Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-l82ql Total loading time: 0 Render date: 2024-07-26T19:18:26.039Z Has data issue: false hasContentIssue false

7 - Optical Modes in Various Structures

Published online by Cambridge University Press:  16 February 2010

B. K. Ridley
Affiliation:
University of Essex
Get access

Summary

It cannot be thus long, the sides of nature will not sustain it.

Antony and Cleopatra, W. Shakespeare

Introduction

This chapter deals with several topics. There is considerable interest in fabricating quasi-2D structures in which the electron–phonon interaction is reduced. Optical-phonon engineering is in its infancy, but already there have been investigations of the effect of incorporating monolayers and conducting layers. One of the first quasi-2D systems to be studied was the thin ionic slab, yet there are still problems connected with the description of optical modes in such structures. The increasing sophistication of microfabrication techniques has led to the creation of quasi-one-dimensional (quantum wires) and quasi-zero-dimensional (quantum dots) structures that are expected to have interesting physical properties. It is important to establish the mode structure, both electron and vibrational, in these systems. In this chapter we consider some of these topics briefly.

Monolayers

The study of short-period superlattices in electronic and optical devices has received considerable attention and there are several reasons why this has been so. Ease of growth and reduction of interface roughness and residual impurities make for more perfect structures. Replacing random alloys, such as AlxGa1 – x As, with their ordered superlattice counterparts (GaAs)m/(AlAs)n eliminates alloy scattering. In the AlxGa1–x As system there is the added advantage of avoiding the troublesome DX center. The replacement of random alloys by equivalent superlattices in bandgap engineering is unproblematic.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×