Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-18T16:53:43.612Z Has data issue: false hasContentIssue false

Section I - Clinical approaches

Published online by Cambridge University Press:  13 April 2017

Ozgur Mete
Affiliation:
University of Toronto
Sylvia L. Asa
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Vance, ML. 1994 Hypopituitarism N Engl J Med 330:16511662.Google Scholar
Lyle, TK, Clover, P. 1961 Ocular symptoms and signs in pituitary tumours Proc R Soc Med 54:611619.Google Scholar
Kirkham, TH. 1972 The ocular symptomatology of pituitary tumours Proc R Soc Med 65:517518.Google ScholarPubMed
Keane, JR. 1996 Cavernous sinus syndrome. Analysis of 151 cases Arch Neurol 53:967971.CrossRefGoogle Scholar
Fernandez, S, Godino, O, Martinez-Yelamos, S, Mesa, E, Arruga, J, Ramon, JM, Acebes, JJ, Rubio, F. 2007 Cavernous sinus syndrome: a series of 126 patients Medicine (Baltimore) 86:278281.Google Scholar
Kim, SH, Lee, KC. 2007 Cranial nerve palsies accompanying pituitary tumour J Clin Neurosci 14:11581162.CrossRefGoogle ScholarPubMed
Kattah, JC, Silgals, RM, Manz, H, Toro, JG, Dritschilo, A, Smith, FP. 1985 Presentation and management of parasellar and suprasellar metastatic mass lesions J Neurol Neurosurg Psychiatry 48:4449.CrossRefGoogle ScholarPubMed
Ariel, D, Sung, H, Coghlan, N, Dodd, R, Gibbs, IC, Katznelson, L. 2013 Clinical characteristics and pituitary dysfunction in patients with metastatic cancer to the sella Endocr Pract 19:914919.Google Scholar
Deepak, D, Daousi, C, Javadpour, M, MacFarlane, IA. 2007 Macroprolactinomas and epilepsy Clin Endocrinol (Oxford) 66: 503507.CrossRefGoogle ScholarPubMed
Reuter, U, Mehraein, S, Arnold, G, Lehmann, R. 1997 Neurological picture. A “giant” prolactinoma J Neurol Neurosurg Psychiatry 63: 295.CrossRefGoogle ScholarPubMed
Ezzat, S, Asa, SL, Couldwell, WT, Barr, CE, Dodge, WE, Vance, ML, McCutcheon, IE. 2004 The prevalence of pituitary adenomas: a systematic review Cancer 101: 613619.CrossRefGoogle ScholarPubMed
Ascoli, P, Cavagnini, F. 2006 Hypopituitarism Pituitary 9: 335342.Google Scholar
Toogood, AA, Stewart, PM. 2008 Hypopituitarism: clinical features, diagnosis, and management Endocrinol Metab Clin North Am 37: 235261, x.Google Scholar
Rothman, MS, Wierman, ME. 2008 Female hypogonadism: evaluation of the hypothalamic–pituitary–ovarian axis Pituitary 11: 163169.CrossRefGoogle ScholarPubMed
Silveira, LF, Latronico, AC. 2013 Approach to the patient with hypogonadotropic hypogonadism J Clin Endocrinol Metab 98: 17811788.CrossRefGoogle Scholar
Bhasin, S, Cunningham, GR, Hayes, FJ, Matsumoto, AM, Snyder, PJ, Swerdloff, RS, Montori, VM. 2010 Testosterone therapy in men with androgen deficiency syndromes: an Endocrine Society clinical practice guideline J Clin Endocrinol Metab 95: 25362559.CrossRefGoogle ScholarPubMed
Nachtigall, LB, Boepple, PA, Pralong, FP, Crowley, WF Jr. 1997 Adult-onset idiopathic hypogonadotropic hypogonadism: a treatable form of male infertility N Engl J Med 336:410415.Google Scholar
Isidori, AM, Giannetta, E, Lenzi, A. 2008 Male hypogonadism Pituitary 11:171180.Google Scholar
Salenave, S, Trabado, S, Maione, L, Brailly-Tabard, S, Young, J. 2012 Male acquired hypogonadotropic hypogonadism: diagnosis and treatment Ann Endocrinol (Paris) 73:141146.Google Scholar
Tajar, A, Huhtaniemi, IT, O'Neill, TW, Finn, JD, Pye, SR, Lee, DM, Bartfai, G, Boonen, S, Casanueva, FF, Forti, G, Giwercman, A, Han, TS, Kula, K, Labrie, F, Lean, ME, Pendleton, N, Punab, M, Vanderschueren, D, Wu, FC. 2012 Characteristics of androgen deficiency in late-onset hypogonadism: results from the European Male Aging Study (EMAS) J Clin Endocrinol Metab 97:15081516.CrossRefGoogle ScholarPubMed
Growth Hormone Research Society. 2000 Consensus guidelines for the diagnosis and treatment of growth hormone (GH) deficiency in childhood and adolescence: summary statement of the GH Research Society. GH Research Society J Clin Endocrinol Metab 85:39903993.Google Scholar
Growth Hormone Research Society. 1998 Consensus guidelines for the diagnosis and treatment of adults with growth hormone deficiency: summary statement of the Growth Hormone Research Society Workshop on Adult Growth Hormone Deficiency J Clin Endocrinol Metab 83:379381.Google Scholar
Ohlsson, C, Bengtsson, BA, Isaksson, OG, Andreassen, TT, Slootweg, MC. 1998 Growth hormone and bone Endocr Rev 19:5579.Google Scholar
Colao, A, Di Somma, C, Spiezia, S, Rota, F, Pivonello, R, Savastano, S, Lombardi, G. 2006 The natural history of partial growth hormone deficiency in adults: a prospective study on the cardiovascular risk and atherosclerosis J Clin Endocrinol Metab 91:21912200.Google Scholar
Murray, RD, Bidlingmaier, M, Strasburger, CJ, Shalet, SM. 2007 The diagnosis of partial growth hormone deficiency in adults with a putative insult to the hypothalamo–pituitary axis J Clin Endocrinol Metab 92:17051709.Google Scholar
Lombardi, G, Di Somma, C, Grasso, LF, Savanelli, MC, Colao, A, Pivonello, R. 2012 The cardiovascular system in growth hormone excess and growth hormone deficiency J Endocrinol Invest 35:10211029.Google Scholar
Molitch, ME, Clemmons, DR, Malozowski, S, Merriam, GR, Vance, ML. 2011 Evaluation and treatment of adult growth hormone deficiency: an Endocrine Society clinical practice guideline J Clin Endocrinol Metab 96:15871609.Google Scholar
Melmed, S. 2013 Idiopathic adult growth hormone deficiency J Clin Endocrinol Metab 98:21872197.Google Scholar
Blum, WF, Shavrikova, EP, Edwards, DJ, Rosilio, M, Hartman, ML, Marin, F, Valle, D, van der Lely, AJ, Attanasio, AF, Strasburger, CJ, Henrich, G, Herschbach, P. 2003 Decreased quality of life in adult patients with growth hormone deficiency compared with general populations using the new, validated, self-weighted questionnaire, questions on life satisfaction hypopituitarism module J Clin Endocrinol Metab 88:41584167.CrossRefGoogle ScholarPubMed
Aimaretti, G, Corneli, G, Razzore, P, Bellone, S, Baffoni, C, Arvat, E, Camanni, F, Ghigo, E. 1998 Comparison between insulin-induced hypoglycemia and growth hormone (GH)-releasing hormone + arginine as provocative tests for the diagnosis of GH deficiency in adults J Clin Endocrinol Metab 83:16151618.Google Scholar
Hoeck, HC, Vestergaard, P, Jakobsen, PE, Falhof, J, Laurberg, P. 2000 Diagnosis of growth hormone (GH) deficiency in adults with hypothalamic–pituitary disorders: comparison of test results using pyridostigmine plus GH-releasing hormone (GHRH), clonidine plus GHRH, and insulin-induced hypoglycemia as GH secretagogues J Clin Endocrinol Metab 85:14671472.Google Scholar
Biller, BM, Samuels, MH, Zagar, A, Cook, DM, Arafah, BM, Bonert, V, Stavrou, S, Kleinberg, DL, Chipman, JJ, Hartman, ML. 2002 Sensitivity and specificity of six tests for the diagnosis of adult GH deficiency J Clin Endocrinol Metab 87:20672079.Google Scholar
Hartman, ML, Crowe, BJ, Biller, BM, Ho, KK, Clemmons, DR, Chipman, JJ. 2002 Which patients do not require a GH stimulation test for the diagnosis of adult GH deficiency? J Clin Endocrinol Metab 87:477485.CrossRefGoogle Scholar
Lania, A, Persani, L, Beck-Peccoz, P. 2008 Central hypothyroidism Pituitary 11:181186.Google Scholar
Persani, L. 2012 Clinical review: central hypothyroidism: pathogenic, diagnostic, and therapeutic challenges J Clin Endocrinol Metab 97:30683078.Google Scholar
Spencer, CA, LoPresti, JS, Patel, A, Guttler, RB, Eigen, A, Shen, D, Gray, D, Nicoloff, JT. 1990 Applications of a new chemiluminometric thyrotropin assay to subnormal measurement J Clin Endocrinol Metab 70:453460.Google Scholar
Baloch, Z, Carayon, P, Conte-Devolx, B, Demers, LM, Feldt-Rasmussen, U, Henry, JF, LiVosli, VA, Niccoli-Sire, P, John, R, Ruf, J, Smyth, PP, Spencer, CA, Stockigt, JR. 2003 Laboratory medicine practice guidelines. Laboratory support for the diagnosis and monitoring of thyroid disease Thyroid 13:3126.Google Scholar
Beressi, N, Beressi, JP, Cohen, R, Modigliani, E. 1999 Lymphocytic hypophysitis. A review of 145 cases Ann Med Intern (Paris) 150:327341.Google ScholarPubMed
Grossman, AB. 2010 Clinical review: the diagnosis and management of central hypoadrenalism J Clin Endocrinol Metab 95:48554863.Google Scholar
Hagg, E, Asplund, K, Lithner, F. 1987 Value of basal plasma cortisol assays in the assessment of pituitary–adrenal insufficiency Clin Endocrinol (Oxf) 26:221226.Google Scholar
Pavord, SR, Girach, A, Price, DE, Absalom, SR, Falconer-Smith, J, Howlett, TA. 1992 A retrospective audit of the combined pituitary function test, using the insulin stress test, TRH and GnRH in a district laboratory Clin Endocrinol (Oxf) 36:135139.Google Scholar
Courtney, CH, McAllister, AS, McCance, DR, Bell, PM, Hadden, DR, Leslie, H, Sheridan, B, Atkinson, AB. 2000 Comparison of one week 0900 h serum cortisol, low and standard dose synacthen tests with a 4 to 6 week insulin hypoglycaemia test after pituitary surgery in assessing HPA axis Clin Endocrinol (Oxf) 53:431436.Google Scholar
Inder, WJ, Hunt, PJ. 2002 Glucocorticoid replacement in pituitary surgery: guidelines for perioperative assessment and management J Clin Endocrinol Metab 87:27452750.Google Scholar
Mukherjee, A, Murray, RD, Columb, B, Gleeson, HK, Shalet, SM. 2003 Acquired prolactin deficiency indicates severe hypopituitarism in patients with disease of the hypothalamic–pituitary axis Clin Endocrinol (Oxf) 59:743748.CrossRefGoogle ScholarPubMed
Toledano, Y, Lubetsky, A, Shimon, I. 2007 Acquired prolactin deficiency in patients with disorders of the hypothalamic–pituitary axis J Endocrinol Invest 30:268273.Google Scholar
Kauppila, A, Chatelain, P, Kirkinen, P, Kivinen, S, Ruokonen, A. 1987 Isolated prolactin deficiency in a woman with puerperal alactogenesis J Clin Endocrinol Metab 64:309312.Google Scholar
Saito, T, Tojo, K, Oki, Y, Sakamoto, N, Matsudaira, T, Sasaki, T, Tajima, N. 2007 A case of prolactin deficiency with familial puerperal alactogenesis accompanying impaired ACTH secretion Endocr J 54:5962.Google Scholar
Zargar, AH, Masoodi, SR, Laway, BA, Shah, NA, Salahudin, M. 1997 Familial puerperal alactogenesis: possibility of a genetically transmitted isolated prolactin deficiency Br J Obstet Gynaecol 104:629631.Google Scholar
DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours: Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004.Google Scholar
Yamada, S, Ohyama, K, Taguchi, M, Takeshita, A, Morita, K, Takano, K, Sano, T. 2007 A study of the correlation between morphological findings and biological activities in clinically nonfunctioning pituitary adenomas Neurosurgery 61:580584; discussion 4–5.CrossRefGoogle ScholarPubMed
Snyder, PJ. 1985 Gonadotroph cell adenomas of the pituitary Endocr Rev 6:552563.Google Scholar
Young, WF Jr., Scheithauer, BW, Kovacs, KT, Horvath, E, Davis, DH, Randall, RV. 1996 Gonadotroph adenoma of the pituitary gland: a clinicopathologic analysis of 100 cases Mayo Clin Proc 71:649656.Google Scholar
Dekkers, OM, Pereira, AM, Romijn, JA. 2008 Treatment and follow-up of clinically nonfunctioning pituitary macroadenomas J Clin Endocrinol Metab 93:37173726.Google Scholar
Arafah, BM, Nekl, KE, Gold, RS, Selman, WR. 1995 Dynamics of prolactin secretion in patients with hypopituitarism and pituitary macroadenomas J Clin Endocrinol Metab 80:35073512.Google Scholar
Bevan, JS, Burke, CW, Esiri, MM, Adams, CB. 1987 Misinterpretation of prolactin levels leading to management errors in patients with sellar enlargement Am J Med 82:2932.CrossRefGoogle ScholarPubMed
Karavitaki, N, Thanabalasingham, G, Shore, HC, Trifanescu, R, Ansorge, O, Meston, N, Turner, HE, Wass, JA. 2006 Do the limits of serum prolactin in disconnection hyperprolactinaemia need re-definition? A study of 226 patients with histologically verified non-functioning pituitary macroadenoma Clin Endocrinol (Oxf) 65:524529.Google Scholar
Horvath, E, Kovacs, K, Smyth, HS, Cusimano, M, Singer, W. 2005 Silent adenoma subtype 3 of the pituitary–immunohistochemical and ultrastructural classification: a review of 29 cases Ultrastruct Pathol 29:511524.Google Scholar
Alahmadi, H, Lee, D, Wilson, JR, Hayhurst, C, Mete, O, Gentili, F, Asa, SL, Zadeh, G. 2012 Clinical features of silent corticotroph adenomas Acta Neurochir (Wien) 154:14931498.Google Scholar
Snyder, PJ, Muzyka, R, Johnson, J, Utiger, RD. 1980 Thyrotropin-releasing hormone provokes abnormal follicle-stimulating hormone (FSH) and luteinizing hormone responses in men who have pituitary adenomas and FSH hypersecretion J Clin Endocrinol Metab 51:744748.Google Scholar
Daneshdoost, L, Gennarelli, TA, Bashey, HM, Savino, PJ, Sergott, RC, Bosley, TM, Snyder, PJ. 1993 Identification of gonadotroph adenomas in men with clinically nonfunctioning adenomas by the luteinizing hormone beta subunit response to thyrotropin-releasing hormone J Clin Endocrinol Metab 77:13521355.Google Scholar
Freda, PU, Beckers, AM, Katznelson, L, Molitch, ME, Montori, VM, Post, KD, Vance, ML. 2011 Pituitary incidentaloma: an Endocrine Society clinical practice guideline J Clin Endocrinol Metab 96:894904.CrossRefGoogle ScholarPubMed
Sanno, N, Oyama, K, Tahara, S, Teramoto, A, Kato, Y. 2003 A survey of pituitary incidentaloma in Japan Eur J Endocrinol 149:123127.CrossRefGoogle ScholarPubMed
Chanson, P, Brochier, S. 2005 Non-functioning pituitary adenomas J Endocrinol Invest 28:9399.Google Scholar
Cho, HY, Cho, SW, Kim, SW, Shin, CS, Park, KS, Kim, SY. 2010 Silent corticotroph adenomas have unique recurrence characteristics compared with other nonfunctioning pituitary adenomas Clin Endocrinol (Oxf) 72:648653.Google Scholar
Ciccarelli, A, Daly, AF, Beckers, A. 2005 The epidemiology of prolactinomas Pituitary 8:36.CrossRefGoogle ScholarPubMed
Freeman, ME, Kanyicska, B, Lerant, A, Nagy, G. 2000 Prolactin: structure, function, and regulation of secretion Physiol Rev 80:15231631.CrossRefGoogle ScholarPubMed
Delgrange, E, Trouillas, J, Maiter, D, Donckier, J, Tourniaire, J. 1997 Sex-related difference in the growth of prolactinomas: a clinical and proliferation marker study J Clin Endocrinol Metab 82:21022107.Google Scholar
Klibanski, A, Neer, RM, Beitins, IZ, Ridgway, EC, Zervas, NT, McArthur, JW. 1980 Decreased bone density in hyperprolactinemic women N Engl J Med 303:15111514.Google Scholar
Schlechte, J, el-Khoury, G, Kathol, M, Walkner, L. 1987 Forearm and vertebral bone mineral in treated and untreated hyperprolactinemic amenorrhea J Clin Endocrinol Metab 64:10211026.CrossRefGoogle ScholarPubMed
Casanueva, FF, Molitch, ME, Schlechte, JA, Abs, R, Bonert, V, Bronstein, MD, Brue, T, Cappabianca, P, Colao, A, Fahlbusch, R, Fideleff, H, Hadani, M, Kelly, P, Kleinberg, D, Laws, E, Marek, J, Scanlon, M, Sobrinho, LG, Wass, JA, Giustina, A. 2006 Guidelines of the Pituitary Society for the diagnosis and management of prolactinomas Clin Endocrinol (Oxf) 65:265273.Google Scholar
Fainstein Day, P, Glerean, M, Lovazzano, S, Pietrani, M, Christiansen, S, Balzaretti, M, Kozak, A, Carrizo, A. 2010 Gender differences in macroprolactinomas: study of clinical features, outcome of patients and ki-67 expression in tumor tissue Front Horm Res 38:5058.Google Scholar
Carter, JN, Tyson, JE, Tolis, G, Van Vliet, S, Faiman, C, Friesen, HG. 1978 Prolactin-screening tumors and hypogonadism in 22 men N Engl J Med 299:847852.Google Scholar
Iglesias, P, Bernal, C, Villabona, C, Castro, JC, Arrieta, F, Diez, JJ. 2012 Prolactinomas in men: a multicentre and retrospective analysis of treatment outcome Clin Endocrinol (Oxf) 77:281287.Google Scholar
Mazziotti, G, Porcelli, T, Mormando, M, De Menis, E, Bianchi, A, Mejia, C, Mancini, T, De Marinis, L, Giustina, A. 2011 Vertebral fractures in males with prolactinoma Endocrine 39:288293.Google Scholar
Child, DF, Nader, S, Mashiter, K, Kjeld, M, Banks, L, Fraser, TR. 1975 Prolactin studies in “functionless” pituitary tumours Br Med J 1:604606.Google Scholar
Mancini, T, Casanueva, FF, Giustina, A. 2008 Hyperprolactinemia and prolactinomas Endocrinol Metab Clin North Am 37:6799, viii.Google Scholar
Molitch, ME. 2005 Medication-induced hyperprolactinemia Mayo Clinic proceedings 80:10501057.Google Scholar
Delgrange, E, de Hertogh, R, Vankrieken, L, Maiter, D. 1996 Potential hook effect in prolactin assay in patients with giant prolactinoma Clin Endocrinol (Oxf) 45:506507.Google Scholar
Frieze, TW, Mong, DP, Koops, MK. 2002 “Hook effect” in prolactinomas: case report and review of literature Endocr Pract 8:296303.Google Scholar
Randall, RV, Scheithauer, BW, Laws, ER Jr., Abbound, CF, Ebersold, MJ, Kao, PC. 1985 Pituitary adenomas associated with hyperprolactinemia: a clinical and immunohistochemical study of 97 patients operated on transsphenoidally Mayo Clinic Proc 60:753762.Google Scholar
de Herder, WW. 2009 Acromegaly and gigantism in the medical literature. Case descriptions in the era before and the early years after the initial publication of Pierre Marie (1886) Pituitary 12:236244.Google Scholar
Cushing, H. 1909 III. Partial hypophysectomy for acromegaly: with remarks on the function of the hypophysis Ann Surg 50:10021017.Google Scholar
Mestron, A, Webb, SM, Astorga, R, Benito, P, Catala, M, Gaztambide, S, Gomez, JM, Halperin, I, Lucas-Morante, T, Moreno, B, Obiols, G, de Pablos, P, Paramo, C, Pico, A, Torres, E, Varela, C, Vazquez, JA, Zamora, J, Albareda, M, Gilabert, M. 2004 Epidemiology, clinical characteristics, outcome, morbidity and mortality in acromegaly based on the Spanish Acromegaly Registry (Registro Espanol de Acromegalia, REA) Eur J Endocrinol 151:439446.Google Scholar
Holdaway, IM, Rajasoorya, C. 1999 Epidemiology of acromegaly Pituitary 2:2941.Google Scholar
Ezzat, S, Forster, MJ, Berchtold, P, Redelmeier, DA, Boerlin, V, Harris, AG. 1994 Acromegaly. Clinical and biochemical features in 500 patients Medicine (Baltimore) 73:233240.Google Scholar
Freda, PU, Chung, WK, Matsuoka, N, Walsh, JE, Kanibir, MN, Kleinman, G, Wang, Y, Bruce, JN, Post, KD. 2007 Analysis of GNAS mutations in 60 growth hormone secreting pituitary tumors: correlation with clinical and pathological characteristics and surgical outcome based on highly sensitive GH and IGF-I criteria for remission Pituitary 10:275282.Google Scholar
Chahal, HS, Stals, K, Unterlander, M, Balding, DJ, Thomas, MG, Kumar, AV, Besser, GM, Atkinson, AB, Morrison, PJ, Howlett, TA, Levy, MJ, Orme, SM, Akker, SA, Abel, RL, Grossman, AB, Burger, J, Ellard, S, Korbonits, M. 2011 AIP mutation in pituitary adenomas in the 18th century and today N Engl J Med 364:4350.Google Scholar
Bertherat, J, Horvath, A, Groussin, L, Grabar, S, Boikos, S, Cazabat, L, Libe, R, Rene-Corail, F, Stergiopoulos, S, Bourdeau, I, Bei, T, Clauser, E, Calender, A, Kirschner, LS, Bertagna, X, Carney, JA, Stratakis, CA. 2009 Mutations in regulatory subunit type 1A of cyclic adenosine 5′-monophosphate-dependent protein kinase (PRKAR1A): phenotype analysis in 353 patients and 80 different genotypes J Clin Endocrinol Metab 94:20852091.Google Scholar
Stratakis, CA, Tichomirowa, MA, Boikos, S, Azevedo, MF, Lodish, M, Martari, M, Verma, S, Daly, AF, Raygada, M, Keil, MF, Papademetriou, J, Drori-Herishanu, L, Horvath, A, Tsang, KM, Nesterova, M, Franklin, S, Vanbellinghen, JF, Bours, V, Salvatori, R, Beckers, A. 2010 The role of germline AIP, MEN1, PRKAR1A, CDKN1B and CDKN2C mutations in causing pituitary adenomas in a large cohort of children, adolescents, and patients with genetic syndromes Clin Genet 78:457463.Google Scholar
Cuny, T, Pertuit, M, Sahnoun-Fathallah, M, Daly, A, Occhi, G, Odou, MF, Tabarin, A, Nunes, ML, Delemer, B, Rohmer, V, Desailloud, R, Kerlan, V, Chabre, O, Sadoul, JL, Cogne, M, Caron, P, Cortet-Rudelli, C, Lienhardt, A, Raingeard, I, Guedj, AM, Brue, T, Beckers, A, Weryha, G, Enjalbert, A, Barlier, A. 2013 Genetic analysis in young patients with sporadic pituitary macroadenomas: besides AIP don't forget MEN1 genetic analysis Eur J Endocrinol 168:533541.CrossRefGoogle ScholarPubMed
Xekouki, P, Pacak, K, Almeida, M, Wassif, CA, Rustin, P, Nesterova, M, de la Luz, Sierra, M, Matro, J, Ball, E, Azevedo, M, Horvath, A, Lyssikatos, C, Quezado, M, Patronas, N, Ferrando, B, Pasini, B, Lytras, A, Tolis, G, Stratakis, CA. 2012 Succinate dehydrogenase (SDH) D subunit (SDHD) inactivation in a growth-hormone-producing pituitary tumor: a new association for SDH? J Clin Endocrinol Metab 97:E357366.CrossRefGoogle Scholar
Cheng, S, Al-Agha, R, Araujo, PB, Serri, O, Asa, SL, Ezzat, S. 2013 Metabolic glucose status and pituitary pathology portend therapeutic outcomes in acromegaly PLOS ONE 8:e73543.Google Scholar
Larkin, S, Reddy, R, Karavitaki, N, Cudlip, S, Wass, J, Ansorge, O. 2013 Granulation pattern, but not GSP or GHR mutation, is associated with clinical characteristics in somatostatin-naive patients with somatotroph adenomas Eur J Endocrinol 168:491499.Google Scholar
Bhayana, S, Booth, GL, Asa, SL, Kovacs, K, Ezzat, S. 2005 The implication of somatotroph adenoma phenotype to somatostatin analog responsiveness in acromegaly J Clin Endocrinol Metab 90:62906295.Google Scholar
Felix, IA, Horvath, E, Kovacs, K, Smyth, HS, Killinger, DW, Vale, J. 1986 Mammosomatotroph adenoma of the pituitary associated with gigantism and hyperprolactinemia. A morphological study including immunoelectron microscopy Acta Neuropathol 71:7682.Google Scholar
Pack, SD, Kirschner, LS, Pak, E, Zhuang, Z, Carney, JA, Stratakis, CA. 2000 Genetic and histologic studies of somatomammotropic pituitary tumors in patients with the “complex of spotty skin pigmentation, myxomas, endocrine overactivity and schwannomas” (Carney complex) J Clin Endocrinol Metab 85:38603865.Google Scholar
Kurtkaya-Yapicier, O, Scheithauer, BW, Carney, JA, Kovacs, K, Horvath, E, Stratakis, CA, Vidal, S, Vella, A, Young, WF Jr., Atkinson, JL, Lloyd, RV, Kontogeorgos, G. 2002 Pituitary adenoma in Carney complex: an immunohistochemical, ultrastructural, and immunoelectron microscopic study Ultrastruct Pathol 26:345353.Google Scholar
Boikos, SA, Stratakis, CA. 2006 Pituitary pathology in patients with Carney complex: growth-hormone producing hyperplasia or tumors and their association with other abnormalities Pituitary 9:203209.Google Scholar
Kovacs, K, Horvath, E, Thorner, MO, Rogol, AD. 1984 Mammosomatotroph hyperplasia associated with acromegaly and hyperprolactinemia in a patient with the McCune–Albright syndrome. A histologic, immunocytologic and ultrastructural study of the surgically-removed adenohypophysis Virchows Arch A Pathol Anat Histopathol 403:7786.Google Scholar
Vortmeyer, AO, Gläsker, S, Mehta, GU, Abu-Asab, MS, Smith, JH, Zhuang, Z, Collins, MT, Oldfield, EH. 2012 Somatic GNAS mutation causes widespread and diffuse pituitary disease in acromegalic patients with McCune–Albright syndrome J Clin Endocrinol Metab 97:24042413.Google Scholar
Sano, T, Asa, SL, Kovacs, K. 1988 Growth hormone-releasing hormone-producing tumors: clinical, biochemical, and morphological manifestations Endocr Rev 9:357373.CrossRefGoogle ScholarPubMed
Garby, L, Caron, P, Claustrat, F, Chanson, P, Tabarin, A, Rohmer, V, Arnault, G, Bonnet, F, Chabre, O, Christin-Maitre, S, du-Boullay, H, Murat, A, Nakib, I, Sadoul, JL, Sassolas, G, Claustrat, B, Raverot, G, Borson-Chazot, F. 2012 Clinical characteristics and outcome of acromegaly induced by ectopic secretion of growth hormone-releasing hormone (GHRH): a French nationwide series of 21 cases J Clin Endocrinol Metab 97:20932104.Google Scholar
Maheshwari, HG, Prezant, TR, Herman-Bonert, V, Shahinian, H, Kovacs, K, Melmed, S. 2000 Long-acting peptidomimergic control of gigantism caused by pituitary acidophilic stem cell adenoma J Clin Endocrinol Metab 85:34093416.Google Scholar
Horvath, E, Kovacs, K. 2006 Pathology of acromegaly Neuroendocrinology 83:161165.CrossRefGoogle ScholarPubMed
Horvath, E, Kovacs, K, Singer, W, Smyth, HS, Killinger, DW, Erzin, C, Weiss, MH. 1981 Acidophil stem cell adenoma of the human pituitary: clinicopathologic analysis of 15 cases Cancer 47:761771.Google Scholar
Lim, JS, Ku, CR, Lee, MK, Kim, TS, Kim, SH, Lee, EJ. 2010 A case of fugitive acromegaly, initially presented as invasive prolactinoma Endocrine 38:15.Google Scholar
Isidro, ML, Iglesias Diaz, P, Matias-Guiu, X, Cordido, F. 2005 Acromegaly due to a growth hormone-releasing hormone-secreting intracranial gangliocytoma J Endocrinol Invest 28:162165.Google Scholar
Asa, SL, Scheithauer, BW, Bilbao, JM, Horvath, E, Ryan, N, Kovacs, K, Randall, RV, Laws, ER Jr., Singer, W, Linfoot, JA, et al. 1984 A case for hypothalamic acromegaly: a clinicopathological study of six patients with hypothalamic gangliocytomas producing growth hormone-releasing factor J Clin Endocrinol Metab 58:796803.Google Scholar
Loeper, S, Ezzat, S. 2008 Acromegaly: re-thinking the cancer risk Rev Endocr Metab Disord 9:4158.Google Scholar
Renehan, AG, Brennan, BM. 2008 Acromegaly, growth hormone and cancer risk Best Pract Res Clin Endocrinol Metab 22:639657.Google Scholar
dos Santos, MC, Nascimento, GC, Nascimento, AG, Carvalho, VC, Lopes, MH, Montenegro, R, Montenegro, R Jr., Vilar, L, Albano, MF, Alves, AR, Parente, CV, dos Santos Faria, M. 2013 Thyroid cancer in patients with acromegaly: a case–control study Pituitary 16:109114.Google Scholar
Dagdelen, S, Cinar, N, Erbas, T. 2013 Increased thyroid cancer risk in acromegaly Pituitary 16:195201.Google Scholar
Renehan, AG, O'Connell, J, O'Halloran, D, Shanahan, F, Potten, CS, O'Dwyer, ST, Shalet, SM. 2003 Acromegaly and colorectal cancer: a comprehensive review of epidemiology, biological mechanisms, and clinical implications Horm Metab Res 35:712725.Google Scholar
Kauppinen-Makelin, R, Sane, T, Valimaki, MJ, Markkanen, H, Niskanen, L, Ebeling, T, Jaatinen, P, Juonala, M, Pukkala, E. 2010 Increased cancer incidence in acromegaly: a nationwide survey Clin Endocrinol (Oxf) 72:278279.Google Scholar
Molitch, ME. 1992 Clinical manifestations of acromegaly Endocrinol Metab Clin North Am 21:597614.Google Scholar
Kaltsas, GA, Mukherjee, JJ, Jenkins, PJ, Satta, MA, Islam, N, Monson, JP, Besser, GM, Grossman, AB. 1999 Menstrual irregularity in women with acromegaly J Clin Endocrinol Metab 84:27312735.Google Scholar
Galdiero, M, Pivonello, R, Grasso, LF, Cozzolino, A, Colao, A. 2012 Growth hormone, prolactin, and sexuality J Endocrinol Invest 35:782794.Google Scholar
Celik, O, Hatipoglu, E, Akhan, SE, Uludag, S, Kadioglu, P. 2013 Acromegaly is associated with higher frequency of female sexual dysfunction: experience of a single center Endocr J 60:753761.Google Scholar
Kamenicky, P, Blanchard, A, Gauci, C, Salenave, S, Letierce, A, Lombes, M, Brailly-Tabard, S, Azizi, M, Prie, D, Souberbielle, JC, Chanson, P. 2012 Pathophysiology of renal calcium handling in acromegaly: what lies behind hypercalciuria? J Clin Endocrinol Metab 97:21242133.Google Scholar
Freda, PU. 2003 Pitfalls in the biochemical assessment of acromegaly Pituitary 6:135140.Google Scholar
Sata, A, Ho, KK. 2007 Growth hormone measurements in the diagnosis and monitoring of acromegaly Pituitary 10:165172.Google Scholar
Katznelson, L, Atkinson, JL, Cook, DM, Ezzat, SZ, Hamrahian, AH, Miller, KK. 2011 American Association of Clinical Endocrinologists Medical Guidelines for Clinical Practice for the Diagnosis and Treatment of Acromegaly: 2011 update: executive summary Endocr Pract 17:636646.Google Scholar
Schofl, C, Franz, H, Grussendorf, M, Honegger, J, Jaursch-Hancke, C, Mayr, B, Schopohl, J. 2013 Long-term outcome in patients with acromegaly: analysis of 1344 patients from the German Acromegaly Register Eur J Endocrinol 168:3947.Google Scholar
Bourdelot, A, Coste, J, Hazebroucq, V, Gaillard, S, Cazabat, L, Bertagna, X, Bertherat, J. 2004 Clinical, hormonal and magnetic resonance imaging (MRI) predictors of transsphenoidal surgery outcome in acromegaly Eur J Endocrinol 150:763771.Google Scholar
Lonser, RR, Kindzelski, BA, Mehta, GU, Jane, JA Jr., Oldfield, EH. 2010 Acromegaly without imaging evidence of pituitary adenoma J Clin Endocrinol Metab 95:41924196.Google Scholar
Cushing, HW. 1912 The Pituitary Body and its Disorders. Clinical States Produced by Disorders of the Hypophysis Cerebri. An Amplification of the Harvey Lecture for December, 1910. Philadelphia, PA: JB Lippincott.Google Scholar
Cushing, H. 1994 The basophil adenomas of the pituitary body and their clinical manifestations (pituitary basophilism) 1932 Obes Res 2:486508.Google Scholar
Bertagna, X, Groussin, L, Luton, JP, Bertherat, J. 2003 Aberrant receptor-mediated Cushing's syndrome Horm Res 59(suppl 1):99103.Google Scholar
Lindholm, J, Juul, S, Jorgensen, JO, Astrup, J, Bjerre, P, Feldt-Rasmussen, U, Hagen, C, Jorgensen, J, Kosteljanetz, M, Kristensen, L, Laurberg, P, Schmidt, K, Weeke, J. 2001 Incidence and late prognosis of Cushing's syndrome: a population-based study J Clin Endocrinol Metab 86:117123.Google Scholar
Steffensen, C, Bak, AM, Rubeck, KZ, Jorgensen, JO. 2010 Epidemiology of Cushing's syndrome Neuroendocrinology 92(suppl 1):15.Google Scholar
Valassi, E, Santos, A, Yaneva, M, Toth, M, Strasburger, CJ, Chanson, P, Wass, JA, Chabre, O, Pfeifer, M, Feelders, RA, Tsagarakis, S, Trainer, PJ, Franz, H, Zopf, K, Zacharieva, S, Lamberts, SW, Tabarin, A, Webb, SM. 2011 The European Registry on Cushing's syndrome: 2-year experience. Baseline demographic and clinical characteristics Eur J Endocrinol 165:383392.Google Scholar
Katznelson, L, Bogan, JS, Trob, JR, Schoenfeld, DA, Hedley-Whyte, ET, Hsu, DW, Zervas, NT, Swearingen, B, Sleeper, M, Klibanski, A. 1998 Biochemical assessment of Cushing's disease in patients with corticotroph macroadenomas J Clin Endocrinol Metab 83:16191623.Google Scholar
George, DH, Scheithauer, BW, Kovacs, K, Horvath, E, Young, WF Jr., Lloyd, RV, Meyer, FB. 2003 Crooke's cell adenoma of the pituitary: an aggressive variant of corticotroph adenoma Am J Surg Pathol 27:13301336.Google Scholar
Kovacs, K, Diep, CC, Horvath, E, Cusimano, M, Smyth, H, Lombardero, CC, Scheithauer, BW, Lloyd, RV. 2005 Prognostic indicators in an aggressive pituitary Crooke's cell adenoma Can J Neurol Sci 32:540545.Google Scholar
Kovacs, K, Horvath, E, Coire, C, Cusimano, M, Smyth, H, Scheithauer, BW, Lloyd, RV. 2006 Pituitary corticotroph hyperplasia preceding adenoma in a patient with Nelson's syndrome Clin Neuropathol 25:7480.Google Scholar
Horvath, E, Kovacs, K, Scheithauer, BW. 1999 Pituitary hyperplasia Pituitary 1:169179.Google Scholar
Asa, SL, Kovacs, K, Tindall, GT, Barrow, DL, Horvath, E, Vecsei, P. 1984 Cushing's disease associated with an intrasellar gangliocytoma producing corticotrophin-releasing factor Ann Intern Med 101:789793.Google Scholar
Boscaro, M, Sonino, N, Scarda, A, Barzon, L, Fallo, F, Sartori, MT, Patrassi, GM, Girolami, A. 2002 Anticoagulant prophylaxis markedly reduces thromboembolic complications in Cushing's syndrome J Clin Endocrinol Metab 87:36623666.Google Scholar
Terzolo, M, Allasino, B, Bosio, S, Brusa, E, Daffara, F, Ventura, M, Aroasio, E, Sacchetto, G, Reimondo, G, Angeli, A, Camaschella, C. 2004 Hyperhomocysteinemia in patients with Cushing's syndrome J Clin Endocrinol Metab 89:37453751.Google Scholar
Zilio, M, Barbot, M, Ceccato, F, Camozzi, V, Bilora, F, Casonato, A, Frigo, AC, Albiger, N, Daidone, V, Mazzai, L, Mantero, F, Scaroni, C. 2014 Diagnosis and complications of Cushing's disease: gender-related differences Clin Endocrinol (Oxf) 80:403410.Google Scholar
Pecori Giraldi, F, Moro, M, Cavagnini, F. 2003 Gender-related differences in the presentation and course of Cushing's disease J Clin Endocrinol Metab 88:15541558.Google Scholar
Arnaldi, G, Angeli, A, Atkinson, AB, Bertagna, X, Cavagnini, F, Chrousos, GP, Fava, GA, Findling, JW, Gaillard, RC, Grossman, AB, Kola, B, Lacroix, A, Mancini, T, Mantero, F, Newell-Price, J, Nieman, LK, Sonino, N, Vance, ML, Giustina, A, Boscaro, M. 2003 Diagnosis and complications of Cushing's syndrome: a consensus statement J Clin Endocrinol Metab 88:55935602.Google Scholar
Findling, JW, Raff, H. 2006 Cushing's syndrome: important issues in diagnosis and management J Clin Endocrinol Metab 91:37463753.Google Scholar
Nieman, LK, Biller, BM, Findling, JW, Newell-Price, J, Savage, MO, Stewart, PM, Montori, VM. 2008 The diagnosis of Cushing's syndrome: an Endocrine Society Clinical Practice Guideline J Clin Endocrinol Metab 93:15261540.Google Scholar
Boscaro, M, Arnaldi, G. 2009 Approach to the patient with possible Cushing's syndrome J Clin Endocrinol Metab 94:31213131.Google Scholar
Woo, YS, Isidori, AM, Wat, WZ, Kaltsas, GA, Afshar, F, Sabin, I, Jenkins, PJ, Monson, JP, Besser, GM, Grossman, AB. 2005 Clinical and biochemical characteristics of adrenocorticotropin-secreting macroadenomas J Clin Endocrinol Metab 90:49634969.Google Scholar
Nelson, DH, Meakin, JW, Dealy, JB Jr., Matson, DD, Emerson, K Jr., Thorn, GW. 1958 ACTH-producing tumor of the pituitary gland N Engl J Med 259:161164.Google Scholar
Assié, G, Bahurel, H, Coste, J, Silvera, S, Kujas, M, Dugue, MA, Karray, F, Dousset, B, Bertherat, J, Legmann, P, Bertagna, X. 2007 Corticotroph tumor progression after adrenalectomy in Cushing's disease: a reappraisal of Nelson's syndrome J Clin Endocrinol Metab 92:172179.Google Scholar
Barber, TM, Adams, E, Ansorge, O, Byrne, JV, Karavitaki, N, Wass, JA. 2010 Nelson's syndrome Eur J Endocrinol 163:495507.Google Scholar
Assié, G, Bahurel, H, Bertherat, J, Kujas, M, Legmann, P, Bertagna, X. 2004 The Nelson's syndrome revisited Pituitary 7:209215.Google Scholar
Nelson, DH, Meakin, JW, Thorn, GW. 1960 ACTH-producing pituitary tumors following adrenalectomy for Cushing's syndrome Ann Intern Med 52:560569.Google Scholar
McCance, DR, Russell, CF, Kennedy, TL, Hadden, DR, Kennedy, L, Atkinson, AB. 1993 Bilateral adrenalectomy: low mortality and morbidity in Cushing's disease Clin Endocrinol (Oxf) 39:315321.Google Scholar
Pereira, MA, Halpern, A, Salgado, LR, Mendonca, BB, Nery, M, Liberman, B, Streeten, DH, Wajchenberg, BL. 1998 A study of patients with Nelson's syndrome Clin Endocrinol (Oxf) 49:533539.Google Scholar
Moore, TJ, Dluhy, RG, Williams, GH, Cain, JP. 1976 Nelson's syndrome: frequency, prognosis, and effect of prior pituitary irradiation Ann Intern Med 85:731734.Google Scholar
Nagesser, SK, van Seters, AP, Kievit, J, Hermans, J, Krans, HM, van de Velde, CJ. 2000 Long-term results of total adrenalectomy for Cushing's disease World J Surg 24:108113.Google Scholar
Gil-Cardenas, A, Herrera, MF, Diaz-Polanco, A, Rios, JM, Pantoja, JP. 2007 Nelson's syndrome after bilateral adrenalectomy for Cushing's disease Surgery 141:147151; discussion 51–52.Google Scholar
Verbalis, JG. 2003 Diabetes insipidus Rev Endocr Metab Disord 4:177185.Google Scholar
Loh, JA, Verbalis, JG. 2008 Disorders of water and salt metabolism associated with pituitary disease Endocrinol Metab Clin North Am 37:213234, x.Google Scholar
Jane, JA Jr., Vance, ML, Laws, ER. 2006 Neurogenic diabetes insipidus Pituitary 9:327329.Google Scholar
Babey, M, Kopp, P, Robertson, GL. 2011 Familial forms of diabetes insipidus: clinical and molecular characteristics Nat Rev Endocrinol 7:701714.Google Scholar
Bichet, DG. 2012 Genetics and diagnosis of central diabetes insipidus Ann Endocrinol (Paris) 73:117127.Google Scholar
Leroy, C, Karrouz, W, Douillard, C, Do Cao, C, Cortet, C, Wemeau, JL, Vantyghem, MC. 2013 Diabetes insipidus Ann Endocrinol (Paris) 74:496507.Google Scholar
Gurling, KJ, Scott, GB, Baron, DN. 1957 Metastases in pituitary tissue removed at hypophysectomy in women with mammary carcinoma Br J Cancer 11:519522.Google Scholar
Max, MB, Deck, MD, Rottenberg, DA. 1981 Pituitary metastasis: incidence in cancer patients and clinical differentiation from pituitary adenoma Neurology 31:9981002.Google Scholar
Turcu, AF, Erickson, BJ, Lin, E, Guadalix, S, Schwartz, K, Scheithauer, BW, Atkinson, JL, Young, WF Jr. 2013 Pituitary stalk lesions: the Mayo Clinic experience J Clin Endocrinol Metab 98:18121818.Google Scholar
Sioutos, P, Yen, V, Arbit, E. 1996 Pituitary gland metastases Ann Surg Oncol 3:9499.Google Scholar
Houck, WA, Olson, KB, Horton, J. 1970 Clinical features of tumor metastasis to the pituitary Cancer 26:656659.Google Scholar
Cheung, CC, Ezzat, S, Smyth, HS, Asa, SL. 2001 The spectrum and significance of primary hypophysitis J Clin Endocrinol Metab 86:10481053.Google Scholar
Thodou, E, Asa, SL, Kontogeorgos, G, Kovacs, K, Horvath, E, Ezzat, S. 1995 Clinical case seminar: lymphocytic hypophysitis: clinicopathological findings J Clin Endocrinol Metab 80:23022311.Google Scholar
Burt, MG, Morey, AL, Turner, JJ, Pell, M, Sheehy, JP, Ho, KK. 2003 Xanthomatous pituitary lesions: a report of two cases and review of the literature Pituitary 6:161168.Google Scholar
Gutenberg, A, Caturegli, P, Metz, I, Martinez, R, Mohr, A, Bruck, W, Rohde, V. 2012 Necrotizing infundibulo-hypophysitis: an entity too rare to be true? Pituitary 15:202208.Google Scholar
Stone, JH, Khosroshahi, A, Deshpande, V, Chan, JK, Heathcote, JG, Aalberse, R, Azumi, A, Bloch, DB, Brugge, WR, Carruthers, MN, Cheuk, W, Cornell, L, Castillo, CF, Ferry, JA, Forcione, D, Kloppel, G, Hamilos, DL, Kamisawa, T, Kasashima, S, Kawa, S, Kawano, M, Masaki, Y, Notohara, K, Okazaki, K, Ryu, JK, Saeki, T, Sahani, D, Sato, Y, Smyrk, T, Stone, JR, Takahira, M, Umehara, H, Webster, G, Yamamoto, M, Yi, E, Yoshino, T, Zamboni, G, Zen, Y, Chari, S. 2012 Recommendations for the nomenclature of IgG4-related disease and its individual organ system manifestations Arthritis Rheum 64:30613067.Google Scholar
van der Vliet, HJ, Perenboom, RM. 2004 Multiple pseudotumors in IgG4-associated multifocal systemic fibrosis Ann Intern Med 141:896897.Google Scholar
Hori, M, Makita, N, Andoh, T, Takiyama, H, Yajima, Y, Sakatani, T, Fukumoto, S, Iiri, T, Fujita, T. 2010 Long-term clinical course of IgG4-related systemic disease accompanied by hypophysitis Endocr J 57:485492.Google Scholar
Leporati, P, Landek-Salgado, MA, Lupi, I, Chiovato, L, Caturegli, P. 2011 IgG4-related hypophysitis: a new addition to the hypophysitis spectrum J Clin Endocrinol Metab 96:19711980.Google Scholar
Nakata, Y, Sato, N, Masumoto, T, Mori, H, Akai, H, Nobusawa, H, Adachi, Y, Oba, H, Ohtomo, K. 2010 Parasellar T2 dark sign on MR imaging in patients with lymphocytic hypophysitis AJNR Am J Neuroradiol 31:19441950.Google Scholar
Hess, CP, Dillon, WP. 2012 Imaging the pituitary and parasellar region Neurosurg Clin N Am 23:529542.Google Scholar
Devdhar, M, Ousman, YH, Burman, KD. 2007 Hypothyroidism Endocrinol Metab Clin North Am 36:595615, v.Google Scholar
Garber, JR, Cobin, RH, Gharib, H, Hennessey, JV, Klein, I, Mechanick, JI, Pessah-Pollack, R, Singer, PA, Woeber, KA. 2012 Clinical practice guidelines for hypothyroidism in adults: cosponsored by the American Association of Clinical Endocrinologists and the American Thyroid Association Thyroid 22:12001235.Google Scholar
Tunbridge, WM, Evered, DC, Hall, R, Appleton, D, Brewis, M, Clark, F, Evans, JG, Young, E, Bird, T, Smith, PA. 1977 The spectrum of thyroid disease in a community: the Whickham survey Clin Endocrinol (Oxf) 7:481493.Google Scholar
Leung, AM, Braverman, LE. 2012 Iodine-induced thyroid dysfunction Curr Opin Endocrinol Diabetes Obes 19:414419.Google Scholar
Pearce, EN, Andersson, M, Zimmermann, MB. 2013 Global iodine nutrition: where do we stand in 2013? Thyroid 23:523528.Google Scholar
Green, M, Wilson, GM. 1964 Thyrotoxicosis treated by surgery or iodine-131. With special reference to development of hypothyroidism Br Med J 1:10051010.Google Scholar
Samuels, MH. 2012 Subacute, silent, and postpartum thyroiditis Med Clin North Am 96:223233.Google Scholar
Antonelli, A, Fazzi, P, Fallahi, P, Ferrari, SM, Ferrannini, E. 2006 Prevalence of hypothyroidism and Graves disease in sarcoidosis Chest 130:526532.Google Scholar
Manchanda, A, Patel, S, Jiang, JJ, Babu, AR. 2013 Thyroid: an unusual hideout for sarcoidosis Endocr Pract 19:e4043.Google Scholar
Bonato, C, Severino, RF, Elnecave, RH. 2008 Reduced thyroid volume and hypothyroidism in survivors of childhood cancer treated with radiotherapy J Pediatr Endocrinol Metab 21:943949.Google Scholar
Lin, Z, Wu, VW, Lin, J, Feng, H, Chen, L. 2011 A longitudinal study on the radiation-induced thyroid gland changes after external beam radiotherapy of nasopharyngeal carcinoma Thyroid 21:1923.Google Scholar
Bogazzi, F, Tomisti, L, Bartalena, L, Aghini-Lombardi, F, Martino, E. 2012 Amiodarone and the thyroid: a 2012 update J Endocrinol Invest 35:340348.Google Scholar
Lai, EC, Yang, YH, Lin, SJ, Hsieh, CY. 2013 Use of antiepileptic drugs and risk of hypothyroidism Pharmacoepidemiol Drug Saf 22:10711079.Google Scholar
Bianchi, L, Rossi, L, Tomao, F, Papa, A, Zoratto, F, Tomao, S. 2013 Thyroid dysfunction and tyrosine kinase inhibitors in renal cell carcinoma Endocr Relat Cancer 20:R233245.CrossRefGoogle ScholarPubMed
Torino, F, Barnabei, A, Paragliola, R, Baldelli, R, Appetecchia, M, Corsello, SM. 2013 Thyroid dysfunction as an unintended side effect of anticancer drugs Thyroid 23:13451366.Google Scholar
Wassner, AJ, Brown, RS. 2013 Hypothyroidism in the newborn period Curr Opin Endocrinol Diabetes Obes 20:449454.Google Scholar
Lindholm, J, Laurberg, P. 2011 Hypothyroidism and thyroid substitution: historical aspects J Thyroid Res 2011:809341.Google Scholar
Wartofsky, L. 2006 Myxedema coma Endocrinol Metab Clin North Am 35:687–98, vii-viii.Google Scholar
Canaris, GJ, Manowitz, NR, Mayor, G, Ridgway, EC. 2000 The Colorado thyroid disease prevalence study Arch Intern Med 160:526534.Google Scholar
Watanakunakorn, C, Hodges, RE, Evans, TC. 1965 Myxedema; a study of 400 cases Arch Intern Med 116:183190.Google Scholar
Sims, EG. 1983 Hypothyroidism causing macrocytic anemia unresponsive to B12 and folate J Natl Med Assoc 75:429431.Google Scholar
Klein, I, Levey, GS. 1984 Unusual manifestations of hypothyroidism Arch Intern Med 144:123128.Google Scholar
Fletcher, AK, Weetman, AP. 1998 Hypertension and hypothyroidism J Hum Hypertens 12:7982.Google Scholar
Duyff, RF, Van den Bosch, J, Laman, DM, van Loon, BJ, Linssen, WH. 2000 Neuromuscular findings in thyroid dysfunction: a prospective clinical and electrodiagnostic study J Neurol Neurosurg Psychiatry 68:750755.Google Scholar
Carani, C, Isidori, AM, Granata, A, Carosa, E, Maggi, M, Lenzi, A, Jannini, EA. 2005 Multicenter study on the prevalence of sexual symptoms in male hypo- and hyperthyroid patients J Clin Endocrinol Metab 90:64726479.Google Scholar
Krassas, GE. 2000 Thyroid disease and female reproduction Fertil Steril 74:10631070.Google Scholar
Kakuno, Y, Amino, N, Kanoh, M, Kawai, M, Fujiwara, M, Kimura, M, Kamitani, A, Saya, K, Shakuta, R, Nitta, S, Hayashida, Y, Kudo, T, Kubota, S, Miyauchi, A. 2010 Menstrual disturbances in various thyroid diseases Endocr J 57:10171022.Google Scholar
Schlenker, EH. 2012 Effects of hypothyroidism on the respiratory system and control of breathing: human studies and animal models Respir Physiol Neurobiol 181:123131.Google Scholar
Stabouli, S, Papakatsika, S, Kotsis, V. 2010 Hypothyroidism and hypertension Expert Rev Cardiovasc Ther 8:15591565.Google Scholar
Luk, A, Ezzat, S, Butany, J. 2013 Pathology, pathophysiology, and treatment strategies of endocrine disorders and their cardiac complications Semin Diagn Pathol 30:245262.Google Scholar
Stuijver, DJ, Piantanida, E, van Zaane, B, Galli, L, Romualdi, E, Tanda, ML, Meijers, JC, Buller, HR, Gerdes, VE, Squizzato, A. 2014 Acquired von Willebrand syndrome in patients with overt hypothyroidism: a prospective cohort study Haemophilia 20:326332.Google Scholar
Bahn, RS, Burch, HB, Cooper, DS, Garber, JR, Greenlee, MC, Klein, I, Laurberg, P, McDougall, IR, Montori, VM, Rivkees, SA, Ross, DS, Sosa, JA, Stan, MN. 2011 Hyperthyroidism and other causes of thyrotoxicosis: management guidelines of the American Thyroid Association and American Association of Clinical Endocrinologists Endocr Pract 17:456520.Google Scholar
Franklyn, JA, Boelaert, K. 2012 Thyrotoxicosis Lancet 379:11551166.Google Scholar
Intenzo, CM, dePapp, AE, Jabbour, S, Miller, JL, Kim, SM, Capuzzi, DM. 2003 Scintigraphic manifestations of thyrotoxicosis Radiographics 23:857869.Google Scholar
Cooper, DS. 2003 Hyperthyroidism Lancet 362:459468.Google Scholar
Barker, DJ, Phillips, DI. 1984 Current incidence of thyrotoxicosis and past prevalence of goitre in 12 British towns Lancet ii:567570.Google Scholar
Brownlie, BE, Wells, JE. 1990 The epidemiology of thyrotoxicosis in New Zealand: incidence and geographical distribution in north Canterbury, 1983–1985 Clin Endocrinol (Oxf) 33:249259.Google Scholar
Laurberg, P, Pedersen, KM, Vestergaard, H, Sigurdsson, G. 1991 High incidence of multinodular toxic goitre in the elderly population in a low iodine intake area vs. high incidence of Graves' disease in the young in a high iodine intake area: comparative surveys of thyrotoxicosis epidemiology in East-Jutland Denmark and Iceland J Intern Med 229:415420.Google Scholar
Berglund, J, Ericsson, UB, Hallengren, B. 1996 Increased incidence of thyrotoxicosis in Malmo during the years 1988–1990 as compared to the years 1970–1974 J Intern Med 239:5762.Google Scholar
Carle, A, Pedersen, IB, Knudsen, N, Perrild, H, Ovesen, L, Rasmussen, LB, Laurberg, P. 2011 Epidemiology of subtypes of hyperthyroidism in Denmark: a population-based study Eur J Endocrinol 164:801809.Google Scholar
Paul, SJ, Sisson, JC. 1990 Thyrotoxicosis caused by thyroid cancer Endocrinol Metab Clin North Am 19:593612.Google Scholar
Salvatori, M, Saletnich, I, Rufini, V, Dottorini, ME, Corsello, SM, Troncone, L, Shapiro, B. 1998 Severe thyrotoxicosis due to functioning pulmonary metastases of well-differentiated thyroid cancer J Nucl Med 39:12021207.Google Scholar
Kasagi, K, Takeuchi, R, Miyamoto, S, Misaki, T, Inoue, D, Shimazu, A, Mori, T, Konishi, J. 1994 Metastatic thyroid cancer presenting as thyrotoxicosis: report of three cases Clin Endocrinol (Oxf) 40:429434.Google Scholar
Ishihara, T, Ikekubo, K, Shimodahira, M, Iwakura, T, Kobayashi, M, Hino, M, Oobayashi, M, Kohno, K, Kimura, K, Kawamura, S, Kurahachi, H. 2002 A case of TSH receptor antibody-positive hyperthyroidism with functioning metastases of thyroid carcinoma Endocr J 49:241245.Google Scholar
Basaria, S, Salvatori, R. 2002 Thyrotoxicosis due to metastatic papillary thyroid cancer in a patient with Graves' disease J Endocrinol Invest 25:639642.Google Scholar
Majima, T, Doi, K, Komatsu, Y, Itoh, H, Fukao, A, Shigemoto, M, Takagi, C, Corners, J, Mizuta, N, Kato, R, Nakao, K. 2005 Papillary thyroid carcinoma without metastases manifesting as an autonomously functioning thyroid nodule Endocr J 52:309316.Google Scholar
Tfayli, HM, Teot, LA, Indyk, JA, Witchel, SF. 2010 Papillary thyroid carcinoma in an autonomous hyperfunctioning thyroid nodule: case report and review of the literature Thyroid 20:10291032.Google Scholar
Belfiore, A, Russo, D, Vigneri, R, Filetti, S. 2001 Graves' disease, thyroid nodules and thyroid cancer Clin Endocrinol (Oxf) 55:711718.Google Scholar
McIver, B, Morris, JC. 1998 The pathogenesis of Graves' disease Endocrinol Metab Clin North Am 27:7389.Google Scholar
Prabhakar, BS, Bahn, RS, Smith, TJ. 2003 Current perspective on the pathogenesis of Graves' disease and ophthalmopathy Endocr Rev 24:802835.Google Scholar
Weetman, AP. 2003 Grave's disease 1835–2002 Horm Res 59(suppl 1):114118.Google Scholar
Bahn, RS. 2010 Graves' ophthalmopathy N Engl J Med 362:726738.Google Scholar
Fatourechi, V, Pajouhi, M, Fransway, AF. 1994 Dermopathy of Graves disease (pretibial myxedema). Review of 150 cases Medicine (Baltimore) 73:17.Google Scholar
Carnell, NE, Valente, WA. 1998 Thyroid nodules in Graves' disease: classification, characterization, and response to treatment Thyroid 8:647652.Google Scholar
Kraimps, JL, Bouin-Pineau, MH, Mathonnet, M, De Calan, L, Ronceray, J, Visset, J, Marechaud, R, Barbier, J. 2000 Multicentre study of thyroid nodules in patients with Graves' disease Br J Surg 87:11111113.Google Scholar
Pazaitou-Panayiotou, K, Michalakis, K, Paschke, R. 2012 Thyroid cancer in patients with hyperthyroidism Horm Metab Res 44:255262.Google Scholar
Dolman, PJ. 2012 Evaluating Graves' orbitopathy Best Pract Res Clin Endocrinol Metab 26:229248.Google Scholar
Dickinson, AJ, Perros, P. 2001 Controversies in the clinical evaluation of active thyroid-associated orbitopathy: use of a detailed protocol with comparative photographs for objective assessment Clin Endocrinol (Oxf) 55:283303.Google Scholar
Burra, P. 2013 Liver abnormalities and endocrine diseases Best Pract Res Clin Gastroenterol 27:553563.Google Scholar
Brent, GA. 2008 Clinical practice. Graves' disease N Engl J Med 358:25942605.Google Scholar
Vestergaard, P, Mosekilde, L. 2003 Hyperthyroidism, bone mineral, and fracture risk–a meta-analysis Thyroid 13:585593.Google Scholar
Sarne, DH, Refetoff, S, Rosenfield, RL, Farriaux, JP. 1988 Sex hormone-binding globulin in the diagnosis of peripheral tissue resistance to thyroid hormone: the value of changes after short term triiodothyronine administration J Clin Endocrinol Metab 66:740746.Google Scholar
Gianoukakis, AG, Leigh, MJ, Richards, P, Christenson, PD, Hakimian, A, Fu, P, Niihara, Y, Smith, TJ. 2009 Characterization of the anaemia associated with Graves' disease Clin Endocrinol (Oxf) 70:781787.Google Scholar
Kubota, K, Tamura, J, Kurabayashi, H, Shirakura, T, Kobayashi, I. 1993 Evaluation of increased serum ferritin levels in patients with hyperthyroidism Clin Invest 72:2629.Google Scholar
Bunevicius, R, Prange, AJ Jr. 2006 Psychiatric manifestations of Graves' hyperthyroidism: pathophysiology and treatment options CNS Drugs 20:897909.Google Scholar
Frates, MC, Benson, CB, Charboneau, JW, Cibas, ES, Clark, OH, Coleman, BG, Cronan, JJ, Doubilet, PM, Evans, DB, Goellner, JR, Hay, ID, Hertzberg, BS, Intenzo, CM, Jeffrey, RB, Langer, JE, Larsen, PR, Mandel, SJ, Middleton, WD, Reading, CC, Sherman, SI, Tessler, FN, Society of Radiologists. 2005 Management of thyroid nodules detected at US: Society of Radiologists in Ultrasound consensus conference statement Radiology 237:794800.Google Scholar
McCaffrey, TV, Bergstralh, EJ, Hay, ID. 1994 Locally invasive papillary thyroid carcinoma: 1940–1990 Head Neck 16 165172.Google Scholar
Ron, E, Lubin, JH, Shore, RE, Mabuchi, K, Modan, B, Pottern, LM, Schneider, AB, Tucker, MA, Boice, JD Jr. 1995 Thyroid cancer after exposure to external radiation: a pooled analysis of seven studies Radiat Res 141:259277.Google Scholar
Moysich, KB, Menezes, RJ, Michalek, AM. 2002 Chernobyl-related ionising radiation exposure and cancer risk: an epidemiological review Lancet Oncol 3:269279.Google Scholar
Kang, KW, Kim, SK, Kang, HS, Lee, ES, Sim, JS, Lee, IG, Jeong, SY, Kim, SW. 2003 Prevalence and risk of cancer of focal thyroid incidentaloma identified by 18F-fluorodeoxyglucose positron emission tomography for metastasis evaluation and cancer screening in healthy subjects J Clin Endocrinol Metab 88:41004104.Google Scholar
Bae, JS, Chae, BJ, Park, WC, Kim, JS, Kim, SH, Jung, SS, Song, BJ. 2009 Incidental thyroid lesions detected by FDG-PET/CT: prevalence and risk of thyroid cancer World J Surg Oncol 7:63.Google Scholar
Cohen, A, Rovelli, A, Merlo, DF, van Lint, MT, Lanino, E, Bresters, D, Ceppi, M, Bocchini, V, Tichelli, A, Socie, G. 2007 Risk for secondary thyroid carcinoma after hematopoietic stem-cell transplantation: an EBMT Late Effects Working Party Study J Clin Oncol 25:24492454.Google Scholar
Dotto, J, Nosé, V. 2008 Familial thyroid carcinoma: a diagnostic algorithm Adv Anat Pathol 15:332349.Google Scholar
Vivanco, M, Dalle, JH, Alberti, C, Lescoeur, B, Yakouben, K, Carel, JC, Baruchel, A, Leger, J. 2012 Malignant and benign thyroid nodules after total body irradiation preceding hematopoietic cell transplantation during childhood Eur J Endocrinol 167:225233.Google Scholar
Bauer, AJ. 2013 Clinical behavior and genetics of nonsyndromic, familial nonmedullary thyroid cancer Front Horm Res 41:141148.Google Scholar
Niedziela, M. 2006 Pathogenesis, diagnosis and management of thyroid nodules in children Endocr Relat Cancer 13:427453.Google Scholar
Favus, MJ, Schneider, AB, Stachura, ME, Arnold, JE, Ryo, UY, Pinsky, SM, Colman, M, Arnold, MJ, Frohman, LA. 1976 Thyroid cancer occurring as a late consequence of head-and-neck irradiation. Evaluation of 1056 patients N Engl J Med 294:10191025.Google Scholar
Curtis, RE, Rowlings, PA, Deeg, HJ, Shriner, DA, Socie, G, Travis, LB, Horowitz, MM, Witherspoon, RP, Hoover, RN, Sobocinski, KA, Fraumeni, JF Jr., Boice, JD Jr. 1997 Solid cancers after bone marrow transplantation N Engl J Med 336:897904.Google Scholar
Brito, JP, Gionfriddo, MR, Al Nofal, A, Boehmer, KR, Leppin, AL, Reading, C, Callstrom, M, Elraiyah, TA, Prokop, LJ, Stan, MN, Murad, MH, Morris, JC, Montori, VM. 2014 The accuracy of thyroid nodule ultrasound to predict thyroid cancer: systematic review and meta-analysis J Clin Endocrinol Metab 99:12531263.Google Scholar
Smith-Bindman, R, Lebda, P, Feldstein, VA, Sellami, D, Goldstein, RB, Brasic, N, Jin, C, Kornak, J. 2013 Risk of thyroid cancer based on thyroid ultrasound imaging characteristics: results of a population-based study JAMA internal medicine 173:17881796.CrossRefGoogle ScholarPubMed
Kim, E, Park, JS, Son, KR, Kim, JH, Jeon, SJ, Na, DG. 2008 Preoperative diagnosis of cervical metastatic lymph nodes in papillary thyroid carcinoma: comparison of ultrasound, computed tomography, and combined ultrasound with computed tomography Thyroid 18:411418.Google Scholar
Yeh, MW, Bauer, AJ, Bernet, VA, Ferris, RL, Loevner, LA, Mandel, SJ, Orloff, LA, Randolph, GW, Steward, DL. 2014 American Thyroid Association statement on preoperative imaging for thyroid cancer surgery Thyroid 35:21862191.Google Scholar
Rosario, PW, de Faria, S, Bicalho, L, Alves, MF, Borges, MA, Purisch, S, Padrao, EL, Rezende, LL, Barroso, AL. 2005 Ultrasonographic differentiation between metastatic and benign lymph nodes in patients with papillary thyroid carcinoma J Ultrasound Med 24:13851389.Google Scholar
American Thyroid Association (ATA) Guidelines Taskforce on Thyroid Nodules and Differentiated Thyroid Cancer, Cooper, DS, Doherty, GM, Haugen, BR, Kloos, RT, Lee, SL, Mandel, SJ, Mazzaferri, EL, McIver, B, Pacini, F, Schlumberger, M, Sherman, SI, Steward, DL, Tuttle, RM. 2009 Revised American Thyroid Association management guidelines for patients with thyroid nodules and differentiated thyroid cancer Thyroid 19:11671214.Google Scholar
Wharry, LI, McCoy, KL, Stang, MT, Armstrong, MJ, LeBeau, SO, Tublin, ME, Sholosh, B, Silbermann, A, Ohori, NP, Nikiforov, YE, Hodak, SP, Carty, SE, Yip, L. 2014 Thyroid nodules (≥4 cm): can ultrasound and cytology reliably exclude cancer? World J Surg 38:614621.Google Scholar
Hoang, JK, Lee, WK, Lee, M, Johnson, D, Farrell, S. 2007 US Features of thyroid malignancy: pearls and pitfalls Radiographics 27:847860; discussion 61–65.Google Scholar
McCoy, KL, Jabbour, N, Ogilvie, JB, Ohori, NP, Carty, SE, Yim, JH. 2007 The incidence of cancer and rate of false-negative cytology in thyroid nodules greater than or equal to 4 cm in size Surgery 142:837844; discussion 44e1–3.Google Scholar
Mon, SY, Hodak, SP. 2014 Molecular diagnostics for thyroid nodules: the current state of affairs Endocrinol Metab Clin North Am 43:345365.Google Scholar
Yassa, L, Cibas, ES, Benson, CB, Frates, MC, Doubilet, PM, Gawande, AA, Moore, FD Jr., Kim, BW, Nosé, V, Marqusee, E, Larsen, PR, Alexander, EK. 2007 Long-term assessment of a multidisciplinary approach to thyroid nodule diagnostic evaluation Cancer 111:508516.Google Scholar
VanderLaan, PA, Marqusee, E, Krane, JF. 2011 Clinical outcome for atypia of undetermined significance in thyroid fine-needle aspirations: should repeated FNA be the preferred initial approach? Am J Clin Pathol 135:770775.Google Scholar
Yang, J, Schnadig, V, Logrono, R, Wasserman, PG. 2007 Fine-needle aspiration of thyroid nodules: a study of 4703 patients with histologic and clinical correlations Cancer 111:306315.Google Scholar
Bongiovanni, M, Piana, S, Spitale, A, Valli, R, Carlinfante, G, Gardini, G. 2014 Comparison of the diagnostic accuracy of thyroid fine-needle aspiration in follicular-patterned lesions using a 5-tiered and a 6-tiered diagnostic system: a double-blind study of 140 cases with histological confirmation Diagn Cytopathol 42:744750.Google Scholar
Alexander, EK, Kennedy, GC, Baloch, ZW, Cibas, ES, Chudova, D, Diggans, J, Friedman, L, Kloos, RT, LiVolsi, VA, Mandel, SJ, Raab, SS, Rosai, J, Steward, DL, Walsh, PS, Wilde, JI, Zeiger, MA, Lanman, RB, Haugen, BR. 2012 Preoperative diagnosis of benign thyroid nodules with indeterminate cytology N Engl J Med 367:705715.Google Scholar
Cibas, ES, Ali, SZ. 2009 The Bethesda system for reporting thyroid cytopathology Am J Clin Pathol 132:658665.Google Scholar
Gharib, H, Papini, E, Paschke, R, Duick, DS, Valcavi, R, Hegedus, L, Vitti, P. 2010 American Association of Clinical Endocrinologists, Associazione Medici Endocrinologi, and European Thyroid Association Medical guidelines for clinical practice for the diagnosis and management of thyroid nodules: executive summary of recommendations Endocr Pract 16:468475.Google Scholar
Nikiforov, YE, Ohori, NP, Hodak, SP, Carty, SE, LeBeau, SO, Ferris, RL, Yip, L, Seethala, RR, Tublin, ME, Stang, MT, Coyne, C, Johnson, JT, Stewart, AF, Nikiforova, MN. 2011 Impact of mutational testing on the diagnosis and management of patients with cytologically indeterminate thyroid nodules: a prospective analysis of 1056 FNA samples J Clin Endocrinol Metab 96:33903397.Google Scholar
Canadian Cancer Society 2014 Canadian Cancer Statistics 2014. Toronto, Ontario: Canadian Cancer Society.Google Scholar
American Cancer Society 2014 Cancer Facts and Figures 2014. Toronto, Ontario: Canadian Cancer Society.Google Scholar
Hundahl, SA, Fleming, ID, Fremgen, AM, Menck, HR. 1998 A National Cancer Data Base report on 53 856 cases of thyroid carcinoma treated in the US, 1985–1995 Cancer 83:26382648.Google Scholar
DeGroot, LJ, Kaplan, EL, McCormick, M, Straus, FH. 1990 Natural history, treatment, and course of papillary thyroid carcinoma J Clin Endocrinol Metab 71:414424.Google Scholar
Davies, L, Welch, HG. 2006 Increasing incidence of thyroid cancer in the United States, 1973–2002 JAMA 295:21642167.Google Scholar
Pellegriti, G, Frasca, F, Regalbuto, C, Squatrito, S, Vigneri, R. 2013 Worldwide increasing incidence of thyroid cancer: update on epidemiology and risk factors J Cancer Epidemiol 2013:965212.Google Scholar
Sipos, JA, Mazzaferri, EL. 2010 Thyroid cancer epidemiology and prognostic variables Clin Oncol 22:395404.Google Scholar
Benbassat, CA, Mechlis-Frish, S, Hirsch, D. 2006 Clinicopathological characteristics and long-term outcome in patients with distant metastases from differentiated thyroid cancer World J Surg 30:10881095.Google Scholar
Grogan, RH, Kaplan, SP, Cao, H, Weiss, RE, Degroot, LJ, Simon, CA, Embia, OM, Angelos, P, Kaplan, EL, Schechter, RB. 2013 A study of recurrence and death from papillary thyroid cancer with 27 years of median follow-up Surgery 154:14361446; discussion 46–47.Google Scholar
Hay, ID, Bergstralh, EJ, Goellner, JR, Ebersold, JR, Grant, CS. 1993 Predicting outcome in papillary thyroid carcinoma: development of a reliable prognostic scoring system in a cohort of 1779 patients surgically treated at one institution during 1940 through 1989 Surgery 114:1050–7; discussion 7–8.Google Scholar
Ruegemer, JJ, Hay, ID, Bergstralh, EJ, Ryan, JJ, Offord, KP, Gorman, CA. 1988 Distant metastases in differentiated thyroid carcinoma: a multivariate analysis of prognostic variables J Clin Endocrinol Metab 67:501508.Google Scholar
Edge, SB, Byrd, D.R., Comptom, C.C., Fritz, A.G., Greene, F.L, Trotti, A., et al. 2010 AJCC Cancer Staging Manual New York: Springer.Google Scholar
Mete, O, Asa, SL. 2011 Pathological definition and clinical significance of vascular invasion in thyroid carcinomas of follicular epithelial derivation Mod Pathol 24:15451552.Google Scholar
Randolph, GW, Duh, QY, Heller, KS, LiVolsi, VA, Mandel, SJ, Steward, DL, Tufano, RP, Tuttle, RM, American Thyroid Association Surgical Affairs Committee's Taskforce on Thyroid Cancer 2012 The prognostic significance of nodal metastases from papillary thyroid carcinoma can be stratified based on the size and number of metastatic lymph nodes, as well as the presence of extranodal extension Thyroid 22:11441152.Google Scholar
Dean, DS, Hay, ID. 2000 Prognostic indicators in differentiated thyroid carcinoma Cancer Control 7:229239.Google Scholar
Nixon, IJ, Whitcher, MM, Palmer, FL, Tuttle, RM, Shaha, AR, Shah, JP, Patel, SG, Ganly, I. 2012 The impact of distant metastases at presentation on prognosis in patients with differentiated carcinoma of the thyroid gland Thyroid 22:884889.Google Scholar
Kazaure, HS, Roman, SA, Sosa, JA. 2012 Aggressive variants of papillary thyroid cancer: incidence, characteristics and predictors of survival among 43 738 patients Ann Surg Oncol 19:18741880.Google Scholar
Nixon, IJ, Ganly, I, Patel, S, Palmer, FL, Whitcher, MM, Tuttle, RM, Shaha, AR, Shah, JP. 2011 The impact of microscopic extrathyroid extension on outcome in patients with clinical T1 and T2 well-differentiated thyroid cancer Surgery 150:12421249.Google Scholar
Sherman, SI, Brierley, JD, Sperling, M, Ain, KB, Bigos, ST, Cooper, DS, Haugen, BR, Ho, M, Klein, I, Ladenson, PW, Robbins, J, Ross, DS, Specker, B, Taylor, T, Maxon, HR, 3rd 1998 Prospective multicenter study of thyroiscarcinoma treatment: initial analysis of staging and outcome. National Thyroid Cancer Treatment Cooperative Study Registry Group Cancer 83:10121021.Google Scholar
Hay, ID, Hutchinson, ME, Gonzalez-Losada, T, McIver, B, Reinalda, ME, Grant, CS, Thompson, GB, Sebo, TJ, Goellner, JR. 2008 Papillary thyroid microcarcinoma: a study of 900 cases observed in a 60-year period Surgery 144:980987; discussion 7–8.Google Scholar
Ito, Y, Miyauchi, A, Inoue, H, Fukushima, M, Kihara, M, Higashiyama, T, Tomoda, C, Takamura, Y, Kobayashi, K, Miya, A. 2010 An observational trial for papillary thyroid microcarcinoma in Japanese patients World J Surg 34:2835.Google Scholar
Nixon, IJ, Ganly, I, Patel, SG, Palmer, FL, Whitcher, MM, Tuttle, RM, Shaha, A, Shah, JP. 2012 Thyroid lobectomy for treatment of well differentiated intrathyroid malignancy Surgery 151:571579.Google Scholar
Nixon, IJ, Ganly, I, Patel, SG, Palmer, FL, Di Lorenzo, MM, Grewal, RK, Larson, SM, Tuttle, RM, Shaha, A, Shah, JP. 2013 The results of selective use of radioactive iodine on survival and on recurrence in the management of papillary thyroid cancer, based on Memorial Sloan-Kettering Cancer Center risk group stratification Thyroid 23:683694.Google Scholar
Matsuzu, K, Sugino, K, Masudo, K, Nagahama, M, Kitagawa, W, Shibuya, H, Ohkuwa, K, Uruno, T, Suzuki, A, Magoshi, S, Akaishi, J, Masaki, C, Kawano, M, Suganuma, N, Rino, Y, Masuda, M, Kameyama, K, Takami, H, Ito, K. 2014 Thyroid lobectomy for papillary thyroid cancer: long-term follow-up study of 1088 cases World J Surg 38:6879.Google Scholar
Momesso, DP, Tuttle, RM. 2014 Update on differentiated thyroid cancer staging Endocrinol Metab Clin North Am 43:401421.Google Scholar
Jonklaas, J, Sarlis, NJ, Litofsky, D, Ain, KB, Bigos, ST, Brierley, JD, Cooper, DS, Haugen, BR, Ladenson, PW, Magner, J, Robbins, J, Ross, DS, Skarulis, M, Maxon, HR, Sherman, SI. 2006 Outcomes of patients with differentiated thyroid carcinoma following initial therapy Thyroid 16:12291242.Google Scholar
Jonklaas, J, Cooper, DS, Ain, KB, Bigos, T, Brierley, JD, Haugen, BR, Ladenson, PW, Magner, J, Ross, DS, Skarulis, MC, Steward, DL, Maxon, HR, Sherman, SI, National Thyroid Cancer Treatment Cooperative Study. 2010 Radioiodine therapy in patients with stage I differentiated thyroid cancer Thyroid 20:14231424.Google Scholar
Hay, ID, Thompson, GB, Grant, CS, Bergstralh, EJ, Dvorak, CE, Gorman, CA, Maurer, MS, McIver, B, Mullan, BP, Oberg, AL, Powell, CC, van Heerden, JA, Goellner, JR. 2002 Papillary thyroid carcinoma managed at the Mayo Clinic during six decades (1940–1999): temporal trends in initial therapy and long-term outcome in 2444 consecutively treated patients World J Surg 26:879885.Google Scholar
Mazzaferri, EL, Jhiang, SM. 1994 Long-term impact of initial surgical and medical therapy on papillary and follicular thyroid cancer Am J Med 97:418428.Google Scholar
Schlumberger, M, Challeton, C, De Vathaire, F, Travagli, JP, Gardet, P, Lumbroso, JD, Francese, C, Fontaine, F, Ricard, M, Parmentier, C. 1996 Radioactive iodine treatment and external radiotherapy for lung and bone metastases from thyroid carcinoma J Nucl Med 37:598605.Google Scholar
Podnos, YD, Smith, DD, Wagman, LD, Ellenhorn, JD. 2007 Survival in patients with papillary thyroid cancer is not affected by the use of radioactive isotope J Surg Oncol 96:37.Google Scholar
Qiu, ZL, Shen, CT, Luo, QY. 2015 Clinical management and outcomes in patients with hyperfunctioning distant metastases from differentiated thyroid cancer after total thyroidectomy and radioactive iodine therapy Thyroid 25:229237.Google Scholar
Brierley, JD. 2011 Update on external beam radiation therapy in thyroid cancer J Clin Endocrinol Metab 96:22892295.Google Scholar
Vaisman, F, Tala, H, Grewal, R, Tuttle, RM. 2011 In differentiated thyroid cancer, an incomplete structural response to therapy is associated with significantly worse clinical outcomes than only an incomplete thyroglobulin response Thyroid 21:13171322.Google Scholar
Gilliland, FD, Hunt, WC, Morris, DM, Key, CR. 1997 Prognostic factors for thyroid carcinoma. A population-based study of 15 698 cases from the Surveillance, Epidemiology and End Results (SEER) program 1973–1991 Cancer 79:564573.Google Scholar
Feldt-Rasmussen, U. 2001 Iodine and cancer Thyroid 11:483486.CrossRefGoogle ScholarPubMed
DeGroot, LJ, Kaplan, EL, Shukla, MS, Salti, G, Straus, FH. 1995 Morbidity and mortality in follicular thyroid cancer J Clin Endocrinol Metab 80:29462953.Google Scholar
Simpson, WJ, McKinney, SE, Carruthers, JS, Gospodarowicz, MK, Sutcliffe, SB, Panzarella, T. 1987 Papillary and follicular thyroid cancer. Prognostic factors in 1578 patients Am J Med 83:479488.Google Scholar
Sugino, K, Kameyama, K, Ito, K, Nagahama, M, Kitagawa, W, Shibuya, H, Ohkuwa, K, Yano, Y, Uruno, T, Akaishi, J, Suzuki, A, Masaki, C, Ito, K. 2012 Outcomes and prognostic factors of 251 patients with minimally invasive follicular thyroid carcinoma Thyroid 22:798804.Google Scholar
Lin, JD, Liou, MJ, Chao, TC, Weng, HF, Ho, YS. 1999 Prognostic variables of papillary and follicular thyroid carcinoma patients with lymph node metastases and without distant metastases Endocr Relat Cancer 6:109115.Google Scholar
Passler, C, Prager, G, Scheuba, C, Kaserer, K, Zettinig, G, Niederle, B. 2003 Application of staging systems for differentiated thyroid carcinoma in an endemic goiter region with iodine substitution Ann Surg 237:227234.Google Scholar
Brierley, JD, Panzarella, T, Tsang, RW, Gospodarowicz, MK, O'Sullivan, B. 1997 A comparison of different staging systems predictability of patient outcome. Thyroid carcinoma as an example Cancer 79:24142423.Google Scholar
D'Avanzo, A, Ituarte, P, Treseler, P, Kebebew, E, Wu, J, Wong, M, Duh, QY, Siperstein, AE, Clark, OH. 2004 Prognostic scoring systems in patients with follicular thyroid cancer: a comparison of different staging systems in predicting the patient outcome Thyroid 14:453458.Google Scholar
Sampson, E, Brierley, JD, Le, LW, Rotstein, L, Tsang, RW. 2007 Clinical management and outcome of papillary and follicular (differentiated) thyroid cancer presenting with distant metastasis at diagnosis Cancer 110:14511456.Google Scholar
Fat, I, Kulaga, M, Dodis, R, Carling, T, Theoharis, C, Rennert, NJ. 2011 Insular variant of poorly differentiated thyroid carcinoma Endocr Pract 17:115121.Google Scholar
Ibrahimpasic, T, Ghossein, R, Carlson, DL, Nixon, I, Palmer, FL, Shaha, AR, Patel, SG, Tuttle, RM, Shah, JP, Ganly, I. 2014 Outcomes in patients with poorly differentiated thyroid carcinoma J Clin Endocrinol Metab 99:12451252.Google Scholar
Walczyk, A, Kowalska, A, Sygut, J. 2010 The clinical course of poorly differentiated thyroid carcinoma (insular carcinoma): own observations Endokrynol Polska 61:467473.Google Scholar
Rivera, M, Ghossein, RA, Schoder, H, Gomez, D, Larson, SM, Tuttle, RM. 2008 Histopathologic characterization of radioactive iodine-refractory fluorodeoxyglucose-positron emission tomography-positive thyroid carcinoma Cancer 113:4856.Google Scholar
Neff, RL, Farrar, WB, Kloos, RT, Burman, KD. 2008 Anaplastic thyroid cancer Endocrinol Metab Clin North Am 37:525–38, xi.Google Scholar
Nagaiah, G, Hossain, A, Mooney, CJ, Parmentier, J, Remick, SC. 2011 Anaplastic thyroid cancer: a review of epidemiology, pathogenesis, and treatment J Oncol 2011:542358.Google Scholar
Smallridge, RC, Ain, KB, Asa, SL, Bible, KC, Brierley, JD, Burman, KD, Kebebew, E, Lee, NY, Nikiforov, YE, Rosenthal, MS, Shah, MH, Shaha, AR, Tuttle, RM. 2012 American Thyroid Association guidelines for management of patients with anaplastic thyroid cancer Thyroid 22:11041139.Google Scholar
Kebebew, E, Greenspan, FS, Clark, OH, Woeber, KA, McMillan, A. 2005 Anaplastic thyroid carcinoma. Treatment outcome and prognostic factors Cancer 103:13301335.Google Scholar
Pelizzo, MR, Boschin, IM, Bernante, P, Toniato, A, Piotto, A, Pagetta, C, Nibale, O, Rampin, L, Muzzio, PC, Rubello, D. 2007 Natural history, diagnosis, treatment and outcome of medullary thyroid cancer: 37 years experience on 157 patients Eur J Surg Oncol 33:493497.Google Scholar
Tuttle, RM, Ball, DW, Byrd, D, Daniels, GH, Dilawari, RA, Doherty, GM, Duh, QY, Ehya, H, Farrar, WB, Haddad, RI, Kandeel, F, Kloos, RT, Kopp, P, Lamonica, DM, Loree, TR, Lydiatt, WM, McCaffrey, J, Olson, JA Jr., Parks, L, Ridge, JA, Shah, JP, Sherman, SI, Sturgeon, C, Waguespack, SG, Wang, TN, Wirth, LJ. 2010 Medullary carcinoma J Natl Compr Canc Netw 8:512530.Google Scholar
Block, MA, Jackson, CE, Greenawald, KA, Yott, JB, Tashjian, AH Jr. 1980 Clinical characteristics distinguishing hereditary from sporadic medullary thyroid carcinoma. Treatment implications Arch Surg 115:142148.Google Scholar
Eng, C, Clayton, D, Schuffenecker, I, Lenoir, G, Cote, G, Gagel, RF, van Amstel, HK, Lips, CJ, Nishisho, I, Takai, SI, Marsh, DJ, Robinson, BG, Frank-Raue, K, Raue, F, Xue, F, Noll, WW, Romei, C, Pacini, F, Fink, M, Niederle, B, Zedenius, J, Nordenskjold, M, Komminoth, P, Hendy, GN, Mulligan, LM, et al. 1996 The relationship between specific RET proto-oncogene mutations and disease phenotype in multiple endocrine neoplasia type 2. International RET mutation consortium analysis JAMA 276:15751579.Google Scholar
Cox, TM, Fagan, EA, Hillyard, CJ, Allison, DJ, Chadwick, VS. 1979 Role of calcitonin in diarrhoea associated with medullary carcinoma of the thyroid Gut 20:629633.Google Scholar
Barbosa, SL, Rodien, P, Leboulleux, S, Niccoli-Sire, P, Kraimps, JL, Caron, P, Archambeaud-Mouveroux, F, Conte-Devolx, B, Rohmer, V. 2005 Ectopic adrenocorticotropic hormone-syndrome in medullary carcinoma of the thyroid: a retrospective analysis and review of the literature Thyroid 15:618623.Google Scholar
Lee, M, Pellegata, NS. 2013 Multiple endocrine neoplasia type 4 Front Horm Res 41:6378.Google Scholar
Hendy, GN, Cole, DE. 2013 Genetic defects associated with familial and sporadic hyperparathyroidism Front Horm Res 41:149165.Google Scholar
Shah, R, Licata, A, Oyesiku, NM, Ioachimescu, AG. 2012 Acromegaly as a cause of 1,25-dihydroxyvitamin D-dependent hypercalcemia: case reports and review of the literature Pituitary 15(suppl 1):S17S22.Google Scholar
Kimura, S, Nishimura, Y, Yamaguchi, K, Nagasaki, K, Shimada, K, Uchida, H. 1990 A case of pheochromocytoma producing parathyroid hormone-related protein and presenting with hypercalcemia J Clin Endocrinol Metab 70:15591563.Google Scholar
Walser, M, Robinson, BH, Duckett, JW Jr. 1963 The hypercalcemia of adrenal insufficiency J Clin Invest 42:456465.Google Scholar
Montoli, A, Colussi, G, Minetti, L. 1992 Hypercalcaemia in Addison's disease: calciotropic hormone profile and bone histology J Intern Med 232:535540.Google Scholar
Burman, KD, Monchik, JM, Earll, JM, Wartofsky, L. 1976 Ionized and total serum calcium and parathyroid hormone in hyperthyroidism Ann Intern Med 84:668671.Google Scholar
Inzucchi, SE. 2004 Understanding hypercalcemia. Its metabolic basis, signs, and symptoms Postgrad Med 115:6970, 3–6.Google Scholar
Peacock, M. 2002 Primary hyperparathyroidism and the kidney: biochemical and clinical spectrum J Bone Miner Res 17(suppl 2):N87N94.Google Scholar
Roberts, WC, Waller, BF. 1981 Effect of chronic hypercalcemia on the heart. An analysis of 18 necropsy patients Am J Med 71:371384.Google Scholar
Mosekilde, L. 2008 Primary hyperparathyroidism and the skeleton Clin Endocrinol (Oxf) 69:119.Google Scholar
Berland, LL, Silverman, SG, Gore, RM, Mayo-Smith, WW, Megibow, AJ, Yee, J, Brink, JA, Baker, ME, Federle, MP, Foley, WD, Francis, IR, Herts, BR, Israel, GM, Krinsky, G, Platt, JF, Shuman, WP, Taylor, AJ. 2010 Managing incidental findings on abdominal CT: white paper of the ACR Incidental Findings Committee J Am Coll Radiol 7:754773.Google Scholar
Song, JH, Chaudhry, FS, Mayo-Smith, WW. 2008 The incidental adrenal mass on CT: prevalence of adrenal disease in 1049 consecutive adrenal masses in patients with no known malignancy AJR Am J Roentgenol 190:11631168.Google Scholar
Sahdev, A, Reznek, RH. 2007 The indeterminate adrenal mass in patients with cancer Cancer Imaging 7(spec issue A):S100S109.Google Scholar
Nieman, LK. 2010 Approach to the patient with an adrenal incidentaloma J Clin Endocrinol Metab 95:41064113.Google Scholar
Gershuni, VM, Bittner, JG, Moley, JF, Brunt, LM. 2014 Adrenal myelolipoma: operative indications and outcomes J Laparoendosc Adv Surg Tech A 24:812.Google Scholar
Newell-Price, J, Trainer, P, Besser, M, Grossman, A. 1998 The diagnosis and differential diagnosis of Cushing's syndrome and pseudo-Cushing's states Endocr Rev 19:647672.Google Scholar
Newell-Price, J, Bertagna, X, Grossman, AB, Nieman, LK. 2006 Cushing's syndrome Lancet 367:16051617.Google Scholar
Stratakis, CA. 2008 Cushing syndrome caused by adrenocortical tumors and hyperplasias (corticotropin-independent Cushing syndrome) Endocr Dev 13:117132.Google Scholar
Yamada, Y, Sakaguchi, K, Inoue, T, Kubo, M, Fushimi, H, Sekii, K, Itatani, H, Tsujimura, T, Kameyama, M. 1997 Preclinical Cushing's syndrome due to adrenocorticotropin-independent bilateral adrenocortical macronodular hyperplasia with concurrent excess of gluco- and mineralocorticoids Intern Med 36:628632.Google Scholar
Swain, JM, Grant, CS, Schlinkert, RT, Thompson, GB, vanHeerden, JA, Lloyd, RV, Young, WF. 1998 Corticotropin-independent macronodular adrenal hyperplasia: a clinicopathologic correlation Arch Surg 133:541–5; discussion 5–6.Google Scholar
Louiset, E, Duparc, C, Young, J, Renouf, S, Tetsi Nomigni, M, Boutelet, I, Libe, R, Bram, Z, Groussin, L, Caron, P, Tabarin, A, Grunenberger, F, Christin-Maitre, S, Bertagna, X, Kuhn, JM, Anouar, Y, Bertherat, J, Lefebvre, H. 2013 Intraadrenal corticotropin in bilateral macronodular adrenal hyperplasia N Engl J Med 369:21152125.Google Scholar
Minami, S, Sugihara, H, Sato, J, Tatsukuchi, A, Sugisaki, Y, Sasano, H, Wakabayashi, I. 1996 ACTH independent Cushing's syndrome occurring in siblings Clin Endocrinol (Oxf) 44:483488.Google Scholar
Gagliardi, L, Hotu, C, Casey, G, Braund, WJ, Ling, KH, Dodd, T, Manavis, J, Devitt, PG, Cutfield, R, Rudzki, Z, Scott, HS, Torpy, DJ. 2009 Familial vasopressin-sensitive ACTH-independent macronodular adrenal hyperplasia (VPs-AIMAH): clinical studies of three kindreds Clin Endocrinol (Oxf) 70:883891.Google Scholar
Vezzosi, D, Cartier, D, Regnier, C, Otal, P, Bennet, A, Parmentier, F, Plantavid, M, Lacroix, A, Lefebvre, H, Caron, P. 2007 Familial adrenocorticotropin-independent macronodular adrenal hyperplasia with aberrant serotonin and vasopressin adrenal receptors Eur J Endocrinol 156:2131.Google Scholar
Assié, G, Libe, R, Espiard, S, Rizk-Rabin, M, Guimier, A, Luscap, W, Barreau, O, Lefevre, L, Sibony, M, Guignat, L, Rodriguez, S, Perlemoine, K, Rene-Corail, F, Letourneur, F, Trabulsi, B, Poussier, A, Chabbert-Buffet, N, Borson-Chazot, F, Groussin, L, Bertagna, X, Stratakis, CA, Ragazzon, B, Bertherat, J. 2013 ARMC5 mutations in macronodular adrenal hyperplasia with Cushing's syndrome N Engl J Med 369:21052114.Google Scholar
Gagliardi, L, Schreiber, AW, Hahn, CN, Feng, J, Cranston, T, Boon, H, Hotu, C, Oftedal, BE, Cutfield, R, Adelson, DL, Braund, WJ, Gordon, RD, Rees, DA, Grossman, AB, Torpy, DJ, Scott, HS. 2014 ARMC5 mutations are common in familial bilateral macronodular adrenal hyperplasia J Clin Endocrinol Metab 99:E17841792.Google Scholar
Carney, JA, Gaillard, RC, Bertherat, J, Stratakis, CA. 2010 Familial micronodular adrenocortical disease, Cushing syndrome, and mutations of the gene encoding phosphodiesterase 11A4 (PDE11A) Am J Surg Pathol 34:547555.Google Scholar
Conn, JW. 1955 Presidential address. I. Painting background. II. Primary aldosteronism, a new clinical syndrome J Lab Clin Med 45:317.Google Scholar
Conn, JW, Louis, LH. 1956 Primary aldosteronism, a new clinical entity Ann Intern Med 44:115.Google Scholar
Funder, JW, Carey, RM, Fardella, C, Gomez-Sanchez, CE, Mantero, F, Stowasser, M, Young, WF Jr., Montori, VM. 2008 Case detection, diagnosis, and treatment of patients with primary aldosteronism: an Endocrine Society clinical practice guideline J Clin Endocrinol Metab 93:32663281.Google Scholar
Milan, A, Magnino, C, Fabbri, A, Chiarlo, M, Bruno, G, Losano, I, Veglio, F. 2012 Left heart morphology and function in primary aldosteronism High Blood Press Cardiovasc Prev 19:1117.Google Scholar
Briet, M, Schiffrin, EL. 2010 Aldosterone: effects on the kidney and cardiovascular system Nat Rev Nephrol 6:261273.Google Scholar
Young, WF. 2007 Primary aldosteronism: renaissance of a syndrome Clin Endocrinol (Oxf) 66:607618.Google Scholar
Zennaro, MC, Rickard, AJ, Boulkroun, S. 2013 Genetics of mineralocorticoid excess: an update for clinicians Eur J Endocrinol 169:R1525.Google Scholar
Chao, CT, Wu, VC, Kuo, CC, Lin, YH, Chang, CC, Chueh, SJ, Wu, KD, Pimenta, E, Stowasser, M. 2013 Diagnosis and management of primary aldosteronism: an updated review Ann Med 45:375383.Google Scholar
Carmina, E. 2006 Ovarian and adrenal hyperandrogenism Ann N Y Acad Sci 1092:130137.Google Scholar
Stanczyk, FZ, Chang, L, Carmina, E, Putz, Z, Lobo, RA. 1991 Is 11 beta-hydroxyandrostenedione a better marker of adrenal androgen excess than dehydroepiandrosterone sulfate? Am J Obstet Gynecol 165:18371842.Google Scholar
McKenna, TJ, Cunningham, SK, Loughlin, T. 1985 The adrenal cortex and virilization Clin Endocrinol Metab 14:9971020.Google Scholar
Waggoner, W, Boots, LR, Azziz, R. 1999 Total testosterone and DHEAS levels as predictors of androgen-secreting neoplasms: a populational study Gynecol Endocrinol 13:394400.Google Scholar
Azziz, R, Sanchez, LA, Knochenhauer, ES, Moran, C, Lazenby, J, Stephens, KC, Taylor, K, Boots, LR. 2004 Androgen excess in women: experience with over 1000 consecutive patients J Clin Endocrinol Metab 89:453462.Google Scholar
Lolis, MS, Bowe, WP, Shalita, AR. 2009 Acne and systemic disease Med Clin North Am 93:11611181.Google Scholar
Azziz, R, Carmina, E, Dewailly, D, Diamanti-Kandarakis, E, Escobar-Morreale, HF, Futterweit, W, Janssen, OE, Legro, RS, Norman, RJ, Taylor, AE, Witchel, SF. 2009 The Androgen Excess and PCOS Society criteria for the polycystic ovary syndrome: the complete task force report Fertil Steril 91:456488.Google Scholar
Alpanes, M, Gonzalez-Casbas, JM, Sanchez, J, Pian, H, Escobar-Morreale, HF. 2012 Management of postmenopausal virilization J Clin Endocrinol Metab 97:25842588.Google Scholar
Derksen, J, Nagesser, SK, Meinders, AE, Haak, HR, van de Velde, CJ. 1994 Identification of virilizing adrenal tumors in hirsute women N Engl J Med 331:968973.Google Scholar
Koschker, AC, Fassnacht, M, Hahner, S, Weismann, D, Allolio, B. 2006 Adrenocortical carcinoma: improving patient care by establishing new structures Exp Clin Endocrinol Diabetes 114:4551.Google Scholar
Crucitti, F, Bellantone, R, Ferrante, A, Boscherini, M, Crucitti, P. 1996 The Italian Registry for Adrenal Cortical Carcinoma: analysis of a multiinstitutional series of 129 patients. The ACC Italian Registry Study Group Surgery 119:161170.Google Scholar
Icard, P, Goudet, P, Charpenay, C, Andreassian, B, Carnaille, B, Chapuis, Y, Cougard, P, Henry, JF, Proye, C. 2001 Adrenocortical carcinomas: surgical trends and results of a 253-patient series from the French Association of Endocrine Surgeons study group World J Surg 25:891897.Google Scholar
Ayala-Ramirez, M, Jasim, S, Feng, L, Ejaz, S, Deniz, F, Busaidy, N, Waguespack, SG, Naing, A, Sircar, K, Wood, CG, Pagliaro, L, Jimenez, C, Vassilopoulou-Sellin, R, Habra, MA. 2013 Adrenocortical carcinoma: clinical outcomes and prognosis of 330 patients at a tertiary care center Eur J Endocrinol 169:891899.Google Scholar
Abiven, G, Coste, J, Groussin, L, Anract, P, Tissier, F, Legmann, P, Dousset, B, Bertagna, X, Bertherat, J. 2006 Clinical and biological features in the prognosis of adrenocortical cancer: poor outcome of cortisol-secreting tumors in a series of 202 consecutive patients J Clin Endocrinol Metab 91:26502655.Google Scholar
European Network for Adrenal Tumors. http://www.ensat.org/, accessed 4 September 2015.Google Scholar
Taal, BG, Visser, O. 2004 Epidemiology of neuroendocrine tumours Neuroendocrinology 80(suppl 1):37.Google Scholar
Kulke, MH, Benson, AB, 3rd, Bergsland, E, Berlin, JD, Blaszkowsky, LS, Choti, MA, Clark, OH, Doherty, GM, Eason, J, Emerson, L, Engstrom, PF, Goldner, WS, Heslin, MJ, Kandeel, F, Kunz, PL, Kuvshinoff, BW, 2nd, Moley, JF, Pillarisetty, VG, Saltz, L, Schteingart, DE, Shah, MH, Shibata, S, Strosberg, JR, Vauthey, JN, White, R, Yao, JC, Freedman-Cass, DA, Dwyer, MA. 2012 Neuroendocrine tumors J Natl Compr Canc Netw 10:724764.Google Scholar
Jensen, RT, Cadiot, G, Brandi, ML, de Herder, WW, Kaltsas, G, Komminoth, P, Scoazec, JY, Salazar, R, Sauvanet, A, Kianmanesh, R. 2012 ENETS Consensus Guidelines for the management of patients with digestive neuroendocrine neoplasms: functional pancreatic endocrine tumor syndromes Neuroendocrinology 95:98119.Google Scholar
Delle Fave, G, Kwekkeboom, DJ, Van Cutsem, E, Rindi, G, Kos-Kudla, B, Knigge, U, Sasano, H, Tomassetti, P, Salazar, R, Ruszniewski, P. 2012 ENETS Consensus Guidelines for the management of patients with gastroduodenal neoplasms Neuroendocrinology 95:7487.Google Scholar
Pape, UF, Perren, A, Niederle, B, Gross, D, Gress, T, Costa, F, Arnold, R, Denecke, T, Plöckinger, U, Salazar, R, Grossman, A. 2012 ENETS Consensus Guidelines for the management of patients with neuroendocrine neoplasms from the jejuno-ileum and the appendix including goblet cell carcinomas Neuroendocrinology 95:135156.Google Scholar
Fesinmeyer, MD, Austin, MA, Li, CI, De Roos, AJ, Bowen, DJ. 2005 Differences in survival by histologic type of pancreatic cancer Cancer Epidemiol Biomarkers Prev 14:17661773.Google Scholar
Mullan, MH, Gauger, PG, Thompson, NW. 2001 Endocrine tumours of the pancreas: review and recent advances ANZ J Surg 71:475482.Google Scholar
Halfdanarson, TR, Rabe, KG, Rubin, J, Petersen, GM. 2008 Pancreatic neuroendocrine tumors (PNETs): incidence, prognosis and recent trend toward improved survival Ann Oncol 19:17271733.Google Scholar
Blansfield, JA, Choyke, L, Morita, SY, Choyke, PL, Pingpank, JF, Alexander, HR, Seidel, G, Shutack, Y, Yuldasheva, N, Eugeni, M, Bartlett, DL, Glenn, GM, Middelton, L, Linehan, WM, Libutti, SK. 2007 Clinical, genetic and radiographic analysis of 108 patients with von Hippel–Lindau disease (VHL) manifested by pancreatic neuroendocrine neoplasms (PNETs) Surgery 142:814818; discussion 8e1–2.Google Scholar
Almeida, MQ, Stratakis, CA. 2010 Solid tumors associated with multiple endocrine neoplasias Cancer Genet Cytogenet 203:3036.Google Scholar
Chen, M, Van Ness, M, Guo, Y, Gregg, J. 2012 Molecular pathology of pancreatic neuroendocrine tumors J Gastrointest Oncol 3 182188.Google Scholar
Goncalves, TD, Toledo, RA, Sekiya, T, Matuguma, SE, Maluf Filho, F, Rocha, MS, Siqueira, SA, Glezer, A, Bronstein, MD, Pereira Ricardo Jureidini, MA, Bacchella, T, Machado, MC, Toledo, SP, Lourenco, DM Jr. 2014 Penetrance of functioning and non-functioning pancreatic neuroendocrine tumors in multiple endocrine neoplasia type 1 in the second decade of life J Clin Endocrinol Metab 99:E89E96.Google Scholar
Zhang, J, Francois, R, Iyer, R, Seshadri, M, Zajac-Kaye, M, Hochwald, SN. 2013 Current understanding of the molecular biology of pancreatic neuroendocrine tumors J Natl Cancer Inst 105:10051017.Google Scholar
Nesi, G, Marcucci, T, Rubio, CA, Brandi, ML, Tonelli, F. 2008 Somatostatinoma: clinico-pathological features of three cases and literature reviewed J Gastroenterol Hepatol 23:521526.Google Scholar
Bilimoria, KY, Tomlinson, JS, Merkow, RP, Stewart, AK, Ko, CY, Talamonti, MS, Bentrem, DJ. 2007 Clinicopathologic features and treatment trends of pancreatic neuroendocrine tumors: analysis of 9821 patients J Gastrointest Surg 11:14601467; discussion 7–9.Google Scholar
Franko, J, Feng, W, Yip, L, Genovese, E, Moser, AJ. 2010 Non-functional neuroendocrine carcinoma of the pancreas: incidence, tumor biology, and outcomes in 2158 patients J Gastrointest Surg 14:541548.Google Scholar
Metz, DC, Jensen, RT. 2008 Gastrointestinal neuroendocrine tumors: pancreatic endocrine tumors Gastroenterology 135:14691492.Google Scholar
DeLellis, RA. 1999 The hereditary forms of pancreatic neuroendocrine tumors Adv Anat Pathol 6:149153.Google Scholar
Musso, C, Paraf, F, Petit, B, Archambeaud-Mouveroux, F, Valleix, D, Labrousse, F. 2000 [Pancreatic neuroendocrine tumors and von Hippel–Lindau disease.] Ann Pathol 20:130133.Google Scholar
Fraenkel, M, Kim, MK, Faggiano, A, Valk, GD. 2012 Epidemiology of gastroenteropancreatic neuroendocrine tumours Best Pract Res Clin Gastroenterol 26:691703.Google Scholar
Service, FJ, McMahon, MM, O'Brien, PC, Ballard, DJ. 1991 Functioning insulinoma: incidence, recurrence, and long-term survival of patients: a 60-year study Mayo Clin Proc 66:711719.Google Scholar
Service, FJ, Dale, AJ, Elveback, LR, Jiang, NS. 1976 Insulinoma: clinical and diagnostic features of 60 consecutive cases Mayo Clin Proc 51:417429.Google Scholar
Vaidakis, D, Karoubalis, J, Pappa, T, Piaditis, G, Zografos, GN. 2010 Pancreatic insulinoma: current issues and trends Hepatob Pancreat Dis Int 9:234241.Google Scholar
Service, FJ. 1995 Hypoglycemic disorders N Engl J Med 332:11441152.Google Scholar
Placzkowski, KA, Vella, A, Thompson, GB, Grant, CS, Reading, CC, Charboneau, JW, Andrews, JC, Lloyd, RV, Service, FJ. 2009 Secular trends in the presentation and management of functioning insulinoma at the Mayo Clinic, 1987–2007 J Clin Endocrinol Metab 94:10691073.Google Scholar
Service, FJ, Natt, N, Thompson, GB, Grant, CS, van Heerden, JA, Andrews, JC, Lorenz, E, Terzic, A, Lloyd, RV. 1999 Noninsulinoma pancreatogenous hypoglycemia: a novel syndrome of hyperinsulinemic hypoglycemia in adults independent of mutations in Kir6.2 and SUR1 genes J Clin Endocrinol Metab 84:15821589.Google Scholar
Cryer, PE, Axelrod, L, Grossman, AB, Heller, SR, Montori, VM, Seaquist, ER, Service, FJ. 2009 Evaluation and management of adult hypoglycemic disorders: an Endocrine Society Clinical Practice Guideline J Clin Endocrinol Metab 94:709728.Google Scholar
Vanderveen, K, Grant, C. 2010 Insulinoma Cancer Treat Res 153:235252.Google Scholar
Whipple, AO, Frantz, VK. 1935 Adenoma of islet cells with hyperinsulinism: a review Ann Surg 101:12991335.Google Scholar
Whipple, AO. 1952 Islet cell tumors of the pancreas CMAJ 66:334342.Google Scholar
Lupsa, BC, Chong, AY, Cochran, EK, Soos, MA, Semple, RK, Gorden, P. 2009 Autoimmune forms of hypoglycemia Medicine (Baltimore) 88:141153.Google Scholar
Zollinger, RM, Ellison, EH. 1955 Primary peptic ulcerations of the jejunum associated with islet cell tumors of the pancreas Ann Surg 142:709–23; discussion, 24–28.Google Scholar
Ellison, EH, Wilson, SD. 1964 The Zollinger–Ellison syndrome: re-appraisal and evaluation of 260 registered cases Ann Surg 160:512530.Google Scholar
Maton, PN, Mackem, SM, Norton, JA, Gardner, JD, O'Dorisio, TM, Jensen, RT. 1989 Ovarian carcinoma as a cause of Zollinger–Ellison syndrome. Natural history, secretory products, and response to provocative tests Gastroenterology 97:468471.Google Scholar
Gibril, F, Curtis, LT, Termanini, B, Fritsch, MK, Lubensky, IA, Doppman, JL, Jensen, RT. 1997 Primary cardiac gastrinoma causing Zollinger–Ellison syndrome Gastroenterology 112:567574.Google Scholar
Ellison, EC, Johnson, JA. 2009 The Zollinger–Ellison syndrome: a comprehensive review of historical, scientific, and clinical considerations Curr Probl Surg 46:13106.Google Scholar
Roy, PK, Venzon, DJ, Shojamanesh, H, Abou-Saif, A, Peghini, P, Doppman, JL, Gibril, F, Jensen, RT. 2000 Zollinger–Ellison syndrome. Clinical presentation in 261 patients Medicine (Baltimore) 79:379411.Google Scholar
Ito, T, Igarashi, H, Uehara, H, Jensen, RT. 2013 Pharmacotherapy of Zollinger–Ellison syndrome Exp Opin Pharmacother 14:307321.Google Scholar
Dhillo, WS, Jayasena, CN, Lewis, CJ, Martin, NM, Tang, KC, Meeran, K, Todd, JF. 2006 Plasma gastrin measurement cannot be used to diagnose a gastrinoma in patients on either proton pump inhibitors or histamine type-2 receptor antagonists Ann Clin Biochem 43:153155.Google Scholar
Poitras, P, Gingras, MH, Rehfeld, JF. 2012 The Zollinger–Ellison syndrome: dangers and consequences of interrupting antisecretory treatment Clin Gastroenterol Hepatol 10:199202.Google Scholar
Jensen, RT, Niederle, B, Mitry, E, Ramage, JK, Steinmuller, T, Lewington, V, Scarpa, A, Sundin, A, Perren, A, Gross, D, O'Connor, JM, Pauwels, S, Kloppel, G Frascati Consensus Conference, European Neuroendocrine Tumor Society 2006 Gastrinoma (duodenal and pancreatic) Neuroendocrinology 84:173182.Google Scholar
Ito, T, Cadiot, G, Jensen, RT. 2012 Diagnosis of Zollinger–Ellison syndrome: increasingly difficult World J Gastroenterol 18:54955503.Google Scholar
Mallinson, CN, Bloom, SR, Warin, AP, Salmon, PR, Cox, B. 1974 A glucagonoma syndrome Lancet ii:15.Google Scholar
Wermers, RA, Fatourechi, V, Wynne, AG, Kvols, LK, Lloyd, RV. 1996 The glucagonoma syndrome. Clinical and pathologic features in 21 patients Medicine (Baltimore) 75:5363.Google Scholar
Chastain, MA. 2001 The glucagonoma syndrome: a review of its features and discussion of new perspectives Am J Med Sci 321:306320.Google Scholar
Eldor, R, Glaser, B, Fraenkel, M, Doviner, V, Salmon, A, Gross, DJ. 2011 Glucagonoma and the glucagonoma syndrome: cumulative experience with an elusive endocrine tumour Clin Endocrinol (Oxf) 74:593598.Google Scholar
van Beek, AP, de Haas, ER, van Vloten, WA, Lips, CJ, Roijers, JF, Canninga van Dijk, MR. 2004 The glucagonoma syndrome and necrolytic migratory erythema: a clinical review Eur J Endocrinol 151:531537.Google Scholar
Zhang, M, Xu, X, Shen, Y, Hu, ZH, Wu, LM, Zheng, SS. 2004 Clinical experience in diagnosis and treatment of glucagonoma syndrome Hepatob Pancreat Dis Int 3:473475.Google Scholar
Verner, JV, Morrison, AB. 1958 Islet cell tumor and a syndrome of refractory watery diarrhea and hypokalemia Am J Med 25:374380.Google Scholar
Bloom, SR, Polak, JM, Pearse, AG. 1973 Vasoactive intestinal peptide and watery-diarrhoea syndrome Lancet ii:1416.Google Scholar
Soga, J, Yakuwa, Y. 1998 Vipoma/diarrheogenic syndrome: a statistical evaluation of 241 reported cases J Exp Clin Cancer Res 17:389400.Google Scholar
Krejs, GJ, Orci, L, Conlon, JM, Ravazzola, M, Davis, GR, Raskin, P, Collins, SM, McCarthy, DM, Baetens, D, Rubenstein, A, Aldor, TA, Unger, RH. 1979 Somatostatinoma syndrome. Biochemical, morphologic and clinical features N Engl J Med 301:285292.Google Scholar
Tanaka, S, Yamasaki, S, Matsushita, H, Ozawa, Y, Kurosaki, A, Takeuchi, K, Hoshihara, Y, Doi, T, Watanabe, G, Kawaminami, K. 2000 Duodenal somatostatinoma: a case report and review of 31 cases with special reference to the relationship between tumor size and metastasis Pathol Int 50:146152.Google Scholar
Gustafsson, BI, Kidd, M, Chan, A, Malfertheiner, MV, Modlin, IM. 2008 Bronchopulmonary neuroendocrine tumors Cancer 113:521.Google Scholar
Melmed, S, Ezrin, C, Kovacs, K, Goodman, RS, Frohman, LA. 1985 Acromegaly due to secretion of growth hormone by an ectopic pancreatic islet-cell tumor N Engl J Med 312:917.Google Scholar
Ezzat, S, Ezrin, C, Yamashita, S, Melmed, S. 1993 Recurrent acromegaly resulting from ectopic growth hormone gene expression by a metastatic pancreatic tumor Cancer 71:6670.Google Scholar
Beuschlein, F, Strasburger, CJ, Siegerstetter, V, Moradpour, D, Lichter, P, Bidlingmaier, M, Blum, HE, Reincke, M. 2000 Acromegaly caused by secretion of growth hormone by a non-Hodgkin's lymphoma N Engl J Med 342:18711876.Google Scholar
Wajchenberg, BL, Mendonca, B, Liberman, B, Adelaide, M, Pereira, A, Kirschner, MA. 1995 Ectopic ACTH syndrome J Steroid Biochem Mol Biol 53:139151.Google Scholar
Ilias, I, Torpy, DJ, Pacak, K, Mullen, N, Wesley, RA, Nieman, LK. 2005 Cushing's syndrome due to ectopic corticotropin secretion: twenty years' experience at the National Institutes of Health J Clin Endocrinol Metab 90:49554962.Google Scholar
Isidori, AM, Kaltsas, GA, Pozza, C, Frajese, V, Newell-Price, J, Reznek, RH, Jenkins, PJ, Monson, JP, Grossman, AB, Besser, GM. 2006 The ectopic adrenocorticotropin syndrome: clinical features, diagnosis, management, and long-term follow-up J Clin Endocrinol Metab 91:371377.Google Scholar
Park, SY, Rhee, Y, Youn, JC, Park, YN, Lee, S, Kim, DM, Song, SY, Lim, SK. 2007 Ectopic Cushing's syndrome due to concurrent corticotropin-releasing hormone (CRH) and adrenocorticotropic hormone (ACTH) secreted by malignant gastrinoma Exp Clin Endocrinol Diabetes 115:1316.Google Scholar
Ejaz, S, Vassilopoulou-Sellin, R, Busaidy, NL, Hu, MI, Waguespack, SG, Jimenez, C, Ying, AK, Cabanillas, M, Abbara, M, Habra, MA. 2011 Cushing syndrome secondary to ectopic adrenocorticotropic hormone secretion: the University of Texas MD Anderson Cancer Center Experience Cancer 117:43814389.Google Scholar
Ballav, C, Naziat, A, Mihai, R, Karavitaki, N, Ansorge, O, Grossman, AB. 2012 Mini-review: pheochromocytomas causing the ectopic ACTH syndrome Endocrine 42:6973.Google Scholar
Carey, RM, Varma, SK, Drake, CR Jr., Thorner, MO, Kovacs, K, Rivier, J, Vale, W. 1984 Ectopic secretion of corticotropin-releasing factor as a cause of Cushing's syndrome. A clinical, morphologic, and biochemical study N Engl J Med 311:1320.Google Scholar
Shahani, S, Nudelman, RJ, Nalini, R, Kim, HS, Samson, SL. 2010 Ectopic corticotropin-releasing hormone (CRH) syndrome from metastatic small cell carcinoma: a case report and review of the literature Diagn Pathol 5:56.Google Scholar
White, A, Clark, AJ. 1993 The cellular and molecular basis of the ectopic ACTH syndrome Clin Endocrinol (Oxf) 39:131141.Google Scholar
Howlett, TA, Drury, PL, Perry, L, Doniach, I, Rees, LH, Besser, GM. 1986 Diagnosis and management of ACTH-dependent Cushing's syndrome: comparison of the features in ectopic and pituitary ACTH production Clin Endocrinol (Oxf) 24:699713.Google Scholar
Sorensen, JB, Andersen, MK, Hansen, HH. 1995 Syndrome of inappropriate secretion of antidiuretic hormone (SIADH) in malignant disease J Intern Med 238:97110.Google Scholar
Adrogue, HJ, Madias, NE. 2000 Hyponatremia N Engl J Med 342:15811589.Google Scholar
Vantyghem, MC, Balavoine, AS, Wemeau, JL, Douillard, C. 2011 Hyponatremia and antidiuresis syndrome Ann Endocrinol (Paris) 72:500512.Google Scholar
Castillo, JJ, Vincent, M, Justice, E. 2012 Diagnosis and management of hyponatremia in cancer patients Oncologist 17:756765.Google Scholar
Cassidy, MA. 1930 Abdominal carcinomatosis, with probable adrenal involvement Proc R Soc Med 24:139141.Google Scholar
Cassidy, MA. 1931 Post-mortem findings in case shown on October 10, 1930, as one of abdominal carcinomatosis with probable adrenal involvement Proc R Soc Med 24:920921.Google Scholar
Moller, JE, Connolly, HM, Rubin, J, Seward, JB, Modesto, K, Pellikka, PA. 2003 Factors associated with progression of carcinoid heart disease N Engl J Med 348:10051015.Google Scholar
Cunningham, JL, Janson, ET, Agarwal, S, Grimelius, L, Stridsberg, M. 2008 Tachykinins in endocrine tumors and the carcinoid syndrome Eur J Endocrinol 159:275282.Google Scholar
Oates, JA, Pettinger, WA, Doctor, RB. 1966 Evidence for the release of bradykinin in carcinoid syndrome J Clin Invest 45:173178.Google Scholar
Sandler, M, Karim, SM, Williams, ED. 1968 Prostaglandins in amine-peptide-secreting tumours Lancet ii:10531054.Google Scholar
Pellikka, PA, Tajik, AJ, Khandheria, BK, Seward, JB, Callahan, JA, Pitot, HC, Kvols, LK. 1993 Carcinoid heart disease. Clinical and echocardiographic spectrum in 74 patients Circulation 87:11881196.Google Scholar
Nelson, JM, Mahoney, JP, Ryden, SE. 1980 Midgut carcinoid tumor with carcinoid heart disease. Its presence in the absence of hepatic metastases: a case report Arch Pathol Lab Med 104:428431.Google Scholar
Feldman, JM, Jones, RS. 1982 Carcinoid syndrome from gastrointestinal carcinoids without liver metastasis Ann Surg 196:3337.Google Scholar
Haq, AU, Yook, CR, Hiremath, V, Kasimis, BS. 1992 Carcinoid syndrome in the absence of liver metastasis: a case report and review of literature Med Pediatr Oncol 20:221223.Google Scholar
Anderson, AS, Krauss, D, Lang, R. 1997 Cardiovascular complications of malignant carcinoid disease Am Heart J 134:693702.Google Scholar
Bernheim, AM, Connolly, HM, Pellikka, PA. 2007 Carcinoid heart disease in patients without hepatic metastases Am J Cardiol 99:292294.Google Scholar
Palaniswamy, C, Frishman, WH, Aronow, WS. 2012 Carcinoid heart disease Cardiol Rev 20:167176.Google Scholar
Roberts, WC, Sjoerdsma, A. 1964 The cardiac disease associated with the carcinoid syndrome (carcinoid heart disease) Am J Med 36:534.Google Scholar
Druce, M, Rockall, A, Grossman, AB. 2009 Fibrosis and carcinoid syndrome: from causation to future therapy Nat Rev Endocrinol 5:276283.Google Scholar
Hellman, P, Lundstrom, T, Ohrvall, U, Eriksson, B, Skogseid, B, Oberg, K, Tiensuu Janson, E, Akerstrom, G. 2002 Effect of surgery on the outcome of midgut carcinoid disease with lymph node and liver metastases World J Surg 26:991997.Google Scholar
Tischler, AS. 2008 Pheochromocytoma and extra-adrenal paraganglioma: updates Arch Pathol Lab Med 132:12721284.Google Scholar
McNicol, AM. 2010 Adrenal medulla and paraganglia. In Lloyd, RV, ed. Endocrine Pathology: Differential Diagnosis and Molecular Advances. New York: Springer, pp. 281295.Google Scholar
Lack, EE. 2007 Atlas of Tumor Pathology, 4th Series, Fascicle 8: Tumors of the Adrenal Glands and Extraadrenal Paraganglia. Bethesda, MD: ARP Press, 2007.Google Scholar
Asa, SL, Fischer, SE. 2010 Adrenal gland. In Gattuso, P, Reddy, VB, David, O, Spitz, DJ, Haber, MH eds. Differential Diagnosis in Surgical Pathology. 2nd edn. New York: Elsevier-Saunders, pp. 461485.Google Scholar
Stenstrom, G, Svardsudd, K. 1986 Pheochromocytoma in Sweden 1958–1981. An analysis of the National Cancer Registry Data Acta Med Scand 220:225232.Google Scholar
Fernandez-Calvet, L, Garcia-Mayor, RV. 1994 Incidence of pheochromocytoma in South Galicia, Spain J Intern Med 236:675677.Google Scholar
Neumann, HP, Bausch, B, McWhinney, SR, Bender, BU, Gimm, O, Franke, G, Schipper, J, Klisch, J, Altehoefer, C, Zerres, K, Januszewicz, A, Eng, C, Smith, WM, Munk, R, Manz, T, Glaesker, S, Apel, TW, Treier, M, Reineke, M, Walz, MK, Hoang-Vu, C, Brauckhoff, M, Klein-Franke, A, Klose, P, Schmidt, H, Maier-Woelfle, M, Peczkowska, M, Szmigielski, C. 2002 Germ-line mutations in nonsyndromic pheochromocytoma N Engl J Med 346:14591466.Google Scholar
Mannelli, M, Castellano, M, Schiavi, F, Filetti, S, Giacche, M, Mori, L, Pignataro, V, Bernini, G, Giache, V, Bacca, A, Biondi, B, Corona, G, Di Trapani, G, Grossrubatscher, E, Reimondo, G, Arnaldi, G, Giacchetti, G, Veglio, F, Loli, P, Colao, A, Ambrosio, MR, Terzolo, M, Letizia, C, Ercolino, T, Opocher, G. 2009 Clinically guided genetic screening in a large cohort of italian patients with pheochromocytomas and/or functional or nonfunctional paragangliomas J Clin Endocrinol Metab 94:15411547.Google Scholar
Sinclair, AM, Isles, CG, Brown, I, Cameron, H, Murray, GD, Robertson, JW. 1987 Secondary hypertension in a blood pressure clinic Arch Intern Med 147:12891293.Google Scholar
Omura, M, Saito, J, Yamaguchi, K, Kakuta, Y, Nishikawa, T. 2004 Prospective study on the prevalence of secondary hypertension among hypertensive patients visiting a general outpatient clinic in Japan Hypertens Res 27:193202.Google Scholar
Mulligan, LM, Kwok, JB, Healey, CS, Elsdon, MJ, Eng, C, Gardner, E, Love, DR, Mole, SE, Moore, JK, Papi, L, et al. 1993 Germ-line mutations of the RET proto-oncogene in multiple endocrine neoplasia type 2A Nature 363:458460.Google Scholar
Donis-Keller, H, Dou, S, Chi, D, Carlson, KM, Toshima, K, Lairmore, TC, Howe, JR, Moley, JF, Goodfellow, P, Wells, SA Jr. 1993 Mutations in the RET proto-oncogene are associated with MEN 2A and FMTC Hum Mol Genet 2:851856.Google Scholar
Carlson, KM, Dou, S, Chi, D, Scavarda, N, Toshima, K, Jackson, CE, Wells, SA Jr., Goodfellow, PJ, Donis-Keller, H. 1994 Single missense mutation in the tyrosine kinase catalytic domain of the RET protooncogene is associated with multiple endocrine neoplasia type 2B Proc Natl Acad Sci USA 91:15791583.Google Scholar
Horton, WA, Wong, V, Eldridge, R. 1976 Von Hippel–Lindau disease: clinical and pathological manifestations in nine families with 50 affected members Arch Intern Med 136:769777.Google Scholar
Chen, F, Slife, L, Kishida, T, Mulvihill, J, Tisherman, SE, Zbar, B. 1996 Genotype–phenotype correlation in von Hippel–Lindau disease: identification of a mutation associated with VHL type 2A J. Med Genet 33:716717.Google Scholar
Riccardi, VM. 1989 Neurofibromatosis update Neurofibromatosis 2:284291.Google Scholar
Xu, W, Mulligan, LM, Ponder, MA, Liu, L, Smith, BA, Mathew, CG, Ponder, BA. 1992 Loss of NF1 alleles in phaeochromocytomas from patients with type I neurofibromatosis Genes Chromosomes Cancer 4:337342.Google Scholar
Burnichon, N, Briere, JJ, Libe, R, Vescovo, L, Riviere, J, Tissier, F, Jouanno, E, Jeunemaitre, X, Benit, P, Tzagoloff, A, Rustin, P, Bertherat, J, Favier, J, Gimenez-Roqueplo, AP. 2010 SDHA is a tumor suppressor gene causing paraganglioma Hum Mol Genet 19:30113020.Google Scholar
Astuti, D, Latif, F, Dallol, A, Dahia, PL, Douglas, F, George, E, Skoldberg, F, Husebye, ES, Eng, C, Maher, ER. 2001 Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma Am J Hum Genet 69:4954.Google Scholar
Niemann, S, Muller, U. 2000 Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat Genet 26:268270.Google Scholar
Baysal, BE, Ferrell, RE, Willett-Brozick, JE, Lawrence, EC, Myssiorek, D, Bosch, A, van der Mey, A, Taschner, PE, Rubinstein, WS, Myers, EN, Richard, CW, 3rd, Cornelisse, CJ, Devilee, P, Devlin, B. 2000 Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma Science 287:848851.Google Scholar
Baysal, BE, Willett-Brozick, JE, Lawrence, EC, Drovdlic, CM, Savul, SA, McLeod, DR, Yee, HA, Brackmann, DE, Slattery, WH, 3rd, Myers, EN, Ferrell, RE, Rubinstein, WS. 2002 Prevalence of SDHB, SDHC, and SDHD germline mutations in clinic patients with head and neck paragangliomas J Med Genet 39:178183.Google Scholar
Hao, HX, Khalimonchuk, O, Schraders, M, Dephoure, N, Bayley, JP, Kunst, H, Devilee, P, Cremers, CW, Schiffman, JD, Bentz, BG, Gygi, SP, Winge, DR, Kremer, H, Rutter, J. 2009 SDH5, a gene required for flavination of succinate dehydrogenase, is mutated in paraganglioma Science 325:11391142.Google Scholar
Bayley, JP, Kunst, HP, Cascon, A, Sampietro, ML, Gaal, J, Korpershoek, E, Hinojar-Gutierrez, A, Timmers, HJ, Hoefsloot, LH, Hermsen, MA, Suarez, C, Hussain, AK, Vriends, AH, Hes, FJ, Jansen, JC, Tops, CM, Corssmit, EP, de Knijff, P, Lenders, JW, Cremers, CW, Devilee, P, Dinjens, WN, de Krijger, RR, Robledo, M. 2010 SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma Lancet Oncol 11:366372.Google Scholar
Comino-Mendez, I, Gracia-Aznarez, FJ, Schiavi, F, Landa, I, Leandro-Garcia, LJ, Leton, R, Honrado, E, Ramos-Medina, R, Caronia, D, Pita, G, Gomez-Grana, A, de Cubas, AA, Inglada-Perez, L, Maliszewska, A, Taschin, E, Bobisse, S, Pica, G, Loli, P, Hernandez-Lavado, R, Diaz, JA, Gomez-Morales, M, Gonzalez-Neira, A, Roncador, G, Rodriguez-Antona, C, Benitez, J, Mannelli, M, Opocher, G, Robledo, M, Cascon, A. 2011 Exome sequencing identifies MAX mutations as a cause of hereditary pheochromocytoma Nat Genet 43:663667.Google Scholar
Burnichon, N, Cascon, A, Schiavi, F, Morales, NP, Comino-Mendez, I, Abermil, N, Inglada-Perez, L, de Cubas, AA, Amar, L, Barontini, M, de Quiros, SB, Bertherat, J, Bignon, YJ, Blok, MJ, Bobisse, S, Borrego, S, Castellano, M, Chanson, P, Chiara, MD, Corssmit, EP, Giacche, M, de Krijger, RR, Ercolino, T, Girerd, X, Gomez-Garcia, EB, Gomez-Grana, A, Guilhem, I, Hes, FJ, Honrado, E, Korpershoek, E, Lenders, JW, Leton, R, Mensenkamp, AR, Merlo, A, Mori, L, Murat, A, Pierre, P, Plouin, PF, Prodanov, T, Quesada-Charneco, M, Qin, N, Rapizzi, E, Raymond, V, Reisch, N, Roncador, G, Ruiz-Ferrer, M, Schillo, F, Stegmann, AP, Suarez, C, Taschin, E, Timmers, HJ, Tops, CM, Urioste, M, Beuschlein, F, Pacak, K, Mannelli, M, Dahia, PL, Opocher, G, Eisenhofer, G, Gimenez-Roqueplo, AP, Robledo, M. 2012 MAX mutations cause hereditary and sporadic pheochromocytoma and paraganglioma Clin Cancer Res 18:28282837.Google Scholar
Qin, Y, Yao, L, King, EE, Buddavarapu, K, Lenci, RE, Chocron, ES, Lechleiter, JD, Sass, M, Aronin, N, Schiavi, F, Boaretto, F, Opocher, G, Toledo, RA, Toledo, SP, Stiles, C, Aguiar, RC, Dahia, PL. 2010 Germline mutations in TMEM127 confer susceptibility to pheochromocytoma Nat Genet 42:229233.Google Scholar
Yao, L, Schiavi, F, Cascon, A, Qin, Y, Inglada-Perez, L, King, EE, Toledo, RA, Ercolino, T, Rapizzi, E, Ricketts, CJ, Mori, L, Giacche, M, Mendola, A, Taschin, E, Boaretto, F, Loli, P, Iacobone, M, Rossi, GP, Biondi, B, Lima-Junior, JV, Kater, CE, Bex, M, Vikkula, M, Grossman, AB, Gruber, SB, Barontini, M, Persu, A, Castellano, M, Toledo, SP, Maher, ER, Mannelli, M, Opocher, G, Robledo, M, Dahia, PL. 2010 Spectrum and prevalence of FP/TMEM127 gene mutations in pheochromocytomas and paragangliomas JAMA 304:26112619.Google Scholar
Neumann, HP, Berger, DP, Sigmund, G, Blum, U, Schmidt, D, Parmer, RJ, Volk, B, Kirste, G. 1993 Pheochromocytomas, multiple endocrine neoplasia type 2, and von Hippel–Lindau disease N Engl J Med 329:15311538.Google Scholar
Amar, L, Bertherat, J, Baudin, E, Ajzenberg, C, Bressac de Paillerets, B, Chabre, O, Chamontin, B, Delemer, B, Giraud, S, Murat, A, Niccoli-Sire, P, Richard, S, Rohmer, V, Sadoul, JL, Strompf, L, Schlumberger, M, Bertagna, X, Plouin, PF, Jeunemaitre, X, Gimenez-Roqueplo, AP. 2005 Genetic testing in pheochromocytoma or functional paraganglioma J Clin Oncol 23:88128818.Google Scholar
Dahia, PL. 2014 Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity Nat Rev Cancer 14:108119.Google Scholar
Eisenhofer, G, Walther, MM, Huynh, TT, Li, ST, Bornstein, SR, Vortmeyer, A, Mannelli, M, Goldstein, DS, Linehan, WM, Lenders, JW, Pacak, K. 2001 Pheochromocytomas in von Hippel–Lindau syndrome and multiple endocrine neoplasia type 2 display distinct biochemical and clinical phenotypes J Clin Endocrinol Metab 86:19992008.Google Scholar
Nielsen, SM, Rubinstein, WS, Thull, DL, Armstrong, MJ, Feingold, E, Stang, MT, Gnarra, JR, Carty, SE. 2011 Genotype–phenotype correlations of pheochromocytoma in two large von Hippel–Lindau (VHL) type 2A kindreds with different missense mutations Am J Med Genet A 155A 168173.Google Scholar
Baghai, M, Thompson, GB, Young, WF Jr., Grant, CS, Michels, VV, van Heerden, JA. 2002 Pheochromocytomas and paragangliomas in von Hippel–Lindau disease: a role for laparoscopic and cortical-sparing surgery Arch Surg 137:682–8; discussion 8–9.Google Scholar
Ayala-Ramirez, M, Feng, L, Johnson, MM, Ejaz, S, Habra, MA, Rich, T, Busaidy, N, Cote, GJ, Perrier, N, Phan, A, Patel, S, Waguespack, S, Jimenez, C. 2011 Clinical risk factors for malignancy and overall survival in patients with pheochromocytomas and sympathetic paragangliomas: primary tumor size and primary tumor location as prognostic indicators J Clin Endocrinol Metab 96:717725.Google Scholar
Eisenhofer, G, Lenders, JW, Timmers, H, Mannelli, M, Grebe, SK, Hofbauer, LC, Bornstein, SR, Tiebel, O, Adams, K, Bratslavsky, G, Linehan, WM, Pacak, K. 2011 Measurements of plasma methoxytyramine, normetanephrine, and metanephrine as discriminators of different hereditary forms of pheochromocytoma Clin Chem 57:411420.Google Scholar
Neumann, HP, Pawlu, C, Peczkowska, M, Bausch, B, McWhinney, SR, Muresan, M, Buchta, M, Franke, G, Klisch, J, Bley, TA, Hoegerle, S, Boedeker, CC, Opocher, G, Schipper, J, Januszewicz, A, Eng, C. 2004 Distinct clinical features of paraganglioma syndromes associated with SDHB and SDHD gene mutations JAMA 292:943951.Google Scholar
Ricketts, CJ, Forman, JR, Rattenberry, E, Bradshaw, N, Lalloo, F, Izatt, L, Cole, TR, Armstrong, R, Kumar, VK, Morrison, PJ, Atkinson, AB, Douglas, F, Ball, SG, Cook, J, Srirangalingam, U, Killick, P, Kirby, G, Aylwin, S, Woodward, ER, Evans, DG, Hodgson, SV, Murday, V, Chew, SL, Connell, JM, Blundell, TL, Macdonald, F, Maher, ER. 2010 Tumor risks and genotype–phenotype-proteotype analysis in 358 patients with germline mutations in SDHB and SDHD Hum Mutat 31:4151.Google Scholar
Kunst, HP, Rutten, MH, de Monnink, JP, Hoefsloot, LH, Timmers, HJ, Marres, HA, Jansen, JC, Kremer, H, Bayley, JP, Cremers, CW. 2011 SDHAF2 (PGL2SDH5) and hereditary head and neck paraganglioma Clin Cancer Res 17:247254.Google Scholar
Schiavi, F, Boedeker, CC, Bausch, B, Peczkowska, M, Gomez, CF, Strassburg, T, Pawlu, C, Buchta, M, Salzmann, M, Hoffmann, MM, Berlis, A, Brink, I, Cybulla, M, Muresan, M, Walter, MA, Forrer, F, Valimaki, M, Kawecki, A, Szutkowski, Z, Schipper, J, Walz, MK, Pigny, P, Bauters, C, Willet-Brozick, JE, Baysal, BE, Januszewicz, A, Eng, C, Opocher, G, Neumann, HP. 2005 Predictors and prevalence of paraganglioma syndrome associated with mutations of the SDHC gene JAMA 294:20572063.Google Scholar
Mannelli, M, Ercolino, T, Giache, V, Simi, L, Cirami, C, Parenti, G. 2007 Genetic screening for pheochromocytoma: should SDHC gene analysis be included? J Med Genet 44:586587.Google Scholar
Lopez-Jimenez, E, de Campos, JM, Kusak, EM, Landa, I, Leskela, S, Montero-Conde, C, Leandro-Garcia, LJ, Vallejo, LA, Madrigal, B, Rodriguez-Antona, C, Robledo, M, Cascon, A. 2008 SDHC mutation in an elderly patient without familial antecedents Clin Endocrinol (Oxf) 69:906910.Google Scholar
Brouwers, FM, Eisenhofer, G, Tao, JJ, Kant, JA, Adams, KT, Linehan, WM, Pacak, K. 2006 High frequency of SDHB germline mutations in patients with malignant catecholamine-producing paragangliomas: implications for genetic testing J Clin Endocrinol Metab 91:45054509.Google Scholar
Hescot, S, Leboulleux, S, Amar, L, Vezzosi, D, Borget, I, Bournaud-Salinas, C, de la Fouchardiere, C, Libe, R, Do Cao, C, Niccoli, P, Tabarin, A, Raingeard, I, Chougnet, C, Giraud, S, Gimenez-Roqueplo, AP, Young, J, Borson-Chazot, F, Bertherat, J, Wemeau, JL, Bertagna, X, Plouin, PF, Schlumberger, M, Baudin, E. 2013 One-year progression-free survival of therapy-naive patients with malignant pheochromocytoma and paraganglioma J Clin Endocrinol Metab 98:40064012.Google Scholar
Rodriguez, JM, Balsalobre, M, Ponce, JL, Rios, A, Torregrosa, NM, Tebar, J, Parrilla, P. 2008 Pheochromocytoma in MEN 2A syndrome. Study of 54 patients World J Surg 32:25202526.Google Scholar
Quayle, FJ, Fialkowski, EA, Benveniste, R, Moley, JF. 2007 Pheochromocytoma penetrance varies by RET mutation in MEN 2A Surgery 142:800–5; discussion 5 e1.Google Scholar
Imai, T, Uchino, S, Okamoto, T, Suzuki, S, Kosugi, S, Kikumori, T, Sakurai, A. 2013 High penetrance of pheochromocytoma in multiple endocrine neoplasia 2 caused by germ line RET codon 634 mutation in Japanese patients Eur J Endocrinol 168:683687.Google Scholar
Lairmore, TC, Ball, DW, Baylin, SB, Wells, SA Jr. 1993 Management of pheochromocytomas in patients with multiple endocrine neoplasia type 2 syndromes Ann Surg 217:595601; discussion 603.Google Scholar
Bausch, B, Borozdin, W, Mautner, VF, Hoffmann, MM, Boehm, D, Robledo, M, Cascon, A, Harenberg, T, Schiavi, F, Pawlu, C, Peczkowska, M, Letizia, C, Calvieri, S, Arnaldi, G, Klingenberg-Noftz, RD, Reisch, N, Fassina, A, Brunaud, L, Walter, MA, Mannelli, M, MacGregor, G, Palazzo, FF, Barontini, M, Walz, MK, Kremens, B, Brabant, G, Pfäffle, RW, Koschker, AC, Lohoefner, F, Mohaupt, M, Gimm, O, Jarzab, B, McWhinney, SR, Opocher, G, Januszewicz, A, Kohlhase, J, Eng, C, Neumann, HP. 2007 Germline NF1 mutational spectra and loss-of-heterozygosity analyses in patients with pheochromocytoma and neurofibromatosis type 1 J Clin Endocrinol Metab 92:27842792.Google Scholar
Mulvihill, JJ, Parry, DM, Sherman, JL, Pikus, A, Kaiser-Kupfer, MI, Eldridge, R. 1990 NIH conference. Neurofibromatosis 1 (Recklinghausen disease) and neurofibromatosis 2 (bilateral acoustic neurofibromatosis). An update Ann Intern Med 113:3952.Google Scholar
Young, WF Jr. 1993 Pheochromocytoma: 1926–1993 Trends Endocrinol Metab 4:122127.Google Scholar
Bravo, EL, Tarazi, RC, Gifford, RW, Stewart, BH. 1979 Circulating and urinary catecholamines in pheochromocytoma. Diagnostic and pathophysiologic implications N Engl J Med 301:682686.Google Scholar
Modigliani, E, Vasen, HM, Raue, K, Dralle, H, Frilling, A, Gheri, RG, Brandi, ML, Limbert, E, Niederle, B, Forgas, L, Limbert, E, Niederle, B, Forgas, L, Rosenberg-Bougin, M, Calmettes, C. 1995 Pheochromocytoma in multiple endocrine neoplasia type 2: European study. The Euromen Study Group J Intern Med 238:363367.Google Scholar
Lenders, JW, Pacak, K, Walther, MM, Linehan, WM, Mannelli, M, Friberg, P, Keiser, HR, Goldstein, DS, Eisenhofer, G. 2002 Biochemical diagnosis of pheochromocytoma: which test is best? JAMA 287:14271434.Google Scholar
Kirkby-Bott, J, Brunaud, L, Mathonet, M, Hamoir, E, Kraimps, JL, Tresallet, C, Amar, L, Rault, A, Henry, JF, Carnaille, B. 2012 Ectopic hormone-secreting pheochromocytoma: a francophone observational study World J Surg 36:13821388.Google Scholar

References

Maher, ER, Iselius, L, Yates, JR, Littler, M, Benjamin, C, Harris, R, et al. Von Hippel–Lindau disease: a genetic study. J Med Genet 1991;28:443447.Google Scholar
Vortmeyer, A, Falke, E, Gläsker, S, Li, J, Oldfield, E. Nervous system involvement in von Hippel–Lindau disease: pathology and mechanisms. Acta Neuropathol 2013;125:333350.Google Scholar
Lonser, RR, Glenn, GM, Walther, M, Chew, EY, Libutti, SK, Linehan, WM, et al. von Hippel–Lindau disease. Lancet 2003;361:20592067.Google Scholar
Maher, ER, Yates, JR, Harries, R, Benjamin, C, Harris, R, Moore, AT, et al. Clinical features and natural history of von Hippel–Lindau disease. Q J Med 1990;77:11511163.Google Scholar
Seizinger, BR, Rouleau, GA, Ozelius, LJ, Lane, AH, Farmer, GE, Lamiell, JM, et al. Von Hippel–Lindau disease maps to the region of chromosome 3 associated with renal cell carcinoma. Nature 1988;332:268269.Google Scholar
Knudson, A. Hereditary cancer: Two hits revisited. J Cancer Res Clin Oncol 1996;122:135140.Google Scholar
Kaelin, WG. Jr The von Hippel–Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer 2008;8:865873.Google Scholar
Yang, H, Minamishima, YA, Yan, Q, Schlisio, S, Ebert, BL, Zhang, X, et al. pVHL acts as an adaptor to promote the inhibitory phosphorylation of the NF-κB agonist card9 by CK2. Mol Cell 2007;28:1527.Google Scholar
Dollfus, H, Massin, P, Taupin, P, Nemeth, C, Amara, S, Giraud, S, et al. Retinal hemangioblastoma in von Hippel–Lindau disease: a clinical and molecular study. Invest Ophthalmol Visual Sci 2002;43:30673074.Google Scholar
Wanebo, JE, Lonser, RR, Glenn, GM, Oldfield, EH. The natural history of hemangioblastomas of the central nervous system in patients with von Hippel–Lindau disease. J Neurosurg 2003;98:8294.Google Scholar
Jagannathan, J, Lonser, RR, Smith, R, DeVroom, HL, Oldfield, EH. Surgical management of cerebellar hemangioblastomas in patients with von Hippel–Lindau disease. J Neurosurg 2008;108:210222.Google Scholar
Asthagiri, AR, Mehta, GU, Zach, L, Li, X, Butman, JA, Camphausen, KA, et al. Prospective evaluation of radiosurgery for hemangioblastomas in von Hippel–Lindau disease. Neuro Oncol 2010;12:8086.Google Scholar
Hussein, MR. Central nervous system capillary haemangioblastoma: the pathologist's viewpoint. Int J Exp Pathol 2007;88:311324.Google Scholar
Jilg, CA, Neumann, HH, Gläsker, S, Schäfer, O, Leiber, C, Ardelt, PU, et al. Nephron sparing surgery in von Hippel–Lindau associated renal cell carcinoma; clinicopathological long-term follow-up. Familial Cancer 2012;11:387394.Google Scholar
Johnson, A, Sudarshan, S, Liu, J, Linehan, WM, Pinto, PA, Bratslavsky, G. Feasibility and outcomes of repeat partial nephrectomy. J Urol 2008;180:8993.Google Scholar
Goldfarb, DA, Neumann, HPH, Penn, I, Novick, AC. Results of renal transplantation in patients with renal cell carcinoma and von Hippel–Lindau disease 1, 2. Transplantation 1997;64:17261729.Google Scholar
Lodish, MB, Adams, KT, Huynh, TT, Prodanov, T, Ling, A, Chen, C, et al. Succinate dehydrogenase gene mutations are strongly associated with paraganglioma of the organ of Zuckerkandl. Endocr Relat Cancer 2010;17:581588.Google Scholar
Agrawal, D, Maimone, SS, Wong, RCK, Isenberg, G, Faulx, A, Chak, A. Prevalence and clinical significance of pancreatic cysts associated with cysts in other organs. Digest Liver Dis 2011;43:797801.Google Scholar
Kitano, M, Millo, C, Rahbari, R, Herscovitch, P, Gesuwan, K, Webb, RC, et al. Comparison of 6-18F-fluoro-l-DOPA, 18F-2-deoxy-d-glucose, CT, and MRI in patients with pancreatic neuroendocrine neoplasms with von Hippel–Lindau disease. Surgery 2011;150:11221128.Google Scholar
Hoang, MP, Hruban, RH, Albores-Saavedra, J. Clear cell endocrine pancreatic tumor mimicking renal cell carcinoma: a distinctive neoplasm of von Hippel–Lindau disease. Am J Surg Pathol 2001;25:602609.Google Scholar
Bell, D, Gidley, P, Levine, N, Fuller, GN. Endolymphatic sac tumor (aggressive papillary tumor of middle ear and temporal bone): sine qua non radiology-pathology and the University of Texas MD Anderson Cancer Center experience. Ann Diagn Pathol 2011;15:117123.Google Scholar
Aydin, H, Young, RH, Ronnett, BM, Epstein, JI. Clear cell papillary cystadenoma of the epididymis and mesosalpinx: immunohistochemical differentiation from metastatic clear cell renal cell carcinoma. Am J Surg Pathol 2005;29:520523.Google Scholar
Maher, E. Von Hippel–Lindau disease. Curr Mol Med 2004;4:833842.Google Scholar
Gimenez–Roqueplo, AP, Dahia, PL, Robledo, M. An update on the genetics of paraganglioma, pheochromocytoma, and associated hereditary syndromes. Horm Metab Res 2012;44:328333.Google Scholar
Zhuang, Z, Yang, C, Lorenzo, F, Merino, M, Fojo, T, Kebebew, E, et al. Somatic HIF2A gain-of-function mutations in paraganglioma with polycythemia. N Engl J Med 2012;367:922930.Google Scholar
Rutter, J, Winge, DR, Schiffman, JD. Succinate dehydrogenase: assembly, regulation and role in human disease. Mitochondrion 2010;10:393401.Google Scholar
Dahia, PLM, Ross, KN, Wright, ME, Hayashida, CY, Santagata, S, Barontini, M, et al. A HIF1α regulatory loop links hypoxia and mitochondrial signals in pheochromocytomas. PLoS Genet 2005;1:e8.Google Scholar
Timmers, HJLM, Taieb, D, Pacak, K. Current and future anatomical and functional imaging approaches to pheochromocytoma and paraganglioma. Horm Metab Res 2012;44:367372.Google Scholar
Eisenhofer, G, Lenders, JWM, Siegert, G, Bornstein, SR, Friberg, P, Milosevic, D, et al. Plasma methoxytyramine: a novel biomarker of metastatic pheochromocytoma and paraganglioma in relation to established risk factors of tumour size, location and SDHB mutation status. Eur J Cancer 2012;48:17391749.Google Scholar
Parfait, B, Chretien, D, Rötig, A, Marsac, C, Munnich, A, Rustin, P. Compound heterozygous mutations in the flavoprotein gene of the respiratory chain complex II in a patient with Leigh syndrome. Hum Genet 2000;106:236243. English.Google Scholar
Korpershoek, E, Favier, J, Gaal, J, Burnichon, N, van Gessel, B, Oudijk, L, et al. SDHA immunohistochemistry detects germline SDHA gene mutations in apparently sporadic paragangliomas and pheochromocytomas. J Clin Endocrinol Metab 2011;96:E1472-E6.Google Scholar
van Nederveen, FH, Gaal, J, Favier, J, Korpershoek, E, Oldenburg, RA, de Bruyn, EMCA, et al. An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis. Lancet Oncol 2009;10:764771.Google Scholar
Gaal, J, Stratakis, CA, Carney, JA, Ball, ER, Korpershoek, E, Lodish, MB, et al. SDHB immunohistochemistry: a useful tool in the diagnosis of Carney–Stratakis and Carney triad gastrointestinal stromal tumors. Mod Pathol 2011;24:147151.Google Scholar
Karasek, D, Shah, U, Frysak, Z, Stratakis, C, Pacak, K. An update on the genetics of pheochromocytoma. J Hum Hypertens 2013;27:141147.Google Scholar
Pacak, K, Fojo, T, Goldstein, DS, Eisenhofer, G, Walther, MM, Linehan, WM, et al. Radiofrequency Ablation: a Novel Approach for Treatment of Metastatic Pheochromocytoma. J Natl Cancer Inst 2001;93:648649.Google Scholar
Carney, JA, Sheps, SG, Go, VLW, Gordon, H. The triad of gastric leiomyosarcoma, functioning extra-adrenal paraganglioma and pulmonary chondroma. N Engl J Med 1977;296:15171518.Google Scholar
Stratakis, CA, Carney, JA. The triad of paragangliomas, gastric stromal tumours and pulmonary chondromas (Carney triad), and the dyad of paragangliomas and gastric stromal sarcomas (Carney–Stratakis syndrome): molecular genetics and clinical implications. J Intern Med 2009;266:4352.Google Scholar
Hong, S, Lee, W, Lee, H. Hepatic paraganglioma and multifocal gastrointestinal stromal tumor in a female: Incomplete Carney triad. World J Gastrointest Surg 2013;5:229232.Google Scholar
Carney, JA, Stratakis, CA, Young, WFJ. Adrenal cortical adenoma: the fourth component of the Carney triad and an association with subclinical Cushing syndrome. Am J Surg Pathol 2013;37:11401149.Google Scholar
Zhang, L, Smyrk, T, Young, W, Stratakis, C, Carney, JA. Gastric stromal tumors in Carney triad are different clinically, pathologically, and behaviorally from sporadic gastric gastrointestinal stromal tumors: findings in 104 cases. Am J Surg Pathol 2010;34:5364.Google Scholar
Carney, JA, Stratakis, C. Familial paraganglioma and gastric stromal sarcoma: a new syndrome distinct from the Carney triad. Am J Med Genet 2002;108:132139.Google Scholar
Kelly, L, Bryan, K, Kim, S, Janeway, K, Killian, JK, Schildhaus, H-U, et al. Post-transcriptional dysregulation by miRNAs is implicated in the pathogenesis of gastrointestinal stromal tumor [GIST]. PLOS ONE 2013;8:e64102-e.Google Scholar
Thakker, RV. Multiple Endocrine Neoplasia—syndromes of the Twentieth Century. J Clin Endocrinol Metab 1998 August 1, 1998;83:26172620.Google Scholar
Thakker, RV. Multiple endocrine neoplasia type 1 (MEN1). Best Pract Res Clin Endocrinol Metab 2010;24:355370.Google Scholar
Kaji, H, Canaff, L, Lebrun, J-J, Goltzman, D, Hendy, GN. Inactivation of menin, a Smad3-interacting protein, blocks transforming growth factor type β signaling. Proc Natl Acad Sci USA 2001;98:38373842.Google Scholar
Karhu, A, Aaltonen, LA. Susceptibility to pituitary neoplasia related to MEN1, CDKN1B and AIP mutations: an update. Hum Mol Genet 2007;16:R73R79.Google Scholar
Lemos, M, Thakker, R. Multiple endocrine neoplasia type 1 (MEN1): analysis of 1336 mutations reported in the first decade following identification of the gene. Hum Mutat 2008;29:2232.Google Scholar
Marx, SJ. Familial multiple endocrine neoplasia type 1 Mutation of a tumor suppressor gene. Trends Endocrinol Metab 1989;1:7682.Google Scholar
Hofland, LJ, Feelders, RA, de Herder, WW, Lamberts, SWJ. Pituitary tumours: The sst/D2 receptors as molecular targets. Mol Cell Endocrinol 2010;326:8998.Google Scholar
Thakker, R, Newey, P, Walls, G, Bilezikian, J, Dralle, H, Ebeling, P, et al. Clinical practice guidelines for multiple endocrine neoplasia type 1 (MEN1). The Journal of Clinical Endocrinology and Metabolism. 2012;97(9):29903011Google Scholar
Kouvaraki, M, Shapiro, S, Perrier, N, Cote, G, Gagel, R, Hoff, A, et al. RET proto-oncogene: a review and update of genotype–phenotype correlations in hereditary medullary thyroid cancer and associated endocrine tumors. Thyroid 2005;15:531544.Google Scholar
Kloos, R, Eng, C, Evans, D, Francis, G, Gagel, R, Gharib, H, et al. Medullary thyroid cancer: management guidelines of the American Thyroid Association. Thyroid 2009;19:565612.Google Scholar
Takahashi, M, Ritz, J, Cooper, GM. Activation of a novel human transforming gene, RET, by DNA rearrangement. Cell 1985;42:581588.Google Scholar
Lodish, M, Stratakis, C. RET oncogene in MEN2, MEN2B, MTC and other forms of thyroid cancer. Expert Rev Anticancer Ther 2008;8:625632.Google Scholar
Santoro, M, Carlomagno, F, Romano, A, Bottaro, DP, Dathan, NA, Grieco, M, et al. Activation of RET as a dominant transforming gene by germline mutations of MEN2A and MEN2B. Science 1995;267:381383.Google Scholar
Wells, S, Asa, S, Dralle, H, et al. Revised American Thyroid Association guidelines for the management of medullary thyroid carcinoma. Thyroid 2015;25:567610.Google Scholar
Wells, S, Gosnell, J, Gagel, R, Moley, J, Pfister, D, Sosa, J, et al. Vandetanib for the treatment of patients with locally advanced or metastatic hereditary medullary thyroid cancer. J Clin Oncol 2010;28:767772.Google Scholar
Pellegata, N. MENX. Ann Endocrinol 2012;73:6570.Google Scholar
Pellegata, NS. MENX and MEN4. Clinics (San Paulo) 2012;67:1318.Google Scholar
MorosÃtti, R, Kawamata, N, Gombart, AF, Miller, CW, Hatta, Y, Hirama, T, et al. Alterations of the p27Kip1 gene in non-Hodgkin's lymphomas and adult T-cell leukemia/lymphoma. Blood 1995;86:19241930.Google Scholar
Hillenbrand, A, Varhaug, J-E, Brauckhoff, M, Pandev, R, Haufe, S, Dotzenrath, C, et al. Familial nonmedullary thyroid carcinoma: clinical relevance and prognosis. A European multicenter study. Langenbecks Arch Surg 2010 2010/09/01;395:851858. English.Google Scholar
Bonora, E, Tallini, G, Romeo, G. Genetic predisposition to familial nonmedullary thyroid cancer: an update of molecular findings and state-of-the-art studies. J Oncol 2010;2010:385206.Google Scholar
Capezzone, M, Marchisotta, S, Cantara, S, Busonero, G, Brilli, L, Pazaitou Panayiotou, K, et al. Familial non-medullary thyroid carcinoma displays the features of clinical anticipation suggestive of a distinct biological entity. Endocr Relat Cancer 2008;15:10751081.Google Scholar
Nosé, V. Familial thyroid cancer: a review. Mod Pathol 2011;24(suppl 2):S19S33.Google Scholar
Ciampi, R, Nikiforov, YE. RET/PTC pearrangements and BRAF mutations in Thyroid Tumorigenesis. Endocrinology. 2007 March 1, 2007;148:936941.Google Scholar
Carney, JA, Gordon, H, Carpenter, PC, Shenoy, BV, Go, VL. The complex of myxomas, spotty pigmentation, and endocrine overactivity. Medicine 1985;64:270283.Google Scholar
Rothenbuhler, A, Stratakis, CA. Clinical and molecular genetics of Carney complex. Best Pract Res Clin Endocrinol Metab 2010;24:389399.Google Scholar
Stratakis, CA, Kirschner, LS, Carney, JA. Clinical and Molecular Features of the Carney Complex: Diagnostic Criteria and Recommendations for Patient Evaluation. J Clin Endocrinol Metab 2001 September 1, 2001;86:40414046.Google Scholar
Briassoulis, G, Kuburovic, V, Xekouki, P, Patronas, N, Keil, M, Lyssikatos, C, et al. Recurrent left atrial myxomas in Carney complex: a genetic cause of multiple strokes that can be prevented. J Stroke Cerebrovasc Dis 2012;21:914.e1–e8.Google Scholar
Kirschner, LS, Carney, JA, Pack, SD, Taymans, SE, Giatzakis, C, Cho, YS, et al. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet 2000;26:8992.Google Scholar
Stratakis, CA, Carney, JA, Lin, JP, Papanicolaou, DA, Karl, M, Kastner, DL, et al. Carney complex, a familial multiple neoplasia and lentiginosis syndrome. Analysis of 11 kindreds and linkage to the short arm of chromosome 2. J Clin Invest 1996;97:699705.Google Scholar
Robinson White, A, Meoli, E, Stergiopoulos, S, Horvath, A, Boikos, S, Bossis, I, et al. PRKAR1A mutations and protein kinase A interactions with other signaling pathways in the adrenal cortex. J Clin Endocrinol Metab 2006;91:23802388.Google Scholar
Stratakis, CA. cAMP/PKA signaling defects in tumors: genetics and tissue-specific pluripotential cell-derived lesions in human and mouse. Mol Cell Endocrinol 2013;371:208220.Google Scholar
Horvath, A, Bertherat, J, Groussin, L, Guillaud-Bataille, M, Tsang, K, Cazabat, L, et al. Mutations and polymorphisms in the gene encoding regulatory subunit type 1-alpha of protein kinase A (PRKAR1A): an update. Hum Mutat 2010;31:369379.Google Scholar
Horvath, A, Bossis, I, Giatzakis, C, Levine, E, Weinberg, F, Meoli, E, et al. Large deletions of the PRKAR1A gene in Carney complex. Clin Cancer Res 2008;14:388395.Google Scholar
Blyth, M, Huang, S, Maloney, V, Crolla, J, Karen Temple, I. A 2.3 Mb deletion of 17q24.2-q24.3 associated with “Carney Complex plus.” Eur J Med Genet 2008;51:672678.Google Scholar
Anselmo, J, Medeiros, S, Carneiro, V, Greene, E, Levy, I, Nesterova, M, et al. A large family with Carney complex caused by the S147G PRKAR1A mutation shows a unique spectrum of disease including adrenocortical cancer. J Clin Endocrinol Metab 2012;97:351359.Google Scholar
Morin, E, Mete, O, Wasserman, J, Joshua, A, Asa, S, Ezzat, S. Carney complex with adrenal cortical carcinoma. J Clin Endocrinol Metab 2012;97:E202E206.Google Scholar
Gaujoux, Sb, Tissier, Fdr, Groussin, L, Libé, R, Ragazzon, B, Launay, P, et al. Wnt/beta-catenin and 3′,5′-cyclic adenosine 5′-monophosphate/protein kinase A signaling pathways alterations and somatic beta-catenin gene mutations in the progression of adrenocortical tumors. J Clin Endocrinol Metab 2008;93:41354140.Google Scholar
Lodish, M, Yuan, B, Levy, I, et al. Germline PRKACA amplification causes variable phenotypes that may depend on the extent of the genomic defect: molecular mechanisms and clinical presentations. Eur J Endocrinol 2015;172:803811.Google Scholar
Al Mateen, M, Hood, M, Trippel, D, Insalaco, S, Otto, R, Vitikainen, K. Cerebral embolism from atrial myxoma in pediatric patients. Pediatrics 2003;112:e162e167.Google Scholar
Stratakis, CA, Sarlis, N, Kirschner, LS, Carney, JA, Doppman, JL, Nieman, LK, et al. Paradoxical response to dexamethasone in the diagnosis of primary pigmented nodular adrenocortical disease. Ann Intern Med 1999;131:585591.Google Scholar
Ezzat, S, Asa, S, Couldwell, W, Barr, C, Dodge, W, Vance, M, et al. The prevalence of pituitary adenomas: a systematic review. Cancer 2004;101:613619.Google Scholar
Dumitrescu, C, Collins, M. McCune–Albright syndrome. Orphanet J Rare Dis 2008;3:12.Google Scholar
Albright, F, Butler, A, Hampton, A, Smith, P. Syndrome characterized by osteitis fibrosa disseminata, areas, of pigmentation, and endocrine dysfunction, with precocious puberty in females: report of 5 cases. N Engl J Med 1937;216:727746.Google Scholar
Weinstein, LS, Liu, J, Sakamoto, A, Xie, T, Chen, M. Minireview. GNAS: normal and abnormal functions. Endocrinology 2004;145:54595464.Google Scholar
Akintoye, SO, Chebli, C, Booher, S, Feuillan, P, Kushner, H, Leroith, D, et al. Characterization of GSP-mediated growth hormone excess in the context of McCune–Albright syndrome. J Clin Endocrinol Metab 2002;87:51045112.Google Scholar
Vortmeyer, AO, Gläsker, S, Mehta, GU, Abu-Asab, MS, Smith, JH, Zhuang, Z, et al. Somatic GNAS mutation causes widespread and diffuse pituitary disease in acromegalic patients with McCune–Albright syndrome. J Clin Endocrinol Metab 2012;97:24042413.Google Scholar
Igreja, S, Chahal, HS, King, P, Bolger, GB, Srirangalingam, U, Guasti, L, et al. Characterization of aryl hydrocarbon receptor interacting protein (AIP) mutations in familial isolated pituitary adenoma families. Hum Mutat 2010;31:950960.Google Scholar
Georgitsi, M, De Menis, E, Cannavò, S, Mäkinen, MJ, Tuppurainen, K, Pauletto, P, et al. Aryl hydrocarbon receptor interacting protein (AIP) gene mutation analysis in children and adolescents with sporadic pituitary adenomas. Clin Endocrinol 2008;69:621627.Google Scholar
Vierimaa, O, Georgitsi, M, Lehtonen, R, Vahteristo, P, Kokko, A, Raitila, A, et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 2006;312:12281230.Google Scholar
Wildi-Runge, S, Bahubeshi, A, Carret, A-S, Crevier, L, Robitaille, Y, Kovacs, K, et al. New phenotype in the familial DICER1 tumor syndrome: pituitary blastoma presenting at age 9 months. Endocr Rev 2011;32:P1P777.Google Scholar
Xekouki, P, Pacak, K, Almeida, M, Wassif, CA, Rustin, P, Nesterova, M, et al. Succinate dehydrogenase (SDH) D subunit (SDHD) inactivation in a growth-hormone-producing pituitary tumor: a new association for SDH? J Clin Endocrinol Metab 2012;97:E357E366.Google Scholar
Jett, K, Friedman, JM. Clinical and genetic aspects of neurofibromatosis 1. Genet Med 2010;12:111.Google Scholar
Brems, H, Beert, E, de Ravel, T, Legius, E. Mechanisms in the pathogenesis of malignant tumours in neurofibromatosis type 1. Lancet Oncol 2009;10:508515.Google Scholar
Josefson, J, Listernick, R, Fangusaro, JR, Charrow, J, Habiby, R. Growth hormone excess in children with neurofibromatosis type 1-associated and sporadic optic pathway tumors. J Pediatr 2011;158:433436.Google Scholar
Hemminki, A, Markie, D, Tomlinson, I, Avizienyte, E, Roth, S, Loukola, A, et al. A serine/threonine kinase gene defective in Peutz–Jeghers syndrome. Nature 1998;391:184187.Google Scholar
Hemminki, A. The molecular basis and clinical aspects of Peutz–Jeghers syndrome. Cell Mol Life Sci.1999;55:735750.Google Scholar
Carney, JA, Ho, J, Kitsuda, K, Young, W, Stratakis, C. Massive neonatal adrenal enlargement due to cytomegaly, persistence of the transient cortex, and hyperplasia of the permanent cortex: findings in Cushing syndrome associated with hemihypertrophy. Am J Surg Pathol 2012;36:14521463.Google Scholar
Slegtenhorst, MV, Hoogt, RD, Hermans, C, Nellist, M, Janssen, B, Verhoef, S, et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science 1997;277:805808.Google Scholar
Dworakowska, D, Grossman, AB. Are neuroendocrine tumours a feature of tuberous sclerosis? A systematic review. Endocr Relat Cancer 2009;16:4558.Google Scholar
Gonzalez, KD, Noltner, KA, Buzin, CH, Gu, D, Wen-Fong, CY, Nguyen, VQ, et al. Beyond Li Fraumeni syndrome: clinical characteristics of families with P53 germline mutations. J Clin Oncol 2009;27:12501256.Google Scholar
Nelen, MR, Padberg, GW, Peeters, EA, Lin, AY, van den Helm, B, Frants, RR, et al. Localization of the gene for Cowden disease to chromosome 10q22-23. Nat Genet 1996;13:114116.Google Scholar
Marsh, DJ, Coulon, V, Lunetta, KL, Rocca Serra, P, Dahia, PL, Zheng, Z, et al. Mutation spectrum and genotype–phenotype analyses in Cowden disease and Bannayan–Zonana syndrome, two hamartoma syndromes with germline PTEN mutation. Hum Mol Genet 1998;7:507515.Google Scholar
Gorlin, RJ, Cohen, MM, Condon, LM, Burke, BA. Bannayan–Riley–Ruvalcaba syndrome. American J Med Genet 1992;44:307314.Google Scholar
Eng, C. PTEN: one gene, many syndromes. Hum Mutat 2003;22:183198.Google Scholar
Groen, E, Roos, A, Muntinghe, F, Enting, R, de Vries, J, Kleibeuker, J, et al. Extra-intestinal manifestations of familial adenomatous polyposis. Ann Surg Oncol 2008;15:24392450.Google Scholar
Gaujoux, SB, Pinson, SP, Gimenez Roqueplo, A-P, Amar, L, Ragazzon, B, Launay, P, et al. Inactivation of the APC gene is constant in adrenocortical tumors from patients with familial adenomatous polyposis but not frequent in sporadic adrenocortical cancers. Clin Cancer Res 2010;16:51335141.Google Scholar

References

Janeway, CA Jr., Medzhitov, R (2002) Innate immune recognition. Annu Rev Immunol 20: 197216.Google Scholar
Nemazee, D (2000) Receptor selection in B and T lymphocytes. Annu Rev Immunol 18: 1951.Google Scholar
Zinkernagel, RM, Bachmann, MF, Kundig, TM, Oehen, S, Pirchet, H, Hengartner, H (1996) On immunological memory. Annu Rev Immunol 14: 333367.Google Scholar
Merad, M, Sathe, P, Helft, J, Miller, J, Mortha, A (2013) The dendritic cell lineage: ontogeny and function of dendritic cells and their subsets in the steady state and the inflamed setting. Annu Rev Immunol 31: 563604.Google Scholar
Kanno, Y, Vahedi, G, Hirahara, K, Singleton, K, O'Shea, JJ (2012) Transcriptional and epigenetic control of T helper cell specification: molecular mechanisms underlying commitment and plasticity. Annu Rev Immunol 30: 707731.Google Scholar
Josefowicz, SZ, Lu, LF, Rudensky, AY (2012) Regulatory T cells: mechanisms of differentiation and function. Annu Rev Immunol 30: 531564.Google Scholar
Muranski, P, Restifo, NP (2013) Essentials of Th17 cell commitment and plasticity. Blood 121: 24022414.Google Scholar
Bailes, BK (2002) Diabetes mellitus and its chronic complications. AORN J 76: 266276, 278–282; quiz 283–266.Google Scholar
Forbes, JM, Cooper, ME (2013) Mechanisms of diabetic complications. Physiol Rev 93: 137188.Google Scholar
Diabetes Control and Complications Trial Research Group (1993) The effect of intensive treatment of diabetes on the development and progression of long-term complications in insulin-dependent diabetes mellitus. N Engl J Med 329: 977986.Google Scholar
Todd, JA, Wicker, LS (2001) Genetic protection from the inflammatory disease type 1 diabetes in humans and animal models. Immunity 15: 387395.Google Scholar
Notkins, AL, Lernmark, A (2001) Autoimmune type 1 diabetes: resolved and unresolved issues. J Clin Invest 108: 12471252.Google Scholar
Forrest, JM, Menser, MA, Burgess, JA (1971) High frequency of diabetes mellitus in young adults with congenital rubella. Lancet ii: 332334.Google Scholar
Pak, CY, Eun, HM, McArthur, RG, Yoon, JW (1988) Association of cytomegalovirus infection with autoimmune type 1 diabetes. Lancet ii: 14.Google Scholar
Yoon, JW, Austin, M, Onodera, T, Notkins, AL (1979) Isolation of a virus from the pancreas of a child with diabetic ketoacidosis. N Engl J Med 300: 11731179.Google Scholar
Knip, M, Virtanen, SM, Seppa, K, et al. (2010) Dietary intervention in infancy and later signs of beta-cell autoimmunity. N Engl J Med 363: 19001908.Google Scholar
Zimmet, PZ, Tuomi, T, Mackay, IR, et al. (1994) Latent autoimmune diabetes mellitus in adults (LADA): the role of antibodies to glutamic acid decarboxylase in diagnosis and prediction of insulin dependency. Diabet Med 11: 299303.Google Scholar
Nerup, J, Platz, P, Andersen, OO, et al. (1974) HL-A antigens and diabetes mellitus. Lancet ii: 864866.Google Scholar
She, JX (1996) Susceptibility to type I diabetes: HLA-DQ and DR revisited. Immunol Today 17: 323329.Google Scholar
Nejentsev, S, Howson, JM, Walker, NM, et al. (2007) Localization of type 1 diabetes susceptibility to the MHC class I genes HLA-B and HLA-A. Nature 450: 887892.Google Scholar
Todd, JA, Bell, JI, McDevitt, HO (1987) HLA-DQ beta gene contributes to susceptibility and resistance to insulin-dependent diabetes mellitus. Nature 329: 599604.Google Scholar
Morel, PA, Dorman, JS, Todd, JA, McDevitt, HO, Trucco, M (1988) Aspartic acid at position 57 of the HLA-DQ beta chain protects against type I diabetes: a family study. Proc Natl Acad Sci USA 85: 81118115.Google Scholar
Dendrou, CA, Plagnol, V, Fung, E, et al. (2009) Cell-specific protein phenotypes for the autoimmune locus IL2RA using a genotype–selectable human bioresource. Nat Genet 41: 10111015.Google Scholar
Bennett, ST, Lucassen, AM, Gough, SC, et al. (1995) Susceptibility to human type 1 diabetes at IDDM2 is determined by tandem repeat variation at the insulin gene minisatellite locus. Nat Genet 9: 284292.Google Scholar
Vafiadis, P, Bennett, ST, Todd, JA, et al. (1997) Insulin expression in human thymus is modulated by INS VNTR alleles at the IDDM2 locus. Nat Genet 15: 289292.Google Scholar
Ueda, H, Howson, JM, Esposito, L, et al. (2003) Association of the T-cell regulatory gene CTLA4 with susceptibility to autoimmune disease. Nature 423: 506511.Google Scholar
Bottini, N, Musumeci, L, Alonso, A, et al. (2004) A functional variant of lymphoid tyrosine phosphatase is associated with type I diabetes. Nat Genet 36: 337338.Google Scholar
Driver, JP, Serreze, DV, Chen, YG (2011) Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease. Semin Immunopathol 33: 6787.Google Scholar
Korpos, E, Kadri, N, Kappelhoff, R, et al. (2013) The peri-islet basement membrane, a barrier to infiltrating leukocytes in type 1 diabetes in mouse and human. Diabetes 62: 531542.Google Scholar
Winer, S, Tsui, H, Lau, A, et al. (2003) Autoimmune islet destruction in spontaneous type 1 diabetes is not beta-cell exclusive. Nat Med 9: 198205.Google Scholar
Richardson, SJ, Willcox, A, Bone, AJ, Morgan, NG, Foulis, AK (2011) Immunopathology of the human pancreas in type-I diabetes. Semin Immunopathol 33: 921.Google Scholar
Willcox, A, Richardson, SJ, Bone, AJ, Foulis, AK, Morgan, NG (2009) Analysis of islet inflammation in human type 1 diabetes. Clin Exp Immunol 155: 173181.Google Scholar
Hanninen, A, Taylor, C, Streeter, PR, et al. (1993) Vascular addressins are induced on islet vessels during insulitis in nonobese diabetic mice and are involved in lymphoid cell binding to islet endothelium. J Clin Invest 92: 25092515.Google Scholar
Cameron, MJ, Arreaza, GA, Grattan, M, et al. (2000) Differential expression of CC chemokines and the CCR5 receptor in the pancreas is associated with progression to type I diabetes. J Immunol 165: 11021110.Google Scholar
Diana, J, Simoni, Y, Furio, L, et al. (2013) Crosstalk between neutrophils, B-1a cells and plasmacytoid dendritic cells initiates autoimmune diabetes. Nat Med 19: 6573.Google Scholar
DiLorenzo, TP (2011) Multiple antigens versus single major antigen in type 1 diabetes: arguing for multiple antigens. Diabetes Metab Res Rev 27: 778783.Google Scholar
Hagopian, WA, Sanjeevi, CB, Kockum, I, et al. (1995) Glutamate decarboxylase-, insulin-, and islet cell-antibodies and HLA typing to detect diabetes in a general population-based study of Swedish children. J Clin Invest 95: 15051511.Google Scholar
Leslie, RD, Atkinson, MA, Notkins, AL (1999) Autoantigens IA-2 and GAD in type I (insulin-dependent) diabetes. Diabetologia 42: 314.Google Scholar
Pescovitz, MD, Greenbaum, CJ, Krause-Steinrauf, H, et al. (2009) Rituximab, B-lymphocyte depletion, and preservation of beta-cell function. N Engl J Med 361: 21432152.Google Scholar
Keymeulen, B, Vandemeulebroucke, E, Ziegler, AG, et al. (2005) Insulin needs after CD3-antibody therapy in new-onset type 1 diabetes. N Engl J Med 352: 25982608.Google Scholar
Diabetes Prevention Trial--Type 1 Diabetes Study Group (2002) Effects of insulin in relatives of patients with type 1 diabetes mellitus. N Engl J Med 346: 16851691.Google Scholar
Roep, BO, Solvason, N, Gottlieb, PA, et al. (2013) Plasmid-encoded proinsulin preserves C-peptide while specifically reducing proinsulin-specific CD8+ T cells in type 1 diabetes. Sci Transl Med 5: 191182.Google Scholar
Shapiro, AM, Lakey, JR, Ryan, EA, et al. (2000) Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N Engl J Med 343: 230238.Google Scholar
Bergenstal, RM, Tamborlane, WV, Ahmann, A, et al. (2010) Effectiveness of sensor-augmented insulin-pump therapy in type 1 diabetes. N Engl J Med 363: 311320.Google Scholar
Moller, DE, Kaufman, KD (2005) Metabolic syndrome: a clinical and molecular perspective. Annu Rev Med 56: 4562.Google Scholar
Olefsky, JM, Glass, CK (2010) Macrophages, inflammation, and insulin resistance. Annu Rev Physiol 72: 219246.Google Scholar
Hotamisligil, GS, Shargill, NS, Spiegelman, BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259: 8791.Google Scholar
Weisberg, SP, McCann, D, Desai, M, Rosenbaum, M, Leibel, RL, Ferrante, AW Jr. (2003) Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 112: 17961808.Google Scholar
Xu, H, Barnes, GT, Yang, Q, et al. (2003) Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 112: 18211830.Google Scholar
Osborn, O, Olefsky, JM (2012) The cellular and signaling networks linking the immune system and metabolism in disease. Nat Med 18: 363374.Google Scholar
Winer, S, Chan, Y, Paltser, G, et al. (2009) Normalization of obesity-associated insulin resistance through immunotherapy. Nat Med 15: 921929.Google Scholar
Nishimura, S, Manabe, I, Nagasaki, M, et al. (2009) CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 15: 914920.Google Scholar
Feuerer, M, Herrero, L, Cipolletta, D, et al. (2009) Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 15: 930939.Google Scholar
Winer, DA, Winer, S, Shen, L, et al. (2011) B cells promote insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med 17: 610617.Google Scholar
Talukdar, S, Oh da, Y, Bandyopadhyay, G, et al. (2012) Neutrophils mediate insulin resistance in mice fed a high-fat diet through secreted elastase. Nat Med 18: 14071412.Google Scholar
Liu, J, Divoux, A, Sun, J, et al. (2009) Genetic deficiency and pharmacological stabilization of mast cells reduce diet-induced obesity and diabetes in mice. Nat Med 15: 940945.Google Scholar
Hotamisligil, GS (2010) Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 140: 900917.Google Scholar
Halberg, N, Khan, T, Trujillo, ME, et al. (2009) Hypoxia-inducible factor 1 alpha induces fibrosis and insulin resistance in white adipose tissue. Mol Cell Biol 29: 44674483.Google Scholar
Minamino, T, Orimo, M, Shimizu, I, et al. (2009) A crucial role for adipose tissue p53 in the regulation of insulin resistance. Nat Med 15: 10821087.Google Scholar
Cinti, S, Mitchell, G, Barbatelli, G, et al. (2005) Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 46: 23472355.Google Scholar
Shi, H, Kokoeva, MV, Inouye, K, Tzameli, I, Yin, H, Flier, JS (2006) TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 116: 30153025.Google Scholar
Pal, D, Dasgupta, S, Kundu, R, et al. (2012) Fetuin-A acts as an endogenous ligand of TLR4 to promote lipid-induced insulin resistance. Nat Med 18:12791285.Google Scholar
Mantovani, A, Sozzani, S, Locati, M, Allavena, P, Sica, A (2002) Macrophage polarization: tumor-associated macrophages as a paradigm for polarized M2 mononuclear phagocytes. Trends Immunol 23: 549555.Google Scholar
Duewell, P, Kono, H, Rayner, KJ, et al. (2010) NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature 464: 13571361.Google Scholar
Franchi, L, Eigenbrod, T, Munoz-Planillo, R, Nunez, G (2009) The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 10: 241247.Google Scholar
Vandanmagsar, B, Youm, YH, Ravussin, A, et al. (2011) The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 17: 179188.Google Scholar
Yang, H, Youm, YH, Vandanmagsar, B, et al. (2010) Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J Immunol 185: 18361845.Google Scholar
Qin, J, Li, Y, Cai, Z, et al. (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490: 5560.Google Scholar
Lam, YY, Ha, CW, Campbell, CR, et al. (2012) Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLOS ONE 7: e34233.Google Scholar
Wang, Y, Li, J, Tang, L, Charnigo, R, de Villiers, W, Eckhardt, E (2010) T-lymphocyte responses to intestinally absorbed antigens can contribute to adipose tissue inflammation and glucose intolerance during high fat feeding. PLOS ONE 5: e13951.Google Scholar
Ghoshal, S, Witta, J, Zhong, J, de Villiers, W, Eckhardt, E (2009) Chylomicrons promote intestinal absorption of lipopolysaccharides. J Lipid Res 50: 9097.Google Scholar
Cani, PD, Amar, J, Iglesias, MA, et al. (2007) Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56: 17611772.Google Scholar
Obstfeld, AE, Sugaru, E, Thearle, M, et al. (2010) C-C chemokine receptor 2 (CCR2) regulates the hepatic recruitment of myeloid cells that promote obesity-induced hepatic steatosis. Diabetes 59: 916925.Google Scholar
Fink, LN, Oberbach, A, Costford, SR, et al. (2013) Expression of anti-inflammatory macrophage genes within skeletal muscle correlates with insulin sensitivity in human obesity and type 2 diabetes. Diabetologia 56: 16231628.Google Scholar
Pillon, NJ, Bilan, PJ, Fink, LN, Klip, A (2013) Cross-talk between skeletal muscle and immune cells: muscle-derived mediators and metabolic implications. Am J Physiol Endocrinol Metab 304: E453E465.Google Scholar
Purkayastha, S, Zhang, G, Cai, D (2011) Uncoupling the mechanisms of obesity and hypertension by targeting hypothalamic IKK-beta and NF-kappaB. Nat Med 17: 883887.Google Scholar
Milanski, M, Arruda, AP, Coope, A, et al. (2012) Inhibition of hypothalamic inflammation reverses diet-induced insulin resistance in the liver. Diabetes 61: 14551462.Google Scholar
Shulman, GI (2000) Cellular mechanisms of insulin resistance. J Clin Invest 106: 171176.Google Scholar
Samuel, VT, Shulman, GI (2012) Mechanisms for insulin resistance: common threads and missing links. Cell 148: 852871.Google Scholar
Jornayvaz, FR, Shulman, GI (2012) Diacylglycerol activation of protein kinase Cepsilon and hepatic insulin resistance. Cell Metab 15: 574584.Google Scholar
Holland, WL, Bikman, BT, Wang, LP, et al. (2011) Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest 121: 18581870.Google Scholar
Caturegli, P, Kimura, H, Rocchi, R, Rose, NR (2007) Autoimmune thyroid diseases. Curr Opin Rheumatol 19: 4448.Google Scholar
Canning, MO, Ruwhof, C, Drexhage, HA (2003) Aberrancies in antigen-presenting cells and T cells in autoimmune thyroid disease. A role in faulty tolerance induction. Autoimmunity 36: 429442.Google Scholar
Klecha, AJ, Barreiro Arcos, ML, Frick, L, Genaro, AM, Cremaschi, G (2008) Immune-endocrine interactions in autoimmune thyroid diseases. Neuroimmunomodulation 15: 6875.Google Scholar
Phenekos, C, Vryonidou, A, Gritzapis, AD, Baxevanis, CN, Goula, M, Papamichail, M (2004) Th1 and Th2 serum cytokine profiles characterize patients with Hashimoto's thyroiditis (Th1) and Graves disease (Th2). Neuroimmunomodulation 11: 209213.Google Scholar
Weetman, AP (2003) Autoimmune thyroid disease: propagation and progression. Eur J Endocrinol 148: 19.Google Scholar
Saranac, L, Zivanovic, S, Bjelakovic, B, Stamenkovic, H, Novak, M, Kamenov, B (2011) Why is the thyroid so prone to autoimmune disease? Horm Res Paediatr 75: 157165.Google Scholar
Carayanniotis, G, Rao, VP (1997) Searching for pathogenic epitopes in thyroglobulin: parameters and caveats. Immunol Today 18: 8388.Google Scholar
Hasham, A, Tomer, Y (2012) Genetic and epigenetic mechanisms in thyroid autoimmunity. Immunol Res 54: 204213.Google Scholar
Eschler, DC, Hasham, A, Tomer, Y (2011) Cutting edge: the etiology of autoimmune thyroid diseases. Clin Rev Allergy Immunol 41: 190197.Google Scholar
Golden, B, Levin, L, Ban, Y, Concepcion, E, Greenberg, DA, Tomer, Y (2005) Genetic analysis of families with autoimmune diabetes and thyroiditis: evidence for common and unique genes. J Clin Endocrinol Metab 90: 49044911.Google Scholar
Ban, Y, Davies, TF, Greenberg, DA, et al. (2004) Arginine at position 74 of the HLA-DR beta1 chain is associated with Graves' disease. Genes Immun 5: 203208.Google Scholar
Tomer, Y, Concepcion, E, Greenberg, DA (2002) A C/T single-nucleotide polymorphism in the region of the CD40 gene is associated with Graves' disease. Thyroid 12: 11291135.Google Scholar
Ban, Y, Greenberg, DA, Concepcion, E, Skrabanek, L, Villanueva, R, Tomer, Y (2003) Amino acid substitutions in the thyroglobulin gene are associated with susceptibility to human and murine autoimmune thyroid disease. Proc Natl Acad Sci USA 100: 1511915124.Google Scholar
Hodge, SE, Ban, Y, Strug, LJ, et al. (2006) Possible interaction between HLA-DRbeta1 and thyroglobulin variants in Graves' disease. Thyroid 16: 351355.Google Scholar
Brent, GA (2010) Environmental exposures and autoimmune thyroid disease. Thyroid 20: 755761.Google Scholar
Doufas, AG, Mastorakos, G, Chatziioannou, S, et al. (1999) The predominant form of non-toxic goiter in Greece is now autoimmune thyroiditis. Eur J Endocrinol 140: 505511.Google Scholar
Papanastasiou, L, Vatalas, IA, Koutras, DA, Mastorakos, G (2007) Thyroid autoimmunity in the current iodine environment. Thyroid 17: 729739.Google Scholar
Bagnasco, M, Bossert, I, Pesce, G (2006) Stress and autoimmune thyroid diseases. Neuroimmunomodulation 13: 309317.Google Scholar
Matos-Santos, A, Nobre, EL, Costa, JG, et al. (2001) Relationship between the number and impact of stressful life events and the onset of Graves' disease and toxic nodular goitre. Clin Endocrinol (Oxf) 55: 1519.Google Scholar
Tsatsoulis, A (2006) The role of stress in the clinical expression of thyroid autoimmunity. Ann N Y Acad Sci 1088: 382395.Google Scholar
Elenkov, IJ, Wilder, RL, Bakalov, VK, et al. (2001) IL-12, TNF-alpha, and hormonal changes during late pregnancy and early postpartum: implications for autoimmune disease activity during these times. J Clin Endocrinol Metab 86: 49334938.Google Scholar
Bogazzi, F, Bartalena, L, Martino, E (2010) Approach to the patient with amiodarone-induced thyrotoxicosis. J Clin Endocrinol Metab 95: 25292535.Google Scholar
Antonelli, A, Ferri, C, Pampana, A, et al. (2004) Thyroid disorders in chronic hepatitis C. Am J Med 117: 1013.Google Scholar
Tomer, Y, Huber, A (2009) The etiology of autoimmune thyroid disease: a story of genes and environment. J Autoimmun 32: 231239.Google Scholar
Bartolome, J, Rodriguez-Inigo, E, Quadros, P, et al. (2008) Detection of hepatitis C virus in thyroid tissue from patients with chronic HCV infection. J Med Virol 80: 15881594.Google Scholar
Laureti, S, Vecchi, L, Santeusanio, F, Falorni, A (1999) Is the prevalence of Addison's disease underestimated? J Clin Endocrinol Metab 84: 1762.Google Scholar
Kong, MF, Jeffcoate, W (1994) Eighty-six cases of Addison's disease. Clin Endocrinol (Oxf) 41: 757761.Google Scholar
Winqvist, O, Karlsson, FA, Kampe, O (1992) 21-Hydroxylase, a major autoantigen in idiopathic Addison's disease. Lancet 339: 15591562.Google Scholar
Krohn, K, Uibo, R, Aavik, E, Peterson, P, Savilahti, K (1992) Identification by molecular cloning of an autoantigen associated with Addison's disease as steroid 17 alpha-hydroxylase. Lancet 339: 770773.Google Scholar
Winqvist, O, Gustafsson, J, Rorsman, F, Karlsson, FA, Kampe, O (1993) Two different cytochrome P450 enzymes are the adrenal antigens in autoimmune polyendocrine syndrome type I and Addison's disease. J Clin Invest 92: 23772385.Google Scholar
Nikfarjam, L, Kominami, S, Yamazaki, T, et al. (2005) Mechanism of inhibition of cytochrome P450 C21 enzyme activity by autoantibodies from patients with Addison's disease. Eur J Endocrinol 152: 95101.Google Scholar
Furmaniak, J, Kominami, S, Asawa, T, Wedlock, N, Colls, J, Smith, BR (1994) Autoimmune Addison's disease–evidence for a role of steroid 21-hydroxylase autoantibodies in adrenal insufficiency. J Clin Endocrinol Metab 79: 15171521.Google Scholar
Mitchell, AL, Pearce, SH (2012) Autoimmune Addison disease: pathophysiology and genetic complexity. Nat Rev Endocrinol 8: 306316.Google Scholar
Betterle, C, Dal Pra, C, Mantero, F, Zanchetta, R (2002) Autoimmune adrenal insufficiency and autoimmune polyendocrine syndromes: autoantibodies, autoantigens, and their applicability in diagnosis and disease prediction. Endocr Rev 23: 327364.Google Scholar
Franchimont, D, Galon, J, Gadina, M, et al. (2000) Inhibition of Th1 immune response by glucocorticoids: dexamethasone selectively inhibits IL-12-induced Stat4 phosphorylation in T lymphocytes. J Immunol 164: 17681774.Google Scholar
Hayashi, Y, Hiyoshi, T, Takemura, T, Kurashima, C, Hirokawa, K (1989) Focal lymphocytic infiltration in the adrenal cortex of the elderly: immunohistological analysis of infiltrating lymphocytes. Clin Exp Immunol 77: 101105.Google Scholar
Zelissen, PM, Bast, EJ, Croughs, RJ (1995) Associated autoimmunity in Addison's disease. J Autoimmun 8: 121130.Google Scholar
Finnish-German APECED Consortium (1997) An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet 17: 399403.Google Scholar
Anderson, MS, Venanzi, ES, Klein, L, et al. (2002) Projection of an immunological self shadow within the thymus by the aire protein. Science 298: 13951401.Google Scholar
Neufeld, M, Maclaren, NK, Blizzard, RM (1981) Two types of autoimmune Addison's disease associated with different polyglandular autoimmune (PGA) syndromes. Medicine (Baltimore) 60: 355362.Google Scholar
Vyse, TJ, Todd, JA (1996) Genetic analysis of autoimmune disease. Cell 85: 311318.Google Scholar
Myhre, AG, Undlien, DE, Lovas, K, et al. (2002) Autoimmune adrenocortical failure in Norway autoantibodies and human leukocyte antigen class II associations related to clinical features. J Clin Endocrinol Metab 87: 618623.Google Scholar
Gombos, Z, Hermann, R, Kiviniemi, M, et al. (2007) Analysis of extended human leukocyte antigen haplotype association with Addison's disease in three populations. Eur J Endocrinol 157: 757761.Google Scholar
Skinningsrud, B, Lie, BA, Lavant, E, et al. (2011) Multiple loci in the HLA complex are associated with Addison's disease. J Clin Endocrinol Metab 96: E17031708.Google Scholar
Gambelunghe, G, Falorni, A, Ghaderi, M, et al. (1999) Microsatellite polymorphism of the MHC class I chain-related (MIC-A and MIC-B) genes marks the risk for autoimmune Addison's disease. J Clin Endocrinol Metab 84: 37013707.Google Scholar
Blomhoff, A, Lie, BA, Myhre, AG, et al. (2004) Polymorphisms in the cytotoxic T lymphocyte antigen-4 gene region confer susceptibility to Addison's disease. J Clin Endocrinol Metab 89: 34743476.Google Scholar
Roycroft, M, Fichna, M, McDonald, D, et al. (2009) The tryptophan 620 allele of the lymphoid tyrosine phosphatase (PTPN22) gene predisposes to autoimmune Addison's disease. Clin Endocrinol (Oxf) 70: 358362.Google Scholar
Kochi, Y, Yamada, R, Suzuki, A, et al. (2005) A functional variant in FCRL3, encoding Fc receptor-like 3, is associated with rheumatoid arthritis and several autoimmunities. Nat Genet 37: 478485.Google Scholar
Magitta, NF, Boe Wolff, AS, Johansson, S, et al. (2009) A coding polymorphism in NALP1 confers risk for autoimmune Addison's disease and type 1 diabetes. Genes Immun 10: 120124.Google Scholar
Zurawek, M, Fichna, M, Januszkiewicz-Lewandowska, D, Gryczynska, M, Fichna, P, Nowak, J (2010) A coding variant in NLRP1 is associated with autoimmune Addison's disease. Hum Immunol 71: 530534.Google Scholar
Pani, MA, Regulla, K, Segni, M, et al. (2002) A polymorphism within the vitamin D-binding protein gene is associated with Graves' disease but not with Hashimoto's thyroiditis. J Clin Endocrinol Metab 87: 25642567.Google Scholar
Lopez, ER, Zwermann, O, Segni, M, et al. (2004) A promoter polymorphism of the CYP27B1 gene is associated with Addison's disease, Hashimoto's thyroiditis, Graves' disease and type 1 diabetes mellitus in Germans. Eur J Endocrinol 151: 193197.Google Scholar
Glezer, A, Bronstein, MD (2012) Pituitary autoimmune disease: nuances in clinical presentation. Endocrine 42: 7479.Google Scholar
Carpinteri, R, Patelli, I, Casanueva, FF, Giustina, A (2009) Pituitary tumours: inflammatory and granulomatous expansive lesions of the pituitary. Best Pract Res Clin Endocrinol Metab 23: 639650.Google Scholar
Wong, S, Lam, WY, Wong, WK, Lee, KC (2007) Hypophysitis presented as inflammatory pseudotumor in immunoglobulin G4-related systemic disease. Hum Pathol 38: 17201723.Google Scholar
Molitch, ME, Gillam, MP (2007) Lymphocytic hypophysitis. Horm Res 68(suppl 5): 145150.Google Scholar
Caturegli, P, Newschaffer, C, Olivi, A, Pomper, MG, Burger, PC, Rose, NR (2005) Autoimmune hypophysitis. Endocr Rev 26: 599614.Google Scholar
Gutenberg, A, Buslei, R, Fahlbusch, R, Buchfelder, M, Bruck, W (2005) Immunopathology of primary hypophysitis: implications for pathogenesis. Am J Surg Pathol 29: 329338.Google Scholar
Crock, PA (1998) Cytosolic autoantigens in lymphocytic hypophysitis. J Clin Endocrinol Metab 83: 609618.Google Scholar
O'Dwyer, DT, Smith, AI, Matthew, ML, et al. (2002) Identification of the 49-kDa autoantigen associated with lymphocytic hypophysitis as alpha-enolase. J Clin Endocrinol Metab 87: 752757.Google Scholar
Llera, AS, Cardoso, AI, Stumpo, RR, Martinez, AS, Heinrich, JJ, Poskus, E (1993) Detection of autoantibodies against hGH in sera of idiopathic hypopituitary children. Clin Immunol Immunopathol 66: 114119.Google Scholar
Lupi, I, Broman, KW, Tzou, SC, Gutenberg, A, Martino, E, Caturegli, P (2008) Novel autoantigens in autoimmune hypophysitis. Clin Endocrinol (Oxf) 69: 269278.Google Scholar
Michels, AW, Gottlieb, PA (2010) Autoimmune polyglandular syndromes. Nat Rev Endocrinol 6: 270277.Google Scholar
Ahonen, P, Myllarniemi, S, Sipila, I, Perheentupa, J (1990) Clinical variation of autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) in a series of 68 patients. N Engl J Med 322: 18291836.Google Scholar
Betterle, C, Greggio, NA, Volpato, M (1998) Clinical review 93: autoimmune polyglandular syndrome type 1. J Clin Endocrinol Metab 83: 10491055.Google Scholar
Zlotogora, J, Shapiro, MS (1992) Polyglandular autoimmune syndrome type I among Iranian Jews. J Med Genet 29: 824826.Google Scholar
Dittmar, M, Kahaly, GJ (2003) Polyglandular autoimmune syndromes: immunogenetics and long-term follow-up. J Clin Endocrinol Metab 88: 29832992.Google Scholar
Lankisch, TO, Jaeckel, E, Strassburg, CP (2009) The autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy or autoimmune polyglandular syndrome type 1. Semin Liver Dis 29: 307314.Google Scholar
Nagamine, K, Peterson, P, Scott, HS, et al. (1997) Positional cloning of the APECED gene. Nat Genet 17: 393398.Google Scholar
Venanzi, ES, Melamed, R, Mathis, D, Benoist, C (2008) The variable immunological self: genetic variation and nongenetic noise in Aire-regulated transcription. Proc Natl Acad Sci USA 105: 1586015865.Google Scholar
Perheentupa, J (2006) Autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy. J Clin Endocrinol Metab 91: 28432850.Google Scholar
Scott, HS, Heino, M, Peterson, P, et al. (1998) Common mutations in autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy patients of different origins. Mol Endocrinol 12: 11121119.Google Scholar
Zumer, K, Saksela, K, Peterlin, BM (2013) The mechanism of tissue-restricted antigen gene expression by AIRE. J Immunol 190: 24792482.Google Scholar
Gallo, V, Giardino, G, Capalbo, D, et al. (2013) Alterations of the autoimmune regulator transcription factor and failure of central tolerance: APECED as a model. Expert Rev Clin Immunol 9: 4351.Google Scholar
Akirav, EM, Ruddle, NH, Herold, KC (2011) The role of AIRE in human autoimmune disease. Nat Rev Endocrinol 7: 2533.Google Scholar
Halonen, M, Eskelin, P, Myhre, AG, et al. (2002) AIRE mutations and human leukocyte antigen genotypes as determinants of the autoimmune polyendocrinopathy–candidiasis–ectodermal dystrophy phenotype. J Clin Endocrinol Metab 87: 25682574.Google Scholar
Ten, S, New, M, Maclaren, N (2001) Clinical review 130: Addison's disease 2001. J Clin Endocrinol Metab 86: 29092922.Google Scholar
Betterle, C, Lazzarotto, F, Presotto, F (2004) Autoimmune polyglandular syndrome type 2: the tip of an iceberg? Clin Exp Immunol 137: 225233.Google Scholar
Wolff, AS, Erichsen, MM, Meager, A, et al. (2007) Autoimmune polyendocrine syndrome type 1 in Norway: phenotypic variation, autoantibodies, and novel mutations in the autoimmune regulator gene. J Clin Endocrinol Metab 92: 595603.Google Scholar
Kahaly, GJ (2012) Polyglandular autoimmune syndrome type II. Presse Med 41: e663e670.Google Scholar
Robles, DT, Fain, PR, Gottlieb, PA, Eisenbarth, GS (2002) The genetics of autoimmune polyendocrine syndrome type II. Endocrinol Metab Clin North Am 31: 353368, vi–vii.Google Scholar
Dittmar, M, Libich, C, Brenzel, T, Kahaly, GJ (2011) Increased familial clustering of autoimmune thyroid diseases. Horm Metab Res 43: 200204.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×