and Perrott, M. H., A 78 dB SNDR 87 mW 20 MHz bandwidth continuous-time delta-sigma ADC with VCO-based integrator and quantizer implemented in 0.13 μm CMOS, IEEE J. Solid-State Circuits, vol. 44, no. 12, pp. 33443358, Dec. 2009.Google Scholar
Schreier, R. and Temes, G. C., Understanding Delta-Sigma Data Converters. New York: IEEE Press, 2005.Google Scholar
Straayer, M. Z. and Perrott, M. H., A 12-bit, 10-MHz bandwidth, continuous-time sigma-delta ADC with a 5-bit, 950-MS/s VCO-based quantizer, IEEE J. Solid-State Circuits, vol. 43, no. 4, pp. 805814, 2008.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×