Skip to main content Accessibility help
×
Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-02T14:29:30.991Z Has data issue: false hasContentIssue false

Chapter 12 - The pituitary gland

from Section III - Anatomical endocrine pathology

Published online by Cambridge University Press:  13 April 2017

Ozgur Mete
Affiliation:
University of Toronto
Sylvia L. Asa
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Endocrine Pathology , pp. 315 - 397
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ferrand, R, Pearse, AGE, Polak, JM, Le Douarin, NM. Immunohistochemical studies on the development of avian embryo pituitary corticotrophs under normal and experimental conditions. Histochemistry 1974;38:133141.Google Scholar
Takor Takor, T, Pearse, AGE. Neuroectodermal origin of avian hypothalamohypophysial complex: the role of the ventral neural ridge. J Embryol Exp Morphol 1975;34:311325.Google Scholar
Asa, SL, Kovacs, K. Functional morphology of the human fetal pituitary. Pathology Annual 1984;19:275315.Google Scholar
Boyd, JD. Observations of the human pharyngeal hypophysis. J Endocrinol 1956;14:6677.Google Scholar
Melchionna, RH, Moore, RA. The pharyngeal pituitary gland. Am J Pathol 1938;14:763771.Google Scholar
Hori, A. Suprasellar peri-infundibular ectopic adenohypophysis in fetal and adult brains. J Neurosurg 1985;62:113115.Google Scholar
Lloyd, RV, Chandler, WF, Kovacs, K, Ryan, N. Ectopic pituitary adenomas with normal anterior pituitary glands. Am J Surg Pathol 1986;108:546552.CrossRefGoogle Scholar
Coire, CI, Horvath, E, Kovacs, K, Smyth, HS, Ezzat, S. Cushing’s syndrome from an ectopic pituitary adenoma with peliosis: A histological, immunohistochemical and ultrastructural study and review of the literature. Endocr Pathol 1997;8:6574.CrossRefGoogle ScholarPubMed
Colohan, ART, Grady, MS, Bonnin, JM, Thorner, MO, Kovacs, K, Jane, JA. Ectopic pituitary gland simulating a suprasellar tumor. Neurosurgery 1987;20:4348.Google Scholar
Schochet, SS Jr., McCormick, WF, Halmi, NS. Salivary gland rests in the human pituitary. Light and electron microscopical study. Arch Pathol 1974;98:193200.Google Scholar
Kato, T, Aida, T, Abe, H, et al. Ectopic salivary gland within the pituitary gland. Case report. Neurol Med Chir 1988;28:930933.Google Scholar
Asa, SL, Ezzat, S. The cytogenesis and pathogenesis of pituitary adenomas. Endocr Rev 1998;19:798827.Google ScholarPubMed
Asa, SL, Ezzat, S. Molecular determinants of pituitary cytodifferentiation. Pituitary 1999;1:159168.Google Scholar
Scully, KM, Rosenfeld, MG. Pituitary development: regulatory codes in mammalian organogenesis. Science 2002;295:22312235.CrossRefGoogle ScholarPubMed
Sheng, HZ, Moriyama, K, Yamashita, T, et al. Multistep control of pituitary organogenesis. Science 1997;278:18091812.CrossRefGoogle ScholarPubMed
Sornson, MW, Wu, W, Dasen, JS, et al. Pituitary lineage determination by the Prophet of Pit-1 homeodomain factor defective in Ames dwarfism. Nature 1996;384:327333.CrossRefGoogle ScholarPubMed
Ehrlich, RM. Ectopic and hypoplastic pituitary with adrenal hypoplasia. J Pediatr 1957;51:377384.Google Scholar
Moncrieff, MW, Hill, DS, Archer, J, Arthur, LJH. Congenital absence of pituitary gland and adrenal hypoplasia. Arch Dis Child 1972;47:136137.Google Scholar
Kauschansky, A, Genel, M, Walker Smith, GJ. Congenital hypopituitarism in female infants. Its association with hypoglycemia and hypothyroidism. Am J Dis Child 1979;133:165169.CrossRefGoogle ScholarPubMed
Kosaki, K, Matsuo, N, Tamai, S, Miyama, S, Momoshima, S. Isolated aplasia of the anterior pituitary as a cause of congenital panhypopituitarism. Horm Res 1991;35:226228.Google Scholar
Pholsena, M, Young, J, Couzinet, B, Schaison, G. Primary adrenal and thyroid insufficiencies associated with hypopituitarism: A diagnostic challenge. Clin Endocrinol (Oxf) 1994;40:693695.Google Scholar
Dorsett, D, Krantz, ID. On the molecular etiology of Cornelia de Lange syndrome. Ann N Y Acad Sci 2009;1151:2237.CrossRefGoogle ScholarPubMed
Fujita, K, Matsuo, N, Mori, O, et al. The association of hypopituitarism with small pituitary, invisible stalk, type 1 Arnold–Chiari malformation, and syringomyelia in several patients born in breech position: a further proof of birth injury theory on the pathogenesis of “idiopathic hypopituitarism.” Eur J Pediatr 1992;151:266270.Google Scholar
Dattani, MT, Martinez-Barbera, JP, Thomas, PQ, et al. Mutations in the homeobox gene HESX1/Hesx1 associated with septo-optic dysplasia in human and mouse. Nat Genet 1998;19:125133.Google Scholar
Kelberman, D, Rizzoti, K, Avilion, A, et al. Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo–pituitary–gonadal axis in mice and humans. J Clin Invest 2006;116:24422455.Google ScholarPubMed
Priesel, A. Uber die dystopie der neurohyophyse. Virchows Arch Pathol Anat Physiol Klin Med 1927;266:407415.Google Scholar
Roessmann, U. Duplication of the pituitary gland and spinal cord. Arch Pathol Lab Med 1985;109:518520.Google Scholar
Netchine, I, Sobrier, ML, Krude, H, et al. Mutations in LHX3 result in a new syndrome revealed by combined pituitary hormone deficiency. Nat Genet 2000;25:182186.Google Scholar
Dattani, MT. The candidate gene approach to the diagnosis of monogenic disorders. Horm Res 2009;71(suppl 2):1421.Google Scholar
Machinis, K, Pantel, J, Netchine, I, et al. Syndromic short stature in patients with a germline mutation in the LIM homeobox LHX4. Am J Hum Genet 2001;69:961968.Google Scholar
Pfäffle, RW, Hunter, CS, Savage, JJ, et al. Three novel missense mutations within the LHX4 gene are associated with variable pituitary hormone deficiencies. J Clin Endocrinol Metab 2008;93:10621071.Google Scholar
Wu, W, Cogan, JD, Pfäffle, RW, et al. Mutations in PROP1 cause familial combined pituitary hormone deficiency. Nat Genet 1998;18:147149.Google Scholar
Fofanova, O, Takmura, N, Kinoshita, E, et al. Compound heterozygous deletion of the PROP-1 gene in children with combined pituitary hormone deficiency. J Clin Endocrinol Metab 1998;83:26012604.Google Scholar
Tatsumi, K, Miyai, K, Notomi, T, et al. Cretinism with combined hormone deficiency caused by a mutation in the Pit-1 gene. Nat Genet 1992;1:5658.CrossRefGoogle Scholar
Pfäffle, RW, DiMattia, GE, Parks, JS, et al. Mutation of the POU-specific domain of Pit-1 and hypopituitarism without pituitary hypoplasia. Science 1992;257:11181121.Google Scholar
Radovick, S, Nations, M, Du, Y, Berg, LA, Weintraub, BD, Wondisford, FE. A mutation in the POU-homeodomain of Pit-1 responsible for combined pituitary hormone deficiency. Science 1992;257:11151118.Google Scholar
Li, S, Crenshaw, EB, III, Rawson, EJ, Simmons, DM, Swanson, LW, Rosenfeld, MG. Dwarf locus mutants lacking three pituitary cell types result from mutations in the POU-domain gene Pit-1. Nature 1990;347:528533.Google Scholar
Celli, G, LaRochelle, WJ, Mackem, S, Sharp, R, Merlino, G. Soluble dominant-negative receptor uncovers essential roles for fibroblast growth factors in multi-organ induction and patterning. EMBO J 1998;17:16421655.Google Scholar
Roh, M, Paterson, AJ, Asa, SL, Chin, E, Kudlow, JE. Stage-sensitive blockade of pituitary somatomammotrope development by targeted expression of a dominant negative epidermal growth factor receptor in transgenic mice. Mol Endocrinol 2001;15:600613.Google Scholar
Raetzman, LT, Cai, JX, Camper, SA. Hes1 is required for pituitary growth and melanotrope specification. Dev Biol 2007;304:455466.Google Scholar
Ezzat, S, Mader, R, Yu, S, Ning, T, Poussier, P, Asa, SL. Ikaros integrates endocrine and immune system development. J Clin Invest 2005;115:10211029.CrossRefGoogle ScholarPubMed
Ezzat, S, Mader, R, Fischer, S, Yu, S, Ackerley, C, Asa, SL. An essential role for the hematopoietic transcription factor Ikaros in hypothalamic–pituitary–mediated somatic growth. Proc Natl Acad Sci USA 2006;103:22142219.Google Scholar
Pilavdzic, D, Kovacs, K, Asa, SL. Pituitary morphology in anencephalic human fetuses. Neuroendocrinology 1997;65:164172.Google Scholar
Elster, AD. Modern imaging of the pituitary. Radiology 1993;187:114.CrossRefGoogle ScholarPubMed
Lurie, SN, Doraiswamy, PM, Husain, MM, et al. In vivo assessment of pituitary gland volume with magnetic resonance imaging: the effect of age. J Clin Endocrinol Metab 1990;71:505508.Google Scholar
Bergland, RM, Ray, BS, Torack, RM. Anatomical variations in the pituitary gland and adjacent structures in 225 human autopsy cases. J Neurosurg 1968;28:9399.Google Scholar
Elster, AD, Sanders, TG, Vines, FS. Size and shape of the pituitary gland during pregnancy and post partum: measurement with MR imaging. Radiology 1991;181:531535.Google Scholar
Asa, SL, Penz, G, Kovacs, K, Ezrin, C. Prolactin cells in the human pituitary. A quantitative immunocytochemical analysis. Arch Pathol Lab Med 1982;106:360363.Google Scholar
Jordan, RM, Kendall, JW, Kerber, CW. The primary empty sella syndrome. Analysis of the clinical characteristics, radiographic features, pituitary function and cerebrospinal fluid adenohypophysial hormone concentrations. Am J Med 1977;62:569580.CrossRefGoogle ScholarPubMed
Bergeron, C, Kovacs, K, Bilbao, JM. Primary empty sella. A histologic and immunocytologic study. Arch Intern Med 1979;139:248249.CrossRefGoogle ScholarPubMed
Gharib, H, Frey, HM, Laws, ER Jr., Randall, RV, Scheithauer, BW. Coexistent primary empty sella syndrome and hyperprolactinemia. Report of 11 cases. Arch Intern Med 1983;143:13831386.CrossRefGoogle ScholarPubMed
Asa, SL, Kovacs, K, Bilbao, JM. The pars tuberalis of the human pituitary. A histologic, immunohistochemical, ultrastructural and immunoelectron microscopic analysis. Virchows Arch A Pathol Anat Histopathol 1983;399:4959.CrossRefGoogle ScholarPubMed
Wislocki, GB. The vascular supply of the hypophysis cerebri of the rhesus monkey and man. Res Publ Assoc Nerv Ment Dis 1938;17:4868.Google Scholar
Stanfield, JP. The blood supply of the human pituitary gland. J Anat 1960;94:257273.Google Scholar
Sheehan, HL, Davis, JC. Pituitary necrosis. Br Med Bull 1968;24:5970.Google Scholar
Daniel, PM, Prichard, MML. Observations on the vascular anatomy of the pituitary gland and its importance in pituitary function. Am Heart J 1966;72:147152.Google Scholar
Bergland, RM, Page, RB. Can the pituitary secrete directly to the brain? Affirmative anatomical evidence. Endocrinology 1978;102:13251338.Google Scholar
Bergland, RM, Page, RB. Pituitary–brain vascular relations: a new paradigm. Science 1979;204:1824.CrossRefGoogle ScholarPubMed
Gorczyca, W, Hardy, J. Arterial supply of the human anterior pituitary gland. Neurosurgery 1987;20:368369.Google Scholar
Rosenfeld, MG. POU-domain transcription factors: pou-er-ful developmental regulators. Genes Dev 1991;5:897907.Google Scholar
Steinfelder, HJ, Radovick, S, Wondisford, FE. Hormonal regulation of the thyrotropin b-subunit gene by phosphorylation of the pituitary–specific transcription factor Pit-1. Proc Natl Acad Sci USA 1992;89:59425945.Google Scholar
Asa, SL, Puy, LA, Lew, AM, Sundmark, VC, Elsholtz, HP. Cell type-specific expression of the pituitary transcription activator Pit-1 in the human pituitary and pituitary adenomas. J Clin Endocrinol Metab 1993;77:12751280.Google Scholar
Friend, KE, Chiou, Y-K, Laws, ER Jr., Lopes, MBS, Shupnik, MA. Pit-1 messenger ribonucleic acid is differentially expressed in human pituitary adenomas. J Clin Endocrinol Metab 1993;77:12811286.Google Scholar
Pellegrini, I, Barlier, A, Gunz, G, et al. Pit-1 gene expression in the human pituitary and pituitary adenomas. J Clin Endocrinol Metab 1994;79:189196.Google Scholar
Zafar, M, Ezzat, S, Ramyar, L, Pan, N, Smyth, HS, Asa, SL. Cell-specific expression of estrogen receptor in the human pituitary and its adenomas. J Clin Endocrinol Metab 1995;80:36213627.Google Scholar
Friend, KE, Chiou, YK, Lopes, MBS, Laws, ER Jr., Hughes, KM, Shupnik, MA. Estrogen receptor expression in human pituitary: correlation with immunohistochemistry in normal tissue, and immunohistochemistry and morphology in macroadenomas. J Clin Endocrinol Metab 1994;78:14971504.Google Scholar
Chaidarun, SS, Klibanski, A, Alexander, JM. Tumor-specific expression of alternatively spliced estrogen receptor messenger ribonucleic acid variants in human pituitary adenomas. J Clin Endocrinol Metab 1997;82:10581065.Google ScholarPubMed
Day, RN, Koike, S, Sakai, M, Muramatsu, M, Maurer, RA. Both Pit-1 and the estrogen receptor are required for estrogen responsiveness of the rat prolactin gene. Mol Endocrinol 1990;4:19641971.CrossRefGoogle ScholarPubMed
Drolet, DW, Scully, KM, Simmons, DM, et al. TEF, a transcription factor expressed specifically in the anterior pituitary during embryogenesis defines a new class of leucine zipper proteins. Genes Dev 1991;5:17391753.Google Scholar
Dasen, JS, O’Connell, SM, Flynn, SE, et al. Reciprocal interactions of Pit1 and GATA2 mediate signaling gradient-induced determination of pituitary cell types. Cell 1999;97:587598.Google Scholar
Stefaneanu, L, Kovacs, K, Lloyd, RV, et al. Pituitary lactotrophs and somatotrophs in pregnancy: a correlative in situ hybridization and immunocytochemical study. Virchows Arch B Cell Pathol Incl Mol Pathol 1992;62:291296.Google Scholar
Horvath, E, Lloyd, RV, Kovacs, K. Propylthiouracyl-induced hypothyroidism results in reversible transdifferentiation of somatotrophs into thyroidectomy cells. A morphologic study of the rat pituitary including immunoelectron microscopy. Lab Invest 1990;63:511520.Google Scholar
Lamolet, B, Pulichino, AM, Lamonerie, T, et al. A pituitary cell-restricted T box factor, Tpit, activates POMC transcription in cooperation with Pitx homeoproteins. Cell 2001;104:849859.Google Scholar
Pulichino, AM, Vallette-Kasic, S, Couture, C, et al. Human and mouse TPIT gene mutations cause early onset pituitary ACTH deficiency. Genes Dev 2003;17:711716.Google Scholar
Lamonerie, T, Tremblay, JJ, Lanctot, C, Therrien, M, Gauthier, Y, Drouin, J. Ptx1, a bicoid-related homeo box transcription factor involved in transcription of the pro-opiomelanocortin gene. Genes Dev 1996;10:12841295.Google Scholar
Therrien, M, Drouin, J. Cell-specific helix-loop-helix factor required for pituitary expression of the pro-opiomelanocortin gene. Mol Cell Biol 1993;13:23422353.Google Scholar
Poulin, G, Turgeon, B, Drouin, J. NeuroD1/beta2 contributes to cell-specific transcription of the proopiomelanocortin gene. Mol Cell Biol 1997;17:66736682.Google Scholar
Lala, DS, Rice, DA, Parker, KL. Steroidogenic factor I, a key regulator of steroidogenic enzyme expression, is the mouse homolog of fushi tarazu-factor I. Mol Endocrinol 1992;6:12491258.Google Scholar
Honda, S-I, Morohashi, K-I, Nomura, M, Takeya, H, Kitajima, M, Omura, T. Ad4BP regulating steroidogenic P-450 gene is a member of steroid hormone receptor superfamily. J Biol Chem 1993;268:74947502.Google Scholar
Luo, X, Ikeda, Y, Parker, KL. A cell-specific nuclear receptor is essential for adrenal and gonadal development and sexual differentiation. Cell 1994;77:481490.Google Scholar
Asa, SL, Bamberger, A-M, Cao, B, Wong, M, Parker, KL, Ezzat, S. The transcription activator steroidogenic factor-1 is preferentially expressed in the human pituitary gonadotroph. J Clin Endocrinol Metab 1996;81:21652170.Google Scholar
Asa, SL, Ryan, N, Kovacs, K, Singer, W, Marangos, PJ. Immunohistochemical localization of neuron-specific enolase in the human hypophysis and pituitary adenomas. Arch Pathol Lab Med 1984;108:4043.Google Scholar
Stefaneanu, L, Ryan, N, Kovacs, K. Immunocytochemical localization of synaptophysin in human hypophyses and pituitary adenomas. Arch Pathol Lab Med 1988;112:801804.Google Scholar
Lloyd, RV, Cano, M, Rosa, P, Hille, A, Huttner, WB. Distribution of chromogranin A and secretogranin I (chromogranin B) in neuroendocrine cells and tumors. Am J Pathol 1988;130:296304.Google Scholar
Trouillas, J, Guigard, MP, Fonlupt, P, Souchier, C, Girod, C. Mapping of corticotropic cells in the normal human pituitary. J Histochem Cytochem 1996;44:473479.Google Scholar
Smith, AI, Funder, JW. Proopiomelanocortin processing in the pituitary, central nervous system, and peripheral tissues. Endocr Rev 1988;9:159179.Google Scholar
Girod, C, Trouillas, J. Hypophyse: Embryologie, Anatomie et Histologie. Paris: Editions Scientifiques et Médicales, 1993.Google Scholar
Marcinkiewicz, M, Day, R, Seidah, NG, Chretien, M. Ontogeny of the prohormone convertases PC1 and PC2 in the mouse hypophysis and their colocalization with corticotropin and alpha-melanotropin. Proc Natl Acad Sci USA 1993;90:49224926.Google Scholar
Takumi, I, Steiner, DF, Sanno, N, Teramoto, A, Osamura, RY. Localization of prohormone convertases 1/3 and 2 in the human pituitary gland and pituitary adenomas: analysis by immunohistochemistry, immunoelectron microscopy, and laser scanning microscopy. Mod Pathol 1998;11:232238.Google Scholar
Neumann, PE, Horoupian, DS, Goldman, JE, Hess, MA. Cytoplasmic filaments of Crooke’s hyaline change belong to the cytokeratin class. An immunocytochemical and ultrastructural study. Am J Pathol 1984;116:214222.Google Scholar
Coons, SW, Estrada, SI, Gamez, R, White, WL. Cytokeratin CK7 and CK20 expression in pituitary adenomas. Endocr Pathol 2005;16:201210.Google Scholar
Eschbacher, JM, Coons, SW. Cytokeratin CK20 is a sensitive marker for Crooke’s cells and the early cytoskeletal changes associated with hypercortisolism within pituitary corticotrophs. Endocr Pathol 2006;17:365376.Google Scholar
Horvath, E, Ilse, G, Kovacs, K. Enigmatic bodies in human corticotroph cells. Acta Anat (Basel) 1977;98:427433.Google Scholar
Kovacs, K, Horvath, E, Ryan, N. Immunocytology of the human pituitary. In DeLellis, RA, ed. Diagnostic Immunohistochemistry. New York: Masson, 1981: 1735.Google Scholar
Asa, SL, Kovacs, K, Laszlo, FA, Domokos, I, Ezrin, C. Human fetal adenohypophysis. Histologic and immunocytochemical analysis. Neuroendocrinology 1986;43:308316.Google Scholar
Asa, SL, Kovacs, K, Horvath, E, et al. Human fetal adenohypophysis. Electron microscopic and ultrastructural immunocytochemical analysis. Neuroendocrinology 1988;48:423431.Google Scholar
Carey, RM, Varma, SK, Drake, CR Jr., et al. Ectopic secretion of corticotropin-releasing factor as a cause of Cushing’s syndrome. A clinical, morphologic, and biochemical study. N Engl J Med 1984;311:1320.Google Scholar
Asa, SL, Kovacs, K, Hammer, GD, Liu, B, Roos, BA, Low, MJ. Pituitary corticotroph hyperplasia in rats implanted with a medullary thyroid carcinoma cell line transfected with a corticotropin-releasing hormone complementary deoxyribonucleic acid expression vector. Endocrinology 1992;131:715720.Google Scholar
Siperstein, ER, Allison, VF. Fine structure of the cells responsible for secretion of adrenocorticotrophin in the adrenalectomized rat. Endocrinology 1965;76:7079.Google Scholar
Scheithauer, BW, Kovacs, K, Randall, RV. The pituitary gland in untreated Addison’s disease. A histologic and immunocytologic study of 18 adenohypophyses. Arch Pathol Lab Med 1983;107:484487.Google Scholar
Crooke, AC. A change in the basophil cells of the pituitary gland common to conditions which exhibit the syndrome attributed to basophil adenoma. J Pathol Bacteriol 1935;41:339349.Google Scholar
Horvath, E, Kovacs, K. Fine structural cytology of the adenohypophysis in rat and man. J Electron Microsc Tech 1988;8:401432.Google Scholar
Baker, BL, Dermody, WC, Reell, JR. Localization of luteinizing hormone-releasing hormone in the mammalian hypothalamus. Am J Anat 1974;139:129134.Google Scholar
Yang, H-J, Ozawa, H, Kurosumi, K. Ultrastructural changes in growth hormone cells in the rat anterior pituitary after thyroidectomy as studied by immunoelectron microscopy and enzyme histochemistry. J Clin Electr Microsc 1989;22:269283.Google Scholar
Scheithauer, BW, Sano, T, Kovacs, KT, Young, WF Jr., Ryan, N, Randall, RV. The pituitary gland in pregnancy: a clinicopathologic and immunohistochemical study of 69 cases. Mayo Clin Proc 1990;65:461474.Google Scholar
Serri, O, Chik, CL, Ur, E, Ezzat, S. Diagnosis and management of hyperprolactinemia. CMAJ 2003;169:575581.Google Scholar
Scheithauer, BW, Kovacs, K, Randall, RV, Ryan, N. Effects of estrogen on the human pituitary: a clinicopathologic study. Mayo Clin Proc 1989;64:10771084.Google Scholar
Frawley, LS, Boockfor, FR. Mammosomatotropes: presence and functions in normal and neoplastic pituitary tissue. Endocr Rev 1991;12:337355.Google Scholar
Losinski, NE, Horvath, E, Kovacs, K, Asa, SL. Immunoelectron microscopic evidence of mammosomatotrophs in human adult and fetal adenohypophyses, rat adenohypophyses and human and rat pituitary adenomas. Anat Anz 1991;172:1116.Google Scholar
Lloyd, RV, Anagnostou, D, Cano, M, Barkan, AL, Chandler, WF. Analysis of mammosomatotropic cells in normal and neoplastic human pituitary tissues by the reverse hemolytic plaque assay and immunocytochemistry. J Clin Endocrinol Metab 1988;66:11031110.Google Scholar
Scheithauer, BW, Kovacs, K, Randall, RV, Ryan, N. Pituitary gland in hypothyroidism. Histologic and immunocytologic study. Arch Pathol Lab Med 1985;109:499504.Google Scholar
Horvath, E, Kovacs, K. The adenohypophysis. In Kovacs, K, Asa, SL, eds. Functional Endocrine Pathology. Boston, MA: Blackwell Scientific, 1991:245281.Google Scholar
Kovacs, K, Sheehan, HL. Pituitary changes in Kallman’s syndrome: a histologic, immunocytologic, ultrastructural, and immunoelectronmicroscopic study. Fertil Steril 1982;37:8389.Google Scholar
Horvath, E, Kovacs, K, Penz, G, Ezrin, C. Origin, possible function and fate of “follicular cells” in the anterior lobe of the human pituitary. Am J Pathol 1974;77:199212.Google Scholar
Yamashita, M, Qian, ZR, Sano, T, Horvath, E, Kovacs, K. Immunohistochemical study on so-called follicular cells and folliculostellate cells in the human adenohypophysis. Pathol Int 2005;55:244247.Google Scholar
Höfler, H, Walter, GF, Denk, H. Immunohistochemistry of folliculo-stellate cells in normal human adenophypophyses and in pituitary adenomas. Acta Neuropathol (Berl) 1984;65:3540.CrossRefGoogle Scholar
Girod, C, Trouillas, J, Dubois, MP. Immunocytochemical localization of S100 protein in stellate cells (folliculo-stellate cells) of the anterior lobe of the normal human pituitary. Cell Tissue Res 1985;241:505511.Google Scholar
Coates, PJ, Doniach, I. Development of folliculo-stellate cells in the human pituitary. Acta Endocrinol (Copenh) 1988;119:1620.Google Scholar
Lee, EB, Tihan, T, Scheithauer, BW, Zhang, PJ, Gonatas, NK. Thyroid transcription factor 1 expression in sellar tumors: a histogenetic marker? J Neuropathol Exp Neurol 2009;68:482488.Google Scholar
Vankelecom, H, Carmeliet, P, van Damme, J, Billiau, A, Denef, C. Production of interleukin-6 by folliculo-stellate cells of the anterior pituitary gland in a histiotypic cell aggregate culture system. Neuroendocrinology 1989;49:102106.Google Scholar
Ferrara, N, Schweigerer, L, Neufeld, G, Mitchell, R, Gospodarowicz, D. Pituitary follicular cells produce basic fibroblast growth factor. Proc Natl Acad Sci USA 1987;84:57735777.Google Scholar
Baes, M, Allaerts, W, Denef, C. Evidence for functional communication between folliculo-stellate cells and hormone-secreting cells in perifused anterior pituitary aggregates. Endocrinology 1987;120:685691.Google Scholar
Nishioka, H, Llena, JF, Hirano, A. Immunohistochemical study of folliculostellate cells in pituitary lesions. Endocr Pathol 1991;2:155160.Google Scholar
Lauriola, L, Cocchia, D, Sentinelli, S, Maggiano, N, Maira, G, Michetti, F. Immunohistochemical detection of folliculo-stellate cells in the human pituitary. Virchows Arch B Cell Pathol Incl Mol Pathol 1984;47:189197.Google Scholar
Marin, F, Kovacs, K, Stefaneanu, L, Horvath, E, Cheng, Z. S-100 protein immunopositivity in human nontumorous hypophyses and pituitary adenomas. Endocr Pathol 1992;3:2838.Google Scholar
Vankelecom, H, Chen, J. Pituitary stem cells: where do we stand? Mol Cell Endocrinol 2014;385:217.CrossRefGoogle ScholarPubMed
Kovacs, K, Horvath, E, Bilbao, JM. Oncocytes in the anterior lobe of the human pituitary gland. A light and electron microscopic study. Acta Neuropathol (Berl) 1974;27:4354.Google Scholar
Mete, O, Lopes, MB, Asa, SL. Spindle cell oncocytomas and granular cell tumors of the pituitary are variants of pituicytoma. Am J Surg Pathol 2013;37:16941699.Google Scholar
Kimura, S, Hara, Y, Pineau, T, et al. The T/ebp null mouse: thyroid-specific enhancer-binding protein is essential for the organogenesis of the thyroid, lung, ventral forebrain, and pituitary. Genes Dev 1996;10:6069.Google Scholar
Takuma, N, Sheng, HZ, Furuta, Y, et al. Formation of Rathke’s pouch requires dual induction from the diencephalon. Develop 1998;125:48354840.Google Scholar
Takei, Y, Seyama, S, Pearl, GS, Tindall, GT. Ultrastructural study of the human neurohypophysis. II. Cellular elements of neural parenchyma, the pituicytes. Cell Tissue Res 1980;205:273287.Google Scholar
Costello, RT. Subclinical adenoma of the pituitary gland. Am J Pathol 1936;12:205215.Google Scholar
Kovacs, K, Ryan, N, Horvath, E, Singer, W, Ezrin, C. Pituitary adenomas in old age. J Gerontol 1980;35:1622.Google Scholar
Burrow, GN, Wortzman, G, Rewcastle, NB, Holgate, RC, Kovacs, K. Microadenomas of the pituitary and abnormal sellar tomograms in an unselected autopsy series. N Engl J Med 1981;304:156158.Google Scholar
Parent, AD, Brown, B, Smith, EE. Incidental pituitary adenomas: a retrospective study. Surgery 1982;92:880883.Google Scholar
McComb, DJ, Ryan, N, Horvath, E, Kovacs, K. Subclinical adenomas of the human pituitary. New light on old problems. Arch Pathol Lab Med 1983;107:488491.Google Scholar
Adelman, LS, Post, KD. Intra-operative frozen section technique for pituitary adenomas. Am J Surg Pathol 1979;3:173175.Google Scholar
Velasco, ME, Sindely, SO, Roessmann, U. Reticulum stain for frozen-section diagnosis of pituitary adenomas. J Neurosurg 1977;46:548550.Google Scholar
McKeever, PE, Laverson, S, Oldfield, EH, Smith, BH, Gadille, D, Chandler, WF. Stromal and nuclear markers for rapid identification of pituitary adenomas at biopsy. Arch Pathol Lab Med 1985;109:509514.Google Scholar
Lang, H-D, Saeger, W, Lüdecke, DK, Muller, D. Rapid frozen section diagnosis of pituitary tumors. Endocr Pathol 1990;1:116122.Google Scholar
Lloyd, RV. Frozen sections in the diagnosis of pituitary lesions. In Lloyd, RV, ed. Surgical Pathology of the Pituitary Gland. Philadelphia, PA: WB Saunders, 1993:2224.Google Scholar
Adams, H, Graham, DI, Doyle, D. Brain Biopsy. The Smear Technique for Neurosurgical Biopsies. Philadelphia PA: Lippincott, 1981.Google Scholar
Marshall, LF, Adams, H, Doyle, D, Graham, DI. The histological accuracy of the smear technique for neurosurgical biopsies. J Neurosurg 1973;39:8288.Google Scholar
Martinez, A-J, Moossy, J. Cytological diagnosis of pituitary adenomas. J Neuropathol Exp Neurol 1983;412:307311.Google Scholar
Lüdecke, DK. Intraoperative measurement of adrenocorticotropic hormone in peripituitary blood in Cushing’s disease. Neurosurgery 1989;24:201205.Google Scholar
Stefaneanu, L, Kovacs, K. Light microscopic special stains and immunohistochemistry in the diagnosis of pituitary adenomas. In Lloyd, RV, ed. Surgical Pathology of the Pituitary Gland. Philadelphia, PA: WB Saunders, 1993: 3451.Google Scholar
Thorner, MO, Perryman, RL, Cronin, MJ, et al. Somatotroph hyperplasia: successful treatment of acromegaly by removal of a pancreatic islet tumor secreting a growth hormone-releasing factor. J Clin Invest 1982;70:965977.Google Scholar
Jarzembowski, J, Lloyd, R, McKeever, P. Type IV collagen immunostaining is a simple, reliable diagnostic tool for distinguishing between adenomatous and normal pituitary glands. Arch Pathol Lab Med 2007;131:931935.Google Scholar
Bilbao, JM, Horvath, E, Hudson, AR, Kovacs, K. Pituitary adenoma producing amyloid-like substance. Arch Pathol Lab Med 1975;99:411415.Google Scholar
Landolt, AM, Kleihues, P, Heitz, PU. Amyloid deposits in pituitary adenomas. Differentiation of two types. Arch Pathol Lab Med 1987;111:453458.Google Scholar
Bilbao, JM, Kovacs, K, Horvath, E, et al. Pituitary melanocorticotrophinoma with amyloid deposition. J Can Sci Neurol 1975;2:199202.Google Scholar
Mori, H, Mori, S, Saitoh, Y, Moriwaki, K, Iida, S, Matsumoto, K. Growth hormone-producing pituitary adenoma with crystal-like amyloid immunohistochemically positive for growth hormone. Cancer 1985;55:96102.Google Scholar
Voigt, C, Saeger, W, Gerigk, Ch, Lüdecke, DK. Amyloid in pituitary adenomas. Pathol Res Pract 1988;183:555557.Google Scholar
Giannattasio, G, Bassetti, M. Human pituitary adenomas. Recent advances in morphological studies. J Endocrinol Invest 1990;13:435454.Google Scholar
Labat-Moleur, F, Trouillas, J, Seret-Begue, D, Kujas, M, Delisle, M-B, Ronin, C. Evaluation of 29 monoclonal and polyclonal antibodies used in the diagnosis of pituitary adenomas. A collaborative study from pathologists of the Club Français de l’Hypophyse. Pathol Res Pract 1991;187:534538.Google Scholar
Al Shraim, M, Asa, SL. The 2004 World Health Organization classification of pituitary tumors: what is new? Acta Neuropathol 2006;111:17.Google Scholar
Mete, O, Asa, SL. Clinicopathological correlations in pituitary adenomas. Brain Pathol 2012;22:443453.Google Scholar
Nosé, V, Ezzat, S, Horvath, E, et al. Protocol for the examination of specimens from patients with primary pituitary tumors. Arch Pathol Lab Med 2011;135:640646.Google Scholar
Ciocca, DR, Puy, LA, Stati, AO. Identification of seven hormone-producing cell types in the human pharyngeal hypophysis. J Clin Endocrinol Metab 1985;60:212216.Google Scholar
Björklöf, K, Brundelet, PJ. Typus degenerativus amstelodamensis (Cornelia de Lange first syndrome). Congenital hypopituitarism due to a cyst of Rathke’s cleft? Acta Pediatr Scand 1965;54:275287.Google Scholar
Kelberman, D, Rizzoti, K, Lovell-Badge, R, Robinson, IC, Dattani, MT. Genetic regulation of pituitary gland development in human and mouse. Endocr Rev 2009;30:790829.Google Scholar
Alatzoglou, KS, Webb, EA, Le Tissier, P, Dattani, MT. Isolated growth hormone deficiency (GHD) in childhood and adolescence: recent advances. Endocr Rev 2014;35:376432.Google Scholar
Dode, C, Hardelin, JP. Clinical genetics of Kallmann syndrome. Ann Endocrinol (Paris) 2010;71:149157.Google Scholar
Fraietta, R, Zylberstejn, DS, Esteves, SC. Hypogonadotropic hypogonadism revisited. Clinics (Sao Paulo) 2013;68(suppl 1):8188.Google Scholar
Tubridy, N, Saunders, D, Thom, M, et al. Infundibulohypophysitis in a man presenting with diabetes insipidus and cavernous sinus involvement. J Neurol Neurosurg Psychiatry 2001;71:798801.Google Scholar
Cheung, CC, Ezzat, S, Smyth, HS, Asa, SL. The spectrum and significance of primary hypophysitis. J Clin Endocrinol Metab 2001;86:10481053.Google Scholar
Glauber, HS, Brown, BM. Pituitary macroadenoma associated with intrasellar abscess: a case report and review. Endocrinologist 1992;2:169172.Google Scholar
Berger, SA, Edberg, SC, David, G. Infectious disease in the sella turcica. Rev Infect Dis 1986;5:747755.Google Scholar
Sano, T, Kovacs, K, Scheithauer, BW, Rosenblum, MK, Petito, CK, Greco, CM. Pituitary pathology in acquired immunodeficiency syndrome. Arch Pathol Lab Med 1989;113:10661070.Google Scholar
Veseley, DL, Maldonodo, A, Levey, GS. Partial hypopituitarism and possible hypothalamic involvement in sarcoidosis. Report of a case and review of the literature. Am J Med 1977;62:425431.Google Scholar
Toth, M, Szabo, P, Racz, K, et al. Granulomatous hypophysitis associated with Takayasu’s disease. Clin Endocrinol 1996;45:499503.Google Scholar
Lohr, KM, Ryan, L.M., Toohill, RJ, Anderson, T. Anterior pituitary involvement in Wegener’s granulomatosis. J Rheumatol 1988;15:855861.Google Scholar
De Bruin, WI, van’t Verlaat, JW, Graamans, K, De Bruin, TWA. Sellar granulomatous mass in a pregnant woman with active Crohn’s disease. Neth J Med 1991;39:136141.Google Scholar
Albini, CH, MacGillvray, MHFJE, Woorhess, ML, Klein, DM. Triad of hypopituitarism, granulomatous hypophysitis, and ruptured Rathke’s cleft cyst. Neurosurg 1988;22:133136.Google Scholar
Cannavò, S, Romaon, C, Calbucci, F, Faglia, G. Granulomatous sarcoidotic lesion of hypothalamic–pituitary region associated with Rathke’s cleft cyst. J Enocrinol Invest 1997;20:7781.Google Scholar
Yoshioka, M, Yamakawa, N, Sarro, H, et al. Granulomatous hypophysitis with meningitis and hypopituitarism. Intern Med 1992;31:11471150.Google Scholar
Carpenter, KJ, Murtagh, RD, Lilienfeld, H, Weber, J, Murtagh, FR. Ipilimumab-induced hypophysitis: MR imaging findings. AJNR Am J Neuroradiol 2009;30:17511753.Google Scholar
Barnard, ZR, Walcott, BP, Kahle, KT, Nahed, BV, Coumans, JV. Hyponatremia associated with Ipilimumab-induced hypophysitis. Med Oncol 2012;29:374377.Google Scholar
Goudie, RB, Pinkerton, PH. Anterior hypophysitis and Hashimoto’s disease in a young woman. J Pathol Bacteriol 1962;83:584585.Google Scholar
Asa, SL, Bilbao, JM, Kovacs, K, Josse, RG, Kreines, K. Lymphocytic hypophysitis of pregnancy resulting in hypopituitarism: a distinct clinicopathologic entity. Ann Intern Med 1981;95:166171.Google Scholar
McCutcheon, IE, Oldfield, EH. Lymphocytic adenohypophysitis presenting as infertility. J Neurosurg 1991;74:821826.Google Scholar
Portocarrero, CJ, Robinson, AG, Taylor, AL, Klein, I. Lymphoid hypophysitis. An unusual cause of hyperprolactinemia and enlarged sella turcica. J Am Med Assoc 1981;246:18111812.Google Scholar
Hughes, JM, Ellsworth, CA, Harris, BS. Clinical case seminar: a 33-year-old woman with a pituitary mass and panhypopituitarism. J Clin Endocrinol Metab 1995;80:15211525.Google Scholar
Masana, Y, Ikeda, H, Fujimoto, Y, et al. Lymphocytic adenohypohysitis: case report. Neurol Med Chir 1990;30:853857.Google Scholar
Burke, CW, Moore, RA, Rees, LH, Bottazzo, GF, Mashiter, K, Bitensky, L. Isolated ACTH deficiency and TSH deficiency in the adult. J Royal Soc Med 1979;72:328335.Google Scholar
Richtsmeier, AJ, Henry, RA, Bloodworth, JMB Jr., Ehrlich, EN. Lymphoid hypophysitis with selective adrenocorticotropic hormone deficiency. Arch Intern Med 1980;140:12431245.Google Scholar
Roosens, B, Maes, E, van Steirteghem, A, Vanhaelst, L. Primary hypothyroidism associated with secondary adrenocortical insufficiency. J Endocrinol Invest 1982;5:251254.Google Scholar
Vandeput, Y, Orth, DN, Crabbe, J. Combined primary and secondary adrenocortical failure. Ann Endocrinol (Paris) 1982;43:277279.Google Scholar
Barkan, AL, Kelch, RP, Marshall, JC. Isolated gonadotrope failure in the polyglandular autoimmune syndrome. N Engl J Med 1985;312:15351540.Google Scholar
Jensen, MD, Handwerger, BS, Scheithauer, BW, Carpenter, PC, Mirakian, R, Banks, PM. Lymphocytic hypophysitis with isolated corticotropin deficiency. Ann Intern Med 1986;105:200203.Google Scholar
Sauter, NP, Toni, R, McLaughlin, CD, Dyess, EM, Kritzmanm, J, Lechan, RM. Isolated adrenocorticotropin deficiency associated with an autoantibody to corticotroph antigen that is not adrenocorticotropin or other proopiomelanocortin-derived peptides. J Clin Endocrinol Metab 1990;70:13911397.Google Scholar
Escobar-Morreale, H, Serrano-Gotarredona, J, Varela, C. Isolated adrenocorticotropic hormone deficiency due to probable lymphocytic hypophysitis in a man. J Endocrinol Invest 1994;17:127131.Google Scholar
Thodou, E, Asa, SL, Kontogeorgos, G, Kovacs, K, Horvath, E, Ezzat, S. Lymphocytic hypophysitis: clinicopathological findings. J Clin Endocrinol Metab 1995;80:23022311.Google Scholar
Imura, H, Nakao, K, Shimatsu, A, et al. Lymphocytic infundibuloneurohypophysitis as a cause of central diabetes insipidus. N Engl J Med 1993;329:683689.Google Scholar
Abe, T, Matsumoto, K, Sanno, N, Osamura, Y. Lymphocytic hypophysitis: case report. Neurosurgery 1995;36:10161019.Google Scholar
Ludwig, H, Schernthaner, G. Multiorganspezifische Autoimmunität bei idiopathischer Nebennierenrindeninsuffizienz. Wein Klin Wochenschr 1978;90:736741.Google Scholar
Mayfield, RK, Levine, JH, Gordon, L, Powers, J, Galbraith, RM, Rawe, SE. Lymphoid adenohypophysitis presenting as a pituitary tumor. Am J Med 1980;69:619623.Google Scholar
Wild, RA, Kepley, M. Lymphocytic hypophysitis in a patient with amenorrhea and hyperprolactinemia. J Repro Med 1986;31:211216.Google Scholar
Ozawa, Y, Shishiba, Y. Recovery from lymphocytic hypophysitis associated with painless thyroiditis: clinical implications of circulating antipituitary antibodies. Acta Endocrinol (Copenh) 1993;128:493498.Google Scholar
Crock, PA. Cytosolic autoantigens in lymphocytic hypophysitis. J Clin Endocrinol Metab 1998;83:609618.Google Scholar
Crock, P, Salvi, M, Miller, A, Wall, J, Guyda, H. Detection of anti-pituitary autoantibodies by immunoblotting. J Immunol Methods 1993;162:3140.Google Scholar
Manetti, L, Lupi, I, Morselli, LL, et al. Prevalence and functional significance of antipituitary antibodies in patients with autoimmune and non-autoimmune thyroid diseases. J Clin Endocrinol Metab 2007;92:21762181.Google Scholar
Komatsu, M, Kondo, T, Yamauchi, K, et al. Antipituitary antibodies in patients with the primary empty sella syndrome. J Clin Endocrinol Metab 1988;67:633638.Google Scholar
Bottazzo, GF, McIntosh, C, Stanford, W, Preece, M. Growth hormone cell antibodies and partial growth hormone deficiency in a girl with Turner’s syndrome. Clin Endocrinol (Oxf) 1980;12:19.Google Scholar
Bensing, S, Kasperlik-Zaluska, AA, Czarnocka, B, Crock, PA, Hulting, A. Autoantibodies against pituitary proteins in patients with adrenocorticotropin-deficiency. Eur J Clin Invest 2005;35:126132.Google Scholar
Scherbaum, WA, Schrell, U, Glück, M, Fahlbusch, R, Pfeiffer, EF. Autoantibodies to pituitary corticotropin-producing cells: Possible marker for unfavourable outcome after pituitary microsurgery for Cushing’s disease. Lancet 1987;i:13941398.Google Scholar
Bottazzo, GF, Pouplard, A, Florin-Christensen, A, Doniach, D. Autoantibodies to prolactin-secreting cells of human pituitary. Lancet 1975;ii:97101.Google Scholar
O’Dwyer, DT, Smith, AI, Matthew, ML, et al. Identification of the 49-kDa autoantigen associated with lymphocytic hypophysitis as alpha-enolase. J Clin Endocrinol Metab 2002;87:752757.Google Scholar
O’Dwyer, DT, Clifton, V, Hall, A, Smith, R, Robinson, PJ, Crock, PA. Pituitary autoantibodies in lymphocytic hypophysitis target both gamma- and alpha-enolase: a link with pregnancy? Arch Physiol Biochem 2002;110:9498.Google Scholar
Guay, AT, Agnello, V, Tronic, BC, Gresham, DG, Freidberg, SR. Lymphocytic hypophysitis in a man. J Clin Endocrinol Metab 1987;64:631634.Google Scholar
Pestell, RG, Best, JD, Alford, FP. Lymphocytic hypophysitis. the clinical spectrum of the disorder and evidence for an autoimmune pathogenesis. Clin Endocrinol (Oxf) 1990;33:457466.Google Scholar
Supler, ML, Mickle, JP. Lymphocytic hypophysitis: report of a case in a man with cavernous sinus involvement. Surg Neurol 1992;37:472476.Google Scholar
Feigenbaum, SL, Martin, MC, Wilson, CB, Jaffe, RB. Lymphocytic adenohypophysitis: a pituitary mass lesion occurring in pregnancy. Proposal for medical treatment. Am J Obstet Gynecol 1991;164:15491555.Google Scholar
Meichner, RH, Riggio, S, Manz, HJ, Earll, JM. Lymphocytic adenohypophysitis causing pituitary mass. Neurology 1987;37:158161.Google Scholar
Miyamoto, M, Sugawa, H, Mori, T, Hashimoto, N, Imura, H. A case of hypopituitarism due to granulomatous and lymphocytic adenohypophysitis with minimal pituitary enlargement: a possible variant of lymphocytic adenohypophysitis. Endocrinol Jpn 1988;35:607616.Google Scholar
Peterson, P, Peltonen, L. Autoimmune polyendocrinopathy syndrome type 1 (APS1) and AIRE gene: new views on molecular basis of autoimmunity. J Autoimmun 2005;25(suppl:4955.Google Scholar
Bensing, S, Fetissov, SO, Mulder, J, et al. Pituitary autoantibodies in autoimmune polyendocrine syndrome type 1. Proc Natl Acad Sci USA 2007;104:949954.Google Scholar
Hasimoto, K, Takao, T, Makino, S. Lymphocytic andenohypophysitis and lymphocytic infundibuloneurohypophysitis. Endocr J 1997;44:110.Google Scholar
Kamel, N, Dagci Illgin, S, Corapicioglu, D, Deda, H, Gullu, S. Lymphocytic infundibuloneurohypophysitis presenting as diabetes insipidus in a man. J Endocrinol Invest 1998;21:537540.Google Scholar
Reusch, JE-B, Kleinschmidt-De Masters, BK, Lillehei, KO, Rappe, D, Gutierrez-Hartmann, A. Preoperative diagnosis of lymphocytic hypophysitis (adenohypophysitis) unresponsive to short course dexamethasone: case report. Neurosurgery 1992;30:268272.Google Scholar
Nishioka, H, Ito, H, Miki, T, Akada, K. A case of lymphocytic hypophysitis with massive fibrosis and the role of surgical intervention. Surg Neurol 1994;42:7478.Google Scholar
Mikami, T, Uozumi, T. Lymphocytic adenohypophysitis: MRI findings of a suspected cases. No Shinkei Geka 1989;176:871876.Google Scholar
Ikeda, H, Okudaira, Y. Spontaneous regression of pituitary mass in temporal association with pregnancy. Neuroradiology 1987;29:488492.Google Scholar
McGrail, KM, Beyerl, BD, Black, PM, Klibanski, A, Zervas, NT. Lymphocytic adenohypophysitis of pregnancy with complete recovery. Neurosurgery 1987;20:791793.Google Scholar
Ober, KP, Elster, A. Spontaneously resolving lymphocytic hypophysitis as a cause of postpartum diabetes insipidus. The Endocrinologist 1994;4:107111.Google Scholar
Bevan, JS, Othman, S, Lazarus, JH, Parkes, AB, Hall, R. Reversible adrenocorticotropin deficiency due to probable autoimmune hypophysitis in a woman with postpartum thyroiditis. J Clin Endocrinol Metab 1992;74:548552.Google Scholar
Ishihara, T, Nakatsu, S, Hino, M, et al. A case of pregnancy-induced lymphocytic adenophypophysitis complicated by postpartum painless thyroiditis. Nippon Naibunpi Gakkai Zasshi 1991;67:222229.Google Scholar
Bitton, RN, Slavin, M, Decker, RE, Zito, J, Schneider, BS. The course of lymphocytic hypophysitis. Surg Neurol 1991;36:4043.Google Scholar
Nussbaum, CE, Okawara, S-H, Jacobs, LS. Lymphocytic hypophysitis with involvement of the cavernous sinus and hypothalamus. Neurosurgery 1991;28:440444.Google Scholar
Stelmach, M, O’Day, J. Rapid change in visual fields associated with suprasellar lymphocytic hypophysitis. J Clin Neurol Ophthalmol 1991;11:1924.Google Scholar
Prasad, A, Madan, VS, Sethi, PK, Prasad, ML, Buxi, TBS, Kanwar, CK. Lymphocytic hypophysitis: can open exploration of the sella be avoided? Br J Neurosurg 1991;5:639642.Google Scholar
Quencer, RM. Lymphocytic adenohypophysitis: autoimmune disorder of the pituitary gland. AJNR Am J Neuroradiol 1980;1:343345.Google Scholar
Levine, SN, Benzel, EC, Fowler, MR, Shroyer, JVI, Mirfakhraee, M. Lymphocytic hypophysitis: clinical, radiological and magnetic resonance imaging characterization. Neurosurgery 1988;22:937941.Google Scholar
Mazzone, T, Kelly, W, Ensinck, J. Lymphocytic hypophysitis associated with antiparietal cell antibodies and vitamin B12 deficiency. Arch Intern Med 1983;143:17941795.Google Scholar
McConnon, JK, Smyth, HS, Horvath, E. A case of sparsely granulated growth hormone cell adenoma associated with lymphocytic hypophysitis. J Endocrinol Invest 1991;14:691696.Google Scholar
Miura, M, Ushio, Y, Kuratsu, J, Ikeda, J, Kai, Y, Yamashiro, S. Lymphocytic adenohypophysitis: report of two cases. Surg Neurol 1989;32:463470.Google Scholar
Rickards, AG, Harvey, PW. “Giant cell granuloma” and the other pituitary granulomata. Quarterly J Med 1954;23:425440.Google Scholar
Taylon, C, Duff, TA. Giant cell granuloma involving the pituitary gland. Case report. J Neurosurg 1980;52:584587.Google Scholar
Del Pozo, JM, Roda, JE, Montoya, JG, Iglesias, JR, Hurtado, A. Intrasellar granuloma. Case report. J Neurosurg 1980;53:717719.Google Scholar
Hassoun, P, Anayssi, E, Salti, I. A case of granulomatous hypophysitis with hypopituitarism and minimal pituitary enlargement. J Neurol Neurosurg Psychiatry 1985;48:949951.Google Scholar
Higuchi, M, Arita, N, Mori, S, Satoh, B, Mori, H, Hayakawa, T. Pituitary granuloma and chronic inflammation of hypophysis: clinical and immunohistochemical studies. Acta Neurochir (Wien) 1993;121:152158.Google Scholar
Scanarini, M, d’Ercole, AJ, Rotilio, A, Kitromilis, N, Mingrino, S. Giant-cell granulomatous hypophysitis: a distinct clinicopathological entity. J Neurosurg 1989;71:681686.Google Scholar
Oeckler, RCT, Bise, K. Non-specific granulomas of the pituitary: report of six cases treated surgically. Neurosurg Rev 1991;14:185190.Google Scholar
Holck, S, Laursen, H. Prolactinoma coexistent with granulomatous hypophysitis. Acta Neuropathol (Berl) 1983;61:253257.Google Scholar
Saeger, W, Hofmann, BM, Buslei, R, Buchfelder, M. Silent, ACTH cell adenoma in coincidence with granulomatous hypophysitis: a case report. Pathol Res Pract 2007;203:221225.Google Scholar
Murakami, M, Nishioka, H, Izawa, H, Ikeda, Y, Haraoka, J. Granulomatous hypophysitis associated with rathke’s cleft cyst: a case report. Minim Invasive Neurosurg 2008;51:169172.Google Scholar
Inoue, T, Kaneko, Y, Mannoji, H, Fukui, M. Giant cell granulomatous hypophysitis manifesting as an intrasellar mass with unilateral ophthalmoplegia. Neurol Med Chir (Tokyo) 1997;37:766770.Google Scholar
Vasile, M, Marsot-Dupuch, K, Kujas, M, et al. Idiopathic granulomatous hypophysitis: clinical and imaging features. Neuroradiology 1997;39:711.Google Scholar
Jastania, R, Nageeti, T, Kovacs, K, Ezzat, S, Asa, SL. Granulomatous hypophysitis with psammoma bodies: a diagnostic dilemma. Endocr Pathol 2004;15:359363.Google Scholar
Rossi, GP, Pavan, E, Chiesura-Corona, M, Rea, F, Poletti, A, Pessina, AC. Bronchocentric granulomatosis and central diabetes insipidus successfully treated with corticosteroids. Eur Resp J 1994;7:18931898.Google Scholar
Folkerth, RD, Price, DL, Schwartz, M, Black, PM, De Girolami, U. Xanthomatous hypophysitis. Am J Surg Pathol 1998;22:736741.Google Scholar
Deodhare, SS, Bilbao, JM, Kovacs, K, et al. Xanthomatous Hypophysitis: a novel entity of obscure etiology. Endocr Pathol 1999;10:237241.Google Scholar
Burt, MG, Morey, AL, Turner, JJ, Pell, M, Sheehy, JP, Ho, KK. Xanthomatous pituitary lesions: a report of two cases and review of the literature. Pituitary 2003;6:161168.Google Scholar
Tashiro, T, Sano, T, Xu, B, et al. Spectrum of different types of hypophysitis: a clinicopathologic study of hypophysitis in 31 cases. Endocr Pathol 2002;13:183195.Google Scholar
Gartman, JJ Jr., Powers, SK, Fortune, M. Pseudotumor of the sellar and parasellar areas. Neurosurgery 1989;24:896901.Google Scholar
Al Shraim, M, Syro, LV, Kovacs, K, Estrada, H, Uribe, H, Al Gahtany, M. Inflammatory pseudotumor of the pituitary: case report. Surg Neurol 2004;62:264267.Google Scholar
Wong, S, Lam, WY, Wong, WK, Lee, KC. Hypophysitis presented as inflammatory pseudotumor in immunoglobulin G4-related systemic disease. Hum Pathol 2007;38:17201723.CrossRefGoogle ScholarPubMed
Livadas, DP, Sofroniadou, K, Souvatzoglou, A, Boulanger, V, Siafaka, L, Koutras, DA. Pituitary and thyroid insufficiency in thalassaemic haemosiderosis. Clin Endocrinol 1979;20:435443.Google Scholar
Kletzky, OA, Costin, G, Marrs, RP, Bernstein, G, March, CM, Mishell, DR Jr. Gonadotropin insufficiency in patients with thalassemia major. J Clin Endocrinol Metab 1979;48:901905.Google Scholar
Yoshino, A, Katayama, Y, Watanabe, T, et al. Apoplexy accompanying pituitary adenoma as a complication of preoperative anterior pituitary function tests. Acta Neurochir (Wien) 2007;149:557565.Google Scholar
Nawar, RN, AbdelMannan, D, Selman, WR, Arafah, BM. Pituitary tumor apoplexy: a review. J Intens Care Med 2008;23:7590.Google Scholar
Keyaki, A, Hirano, A, Llena, JF. Asymptomatic and symptomatic Rathke’s cleft cysts. Neurol Med Chir 1989;29:8893.Google Scholar
Shin, JL, Asa, SL, Woodhouse, LJ, Smyth, HS, Ezzat, S. Cystic lesions of the pituitary: clinicopathological features distinguishing craniopharyngioma, Rathke’s cleft cyst, and arachnoid cyst. J Clin Endocrinol Metab 1999;84:39723982.Google Scholar
Steinberg, GK, Koenig, GH, Golden, JB. Symptomatic Rathke’s cleft cysts. Report of two cases. J Neurosurg 1982;56:290295.Google Scholar
Voelker, JL, Campbell, RL, Muller, J. Clinical, radiographic, and pathological features of symptomatic Rathke’s cleft cysts. J Neurosurg 1991;74:535544.Google Scholar
Le, BH, Towfighi, J, Kapadia, SB, Lopes, MB. Comparative immunohistochemical assessment of craniopharyngioma and related lesions. Endocr Pathol 2007;18:2330.Google Scholar
Barrow, DL, Spector, RH, Takei, Y, Tindall, GT. Symptomatic Rathke’s cleft cysts located entirely in the suprasellar region: review of diagnosis, management and pathogenesis. Neurosurgery 1985;16:766772.Google Scholar
Kepes, JJ. Transitional cell tumor of the pituitary gland developing from a Rathke’s cleft cyst. Cancer 1978;41:337343.Google Scholar
Nishio, S, Mizuno, J, Barrow, DL, Takei, Y, Tindall, GT. Pituitary tumors composed of adenohypophysial adenoma and Rathke’s cleft cyst elements: a clinicopathological study. Neurosurgery 1987;21:371377.Google Scholar
Nakasu, S, Nakasu, Y, Kyoshima, K, Watanabe, K, Handa, J, Okabe, H. Pituitary adenoma with multiple ciliated cysts: transitional cell tumor? Surg Neurol 1989;31:4148.Google Scholar
Obenchain, TG, Becker, DP. Abscess formation in a Rathke’s cleft cyst. Case report. J Neurosurg 1972;36:359362.Google Scholar
Meyer, FB, Carpenter, SM, Laws, ER Jr. Intrasellar arachnoid cysts. Surg Neurol 1987;28:105110.Google Scholar
Spaziante, R. Intrasellar arachnoid cysts. Surg Neurol 1988;30:412413.Google Scholar
Jones, RFC, Warnock, TH, Nayanar, V, Gupta, JM. Suprasellar arachnoid cysts: management by cyst wall resection. Neurosurgery 1989;25:554561.Google Scholar
Yamakawa, K, Shitara, N, Genka, S, Manaka, S, Takakura, K. Clinical course and surgical prognosis of 33 cases of intracranial epidermoid tumors. Neurosurgery 1989;24:568573.Google Scholar
Chhang, WH, Sharma, BS, Singh, K, Suri, S, Marwaha, RK, Kak, VK. A middle fossa arachnoid cyst in association with a suprasellar dermoid cyst. Indian J Pediatr 1989;26:833835.Google Scholar
Abramson, RC, Morawetz, RB, Schlitt, M. Multiple complications from an intracranial epidermoid cyst: case report and literature review. Neurosurgery 1989;24:574578.Google Scholar
Lewis, AJ, Cooper, PW, Kassel, EE, Schwartz, ML. Squamous cell carcinoma arising in a suprasellar epidermoid cyst. Case report. J Neurosurg 1983;59:538541.Google Scholar
Dussault, J, Plamondon, C, Volpe, R. Aneurysms of the internal carotid artery simulating pituitary tumours. CMAJ 1969;101:5156.Google Scholar
Seda, JL, Cukiert, A, Nogueira, KC, Huayllas, MK, Liberman, B. Intrasellar internal carotid aneurysm coexisting with GH-secreting pituitary adenoma in an acromegalic patient. Arq Neuropsiquiatr 2008;66:99100.Google Scholar
Soni, A, De Silva, SR, Allen, K, Byrne, JV, Cudlip, S, Wass, JA. A case of macroprolactinoma encasing an internal carotid artery aneurysm, presenting as pituitary apoplexy. Pituitary 2008;11:307311.Google Scholar
Torres, A, Dammers, R, Krisht, AF. Bilateral internal carotid artery aneurysm simulating pituitary apoplexy: case report. Neurosurgery 2009;65:E1202.Google Scholar
Durham, LH, Mackenzie, IJ, Miles, JB. Transphenoidal meningohydroencephalocoele. Br J Neurosurg 1988;2:407410.Google Scholar
Oka, H, Kameya, T, Sasano, H, et al. Pituitary choristoma composed of corticotrophs and adrenocortical cells in the sella turcica. Virchows Arch A Pathol Anat Histopathol 1996;427:613617.Google Scholar
Hampton, TA, Scheithauer, BW, Rojiani, AM, Kovacs, K, Horvath, E, Vogt, P. Salivary gland-like tumors of the sellar region. Am J Surg Pathol 1997;21:424434.Google Scholar
Gilcrease, MZ, Delgado, R, Albores-Saavedra, J. Intrasellar adenoid cystic carcinoma and papillary mucinous adenocarcinoma: two previously undescribed primary neoplasms at this site. Ann Diagn Pathol 1999;3:141147.Google Scholar
van Furth, W, Smyth, HS, Horvath, E, Kovacs, K, Salehi, F, Cusimano, MD. Salivary gland-like tumor of the sella. Can J Neurol Sci 2007;34:478482.Google Scholar
Mete, O, Ng, T, Christie-David, D, McMaster, J, Asa, SL. Silent corticotroph adenoma with adrenal cortical choristoma: a rare but distinct morphological entity. Endocr Pathol 2013;24:162166.Google Scholar
Shenker, Y, Lloyd, RV, Weatherbee, L, Port, FK, Grekin, RJ, Barkan, AL. Ectopic prolactinoma in a patient with hyperparathyroidism and abnormal sellar radiography. J Clin Endocrinol Metab 1986;62:10651069.Google Scholar
Weinstein, LS, Shenker, A, Gejman, PV, Merino, MJ, Friedman, E, Spiegel, AM. Activating mutations of the stimulatory G protein in the McCune–Albright syndrome. N Engl J Med 1991;325:16881695.Google Scholar
Kovacs, K, Horvath, E, Thorner, MO, Rogol, AD. Mammosomatotroph hyperplasia associated with acromegaly and hyperprolactinemia in a patient with the McCune–Albright syndrome. Virchows Arch A Pathol Anat Histopathol 1984;403:7786.Google Scholar
Ezzat, S, Asa, SL, Stefaneanu, L, et al. Somatotroph hyperplasia without pituitary adenoma associated with a long standing growth hormone-releasing hormone-producing bronchial carcinoid. J Clin Endocrinol Metab 1994;78:555560.Google Scholar
Barkan, AL, Shenker, Y, Grekin, RJ, Vale, WW, Lloyd, RV, Beals, TF. Acromegaly due to ectopic growth hormone (GH)-releasing hormone (GHRH) production: dynamic studies of GH and ectopic GHRH secretion. J Clin Endocrinol Metab 1986;63:10571064.Google Scholar
Khalil, A, Kovacs, K, Sima, AAF, Burrow, GN, Horvath, E. Pituitary thyrotroph hyperplasia mimicking prolactin-secreting adenoma. J Endocrinol Invest 1984;7:399404.Google Scholar
Chan, AW, MacFarlane, IA, Foy, PM, Miles, JB. Pituitary enlargement and hyperprolactinaemia due to primary hypothyroidism: errors and delays in diagnosis. Br J Neurosurg 1990;4:107112.Google Scholar
Saeger, W, Lüdecke, DK. Pituitary hyperplasia. Definition, light and electron microscopical structures and significance in surgical specimens. Virchows Arch A Pathol Anat Histopathol 1983;399:277287.Google Scholar
Thorner, MO, Frohman, LA, Leong, DA, et al. Extrahypothalamic growth hormone-releasing factor (GRF) secretion is a rare cause of acromegaly: plasma GRF levels in 177 acromegalic patients. J Clin Endocrinol Metab 1984;59:846849.Google Scholar
Moran, A, Asa, SL, Kovacs, K, et al. Gigantism due to pituitary mammosomatotroph hyperplasia. N Engl J Med 1990;323:322327.Google Scholar
McKeever, PE, Koppelman, MCS, Metcalf, D, et al. Refractory Cushing’s disease caused by multinodular ACTH-cell hyperplasia. J Neuropathol Exp Neurol 1982;41:490499.Google Scholar
McNicol, AM. Patterns of corticotropic cells in the adult human pituitary in Cushing’s disease. Diagn Histopathol 1981;4:335341.Google Scholar
Fjellestad-Paulsen, A, Abrahamsson, P-A, Bjartell, A, et al. Carcinoma of the prostate with Cushing’s syndrome. A case report with immunohistochemical and chemical demonstration of immunoreactive corticotropin-releasing hormone in plasma and tumor tissue. Acta Endocrinol (Copenh) 1988;119:506516.Google Scholar
Jessop, DS, Cunnah, D, Millar, JGB, et al. A phaeochromocytoma presenting with Cushing’s syndrome associated with increased concentrations of circulating corticotrophin-releasing factor. J Endocrinol 1987;113:133138.Google Scholar
Schteingart, DE, Lloyd, RV, Akil, H, et al. Cushing’s syndrome secondary to ectopic corticotropin-releasing hormone-adrenocorticotropin secretion. J Clin Endocrinol Metab 1986;63:770775.Google Scholar
Zárate, A, Kovacs, K, Flores, M, Morán, C, Félix, I. ACTH and CRF-producing bronchial carcinoid associated with Cushing’s syndrome. Clin Endocrinol (Oxf) 1986;24:523529.Google Scholar
Asa, SL, Kovacs, K, Vale, W, Petrusz, P, Vecsei, P. Immunohistologic localization of corticotrophin-releasing hormone in human tumors. Am J Clin Pathol 1987;87:327333.Google Scholar
Birkenhäger, JC, Upton, GV, Seldenrath, HJ, Kreiger, DT, Tashjian, AH Jr. Medullary thyroid carcinoma: ectopic production of peptides with ACTH-like, corticotrophin releasing factor-like and prolactin production-stimulating activities. Acta Endocrinol (Copenh) 1976;83:280292.Google Scholar
Asa, SL, Kovacs, K, Tindall, GT, Barrow, DL, Horvath, E, Vecsei, P. Cushing’s disease associated with an intrasellar gangliocytoma producing corticotrophin-releasing factor. Ann Intern Med 1984;101:789793.Google Scholar
Puchner, MJA, Lüdecke, DK, Valdueza, JM, et al. Cushing’s disease in a child caused by a corticotropin-releasing hormone-secreting intrasellar gangliocytoma associated with an adrenocorticotropic hormone-secreting pituitary adenoma. Neurosurgery 1993;33:920925.Google Scholar
Kubota, T, Hayashi, M, Kabuto, M, et al. Corticotroph cell hyperplasia in a patient with Addison disease: case report. Surg Neurol 1992;37:441447.Google Scholar
Zhou, J, Ruan, L, Li, H, Wang, Q, Zheng, F, Wu, F. Addison’s disease with pituitary hyperplasia: a case report and review of the literature. Endocrine 2009;35:285289.Google Scholar
Simpson, DJ, McNicol, AM, Murray, DC, et al. Molecular pathology shows p16 methylation in nonadenomatous pituitaries from patients with Cushing’s disease. Clin Cancer Res 2004;10:17801788.Google Scholar
Sano, T, Asa, SL, Kovacs, K. Growth hormone-releasing hormone-producing tumors: clinical, biochemical, and morphological manifestations. Endocr Rev 1988;9:357373.Google Scholar
Faglia, G, Arosio, M, Bazzoni, N. Ectopic acromegaly. Endocrinol Metab Clin North Am 1992;21:575595.Google Scholar
Othman, NH, Ezzat, S, Kovacs, K, et al. Growth hormone-releasing hormone (GHRH) and GHRH receptor (GHRH-R) isoform expression in ectopic acromegaly. Clin Endocrinol (Oxf) 2001;55:135140.Google Scholar
Doga, M, Bonadonna, S, Burattin, A, Giustina, A. Ectopic secretion of growth hormone-releasing hormone (GHRH) in neuroendocrine tumors: relevant clinical aspects. Ann Oncol 2001;12(suppl 2):S89S94.Google Scholar
Asa, SL, Scheithauer, BW, Bilbao, JM, et al. A case for hypothalamic acromegaly: a clinicopathological study of six patients with hypothalamic gangliocytomas producing growth hormone-releasing factor. J Clin Endocrinol Metab 1984;58:796803.Google Scholar
Billestrup, N, Swanson, LW, Vale, W. Growth hormone-releasing factor stimulates proliferation of somatotrophs in vitro. Proc Natl Acad Sci USA 1986;83:68546857.Google Scholar
Stefaneanu, L, Kovacs, K, Horvath, E, et al. Adenohypophysial changes in mice transgenic for human growth hormone-releasing factor: a histological, immunocytochemical, and electron microscopic investigation. Endocrinology 1989;125:27102718.Google Scholar
Mayo, KE, Hammer, RE, Swanson, LW, Brinster, RL, Rosenfeld, MG, Evans, RM. Dramatic pituitary hyperplasia in transgenic mice expressing a human growth hormone-releasing factor gene. Mol Endocrinol 1988;2:606612.Google Scholar
Nasr, C, Mason, A, Mayberg, M, Staugaitis, SM, Asa, SL. Acromegaly and somatotroph hyperplasia with adenomatous transformation due to pituitary metastasis of a growth hormone-releasing hormone-secreting pulmonary endocrine carcinoma. J Clin Endocrinol Metab 2006;91:47764780.Google Scholar
Asa, SL, Kovacs, K, Stefaneanu, L, et al. Pituitary adenomas in mice transgenic for growth hormone-releasing hormone. Endocrinology 1992;131:20832089.Google Scholar
Asa, SL, Kovacs, K, Stefaneanu, L, et al. Pituitary mammosomatotroph adenomas develop in old mice transgenic for growth hormone-releasing hormone. Proc Soc Exp Biol Med 1990;193:232235.Google Scholar
Zimmerman, D, Young, WF Jr., Ebersold, MJ, et al. Congenital gigantism due to growth hormone-releasing hormone excess and pituitary hyperplasia with adenomatous transformation. J Clin Endocrinol Metab 1993;76:216222.Google Scholar
Lloyd, RV. Estrogen-induced hyperplasia and neoplasia in the rat anterior pituitary gland. An immunohistochemical study. Am J Pathol 1983;113:198206.Google Scholar
Jay, V, Kovacs, K, Horvath, E, Lloyd, RV, Smyth, HS. Idiopathic prolactin cell hyperplasia of the pituitary mimicking prolactin cell adenoma: a morphological study including immunocytochemistry, electron microscopy, and in situ hybridization. Acta Neuropathol (Berl) 1991;82:147151.Google Scholar
Peillon, F, Dupuy, M, Li, JY, et al. Pituitary enlargement with suprasellar extension in functional hyperprolactinemia due to lactotroph hyperplasia: a pseudotumoral disease. J Clin Endocrinol Metab 1991;73:10081015.Google Scholar
Kelly, MA, Rubinstein, M, Asa, SL, et al. Pituitary lactotroph hyperplasia and chronic hyperprolactinemia in dopamine D2 receptor-deficient mice. Neuron 1997;19:103113.Google Scholar
Schuff, KG, Hentges, ST, Kelly, MA, et al. Lack of prolactin receptor signaling in mice results in lactotroph proliferation and prolactinomas by dopamine-dependent and-independent mechanisms. J Clin Invest 2002;110:973981.Google Scholar
Newey, PJ, Gorvin, CM, Cleland, SJ, et al. Mutant prolactin receptor and familial hyperprolactinemia. N Engl J Med 2013;369:20122020.Google Scholar
Grubb, MR, Chakeres, D, Malarkey, WB. Patients with primary hypothyroidism presenting as prolactinomas. Am J Med 1987;83:765769.Google Scholar
Atchison, JA, Lee, PA, Albright, AL. Reversible suprasellar pituitary mass secondary to hypothyroidism. J Am Med Assoc 1989;262:31753177.Google Scholar
Nicolis, G, Shimshi, M, Allen, C, Halmi, NS, Kourides, IA. Gonadotropin-producing pituitary adenoma in a man with long-standing primary hypogonadism. J Clin Endocrinol Metab 1988;66:237241.Google Scholar
Kovacs, K, Horvath, E, Rewcastle, NB, Ezrin, C. Gonadotroph cell adenoma of the pituitary in a woman with long-standing hypogonadism. Arch Gynecol 1980;229:5765.Google Scholar
Ezzat, S, Asa, SL, Couldwell, WT, et al. The prevalence of pituitary adenomas: a systematic review. Cancer 2004;101:613619.Google Scholar
Gold, EB. Epidemiology of pituitary adenomas. Epid Rev 1981;3:163183.Google Scholar
Scheithauer, BW. Surgical pathology of the pituitary: the adenomas. Part I. Pathol Annu 1984;19:317374.Google Scholar
Daly, AF, Rixhon, M, Adam, C, Dempegioti, A, Tichomirowa, MA, Beckers, A. High prevalence of pituitary adenomas: a cross-sectional study in the province of Liege, Belgium. J Clin Endocrinol Metab 2006;91:47694775.Google Scholar
Fernandez, A, Karavitaki, N, Wass, JA. Prevalence of pituitary adenomas: a community-based, cross-sectional study in Banbury (Oxfordshire, UK). Clin Endocrinol (Oxf) 2009.Google Scholar
Wilson, CB, Dempsey, LC. Transsphenoidal microsurgical removal of 250 pituitary adenomas. J Neurosurg 1978;48:1322.Google Scholar
Terada, T, Kovacs, K, Stefaneanu, L, Horvath, E. Incidence, pathology, and recurrence of pituitary adenomas: study of 647 unselected surgical cases. Endocr Pathol 1995;6:301310.Google Scholar
Klibanski, A, Zervas, NT. Diagnosis and management of hormone-secreting pituitary adenomas. N Engl J Med 1991;324:822831.Google Scholar
Kovacs, K, Horvath, E. Atlas of Tumor Pathology, 2nd Series, Fascicle 21: Tumors of the pituitary gland. Washington, DC: Armed Forces Institute of Pathology, 1986.Google Scholar
Feldkamp, J, Santen, R, Harms, E, Aulich, A, Modder, U, Scherbaum, WA. Incidentally discovered pituitary lesions: high frequency of macroadenomas and hormone-secreting adenomas: results of a prospective study. Clin Endocrinol (Oxf) 1999;51:109113.Google Scholar
Mindermann, T, Wilson, CB. Age-related and gender-related occurrence of pituitary adenomas. Clin Endocrinol (Oxf) 1994;41:359364.Google Scholar
Kane, LA, Leinung, MC, Scheithauer, BW, et al. Pituitary adenomas in childhood and adolescence. J Clin Endocrinol Metab 1994;79:11351140.Google Scholar
Mukai, K, Seljeskog, EL, Dehner, LP. Pituitary adenomas in patients under 20 years old. A clinicopathological study of 12 cases. J Neurooncol 1986;4:7989.Google Scholar
Jagannathan, J, Dumont, AS, Jane, JA Jr., Laws, ER Jr. Pediatric sellar tumors: diagnostic procedures and management. Neurosurg Focus 2005;18:E6.Google Scholar
Huang, C, Ezzat, S, Asa, SL, Hamilton, J. Dopaminergic resistant prolactinomas in the peripubertal population. J Pediatr Endocrinol Metab 2006;19:951953.Google Scholar
Kontogeorgos, G, Kovacs, K, Horvath, E, Scheithauer, BW. Multiple adenomas of the human pituitary. A retrospective autopsy study with clinical implications. J Neurosurg 1991;74:243247.Google Scholar
Kontogeorgos, G, Scheithauer, BW, Horvath, E, et al. Double adenomas of the pituitary: a clinicopathological study of 11 tumors. Neurosurgery 1992;31:840849.Google Scholar
Apel, RL, Wilson, RJ, Asa, SL. A composite somatotroph-corticotroph pituitary adenoma. Endocr Pathol 1994;5:240246.Google Scholar
Kim, K, Yamada, S, Usui, M, Sano, T. Preoperative identification of clearly separated double pituitary adenomas. Clin Endocrinol (Oxf) 2004;61:2630.Google Scholar
Jastania, RA, Alsaad, KO, Al Shraim, M, Kovacs, K, Asa, SL. Double adenomas of the pituitary: transcription factors Pit-1, T-pit, and SF-1 identify cytogenesis and differentiation. Endocr Pathol 2005;16:187194.Google Scholar
Thodou, E, Kontogeorgos, G, Horvath, E, Kovacs, K, Smyth, HS, Ezzat, S. Asynchronous pituitary adenomas with differing morphology. Arch Pathol Lab Med 1995;119:748750.Google Scholar
Booth, GL, Redelmeier, DA, Grosman, H, Kovacs, K, Smyth, HS, Ezzat, S. Improved diagnostic accuracy of inferior petrosal sinus sampling over imaging for localizing pituitary pathology in patients with Cushing’s disease. J Clin Endocrinol Metab 1998;83:22912295.Google Scholar
Rasmussen, P, Lindholm, J. Ectopic pituitary adenomas. Clin Endocrinol (Oxf) 1979;11:6974.Google Scholar
Slonim, SM, Haykal, HA, Cushing, GW, Freidberg, SR, Lee, AK. MRI appearances of an ectopic pituitary adenoma: case report and review of the literature. Neuroradiology 1993;35:546548.Google Scholar
Kikuchi, K, Kowada, M, Sasaki, J, Sageshima, M. Large pituitary adenoma of the sphenoid sinus and the nasopharynx: report of a case with ultrastructural evaluations. Surg Neurol 1994;42:330334.Google Scholar
Dyer, EH, Civit, T, Abecassis, J-P, Derome, PJ. Functioning ectopic supradiaphragmatic pituitary adenomas. Neurosurgery 1994;43:529532.Google Scholar
Anand, NK, Osborne, CM, Harkey, HLI. Infiltrative clival pituitary adenoma of ectopic origin. Head Neck Surg 1993;108:178183.Google Scholar
Lindboe, CF, Unsgard, G, Myhr, G, Scott, H. ACTH and TSH producing ectopic suprasellar pituitary adenoma of the hypothalamic region: case report. Clin Neuropathol 1993;12:138141.Google Scholar
Matsumura, A, Meguro, K, Doi, M, Tsurushima, H, Tomono, Y. Suprasellar ectopic pituitary adenoma: case report and review of the literature. Neurosurgery 1990;26:681685.Google Scholar
Kleinschmidt-De Masters, BK, Winston, KR, Rubinstein, D, Samuels, MH. Ectopic pituitary adenomas of the third ventricle. Case report. J Neurosurg 1990;72:139142.Google Scholar
Asa, SL. Atlas of Tumor Pathology, 4th Series, Fascicle 15: Tumors of the Pituitary Gland. Bethesda, MD: ARP Press, 2011.Google Scholar
Kovacs, K, Horvath, E, Ryan, N, Ezrin, C. Null cell adenoma of the human pituitary. Virchows Arch A Pathol Anat Histopathol 1980;387:165174.Google Scholar
DeLellis, RA, Lloyd, RV, Heitz, PU, Eng, C, eds. World Health Organization Classification of Tumours, Pathology and Genetics of Tumours of Endocrine Organs. Lyon: International Agency for Research on Cancer, 2004.Google Scholar
Amar, AP, Hinton, DR, Krieger, MD, Weiss, MH. Invasive pituitary adenomas: significance of proliferation parameters. Pituitary 1999;2:117122.Google Scholar
Hardy, J. Transsphenoidal surgery of hypersecreting pituitary tumors. In Kohler, PO, Ross, GT, eds. Diagnosis and Treatment of Pituitary Tumors. (Int. Congress Series No. 303). Amsterdam: Exerpta Medica, 1973:179198.Google Scholar
Scheithauer, BW, Kovacs, KT, Laws, ER Jr., Randall, RV. Pathology of invasive pituitary tumors with special reference to functional classification. J Neurosurg 1986;65:733744.Google Scholar
Selman, WR, Laws, ER Jr., Scheithauer, BW, Carpenter, SM. The occurrence of dural invasion in pituitary adenomas. J Neurosurg 1986;64:402407.Google Scholar
Mete, O, Ezzat, S, Asa, SL. Biomarkers of aggressive pituitary adenomas. J Mol Endocrinol 2012;49:6978.Google Scholar
van der Mey, AG, van Seters, AP, van Krieken, JH, Vielvoye, J, Van Dulken, H, Hulshof, JH. Large pituitary adenomas with extension into the nasopharynx. Report of three cases with a review of the literature. Ann Otol Rhinol Laryngol 1989;98:618624.Google Scholar
Wong, K, Raisanen, J, Taylor, SL, McDermott, MW, Wilson, CB, Gutin, PH. Pituitary adenoma as an unsuspected clival tumor. Am J Surg Pathol 1995;19:900903.Google Scholar
Horvath, E, Kovacs, K, Smyth, HS, et al. A novel type of pituitary adenoma: morphological feature and clinical correlations. J Clin Endocrinol Metab 1988;66:11111118.Google Scholar
Mete, O, Gomes‐Hernandez, K, Kucharczyk, W, et al. Silent subtype 3 pituitary adenomas are not always silent and represent poorly differentiated monomorphous, plurihormonal Pit‐1 lineage adenomas. Mod Pathol 2016; in press.Google Scholar
Fitzgibbons, PL, Appley, AJ, Turner, RR, et al. Flow cytometric analysis of pituitary tumors. Correlation of nuclear antigen p105 and DNA content with clinical behavior. Cancer 1988;62:15561560.Google Scholar
Landolt, AM, Shibata, T, Kleihues, P. Growth rate of human pituitary adenomas. J Neurosurg 1987;67:803806.Google Scholar
Knosp, E, Kitz, K, Perneczky, A. Proliferation activity in pituitary adenomas: measurement by monoclonal antibody Ki-67. Neurosurgery 1989;25:927930.Google Scholar
Thapar, K, Kovacs, K, Scheithauer, BW, et al. Proliferative activity and invasiveness among pituitary adenomas and carcinomas: an analysis using the MIB-1 antibody. Neurosurgery 1996;38:99107.Google Scholar
Hsu, DW, Hakim, F, Biller, BMK, et al. Significance of proliferating cell nuclear antigen index in predicting pituitary adenoma recurrence. J Neurosurg 1993;78:753761.Google Scholar
Gandour-Edwards, R, Kapadia, SB, Janecka, IP, Martinez, AJ, Barnes, L. Biologic markers of invasive pituitary adenomas involving the sphenoid sinus. Mod Pathol 1995;8:160164.Google Scholar
Takino, H, Herman, V, Weiss, M, Melmed, S. Purine-binding factor (NM23) gene expression in pituitary tumors: marker of adenoma invasiveness. J Clin Endocrinol Metab 1995;80:17331738.Google Scholar
Vidal, S, Kovacs, K, Horvath, E, et al. Topoisomerase IIalpha expression in pituitary adenomas and carcinomas: relationship to tumor behavior. Mod Pathol 2002;15:12051212.Google Scholar
Cushing, H. The basophil adenomas of the pituitary body and their clinical manifestations (pituitary basophilism). Bull Johns Hopkins Hosp 1932;50:137195.Google Scholar
Nelson, DH, Meakin, JW, Thorn, GW. ACTH-producing pituitary tumors following adrenalectomy for Cushing’s syndrome. Ann Intern Med 1960;52:560569.Google Scholar
Lindsay, JR, Nieman, LK. Differential diagnosis and imaging in Cushing’s syndrome. Endocrinol Metab Clin North Am 2005;34:403–21, x.Google Scholar
Findling, JW, Raff, H. Screening and diagnosis of Cushing’s syndrome. Endocrinol Metab Clin North Am 2005;34:385–38, x.Google Scholar
Bertagna, X, Guignat, L, Groussin, L, Bertherat, J. Cushing’s disease. Best Pract Res Clin Endocrinol Metab 2009;23:607623.Google Scholar
Newell-Price, J, Trainer, P, Besser, M, Grossman, A. The diagnosis and differential diagnosis of Cushing’s syndrome and pseudo-Cushing’s states. Endocr Rev 1998;19:647672.Google Scholar
Krieger, DT, Luria, M. Plasma ACTH and cortisol responses to TRF, vasopressin or hypoglycemia in Cushing’s disease and Nelson’s syndrome. J Clin Endocrinol Metab 1977;44:361368.Google Scholar
Yamaji, T, Ishibashi, M, Teramoto, A, Fukushima, T. Hyperprolactinemia in Cushing’s disease and Nelson’s syndrome. J Clin Endocrinol Metab 1984;58:790795.Google Scholar
Lamberts, SWJ, de Quijada, M, Visser, TJ. Regulation of prolactin secretion in patients with Cushing’s disease. A comparative study on the effects of dexamethasone, lysine vasopressin and ACTH on prolactin secretion by the rat pituitary gland in vitro. Neuroendocrinology 1981;32:150154.Google Scholar
Findling, JW, Aron, DC, Tyrrell, JB, et al. Selective venous sampling for ACTH in Cushing’s syndrome. Differentiation between Cushing’s disease and the ectopic ACTH syndrome. Ann Intern Med 1981;94:647652.Google Scholar
Oldfield, EH, Chrousos, GP, Schulte, HM, et al. Preoperative lateralization of ACTH-secreting pituitary microadenomas by bilateral and simultaneous inferior petrosal venous sinus sampling. N Engl J Med 1985;312:100103.Google Scholar
Oldfield, EH, Doppman, JL, Nieman, LK, et al. Petrosal sinus sampling with and without corticotropin-releasing hormone for the differential diagnosis of Cushing’s syndrome. N Engl J Med 1991;325:897905.Google Scholar
Jin, L, Riss, D, Ruebel, K, et al. Galectin-3 expression in functioning and silent ACTH-producing adenomas. Endocr Pathol 2005;16:107114.Google Scholar
Felix, IA, Horvath, E, Kovacs, K. Massive Crooke’s hyalinization in corticotroph cell adenomas of the human pituitary. A histological, immunocytological and electron microscopic study of three cases. Acta Neurochir 1981;58:235243.Google Scholar
Horvath, E, Kovacs, K, Josse, R. Pituitary corticotroph cell adenoma with marked abundance of microfilaments. Ultrastruct Pathol 1983;5:249255.Google Scholar
Franscella, S, Favod-Coune, C-A, Pizzolato, G, et al. Pituitary corticotroph adenoma with Crooke’s hyalinization. Endocr Pathol 1991;2:111116.Google Scholar
George, DH, Scheithauer, BW, Kovacs, K, et al. Crooke’s cell adenoma of the pituitary: an aggressive variant of corticotroph adenoma. Am J Surg Pathol 2003;27:13301336.Google Scholar
Hammer, GD, Tyrrell, JB, Lamborn, KR, et al. Transsphenoidal microsurgery for Cushing’s disease: initial outcome and long-term results. J Clin Endocrinol Metab 2004;89:63486357.Google Scholar
Kelly, DF. Transsphenoidal surgery for Cushing’s disease: a review of success rates, remission predictors, management of failed surgery, and Nelson’s syndrome. Neurosurg Focus 2007;23:E5.Google Scholar
Patil, CG, Prevedello, DM, Lad, SP, et al. Late recurrences of Cushing’s disease after initial successful transsphenoidal surgery. J Clin Endocrinol Metab 2008;93:358362.Google Scholar
Jane, JA Jr., Vance, ML, Woodburn, CJ, Laws, ER Jr. Stereotactic radiosurgery for hypersecreting pituitary tumors: part of a multimodality approach. Neurosurg Focus 2003;14:e12.Google Scholar
Oyesiku, NM. Stereotactic radiosurgery for Cushing disease: a review. Neurosurg Focus 2007;23:E14.Google Scholar
Pivonello, R, Petersenn, S, Newell-Price, J, et al. Pasireotide treatment significantly improves clinical signs and symptoms in patients with Cushing’s disease: results from a Phase III study. Clin Endocrinol (Oxf) 2014;81:408417.Google Scholar
Mohammed, S, Kovacs, K, Mason, W, Smyth, H, Cusimano, MD. Use of temozolomide in aggressive pituitary tumors: case report. Neurosurgery 2009;64:E773E774.Google Scholar
McCormack, AI, McDonald, KL, Gill, AJ, et al. Low O6-methylguanine-DNA methyltransferase (MGMT) expression and response to temozolomide in aggressive pituitary tumours. Clin Endocrinol (Oxf) 2009;71:226233.Google Scholar
Raverot, G, Sturm, N, de Fraipont, F, et al. Temozolomide treatment in aggressive pituitary tumors and pituitary carcinomas: a French multicenter experience. J Clin Endocrinol Metab 2010;95:45924599.Google Scholar
Asimakopoulou, A, Tzanela, M, Koletti, A, Kontogeorgos, G, Tsagarakis, S. Long-term remission in an aggressive Crooke cell adenoma of the pituitary, 18 months after discontinuation of treatment with temozolomide. Clin Case Rep 2014;2:13.Google Scholar
Marie, P. Sur deux cas d’acromégalie. Hypertrophie singulière non congénitale des extremités supérieures, inférieures et céphaliques. Rev Méd 1886;6:297333.Google Scholar
Minkowski, O. Ueber einen Fall von Akromegalie. Berl Klin Wochenschr 1887;24:371374.Google Scholar
Evans, HM, Long, JA. The effect of the anterior lobe administered intraperitoneally upon growth, maturity, and oestrous cycles of the rat. Anat Rec 1921;21:6263.Google Scholar
Cook, DM, Ezzat, S, Katznelson, L, et al. AACE medical guidelines for clinical practice for the diagnosis and treatment of acromegaly. Endocr Pract 2004;10:213225.Google Scholar
Ezzat, S, Serri, O, Chik, CL, et al. Canadian consensus guidelines for the diagnosis and management of acromegaly. Clin Invest Med 2006;29:2939.Google Scholar
Beck-Peccoz, P, Bassetti, M, Spada, A, et al. Glycoprotein hormone a-subunit response to growth hormone (GH)-releasing hormone in patients with active acromegaly. Evidence for a-subunit and GH coexistence in the same tumoral cell. J Clin Endocrinol Metab 1985;61:541546.Google Scholar
Osamura, RY. Immunoelectron microscopic studies of GH and a subunit in GH secreting pituitary adenomas. Pathol Res Pract 1988;183:569571.Google Scholar
Oppenheim, DS, Kana, AR, Sangha, JS, Klibanski, A. Prevalence of α-subunit hypersecretion in patients with pituitary tumors: clinically nonfunctioning and somatotroph adenomas. J Clin Endocrinol Metab 1990;70:859864.Google Scholar
Kontogeorgos, G, Asa, SL, Kovacs, K, Smyth, HS, Singer, W. Production of alpha-subunit of glycoprotein hormones by pituitary somatotroph adenomas in vitro. Acta Endocrinol (Copenh) 1993;129:565572.Google Scholar
Hagiwara, A, Inoue, Y, Wakasa, K, Haba, T, Tashiro, T, Miyamoto, T. Comparison of growth hormone-producing and non-growth hormone-producing pituitary adenomas: imaging characteristics and pathologic correlation. Radiology 2003;228:533538.Google Scholar
Osamura, RY, Watanabe, K. Immunohistochemical colocalization of growth hormone (GH) and alpha subunit in human GH secreting pituitary adenomas. Virchows Arch A Pathol Anat Histopathol 1987;411:323330.Google Scholar
Sano, T, Ohshima, T, Yamada, S. Expression of glycoprotein hormones and intracytoplasmic distribution of cytokeratin in growth hormone-producing pituitary adenomas. Pathol Res Pract 1991;187:530533.Google Scholar
Kontogeorgos, G, Kovacs, K, Scheithauer, BW, Rologis, D, Orphanidis, G. α-Subunit immunoreactivity in plurihormonal pituitary adenomas of patients with acromegaly. Mod Pathol 1991;4:191195.Google Scholar
Trouillas, J, Loras, B, Guigard, MP, Girod, C. α-Subunit secretion by normal and tumoral growth hormone cells in humans. Endocr Pathol 1992;3, S53.Google Scholar
Horvath, E, Kovacs, K. Pathology of acromegaly. Neuroendocrinology 2006;83:161165.Google Scholar
Obari, A, Sano, T, Ohyama, K, et al. Clinicopathological features of growth hormone-producing pituitary adenomas: difference among various types defined by cytokeratin distribution pattern including a transitional form. Endocr Pathol 2008;19:8291.Google Scholar
Trouillas, J, Girod, C, Lhéritier, M, Claustrat, B, Dubois, MP. Morphological and biochemical relationships in 31 human pituitary adenomas with acromegaly. Virchows Arch A Pathol Anat Histopathol 1980;389:127142.Google Scholar
Trouillas, J, Sassolas, G, Guigard, MP, Fonlupt, P, Ansaneli-Naves, L, Perrin, G. Relationships between pathological diagnosis and clinical parameters in acromegaly. Metabolism 1996;45(suppl 1):5356.Google Scholar
Sano, T, Rong, QZ, Kagawa, N, Yamada, S. Down-regulation of E-cadherin and catenins in human pituitary growth hormone-producing adenomas. Front Horm Res 2004;32:127132.Google Scholar
Asa, SL, Kovacs, K, Horvath, E, Singer, W, Smyth, HS. Hormone secretion in vitro by plurihormonal pituitary adenomas of the acidophil cell line. J Clin Endocrinol Metab 1992;75:6875.Google Scholar
Li, J, Stefaneanu, L, Kovacs, K, Horvath, E, Smyth, HS. Growth hormone (GH) and prolactin (PRL) gene expression and immunoreactivity in GH- and PRL-producing human pituitary adenomas. Virchows Arch A Pathol Anat Histopathol 1993;422:193201.Google Scholar
Frohman, LA. Therapeutic options in acromegaly. J Clin Endocrinol Metab 1991;72:11751181.Google Scholar
Fraser, LA, Lee, D, Cooper, P, Van Uum, S. Remission of acromegaly following pituitary apoplexy: case report and review of the literature. Endocr Pract 2009;119.Google Scholar
Ezzat, S, Kontogeorgos, G, Redelmeier, DA, Horvath, E, Harris, AG, Kovacs, K. In vivo responsiveness of morphological variants of growth hormone-producing pituitary adenomas to octreotide. Eur J Endocrinol 1995;133:686690.Google Scholar
Barkan, AL, Kelch, RP, Hopwood, NJ, Beitins, IZ. Treatment of acromegaly with the long-acting somatostatin analog SMS 201–995. J Clin Endocrinol Metab 1988;66:1623.Google Scholar
Ezzat, S, Horvath, E, Harris, AG, Kovacs, K. Morphological effects of octreotide on growth hormone-producing pituitary adenomas. J Clin Endocrinol Metab 1994;79:113118.Google Scholar
George, SR, Kovacs, K, Asa, SL, Horvath, E, Cross, EG, Burrow, GN. Effect of SMS 201-995, a long-acting somatostatin analogue, on the secretion and morphology of a pituitary growth hormone cell adenoma. Clin Endocrinol (Oxf) 1987;26:395405.Google Scholar
Asa, SL, Felix, I, Kovacs, K, Ramyar, L. Effects of somatostatin on somatotroph adenomas of the human pituitary: an in vitro functional and morphological study. Endocr Pathol 1990;1:228235.Google Scholar
Kontogeorgos, G, Sambaziotis, D, Piaditis, G, Karameris, A. Apoptosis in human pituitary adenomas: a morphologic and in situ end-labeling study. Mod Pathol 1997;10:921926.Google Scholar
Kulig, E, Jin, L, Qian, X, et al. Apoptosis in nontumorous and neoplastic human pituitaries: expression of the BCL-2 family of proteins. Am J Pathol 1999;154:767774.Google Scholar
Drake, WM, Berney, DM, Kovacs, K, Monson, JP. Markers of cell proliferation in a GH-producing adenoma of a patient treated with pegvisomant. Eur J Endocrinol 2005;153:203205.Google Scholar
Asa, SL, DiGiovanni, R, Jiang, J, et al. A growth hormone receptor mutation impairs growth hormone autofeedback signaling in pituitary tumors. Cancer Res 2007;67:75057511.Google Scholar
Buchfelder, M, Schlaffer, S. Surgical treatment of pituitary tumours. Best Pract Res Clin Endocrinol Metab 2009;23:677692.Google Scholar
Barnard, LB, Grantham, WG, Lamberton, P, O’Dorisio, TM, Jackson, IMD. Treatment of resistant acromegaly with a long-acting somatostatin analogue (SMS 201-995). Ann Intern Med 1986;105:856861.Google Scholar
Ezzat, S, Snyder, PJ, Young, WF, et al. Octreotide treatment of acromegaly. a randomized, multicenter study. Ann Intern Med 1992;117:711718.Google Scholar
Ezzat, S, Redeimeier, DA, Gnehm, M, Harris, AG. A prospective multicenter octreotide dose response study in the treatment of acromegaly. J Endocrinol Invest 1995;18:364369.Google Scholar
Spada, A, Arosio, M, Bochicchio, D, et al. Clinical, biochemical and morphological correlates in patients bearing growth hormone-secreting pituitary tumors with or without constitutively active adenylyl cyclase. J Clin Endocrinol Metab 1990;71:14211426.Google Scholar
Bhayana, S, Booth, GL, Asa, SL, Kovacs, K, Ezzat, S. The implication of somatotroph adenoma phenotype to somatostatin analog responsiveness in acromegaly. J Clin Endocrinol Metab 2005;90:62906295.Google Scholar
Kopchick, JJ, Parkinson, C, Stevens, EC, Trainer, PJ. Growth hormone receptor antagonists: discovery, development, and use in patients with acromegaly. Endocr Rev 2002;23:623646.Google Scholar
Jagannathan, J, Sheehan, JP, Pouratian, N, Laws, ER Jr., Steiner, L, Vance, ML. Gamma knife radiosurgery for acromegaly: outcomes after failed transsphenoidal surgery. Neurosurgery 2008;62:12621269.Google Scholar
Batisse, M, Raverot, G, Maqdasy, S, et al. Aggressive silent GH pituitary tumor resistant to multiple treatments, including temozolomide. Cancer Invest 2013;31:190196.Google Scholar
Grasso, LF, Pivonello, R, Colao, A. Investigational therapies for acromegaly. Exp Opin Invest Drugs 2013;22:955963.Google Scholar
Jenkins, PJ, Mukherjee, A, Shalet, SM. Does growth hormone cause cancer? Clin Endocrinol (Oxf) 2006;64:115121.Google Scholar
Loeper, S, Ezzat, S. Acromegaly: re-thinking the cancer risk. Rev Endocr Metab Disord 2008;9:4158.Google Scholar
Blackwell, RE. Diagnosis and management of prolactinomas. Fertil Steril 1985;43:516.Google Scholar
Frommel, R. Ueber puerperale Atrophie des Uterus. Z Geburtshilfe Gynakol 1882;7:305313.Google Scholar
Argonz, J, Del Castillo, EB. A syndrome characterized by estrogenic insufficiency, galactorrhea and decreased urinary gonadotropin. J Clin Endocrinol Metab 1953;13:7987.Google Scholar
Forbes, AP, Henneman, PH, Griswold, GC, Albright, F. Syndrome characterized by galactorrhea, amenorrhea and low urinary FSH: comparison with acromegaly and normal lactation. J Clin Endocrinol Metab 1954;14:265271.Google Scholar
Lewis, UJ, Singh, RNP, Sinha, YN, VanderLaan, WP. Electrophoretic evidence for human prolactin. J Clin Endocrinol Metab 1971;23:153156.Google Scholar
Guyda, H, Hwang, P, Friesen, H. Immunologic evidence for monkey and human prolactin (MPr and HPr). J Clin Endocrinol Metab 1971;32:120123.Google Scholar
Grossman, A, Besser, GM. Prolactinomas. Br Med J 1985;290:182184.Google Scholar
Melmed, S, Braunstein, GD, Chang, RJ, Becker, DP. Pituitary tumors secreting growth hormone and prolactin. Ann Intern Med 1986;105:238253.Google Scholar
Vance, ML, Thorner, MO. Prolactinomas. Endocrinol Metab Clin North Am 1987;16:731753.Google Scholar
Nabarro, JDN. Pituitary prolactinomas. Clin Endocrinol (Oxf) 1982;17:129155.Google Scholar
Grisoli, F, Vincentelli, F, Jaquet, P, Guibout, M, Hassoun, J, Farnarier, P. Prolactin secreting adenoma in 22 men. Surg Neurol 1980;13:241247.Google Scholar
Delgrange, E, Trouillas, J, Maiter, D, Donckier, J, Tourniaire, J. Sex-related difference in the growth of prolactinomas: a clinical and proliferation marker study. J Clin Endocrinol Metab 1997;82:21022107.Google Scholar
Ho, KY, Evans, WS, Thorner, MO. Disorders of prolactin and growth hormone secretion. Clin Endocrinol Metab 1985;14:132.Google Scholar
Fields, K, Kulig, E, Lloyd, RV. Detection of prolactin messenger RNA in mammary and other normal and neoplastic tissues by polymerase chain reaction. Lab Invest 1993;68:354360.Google Scholar
Gellerson, B, Kempf, R, Telgmann, R, DiMattia, GE. Nonpituitary human prolactin gene transcription is independent of Pit-1 and differentially controlled in lymphocytes and in endometrial stroma. Mol Endocrinol 1994;8:356373.Google Scholar
Soares, MJ, Faria, TN, Roby, KF, Deb, S. Pregnancy and the prolactin family of hormones: coordination of anterior pituitary, uterine, and placental expression. Endocr Rev 1991;12:402423.Google Scholar
Hoffman, WH, Galan, RR, Kovacs, K, Subramanian, MG. Ectopic prolactin secretion from a gonadoblastoma. Cancer 1987;60:26902695.Google Scholar
Singer, W. Does pituitary stalk compression cause hyperprolactinemia? Endocr Pathol 1990;1:6567.Google Scholar
Horvath, E, Kovacs, K, Singer, W, Ezrin, C, Kerenyi, NA. Acidophil stem cell adenoma of the human pituitary. Arch Pathol Lab Med 1977;101:594599.Google Scholar
Horvath, E, Kovacs, K, Singer, W, et al. Acidophil stem cell adenoma of the human pituitary: clinicopathologic analysis of 15 cases. Cancer 1981;47:761771.Google Scholar
Lipper, S, Isenberg, HD, Kahn, LB. Calcospherites in pituitary prolactinomas. A hypothesis for their formation. Arch Pathol Lab Med 1984;108:3134.Google Scholar
Heitz, PhU, Landolt, AM, Zenklusen, H-R, et al. Immunocytochemistry of pituitary tumors. J Histochem Cytochem 1987;35:10051011.Google Scholar
Kovacs, K, Stefaneanu, L, Horvath, E, et al. Effect of dopamine agonist medication on prolactin producing pituitary adenomas. A morphological study including immunocytochemistry, electron microscopy and in situ hybridization. Virchows Arch A Pathol Anat Histopathol 1991;418:439446.Google Scholar
Asa, SL, Ezzat, S. Medical management of pituitary adenomas: structural and ultrastructural changes. Pituitary 2002;5:133139.Google Scholar
Tindall, GT, Kovacs, K, Horvath, E, Thorner, MO. Human prolactin-producing adenomas and bromocriptine: a histological, immunocytochemica, ultrastructural and morphometric study. J Clin Endocrinol Metab 1982;55:11781183.Google Scholar
Klibanski, A. Osteoporosis and hyperprolactinemia. Semin Reprod Endocrinol 1984;2:9398.Google Scholar
Koppelman, MCS, Kurtz, DW, Morrish, KA, et al. Vertebral body bone mineral content in hyperprolactinemic women. J Clin Endocrinol Metab 1984;59:10501053.Google Scholar
Gillam, MP, Molitch, ME, Lombardi, G, Colao, A. Advances in the treatment of prolactinomas. Endocr Rev 2006;27:485534.Google Scholar
Ciric, I, Mikhael, M, Stafford, T, Lawson, L, Garces, R. Transsphenoidal microsurgery of pituitary macroadenomas with long-term follow-up results. J Neurosurg 1983;59:395401.Google Scholar
Domingue, JN, Richmond, IL, Wilson, CB. Results of surgery in 114 patients with prolactin-secreting pituitary adenomas. Am J Obstet Gynecol 1980;137:102108.Google Scholar
Serri, O, Rasio, E, Beauregard, H, Hardy, J, Somma, M. Recurrence of hyperprolactinemia after selective transsphenoidal adenomectomy in women with prolactinoma. N Engl J Med 1983;309:280283.Google Scholar
Laws, ER Jr., Fode, NC, Redmond, MJ. Transsphenoidal surgery following unsuccessful prior therapy: An assessment of benefits and risks in 158 patients. J Neurosurg 1985;63:823829.Google Scholar
Mehta, AE, Reyes, FI, Faiman, C. Primary radiotherapy of prolactinomas. Eight- to 15-year follow-up. Am J Med 1987;83:4958.Google Scholar
Moraes, AB, Silva, CM, Vieira, NL, Gadelha, MR. Giant prolactinomas: the therapeutic approach. Clin Endocrinol (Oxf) 2013;79:447456.Google Scholar
Beck-Peccoz, P, Brucker-Davis, F, Persani, L, Smallridge, RC, Weintraub, BD. Thyrotropin-secreting pituitary tumors. Endocr Rev 1996;17:610638.Google Scholar
Hershman, JM, Higgins, HP. Hydatidiform mole: a cause of clinical hyperthyroidism. Report of two cases with evidence that the molar tissue secreted a thyroid stimulator. N Engl J Med 1971;284:573577.Google Scholar
Gershengorn, MC, Weintraub, BD. Thyrotropin-induced hyperthyroidism caused by selective pituitary resistance to thyroid hormone. A new syndrome of “inappropriate secretion of TSH.” J Clin Invest 1975;56:633642.Google Scholar
Kourides, IA, Ridgway, EC, Weintraub, BD, Bigos, ST, Gershengorn, MC, Maloof, F. Thyrotropin-induced hyperthyroidism: use of alpha and beta subunit levels to identify patients with pituitary tumors. J Clin Endocrinol Metab 1977;45:534543.Google Scholar
Smallridge, RC. Thyrotropin-secreting pituitary tumors. Endocrinol Metab Clin North Am 1987;16:765792.Google Scholar
Webster, J, Peters, JR, John, R, et al. Pituitary stone: two cases of densely calcified thyrotrophin-secreting pituitary adenomas. Clin Endocrinol (Oxf) 1994;40:137143.Google Scholar
Horvath, E, Kovacs, K, Smyth, HS, Cusimano, M, Singer, W. Silent adenoma subtype 3 of the pituitary–immunohistochemical and ultrastructural classification: a review of 29 cases. Ultrastruct Pathol 2005;29:511524.Google Scholar
Erickson, D, Scheithauer, B, Atkinson, J, et al. Silent subtype 3 pituitary adenoma: a clinicopathologic analysis of the Mayo Clinic experience. Clin Endocrinol (Oxf) 2009;71:9299.Google Scholar
Smallridge, RC, Smith, CE. Hyperthyroidism due to thyrotropin-secreting pituitary tumors. Diagnostic and therapeutic considerations. Arch Intern Med 1983;143:503507.Google Scholar
Hill, SA, Falko, JM, Wilson, CB, Hunt, WE. Thyrotrophin-producing pituitary adenomas. J Neurosurg 1982;57:515519.Google Scholar
Takamatsu, J, Mozai, T, Kuma, K. Bromocriptine therapy for hyperthyroidism due to increased thyrotropin secretion. J Clin Endocrinol Metab 1984;58:934936.Google Scholar
Bevan, JS, Burke, CW, Esiri, MM, et al. Studies of two thyrotrophin-secreting pituitary adenomas: evidence for dopamine receptor deficiency. Clin Endocrinol (Oxf) 1989;31:5970.Google Scholar
Comi, RJ, Gesundheit, N, Murray, L, Gorden, P, Weintraub, BD. Response of thyrotropin-secreting pituitary adenomas to a long-acting somatostatin analogue. N Engl J Med 1987;317:1217.Google Scholar
Lamberts, SWJ. The role of somatostatin in the regulation of anterior pituitary hormone secretion and the use of its analogs in the treatment of human pituitary tumors. Endocr Rev 1988;9:417436.Google Scholar
Orme, SM, Lamb, JT, Nelson, M, Belchetz, PE. Shrinkage of thyrotrophin secreting pituitary adenoma treated with octreotide. Postgrad Med J 1991;67:466468.Google Scholar
Snyder, PJ. Gonadotroph cell adenomas of the pituitary. Endocr Rev 1985;6:552563.Google Scholar
Snyder, PJ. Gonadotroph cell pituitary adenomas. Endocrinol Metab Clin North Am 1987;16:755764.Google Scholar
Jaffe, CA. Clinically non-functioning pituitary adenoma. Pituitary 2006;9:317321.Google Scholar
Klibanski, A, Deutsch, PJ, Jameson, JL, et al. Luteinizing hormone-secreting pituitary tumor: biosynthetic characterization and clinical studies. J Clin Endocrinol Metab 1987;64:536542.Google Scholar
Snyder, PJ, Bashey, HM, Kim, SU, Chappel, SC. Secretion of uncombined subunits of luteinizing hormone by gonadotroph cell adenomas. J Clin Endocrinol Metab 1984;59:11691175.Google Scholar
Djerassi, A, Coutifaris, C, West, VA, Asa, SL, Kapoor, SC, Snyder, PJ. Gonadotroph adenoma in a premenopausal woman secreting FSH and causing ovarian hyperstimulation. J Clin Endocrinol Metab 1995;80:591594.Google Scholar
Cook, DM, Watkins, S, Snyder, PJ. Gonadotrophin-secreting pituitary adenomas masquerading as primary ovarian failure. Clin Endocrinol (Oxf) 1986;25:729738.Google Scholar
Lamberts, SWJ, Verleun, T, Oosterom, R, et al. The effects of bromocriptine, thyrotropin-releasing hormone, and gonadotropin-releasing hormone on hormone secretion by gonadotropin-secreting pituitary adenomas in vivo and in vitro. J Clin Endocrinol Metab 1987;64:524530.Google Scholar
Asa, SL, Gerrie, BM, Kovacs, K, et al. Structure-function correlations of human pituitary gonadotroph adenomas in vitro. Lab Invest 1988;58:403410.Google Scholar
Kwekkeboom, DJ, de Jong, FH, Lamberts, SWJ. Gonadotropin release by clinically nonfunctioning and gonadotroph pituitary adenomas in vivo and in vitro: relation to sex and effects of thyrotropin-releasing hormone, gonadotropin-releasing hormone, and bromocriptine. J Clin Endocrinol Metab 1989;68:11281135.Google Scholar
Koga, M, Nakao, H, Arao, M, et al. Demonstration of specific dopamine receptors on human pituitary adenomas. Acta Endocrinol (Copenh) 1987;114:595602.Google Scholar
Lloyd, RV, Anagnostou, D, Chandler, WF. Dopamine receptors in immunohistochemically characterized null cell adenomas and normal human pituitaries. Mod Pathol 1988;1:5156.Google Scholar
Kwekkeboom, DJ, Hofland, LJ, van Koetsveld, PM, Singh, R, van den Berge, JH, Lamberts, SWJ. Bromocriptine increasingly suppresses the in vitro gonadotropin and a-subunit release from pituitary adenomas during long term culture. J Clin Endocrinol Metab 1990;71:718724.Google Scholar
Vance, ML, Ridgway, EC, Thorner, MO. Follicle-stimulating hormone- and α-subunit-secreting pituitary tumor treated with bromocriptine. J Clin Endocrinol Metab 1985;61:580584.Google Scholar
Klibanski, A, Shupnik, MA, Bikkal, HA, Black, PM, Kliman, B, Zervas, NT. Dopaminergic regulation of a-subunit secretion and messenger ribonucleic acid levels in a-secreting pituitary tumors. J Clin Endocrinol Metab 1988;66:96102.Google Scholar
Bevan, JS, Webster, J, Burke, CW, Scanlon, MF. Dopamine agonists and pituitary tumor shrinkage. Endocr Rev 1992;13:220240.Google Scholar
Chanson, P, Brochier, S. Non-functioning pituitary adenomas. J Endocrinol Invest 2005;28(suppl int):9399.Google Scholar
Vos, P, Croughs, RJM, Thijssen, JHH, van’t Verlaat, JW, van Ginkel, LA. Response of luteinizing hormone secreting pituitary adenoma to a long-acting somatostatin analogue. Acta Endocrinol (Copenh) 1988;118:587590.Google Scholar
Klibanski, A. Nonsecreting pituitary tumors. Endocrinol Metab Clin North Am 1987;16:793804.Google Scholar
Horvath, E, Kovacs, K, Killinger, DW, Smyth, HS, Platts, ME, Singer, W. Silent corticotropic adenomas of the human pituitary gland. A histologic, immunocytologic, and ultrastructural study. Am J Pathol 1980;98:617638.Google Scholar
Scheithauer, BW, Jaap, AJ, Horvath, E, et al. Clinically silent corticotroph tumors of the pituitary gland. Neurosurgery 2000;47:723729.Google Scholar
Lopez, JA, Kleinschmidt-Demasters, BB, Sze, CI, Woodmansee, WW, Lillehei, KO. Silent corticotroph adenomas: further clinical and pathological observations. Hum Pathol 2004;35:11371147.Google Scholar
Roncaroli, F, Faustini-Fustini, M, Mauri, F, Asioli, S, Frank, G. Crooke’s hyalinization in silent corticotroph adenoma: report of two cases. Endocr Pathol 2002;13:245249.Google Scholar
Sakurai, T, Seo, H, Yamamoto, N, et al. Detection of mRNA of prolactin and ACTH in clinically nonfunctioning pituitary adenomas. J Neurosurg 1988;69:653659.Google Scholar
Lloyd, RV, Fields, K, Jin, L, Horvath, E, Kovacs, K. Analysis of endocrine active and clinically silent corticotropic adenomas by in situ hybridization. Am J Pathol 1990;137:479488.Google Scholar
Trouillas, J, Girod, C, Sassolas, G, et al. A human β-endorphin pituitary adenoma. J Clin Endocrinol Metab 1984;58:242249.Google Scholar
Asa, SL. Tissue culture in the diagnosis and study of pituitary adenomas. In Lloyd, RV, ed. Surgical Pathology of the Pituitary Gland. Philadelphia, PA: WBSaunders, 1993:94115.Google Scholar
Chabre, O, Martinie, M, Vivier, J, Eimin-Richard, E, Bertagna, X, Bachelot, I. A clinically silent corticotrophic pituitary adenoma (CSCPA) secreting a biologically inactive but immunoreactive assayable ACTH. J Endocrinol Invest (Milan) 1991;14(suppl 1): 87.Google Scholar
Horvath, E, Kovacs, K. Gonadotroph adenomas of the human pituitary: sex-related fine-structural dichotomy. A histologic, immunocytochemical, and electron-microscopic study of 30 tumors. Am J Pathol 1984;117:429440.Google Scholar
Sano, T, Kovacs, K, Asa, SL, et al. Pituitary adenoma with “honeycomb Golgi” appearance showing a phenotypic change at recurrence from clinically nonfunctioning to typical Cushing disease. Endocr Pathol 2002;13:125130.Google Scholar
Sano, T, Mader, R, Asa, SL, Qian, ZR, Hino, A, Yamada, S. “Honeycomb Golgi” in pituitary adenomas: not a marker of gonadotroph adenomas. Endocr Pathol 2003;14:363368.Google Scholar
Kim, K, Yamada, S, Usui, M, Sano, T. Co-localization of honeycomb golgi and ACTH granules in a giant ACTH-producing pituitary adenoma. Endocr Pathol 2005;16:239244.Google Scholar
Kovacs, K, Lloyd, R, Horvath, E, et al. Silent somatotroph adenomas of the human pituitary. A morphologic study of three cases including immunocytochemistry, electron microscopy, in vitro examination, and in situ hybridization. Am J Pathol 1989;134:345353.Google Scholar
Tourniaire, J, Trouillas, J, Chalendar, D, Bonneton-Emptoz, A, Goutelle, A, Girod, C. Somatotropic adenoma manifested by galactorrhea without acromegaly. J Clin Endocrinol Metab 1985;61:451453.Google Scholar
Pagesy, P, Li, JY, Kujas, M, et al. Apparently silent somatotroph adenomas. Pathol Res Pract 1991;187:950956.Google Scholar
Trouillas, J, Sassolas, G, Loras, B, et al. Somatotropic adenomas without acromegaly. Pathol Res Pract 1991;187:943949.Google Scholar
Yamada, S, Sano, T, Stefaneanu, L, et al. Endocrine and morphological study of a clinically silent somatotroph adenoma of the human pituitary. J Clin Endocrinol Metab 1993;76:352356.Google Scholar
Klibanski, A, Zervas, NT, Kovacs, K, Ridgway, EC. Clinically silent hypersecretion of growth hormone in patients with pituitary tumors. J Neurosurg 1987;66:806811.Google Scholar
Kalavalapalli, S, Reid, H, Kane, J, Buckler, H, Trainer, P, Heald, AH. Silent growth hormone secreting pituitary adenomas: IGF-1 is not sufficient to exclude growth hormone excess. Ann Clin Biochem 2007;44:8993.Google Scholar
Sidhaye, A, Burger, P, Rigamonti, D, Salvatori, R. Giant somatotrophinoma without acromegalic features: more “quiet” than “silent”: case report. Neurosurgery 2005;56:E1154.Google Scholar
Black, PM, Hsu, DW, Klibanski, A, et al. Hormone production in clinically nonfunctioning pituitary adenomas. J Neurosurg 1987;66:244250.Google Scholar
Trouillas, J, Girod, C, Sassolas, G, Claustrat, B. The human gonadotropic adenoma: pathologic diagnosis and hormonal correlations in 26 tumors. Semin Diagn Pathol 1986;3:4257.Google Scholar
Daneshdoost, L, Gennarelli, TA, Bashey, HM, et al. Recognition of gonadotroph adenomas in women. N Engl J Med 1991;324:589594.Google Scholar
Asa, SL, Gerrie, BM, Singer, W, Horvath, E, Kovacs, K, Smyth, HS. Gonadotropin secretion in vitro by human pituitary null cell adenomas and oncocytomas. J Clin Endocrinol Metab 1986;62:10111019.Google Scholar
Jameson, JL, Klibanski, A, Black, PM, et al. Glycoprotein hormone genes are expressed in clinically nonfunctioning pituitary adenomas. J Clin Invest 1987;80:14721478.Google Scholar
Yamada, S, Asa, SL, Kovacs, K. Oncocytomas and null cell adenomas of the human pituitary: morphometric and in vitro functional comparison. Virchows Arch A Pathol Anat Histopathol 1988;413:333339.Google Scholar
Nishioka, H, Mete, O, Asa, SL, et al. The crucial role of pituitary transcription factors in the accurate classification of hormone-negative nonfunctioning pituitary adenomas. In Annual Meeting of the Endocrine Society, 2014.Google Scholar
Komor, J, Reubi, JC, Christ, ER. Peptide receptor radionuclide therapy in a patient with disabling non-functioning pituitary adenoma. Pituitary 2014;17:227231.Google Scholar
Horn, K, Erhardt, F, Fahlbusch, R, Pickardt, CR, von Werder, K, Scriba, PC. Recurrent goiter, hyperthyroidism, galactorrhea and amenorrhea due to a thyrotropin and prolactin-producing pituitary tumor. J Clin Endocrinol Metab 1976;43:137143.Google Scholar
Duello, TM, Halmi, NS. Pituitary adenoma producing thyrotropin and prolactin. An immunocytochemical and electron microscopic study. Virchows Arch A Pathol Anat Histopathol 1977;376:255265.Google Scholar
Benoit, R, Pearson-Murphy, BE, Robert, F, et al. Hyperthyroidism due to a pituitary TSH secreting tumour with amenorrhoea-galactorrhoea. Clin Endocrinol (Oxf) 1980;12:1119.Google Scholar
Kovacs, K, Horvath, E, Ezrin, C, Weiss, MH. Adenoma of the human pituitary producing growth hormone and thyrotropin. A histologic, immunocytologic and fine-structural study. Virchows Arch A Pathol Anat Histopathol 1982;395:5968.Google Scholar
Saeger, W, Lüdecke, DK. Pituitary adenomas with hyperfunction of TSH. Frequency, histologic classification, immunocytochemistry and ultrastructure. Virchows Arch A Pathol Anat Histopathol 1982;394:255267.Google Scholar
Jaquet, P, Hassoun, J, Delori, P, Gunz, G, Grisoli, F, Weintraub, BD. A human pituitary adenoma secreting thyrotropin and prolactin: immunohistochemical, biochemical, and cell culture studies. J Clin Endocrinol Metab 1984;59:817824.Google Scholar
Beck-Peccoz, P, Piscitelli, G, Amr, S, et al. Endocrine, biochemical, and morphological studies of a pituitary adenoma secreting growth hormone, thyrotropin (TSH), and a-subunit: evidence for secretion of TSH with increased bioactivity. J Clin Endocrinol Metab 1986;62:704711.Google Scholar
Trouillas, J, Girod, C, Loras, B, et al. The TSH secretion in the human pituitary adenomas. Pathol Res Pract 1988;183:596600.Google Scholar
Simard, M, Mirell, CJ, Pekary, AE, Drexler, J, Kovacs, K, Hershman, JM. Hormonal control of thyrotropin and growth hormone secretion in a human thyrotrope pituitary adenoma studied in vitro. Acta Endocrinol (Copenh) 1988;119:283290.Google Scholar
Malarkey, WB, Kovacs, K, O’Dorisio, TM. Response of a GH- and TSH-secreting pituitary adenoma to a somatostatin analogue (SMS 201-995): evidence that GH and TSH coexist in the same cell and secretory granules. Neuroendocrinology 1989;49:267274.Google Scholar
Kuzuya, N, Inoue, K, Ishibashi, M, et al. Endocrine and immunohistochemical studies on thyrotropin (TSH)-secreting pituitary adenomas: responses of TSH, α-subunit, and growth hormone to hypothalamic releasing hormones and their distribution in adenoma cells. J Clin Endocrinol Metab 1990;71:11031111.Google Scholar
Sherry, SH, Guay, AT, Lee, AK, et al. Concurrent production of adrenocorticotropin and prolactin from two distinct cell lines in a single pituitary adenoma: a detailed immunohistochemical analysis. J Clin Endocrinol Metab 1982;55:947955.Google Scholar
Sano, T, Kovacs, K, Asa, SL, Smyth, HS. Immunoreactive luteinizing hormone in functioning corticotroph adenomas of the pituitary. Immunohistochemical and tissue culture studies of two cases. Virchows Arch A Pathol Anat Histopathol 1990;417:361367.Google Scholar
Cunningham, GR, An, Huckins C. FSH and prolactin-secreting pituitary tumor: Pituitary dynamics and testicular histology. J Clin Endocrinol Metab 1977;44:248253.Google Scholar
Faggiano, M, Criscuolo, T, Perrone, L, Quarto, C, Sinisi, AA. Sexual precocity in a boy due to hypersecretion of LH and prolactin by a pituitary adenoma. Acta Endocrinol (Copenh) 1983;102:167172.Google Scholar
Koide, Y, Kugai, N, Kimura, S, et al. A case of pituitary adenoma with possible simultaneous secretion of thyrotropin and follicle-stimulating hormone. J Clin Endocrinol Metab 1982;54:397403.Google Scholar
Berg, KK, Scheithauer, BW, Felix, I, et al. Pituitary adenomas that produce adrenocorticotropic hormone and alpha-subunit: clinicopathological, immunohistochemical, ultrastructural, and immunoelectron microscopic studies in nine cases. Neurosurgery 1990;26:397403.Google Scholar
Alexander, JM, Biller, BMK, Bikkal, H, Zervas, NT, Arnold, A, Klibanski, A. Clinically nonfunctioning pituitary tumors are monoclonal in origin. J Clin Invest 1990;86:336340.Google Scholar
Herman, V, Fagin, J, Gonsky, R, Kovacs, K, Melmed, S. Clonal origin of pituitary adenomas. J Clin Endocrinol Metab 1990;71:14271433.Google Scholar
Schulte, HM, Oldfield, EH, Allolio, B, Katz, DA, Berkman, RA, Ali, IU. Clonal composition of pituitary adenomas in patients with Cushing’s disease: determination by X-chromosome inactivation analysis. J Clin Endocrinol Metab 1991;73:13021308.Google Scholar
Wermer, P. Genetic aspects of adenomatosis of endocrine glands. Am J Med 1954;16:363371.Google Scholar
Scheithauer, BW, Laws, ER Jr., Kovacs, K, Horvath, E, Randall, RV, Carney, JA. Pituitary adenomas of the multiple endocrine neoplasia type I syndrome. Semin Diagn Pathol 1987;4:205211.Google Scholar
Chandrasekharappa, SC, Guru, SC, Manickam, P, et al. Positional cloning of the gene for multiple endocrine neoplasia-type 1. Science 1997;276:404407.Google Scholar
Dong, Q, Debelenko, LV, Chandrasekharappa, SC, et al. Loss of heterozygosity at 11p13: analysis of pituitary tumors, lung carcinoids, lipomas, and other uncommon tumors in subjects with familial multiple endocrine neoplasia type 1. J Clin Endocrinol Metab 1997;82:14161420.Google Scholar
Zhuang, Z, Ezzat, S, Vortmeyer, AO, et al. Mutations of the MEN1 tumor suppressor gene in pituitary tumors. Cancer Res 1997;57:54465451.Google Scholar
Asa, SL, Somers, K, Ezzat, S. The MEN1 gene is rarely down-regulated in pituitary adenomas. J Clin Endocrinol Metab 1998;83:32103212.Google Scholar
Pellegata, NS, Quintanilla-Martinez, L, Siggelkow, H, et al. Germ-line mutations in p27Kip1 cause a multiple endocrine neoplasia syndrome in rats and humans. Proc Natl Acad Sci USA 2006;103:1555815563.Google Scholar
Georgitsi, M, Raitila, A, Karhu, A, et al. Germline CDKN1B/p27Kip1 mutation in multiple endocrine neoplasia. J Clin Endocrinol Metab 2007;92:33213325.Google Scholar
Agarwal, SK, Mateo, CM, Marx, SJ. Rare germline mutations in cyclin-dependent kinase inhibitor genes in multiple endocrine neoplasia type 1 and related states. J Clin Endocrinol Metab 2009;94:18261834.Google Scholar
Kirschner, LS, Carney, JA, Pack, SD, et al. Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet 2000;26:8992.Google Scholar
Yin, Z, Williams-Simons, L, Parlow, AF, Asa, S, Kirschner, LS. Pituitary-specific knockout of the Carney complex gene prkar1a leads to pituitary tumorigenesis. Mol Endocrinol 2008;22:380387.Google Scholar
Carney, JA, Gordon, H, Carpenter, PC, Shenoy, BV, Go, VL. The complex of myxomas, spotty pigmentation, and endocrine overactivity. Medicine (Baltimore) 1985;64:270283.Google Scholar
Kaltsas, GA, Kola, B, Borboli, N, et al. Sequence analysis of the PRKAR1A gene in sporadic somatotroph and other pituitary tumours. Clin Endocrinol (Oxf) 2002;57:443448.Google Scholar
Sandrini, F, Kirschner, LS, Bei, T, et al. PRKAR1A, one of the Carney complex genes, and its locus (17q22–24) are rarely altered in pituitary tumours outside the Carney complex. J Med Genet 2002;39:e78.Google Scholar
Soares, BS, Frohman, LA. Isolated familial somatotropinoma. Pituitary 2004;7:95101.Google Scholar
Beckers, A, Daly, AF. The clinical, pathological, and genetic features of familial isolated pituitary adenomas. Eur J Endocrinol 2007;157:371382.Google Scholar
Vierimaa, O, Georgitsi, M, Lehtonen, R, et al. Pituitary adenoma predisposition caused by germline mutations in the AIP gene. Science 2006;312:12281230.Google Scholar
Georgitsi, M, De Menis, E, Cannavò, S, et al. Aryl hydrocarbon receptor interacting protein (AIP) gene mutation analysis in children and adolescents with sporadic pituitary adenomas. Clin Endocrinol (Oxf) 2008;69:621627.Google Scholar
DiGiovanni, R, Serra, S, Ezzat, S, Asa, SL. AIP mutations are not identified in patients with sporadic pituitary adenomas. Endocr Pathol 2007;18:7678.Google Scholar
Papathomas, TG, Gaal, J, Corssmit, EP, et al. Non-pheochromocytoma (PCC)/paraganglioma (PGL) tumors in patients with succinate dehydrogenase-related PCC–PGL syndromes: a clinicopathological and molecular analysis. Eur J Endocrinol 2014;170:112.Google Scholar
Gill, AJ, Toon, CW, Clarkson, A, et al. Succinate dehydrogenase deficiency is rare in pituitary adenomas. Am J Surg Pathol 2014;38:560566.Google Scholar
Asa, SL, Ezzat, S. The pathogenesis of pituitary tumours. Nat Rev Cancer 2002;2:836849.Google Scholar
Ezzat, S, Asa, SL. Mechanisms of disease: the pathogenesis of pituitary tumors. Nat Clin Pract Endocrinol Metab 2006;2:220230.Google Scholar
Asa, SL, Ezzat, S. The pathogenesis of pituitary tumors. Annu Rev Pathol 2009;4:97126.Google Scholar
Vallar, L, Spada, A, Giannattasio, G. Altered Gs and adenylate cyclase activity in human GH-secreting pituitary adenomas. Nature 1987;330:566568.Google Scholar
Landis, CA, Masters, SB, Spada, A, Pace, AM, Bourne, HR, Vallar, L. GTPase inhibiting mutations activate the alpha-chain of Gs and stimulate adenylate cyclase in human pituitary tumors. Nature 1989;340:692696.Google Scholar
Hayward, BE, Barlier, A, Korbonits, M, et al. Imprinting of the G(s)alpha gene GNAS1 in the pathogenesis of acromegaly. J Clin Invest 2001;107:R31R36.Google Scholar
Itoh, N, Ornitz, DM. Evolution of the Fgf and Fgfr gene families. Trends Genet 2004;20:563569.Google Scholar
Ezzat, S, Walpola, IA, Ramyar, L, Smyth, HS, Asa, SL. Membrane-anchored expression of transforming growth factor-a in human pituitary adenoma cells. J Clin Endocrinol Metab 1995;80:534539.Google Scholar
McAndrew, J, Paterson, AJ, Asa, SL, McCarthy, KJ, Kudlow, JE. Targeting of transforming growth factor-α expression to pituitary lactotrophs in transgenic mice results in selective lactotroph proliferation and adenomas. Endocrinology 1995;136:44794488.Google Scholar
LeRiche, V, Asa, SL, Ezzat, S. Epidermal growth factor and its receptor (EGF-R) in human pituitary adenomas: EGF-R correlates with tumor aggressiveness. J Clin Endocrinol Metab 1996;81:656662.Google Scholar
Ezzat, S, Zheng, L, Smyth, HS, Asa, SL. The c-erbB-2/neu proto-oncogene in human pituitary tumours. Clin Endocrinol (Oxf) 1997;46:599606.Google Scholar
Cooper, O, Vlotides, G, Fukuoka, H, Greene, MI, Melmed, S. Expression and function of ErbB receptors and ligands in the pituitary. Endocr Relat Cancer 2011;18:R197R211.Google Scholar
Haddad, G, Penabad, JL, Bashey, HM, et al. Expression of activin/inhibin subunit messenger ribonucleic acids by gonadotroph adenomas. J Clin Endocrinol Metab 1994;79:13991403.Google Scholar
Penabad, JL, Bashey, HM, Asa, SL, et al. Decreased follistatin gene expression in gonadotroph adenomas. J Clin Endocrinol Metab 1996;81:33973403.Google Scholar
Abbass, SAA, Asa, SL, Ezzat, S. Altered expression of fibroblast growth factor receptors in human pituitary adenomas. J Clin Endocrinol Metab 1997;82:11601166.Google Scholar
Zhu, X, Asa, SL, Ezzat, S. Fibroblast growth factor 2 and estrogen control the balance of histone 3 modifications targeting MAGE-A3 in pituitary neoplasia. Clin Cancer Res 2008;14:19841996.Google Scholar
Zhu, X, Lee, K, Asa, SL, Ezzat, S. Epigenetic silencing through DNA and histone methylation of fibroblast growth factor receptor 2 in neoplastic pituitary cells. Am J Pathol 2007;170:16181628.Google Scholar
Qian, ZK, Sano, T, Asa, SL, et al. Cytoplasmic expression of fibroblast growth factor receptor‐4 (ptd‐FGFR4) in human pituitary adenomas. J Clin Endocrinol Metab 2004;89:19041911.Google Scholar
Ezzat, S, Yu, S, Asa, SL. Ikaros isoforms in human pituitary tumors: distinct localization, histone acetylation, and activation of the 5′ fibroblast growth factor receptor-4 promoter. Am J Pathol 2003;163:11771184.Google Scholar
Yu, S, Asa, SL, Weigel, RJ, Ezzat, S. Pituitary tumor AP-2alpha recognizes a cryptic promoter in intron 4 of fibroblast growth factor receptor 4. J Biol Chem 2003;278:1959719602.Google Scholar
Ezzat, S, Zheng, L, Asa, SL. Pituitary tumor-derived fibroblast growth factor receptor 4 isoform disrupts neural cell-adhesion molecule/N-cadherin signaling to diminish cell adhesiveness: a mechanism underlying pituitary neoplasia. Mol Endocrinol 2004;18:25432552.Google Scholar
Daniel, L, Trouillas, J, Renaud, W, et al. Polysialylated-neural cell adhesion molecule expression in rat pituitary transplantable tumors (spontaneous mammotropic transplantable tumor in Wistar-Furth rats) is related to growth rate and malignancy. Cancer Res 2000;60:8085.Google Scholar
Zhu, X, Mao, X, Hurren, R, Schimmer, AD, Ezzat, S, Asa, SL. Deoxyribonucleic acid methyltransferase 3B promotes epigenetic silencing through histone 3 chromatin modifications in pituitary cells. J Clin Endocrinol Metab 2008;93:36103617.Google Scholar
Liu, W, Asa, SL, Ezzat, S. Vitamin D and its analog EB1089 induce p27 accumulation and diminish association of p27 with Skp2 independent of PTEN in pituitary corticotroph cells. Brain Pathol 2002;12:412419.Google Scholar
Amaral, FC, Torres, N, Saggioro, F, et al. MicroRNAs differentially expressed in ACTH-secreting pituitary tumors. J Clin Endocrinol Metab 2009;94:320323.Google Scholar
Bellodi, C, Krasnykh, O, Haynes, N, et al. Loss of function of the tumor suppressor DKC1 perturbs p27 translation control and contributes to pituitary tumorigenesis. Cancer Res 2010;70:60266035.Google Scholar
Ezzat, S, Zhu, X, Loeper, S, Fischer, S, Asa, SL. Tumor-derived Ikaros 6 acetylates the Bcl-XL promoter to up-regulate a survival signal in pituitary cells. Mol Endocrinol 2006;20:29762986.Google Scholar
Loeper, S, Asa, SL, Ezzat, S. Ikaros modulates cholesterol uptake: a link between tumor suppression and differentiation. Cancer Res 2008;68:37153723.Google Scholar
Fedele, M, Battista, S, Kenyon, L, et al. Overexpression of the HMGA2 gene in transgenic mice leads to the onset of pituitary adenomas. Oncogene 2002;21:31903198.Google Scholar
Fedele, M, Pentimalli, F, Baldassarre, G, et al. Transgenic mice overexpressing the wild-type form of the HMGA1 gene develop mixed growth hormone/prolactin cell pituitary adenomas and natural killer cell lymphomas. Oncogene 2005;24:34273435.Google Scholar
De, M, I, Visone, R, Wierinckx, A, et al. HMGA proteins up-regulate CCNB2 gene in mouse and human pituitary adenomas. Cancer Res 2009;69:18441850.Google Scholar
Finelli, P, Pierantoni, GM, Giardino, D, et al. The high mobility group A2 gene is amplified and overexpressed in human prolactinomas. Cancer Res 2002;62:23982405.Google Scholar
Evans, CO, Moreno, CS, Zhan, X, et al. Molecular pathogenesis of human prolactinomas identified by gene expression profiling, RT-qPCR, and proteomic analyses. Pituitary 2008;11:231245.Google Scholar
Qian, ZR, Asa, SL, Siomi, H, et al. Overexpression of HMGA2 relates to reduction of the Let-7 and its relationship to clinicopathological features in pituitary adenomas. Mod Pathol 2009;22:431441.Google Scholar
Muller, HL. Craniopharyngioma. Endocr Rev 2014;35:513543.Google Scholar
Banna, M. Cranopharyngioma: based on 160 cases. Br J Radiol 1976;49:206223.Google Scholar
Petito, CK, DeGirolami, U, Earle, KM. Craniopharyngiomas. A clinical and pathological review. Cancer 1976;37:19441952.Google Scholar
Louis, DN, Ohgaki, H, Wiestler, OD, Cavenee, WK, eds. WHO Classification of Tumours of the Central Nervous System. Lyon: International Agency for Research on Cancer, 2007.Google Scholar
Scheithauer, BW. The hypothalamus and neurohypophysis. In Kovacs, K, Asa, SL, eds. Functional Endocrine Pathology. Boston: Blackwell Scientific, 1998:171246.Google Scholar
Azar-Kia, B, Krishnan, UR, Schechter, MM. Neonatal craniopharyngioma. Case report. J Neurosurg 1975;42:9193.Google Scholar
Lederman, GS, Recht, A, Loeffler, JS, Dubuisson, D, Kleefield, J, Schnitt, SJ. Craniopharyngioma in an elderly patient. Cancer 1987;60:10771080.Google Scholar
Lewin, R, Ruffolo, E, Saraceno, C. Craniopharyngioma arising in the pharyngeal hypophysis. Southern Med J 1984;77:15191523.Google Scholar
Koral, K, Weprin, B, Rollins, NK. Sphenoid sinus craniopharyngioma simulating mucocele. Acta Radiol 2006;47:494496.Google Scholar
Baskin, DS, Wilson, CB. Surgical management of craniopharyngiomas. A review of 74 cases. J Neurosurg 1986;65:2227.Google Scholar
Brown, JL, Burton, DW, Deftos, LJ, Smith, AA, Pincus, DW, Haller, MJ. Congenital craniopharyngioma and hypercalcemia induced by parathyroid hormone-related protein. Endocr Pract 2007;13:6771.Google Scholar
Cusimano, MD, Kovacs, K, Bilbao, JM, Tucker, WS, Singer, W. Suprasellar craniopharyngioma associated with hyperprolactinemia, pituitary lactotroph hyperplasia, and microprolactinoma. Case report. J Neurosurg 1988;69:620623.Google Scholar
Wheatley, T, Clark, JDA, Stewart, S. Craniopharyngioma with hyperprolactinaemia due to a prolactinoma. J Neurol Neurosurg Psychiatry 1986;49:13051307.Google Scholar
Yoshida, A, Sen, C, Asa, SL, Rosenblum, MK. Composite pituitary adenoma and craniopharyngioma? An unusual sellar neoplasm with divergent differentiation. Am J Surg Pathol 2008;32:17361741.Google Scholar
Moshkin, O, Scheithauer, BW, Syro, LV, Velasquez, A, Horvath, E, Kovacs, K. Collision tumors of the sella: craniopharyngioma and silent pituitary adenoma subtype 3: case report. Endocr Pathol 2009;20:5055.Google Scholar
Gokden, M, Mrak, RE. Pituitary adenoma with craniopharyngioma component. Hum Pathol 2009;40:11891193.Google Scholar
Puchner, MJA, Lüdecke, DK, Saeger, W. The anterior pituitary lobe in patients with cystic craniopharyngiomas: three cases of associated lymphocytic hypophysitis. Acta Neurochir 1994;126:3843.Google Scholar
Xin, W, Rubin, MA, McKeever, PE. Differential expression of cytokeratins 8 and 20 distinguishes craniopharyngioma from Rathke cleft cyst. Arch Pathol Lab Med 2002;126:11741178.Google Scholar
Rickert, CH, Paulus, W. Lack of chromosomal imbalances in adamantinomatous and papillary craniopharyngiomas. J Neurol Neurosurg Psychiatry 2003;74:260261.Google Scholar
Rienstein, S, Adams, EF, Pilzer, D, Goldring, AA, Goldman, B, Friedman, E. Comparative genomic hybridization analysis of craniopharyngiomas. J Neurosurg 2003;98:162164.Google Scholar
Sekine, S, Shibata, T, Kokubu, A, et al. Craniopharyngiomas of adamantinomatous type harbor beta-catenin gene mutations. Am J Pathol 2002;161:19972001.Google Scholar
Buslei, R, Nolde, M, Hofmann, B, et al. Common mutations of beta-catenin in adamantinomatous craniopharyngiomas but not in other tumours originating from the sellar region. Acta Neuropathol 2005;109:589597.Google Scholar
Oikonomou, E, Barreto, DC, Soares, B, De Marco, L, Buchfelder, M, Adams, EF. Beta-catenin mutations in craniopharyngiomas and pituitary adenomas. J Neurooncol 2005;73:205209.Google Scholar
Brastianos, PK, Taylor-Weiner, A, Manley, PE, et al. Exome sequencing identifies BRAF mutations in papillary craniopharyngiomas. Nat Genet 2014;46:161165.Google Scholar
Park, YS, Ahn, JY, Kim, DS, Kim, TS, Kim, SH. Late development of craniopharyngioma following surgery for Rathke’s cleft cyst. Clin Neuropathol 2009;28:177181.Google Scholar
Link, MJ, Driscoll, CL, Giannini, C. Isolated, giant cerebellopontine angle craniopharyngioma in a patient with Gardner syndrome: case report. Neurosurgery 2002;51:221225.Google Scholar
Sarubi, JC, Bei, H, Adams, EF, et al. Clonal composition of human adamantinomatous craniopharyngiomas and somatic mutation analyses of the patched (PTCH), Gsalpha and Gi2alpha genes. Neurosci Lett 2001;310:58.Google Scholar
Boch, AL, van Effenterre, R, Kujas, M. Craniopharyngiomas in two consanguineous siblings: case report. Neurosurgery 1997;41:11851187.Google Scholar
Laws, ER Jr. Craniopharyngioma: diagnosis and treatment. Endocrinologist 1992;2:184188.Google Scholar
Minniti, G, Esposito, V, Amichetti, M, Enrici, RM. The role of fractionated radiotherapy and radiosurgery in the management of patients with craniopharyngioma. Neurosurg Rev 2009;32:125132.Google Scholar
Gopalan, R, Dassoulas, K, Rainey, J, Sherman, JH, Sheehan, JP. Evaluation of the role of gamma knife surgery in the treatment of craniopharyngiomas. Neurosurg Focus 2008;24:E5.Google Scholar
Scheithauer, BW, Kovacs, K, Horvath, E, et al. Pituitary blastoma. Acta Neuropathol 2008;116:657666.Google Scholar
Scheithauer, BW, Horvath, E, Abel, TW, et al. Pituitary blastoma: a unique embryonal tumor. Pituitary 2012;15:365373.Google Scholar
Doros, L, Schultz, KA, Stewart, DR, et al. DICER-1 related disorders. In Pagon, RA, Adam, MP, Bird, TD, Dolan, CR, Fong, CT, Stephens, K eds. GeneReviews. Seattle, WA: University of Washington, 2014 (http://www.ncbi.nlm.nih.gov/books/NBK196157/, accessed 10 September 2015).Google Scholar
de Kock, L, Sabbaghian, N, Plourde, F, et al. Pituitary blastoma: a pathognomonic feature of germ-line DICER1 mutations. Acta Neuropathol 2014;128:111122.Google Scholar
Puchner, MJA, Lüdecke, DK, Saeger, W, Riedel, M, Asa, SL. Gangliocytomas of the sellar region: a review. Exper Clin Endocrinol 1995;103:129149.Google Scholar
Rhodes, RH, Dusseau, JJ, Boyd, AS, Knigge, KM. Intrasellar neural-adenohypophyseal choristoma. a morphological and immunocytochemical study. J Neuropathol Exp Neurol 1982;41:267280.Google Scholar
Scheithauer, BW, Kovacs, K, Randall, RV, Horvath, E, Okazaki, H, Laws, ER Jr. Hypothalamic neuronal hamartoma and adenohypophyseal neuronal choristoma: Their association with growth hormone adenoma of the pituitary gland. J Neuropathol Exp Neurol 1983;42:648663.Google Scholar
Felix, I, Bilbao, JM, Asa, SL, Tyndel, F, Kovacs, K, Becker, LE. Cerebral and cerebellar gangliocytomas: a morphological study of nine cases. Acta Neuropathol (Berl) 1994;88:246251.Google Scholar
Hall, JG, Pallister, PD, Clarren, SK, et al. Congenital hypothalamic hamartoblastoma, hypopituitarism, imperforate anus and postaxial polydactyly–a new syndrome? Part I: clinical, causal, and pathogenetic considerations. Am J Med Genet 1980;7:4774.Google Scholar
Kang, S, Graham, JM Jr., Olney, AH, Biesecker, LG. GLI3 frameshift mutations cause autosomal dominant Pallister–Hall syndrome. Nat Genet 1997;15:266268.Google Scholar
Johnston, JJ, Olivos-Glander, I, Killoran, C, et al. Molecular and clinical analyses of Greig cephalopolysyndactyly and Pallister–Hall syndromes: robust phenotype prediction from the type and position of GLI3 mutations. Am J Hum Genet 2005;76:609622.Google Scholar
Kontogeorgos, G, Mourouti, G, Kyrodimou, E, Liapi-Avgeri, G, Parasi, E. Ganglion cell containing pituitary adenomas: signs of neuronal differentiation in adenoma cells. Acta Neuropathol 2006;112:2128.Google Scholar
Bevan, JS, Asa, SL, Rossi, ML, Esiri, MM, Adams, CBT, Burke, CW. Intrasellar gangliocytoma containing gastrin and growth hormone-releasing hormone associated with a growth hormone-secreting pituitary adenoma. Clin Endocrinol (Oxf) 1989;30:213224.Google Scholar
Li, JY, Racadot, O, Kujas, M, Kouadri, M, Peillon, F, Racadot, J. Immunocytochemistry of four mixed pituitary adenomas and intrasellar gangliocytomas associated with different clinical syndromes: acromegaly, amenorrhea-galactorrhea, Cushing’s disease and isolated tumoral syndrome. Acta Neuropathol (Berl) 1989;77:320328.Google Scholar
Slowik, F, Fazekas, I, Bálint, K, et al. Intrasellar hamartoma associated with pituitary adenoma. Acta Neuropathol (Berl) 1990;80:328333.Google Scholar
Matsuno, A, Nagashima, T. Prolactin-secreting gangliocytoma. J Neurosurg 2001;95:167168.Google Scholar
Serri, O, Berthelet, F, Belair, M, Vallette, S, Asa, SL. An unusual association of a sellar gangliocytoma with a prolactinoma. Pituitary 2008;11:8587.Google Scholar
Judge, DM, Kulin, HE, Page, R, Santen, R, Trapukdi, S. Hypothalamic hamartoma. A source of luteinizing-hormone-releasing factor in precoucious puberty. N Engl J Med 1977;296:710.Google Scholar
Hochman, HI, Judge, DM, Reichlin, S. Precocious puberty and hypothalamic hamartoma. Pediatrics 1981;67:236244.Google Scholar
Culler, FL, James, HE, Simon, ML, Jones, KL. Identification of gonadotropin-releasing hormone in neurons of a hypothalamic hamartoma in a boy with precocious puberty. Neurosurgery 1985;17:408417.Google Scholar
Nishio, S, Fujiwara, S, Aiko, Y, Takeshita, I, Fukui, M. Hypothalamic hamartoma. Report of two cases. J Neurosurg 1989;70:640645.Google Scholar
Yamada, S, Stefaneanu, L, Kovacs, K, Aiba, T, Shishiba, Y, Hara, M. Intrasellar gangliocytoma with multiple immunoreactivities. Endocr Pathol 1990;1:5863.Google Scholar
Asa, SL, Bilbao, JM, Kovacs, K, Linfoot, JA. Hypothalamic neuronal hamartoma associated with pituitary growth hormone cell adenoma and acromegaly. Acta Neuropathol (Berl) 1980;52:231234.Google Scholar
Horvath, E, Kovacs, K, Tran, A, Scheithauer, BW. Ganglion cells in the posterior pituitary: result of ectopia or transdifferentiation? Acta Neuropathol 2000;100:106110.Google Scholar
Geddes, JF, Jansen, GH, Robinson, SF, et al. “Gangliocytomas” of the pituitary: a heterogeneous group of lesions with differing histogenesis. Am J Surg Pathol 2000;24:607613.Google Scholar
Romanelli, P, Muacevic, A, Striano, S. Radiosurgery for hypothalamic hamartomas. Neurosurg Focus 2008;24:E9.Google Scholar
Hassoun, J, Gambarelli, D, Grisoli, F, et al. Central neurocytoma. An electron-microscopic study of two cases. Acta Neuropathol 1982;56:151156.Google Scholar
Yang, GF, Wu, SY, Zhang, LJ, Lu, GM, Tian, W, Shah, K. Imaging findings of extraventricular neurocytoma: report of 3 cases and review of the literature. AJNR Am J Neuroradiol 2009;30:581585.Google Scholar
Maguire, JA, Bilbao, JM, Kovacs, K, Resch, L. Hypothalamic neurocytoma with vasopressin immunoreactivity: immunohistochemical and ultrastructural observations. Endocr Pathol 1992;3:99104.Google Scholar
Araki, Y, Sakai, N, Andoh, T, Yoshimura, S, Yamada, H. Central neurocytoma presenting with gigantism: case report. Surg Neurol 1992;38:141145.Google Scholar
Soylemezoglu, F, Scheithauer, BW, Esteve, J, Kleihues, P. Atypical central neurocytoma. J Neuropathol Exp Neurol 1997;56:551556.Google Scholar
Rades, D, Schild, SE, Fehlauer, F. Prognostic value of the MIB-1 labeling index for central neurocytomas. Neurology 2004;62:987989.Google Scholar
Myung, JK, Cho, HJ, Park, CK, et al. Clinicopathological and genetic characteristics of extraventricular neurocytomas. Neuropathology 2013;33:111121.Google Scholar
Rades, D, Fehlauer, F, Schild, SE. Treatment of atypical neurocytomas. Cancer 2004;100:814817.Google Scholar
Steel, TR, Dailey, AT, Born, D, Berger, MS, Mayberg, MR. Paragangliomas of the sellar region: report of two cases. Neurosurgery 1993;32:844847.Google Scholar
Mokry, M, Kleinert, R, Clarici, G, Obermayer-Pietsch, B. Primary paraganglioma simulating pituitary macroadenoma: a case report and review of the literature. Neuroradiology 1998;40:233237.Google Scholar
Sambaziotis, D, Kontogeorgos, G, Kovacs, K, Horvath, E, Levedis, A. Intrasellar paraganglioma presenting as nonfunctioning pituitary adenoma. Arch Pathol Lab Med 1999;123:429432.Google Scholar
Naggara, O, Varlet, P, Page, P, Oppenheim, C, Meder, JF. Suprasellar paraganglioma: a case report and review of the literature. Neuroradiology 2005;47:753757.Google Scholar
Boari, N, Losa, M, Mortini, P, Snider, S, Terreni, MR, Giovanelli, M. Intrasellar paraganglioma: a case report and review of the literature. Acta Neurochir (Wien) 2006;148:13111314.Google Scholar
Sinha, S, Sharma, MC, Sharma, BS. Malignant paraganglioma of the sellar region mimicking a pituitary macroadenoma. J Clin Neurosci 2008;15:937939.Google Scholar
Haresh, KP, Prabhakar, R, Anand Rajan, KD, Sharma, DN, Julka, PK, Rath, GK. A rare case of paraganglioma of the sella with bone metastases. Pituitary 2009;12:276279.Google Scholar
Scheithauer, BW, Parameswaran, A, Burdick, B. Intrasellar paraganglioma: report of a case in a sibship of von Hippel–Lindau disease. Neurosurgery 1996;38:395399.Google Scholar
Erlic, Z, Neumann, HP. Diagnosing patients with hereditary paraganglial tumours. Lancet Oncol 2009;10:741.Google Scholar
Dahia, PL. Pheochromocytoma and paraganglioma pathogenesis: learning from genetic heterogeneity. Nat Rev Cancer 2014;14:108119.Google Scholar
Brat, DJ, Scheithauer, BW, Staugaitis, SM, Holtzman, RN, Morgello, S, Burger, PC. Pituicytoma: a distinctive low-grade glioma of the neurohypophysis. Am J Surg Pathol 2000;24:362368.Google Scholar
Roncaroli, F, Scheithauer, BW, Cenacchi, G, et al. ‘Spindle cell oncocytoma’ of the adenohypophysis: a tumor of folliculostellate cells? Am J Surg Pathol 2002;26:10481055.Google Scholar
Dahiya, S, Sarkar, C, Hedley-Whyte, ET, et al. Spindle cell oncocytoma of the adenohypophysis: report of two cases. Acta Neuropathol (Berl) 2005;110:9799.Google Scholar
Kloub, O, Perry, A, Tu, PH, Lipper, M, Lopes, MB. Spindle cell oncocytoma of the adenohypophysis: report of two recurrent cases. Am J Surg Pathol 2005;29:247253.Google Scholar
Vajtai, I, Sahli, R, Kappeler, A. Spindle cell oncocytoma of the adenohypophysis: report of a case with a 16-year follow-up. Pathol Res Pract 2006;202:745750.CrossRefGoogle ScholarPubMed
Shanklin, WM. The origin, histology and senescence of tumorettes in the human neurohypophysis. Acta Anat (Basel) 1953;18:120.Google Scholar
Luse, SA, Kernohan, JW. Granular cell tumors of the stalk and posterior lobe of the pituitary gland. Cancer 1955;8:616622.Google Scholar
Kamil, Z, Sinson, S, Gucer, H, Asa, SL, Mete, O. TTF-1-expressing sellar neoplasm with ependymal rosettes and oncocytic change: mixed ependymal and oncocytic variant pituicytoma. Endocr Pathol 2013;25:436438.Google Scholar
Policarpio-Nicolas, ML, Le, BH, Mandell, JW, Lopes, MB. Granular cell tumor of the neurohypophysis: report of a case with intraoperative cytologic diagnosis. Diagn Cytopathol 2008;36:5863.Google Scholar
Vaquero, J, Leunda, G, Cabezudo, JM, Salazar, AR, de Miguel, J. Granular pituicytomas of the pituitary stalk. Acta Neurochir 1981;59:209215.Google Scholar
Tomita, T, Kuziez, M, Watanabe, I. Double tumors of the anterior and posterior pituitary gland. Acta Neuropathol (Berl) 1981;54:161164.Google Scholar
Tuch, BE, Carter, JN, Armellin, GM, Newland, RC. The association of a tumour of the posterior pituitary gland with multiple endocrine neoplasia type I. Aust NZ J Med 1982;12:179181.Google Scholar
Iglesias, A, Arias, M, Brasa, J, Paramo, C, Conde, C, Fernandez, R. MR imaging findings in granular cell tumor of the neurohypophysis: a difficult preoperative diagnosis. Eur Radiol 2000;10:18711873.Google Scholar
Borota, OC, Scheithauer, BW, Fougner, SL, Hald, JK, Ramm-Pettersen, J, Bollerslev, J. Spindle cell oncocytoma of the adenohypophysis: report of a case with marked cellular atypia and recurrence despite adjuvant treatment. Clin Neuropathol 2009;28:9195.CrossRefGoogle ScholarPubMed
Coire, CI, Horvath, E, Smyth, HS, Kovacs, K. Rapidly recurring folliculostellate cell tumor of the adenohypophysis with the morphology of a spindle cell oncocytoma: case report with electron microscopic studies. Clin Neuropathol 2009;28:303308.Google Scholar
Ulrich, J, Heitz, PhU, Fischer, T, Obrist, E, Gullotta, F. Granular cell tumors: evidence for heterogeneous tumor cell differentiation. An immunocytochemical study. Virchows Arch B Cell Pathol Incl Mol Pathol 1987;53:5257.CrossRefGoogle ScholarPubMed
Rodriguez, FJ, Scheithauer, BW, Roncaroli, F, et al. Galectin-3 expression is ubiquitous in tumors of the sellar region, nervous system, and mimics: an immunohistochemical and RT-PCR study. Am J Surg Pathol 2008;32:13441352.Google Scholar
Nishioka, H, Ii, K, Llena, JF, Hirano, A. Immunohistochemical study of granular cell tumors of the neurohypophysis. Virchows Arch B Cell Pathol Incl Mol Pathol 1991;60:413417.Google Scholar
Landolt, AM. Granular cell tumors of the neurohypophysis. Acta Neurochir Suppl 1975;22:120128.Google Scholar
Rossi, ML, Bevan, JS, Esiri, MM, Hughes, JT, Adams, CBT. Pituicytoma (pilocytic astrocytoma). J Neurosurg 1987;67:768772.Google Scholar
Winer, JB, Lidov, H, Scaravilli, F. An ependymoma involving the pituitary fossa. J Neurol Neurosurg Psychiatry 1989;52:14431444.Google Scholar
Scheithauer, BW, Swearingen, B, Whyte, ET, Auluck, PK, Stemmer-Rachamimov, AO. Ependymoma of the sella turcica: a variant of pituicytoma. Hum Pathol 2009;40:435440.Google Scholar
Huang, C-I, Chiou, W-H, Ho, DM. Oligodendroglioma occurring after radiation therapy for pituitary adenoma. J Neurol Neurosurg Psychiatry 1987;50:16191624.Google Scholar
Wong, JYC, Uhl, V, Wara, WM, Sheline, GE. Optic gliomas. a reanalysis of the University of California, San Francisco experience. Cancer 1987;60:18471855.Google Scholar
Rush, JA, Younge, BR, Campbell, RJ, MacCarty, CS. Optic glioma. Long-term follow-up of 85 histopathologically verified cases. Ophthalmology 1982;89:12131219.Google Scholar
Alvord, EC Jr., Lofton, S. Gliomas of the optic nerve or chiasm. Outcome by patients’ age, tumor site, and treatment. J Neurosurg 1988;68:8598.Google Scholar
Riccardi, VM. Neurofibromatosis. In Gomez, MR, ed. Neurocutaneous Syndromes: A Practical Approach. Boston: Butterworths, 1987:1129.Google Scholar
Weinstein, JM, Backonja, M, Houston, LW, et al. Optic glioma associated with Beckwith–Wiedemann syndrome. Pediatr Neurol 1986;2:308310.Google Scholar
Liwnicz, BH, Berger, TS, Liwnicz, RG, Aron, BS. Radiation-associated gliomas: a report of four cases and analysis of postradiation tumors of the central nervous system. Neurosurgery 1985;17:436445.Google Scholar
Hufnagel, TJ, Kim, JH, Lesser, R, et al. Malignant glioma of the optic chiasm eight years after radiotherapy for prolactinoma. Arch Ophthalmol 1988;106:17011705.Google Scholar
Dierssen, G, Figols, J, Trigueros, F, Alvarez, G. Gliomas astrocitarios asociados a radioterapia previa. Arch Neurobiol 1987;50:303308.Google Scholar
Marus, G, Levin, CV, Rutherfoord, GS. Malignant glioma following radiotherapy for unrelated primary tumors. Cancer 1986;58:886894.Google Scholar
Okamoto, S, Handa, H, Yamashita, J, Tokuriki, Y, Abe, M. Post-irradiation brain tumors. Neurol Med Chir 1985;25:528533.Google Scholar
Piatt, JH, Blue, JM, Schold, SC, Burger, PC. Glioblastoma multiforme after radiotherapy for acromegaly. Neurosurgery 1983;13:8589.Google Scholar
Zampieri, P, Zorat, PL, Mingrino, S, Soattin, GB. Radiation-associated cerebral gliomas. A report of two cases and review of the literature. J Neursurg Sci 1989;33:271279.Google Scholar
Kitanaka, C, Shitara, N, Nakagomi, T, et al. Postradiation astrocytoma. Report of two cases. J Neurosurg 1989;70:469474.CrossRefGoogle ScholarPubMed
Ushio, Y, Arita, N, Yoshimine, T, Nagatani, M, Mogami, H. Glioblastoma after radiotherapy for craniopharyngioma: case report. Neurosurgery 1987;21:3338.CrossRefGoogle ScholarPubMed
Maat-Schieman, MLC, Bots, GTAM, Thomeer, RTWM, Vielvoye, GJ. Malignant astrocytoma following radiotherapy for craniopharyngioma. Br J Radiol 1985;58:480482.Google Scholar
Okamoto, S, Handa, H, Yamashita, J, Tokuriki, Y, Abe, M. Post-irradiation brain tumors. Neurol Med Chir 1985;25:528533.Google Scholar
Tibbetts, KM, Emnett, RJ, Gao, F, Perry, A, Gutmann, DH, Leonard, JR. Histopathologic predictors of pilocytic astrocytoma event-free survival. Acta Neuropathol 2009;117:657665.Google Scholar
Horbinski, C, Hamilton, RL, Lovell, C, Burnham, J, Pollack, IF. Impact of morphology, MIB-1, p53 and MGMT on outcome in pilocytic astrocytomas. Brain Pathol 2010;20:581583.Google Scholar
Rodriguez, FJ, Scheithauer, BW, Burger, PC, Jenkins, S, Giannini, C. Anaplasia in pilocytic astrocytoma predicts aggressive behavior. Am J Surg Pathol 2010;34:147160.Google Scholar
Pfister, S, Janzarik, WG, Remke, M, et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-grade astrocytomas. J Clin Invest 2008;118:17391749.CrossRefGoogle ScholarPubMed
Jones, DT, Kocialkowski, S, Liu, L, et al. Tandem duplication producing a novel oncogenic BRAF fusion gene defines the majority of pilocytic astrocytomas. Cancer Res 2008;68:86738677.Google Scholar
Jones, DT, Kocialkowski, S, Liu, L, Pearson, DM, Ichimura, K, Collins, VP. Oncogenic RAF1 rearrangement and a novel BRAF mutation as alternatives to KIAA1549:BRAF fusion in activating the MAPK pathway in pilocytic astrocytoma. Oncogene 2009;28:21192123.Google Scholar
Janzarik, WG, Kratz, CP, Loges, NT, et al. Further evidence for a somatic KRAS mutation in a pilocytic astrocytoma. Neuropediatrics 2007;38:6163.Google Scholar
Tchoghandjian, A, Fernandez, C, Colin, C, et al. Pilocytic astrocytoma of the optic pathway: a tumour deriving from radial glia cells with a specific gene signature. Brain 2009;132:15231535.Google Scholar
Rohringer, M, Sutherland, GR, Louw, DF, Sima, AAF. Incidence and clinicopathological features of meningioma. J Neurosurg 1989;71:665672.Google Scholar
Sridhar, K, Ramamurthi, B. Intracranial meningioma subsequent to radiation for a pituitary tumor: case report. Neurosurgery 1989;25:643645.Google Scholar
Kasantikul, V, Shuangshoti, S, Phonprasert, C. Intrasellar meningioma after radiotherapy for prolactinoma. J Med Assoc Thai 1988;71:524527.Google Scholar
Spallone, A. Meningioma as a sequel of radiotherapy for pituitary adenoma. Neurochirurgia 1982;25:6872.Google Scholar
Yeakley, JW, Kulkarni, MV, McArdle, CB, Haar, FL, Tang, RA. High-resolution MR imaging of juxtasellar meningiomas with CT and angiographic correlation. AJNR Am J Neuroradiol 1988;9:279285.Google Scholar
Michael, AS, Paige, ML. MR imaging of intrasellar meningiomas simulating pituitary adenomas. J Comput Assist Tomogr 1988;12:944946.Google Scholar
Slavin, MJ, Weintraub, J. Suprasellar meningioma with intrasellar extension simulating pituitary adenoma. Arch Ophthalmol 1987;105:14881489.Google Scholar
Halper, J, Colvard, DS, Scheithauer, BW, et al. Estrogen and progesterone receptors in meningiomas: comparison of nuclear binding, dextran-coated charcoal, and immunoperoxidase staining assays. Neurosurgery 1989;25:546553.Google Scholar
Probst, Ch. Possibilities and limitations of microsurgery in patients with meningiomas of the sellar region. Acta Neurochir 1987;84:99102.Google Scholar
Ishige, N, Ito, C, Saeki, N, Oka, N. Neurinoma with intrasellar extension: a case report. Neurol Surg 1985;13:7984.Google Scholar
Wilberger, JE Jr. Primary intrasellar schwannoma: case report. Surg Neurol 1989;32:156158.Google Scholar
Perone, TP, Robinson, B, Holmes, SM. Intrasellar schwannoma: case report. Neurosurgery 1984;14:7173.CrossRefGoogle ScholarPubMed
Maartens, NF, Ellegala, DB, Vance, ML, Lopes, MB, Laws, ER Jr. Intrasellar schwannomas: report of two cases. Neurosurgery 2003;52:12001205.Google Scholar
Honegger, J, Koerbel, A, Psaras, T, Petrick, M, Mueller, K. Primary intrasellar schwannoma: clinical, aetiopathological and surgical considerations. Br J Neurosurg 2005;19:432438.Google Scholar
Perez, MT, Farkas, J, Padron, S, Changus, JE, Webster, EL. Intrasellar and parasellar cellular schwannoma. Ann Diagn Pathol 2004;8:142150.Google Scholar
Pernicone, PJ, Scheithauer, B, Sebo, TJ, et al. Pituitary carcinoma: a clinicopathologic study of 15 cases. Cancer 1997;79:804812.Google Scholar
Petterson, T, MacFarlane, IA, MacKenzie, JM, Shaw, MDM. Prolactin secreting pituitary carcinoma. J Neurol Neurosurg Psychiatry 1992;55:12051206.Google Scholar
Walker, JD, Grossman, A, Anderson, JV, et al. Malignant prolactinoma with extracranial metastases: a report of three cases. Clin Endocrinol (Oxf) 1993;38:411419.Google Scholar
Saeger, W, Lüdecke, DK. Pituitary carcinomas. Endocr Pathol 1996;7:2135.Google Scholar
Brown, RL, Muzzafar, T, Wollman, R, Weiss, RE. A pituitary carcinoma secreting TSH and prolactin: a non-secreting adenoma gone awry. Eur J Endocrinol 2006;154:639643.Google Scholar
Guastamacchia, E, Triggiani, V, Tafaro, E, et al. Evolution of a prolactin-secreting pituitary microadenoma into a fatal carcinoma: a case report. Minerva Endocrinol 2007;32:231236.Google Scholar
Frost, AR, Tenner, S, Tenner, M, Rollhauser, C, Tabbara, SO. ACTH-producing pituitary carcinoma presenting as the cauda equina syndrome. Arch Pathol Lab Med 1995;119:9396.Google Scholar
Kouhara, H, Tatekawa, T, Koga, M, et al. Intracranial and intraspinal dissemination of an ACTH-secreting pituitary tumor. Endocrinol Jpn 1992;39:177184.Google Scholar
Pinchot, SN, Sippel, R, Chen, H. ACTH-producing carcinoma of the pituitary with refractory Cushing’s disease and hepatic metastases: a case report and review of the literature. World J Surg Oncol 2009;7:39.Google Scholar
Zahedi, A, Booth, GL, Smyth, HS, et al. Distinct clonal composition of primary and metastatic adrencorticotrophic hormone-producing pituitary carcinoma. Clin Endocrinol (Oxf) 2001;55:549556.Google Scholar
Stewart, PM, Carey, MP, Graham, CT, Wright, AD, London, DR. Growth hormone secreting pituitary carcinoma: a case report and literature review. Clin Endocrinol (Oxf) 1992;37:189195.Google Scholar
Mixson, AJ, Friedman, TC, Katz, DA, et al. Thyrotropin-secreting pituitary carcinoma. J Clin Endocrinol Metab 1993;76:529533.Google Scholar
Luzi, P, Miracco, C, Lio, R, et al. Endocrine inactive pituitary carcinoma metastasizing to cervical lymph nodes: a case report. Hum Pathol 1987;18:9092.Google Scholar
Kuroki, M, Tanaka, r, Yokoyama, M, Shimbo, Y, Ikuta, F. Subarachnoid dissemination of a pituitary adenoma. Surg Neurol 1987;28:7176.Google Scholar
Roncaroli, F, Scheithauer, BW, Horvath, E, et al. Silent subtype 3 carcinoma of the pituitary: a case report. Neuropathol Appl Neurobiol 2010;36:9094.Google Scholar
Guzel, A, Tatli, M, Senturk, S, Guzel, E, Cayli, SR, Sav, A. Pituitary carcinoma presenting with multiple metastases: case report. J Child Neurol 2008;23:14671471.Google Scholar
Vidal, S, Kovacs, K, Horvath, E, Scheithauer, BW, Kuroki, T, Lloyd, RV. Microvessel density in pituitary adenomas and carcinomas. Virchows Arch 2001;438:595602.Google Scholar
Thapar, K, Scheithauer, BW, Kovacs, K, Pernicone, PJ, Laws, ER, Jr. p53 expression in pituitary adenomas and carcinomas: correlation with invasiveness and tumor growth fractions. Neurosurgery 1996;38:765771.Google Scholar
Jin, L, Qian, X, Kulig, E, et al. Transforming growth factor-beta, transforming growth factor-beta receptor II, and p27Kip1 expression in nontumorous and neoplastic human pituitaries. Am J Pathol 1997;151:509519.Google Scholar
Korbonits, M, Chahal, HS, Kaltsas, G, et al. Expression of phosphorylated p27(Kip1) protein and Jun activation domain-binding protein 1 in human pituitary tumors. J Clin Endocrinol Metab 2002;87:26352643.Google Scholar
Nosé-Alberti, V, Mesquita, MI, Martin, LC, Kayath, MJ. Adrenocorticotropin-producing pituitary carcinoma with expression of c-erbB-2 and high PCNA index: a comparative study with pituitary adenomas and normal pituitary tissues. Endocr Pathol 1998;9:5362.Google Scholar
Pei, L, Melmed, S, Scheithauer, B, Kovacs, K, Prager, D. H-RAS mutations in human pituitary carcinoma metastases. J Clin Endocrinol Metab 1994;78:842846.Google Scholar
Cai, WY, Alexander, JM, Hedley-Whyte, ET, et al. RAS mutations in human prolactinomas and pituitary carcinomas. J Clin Endocrinol Metab 1994;78:8993.Google Scholar
Hinton, DR, Hahn, JA, Weiss, MH, Couldwell, WT. Loss of Rb expression in an ACTH-secreting pituitary carcinoma. Cancer Lett 1998;126:209214.Google Scholar
Tanizaki, Y, Jin, L, Scheithauer, BW, Kovacs, K, Roncaroli, F, Lloyd, RV. P53 gene mutations in pituitary carcinomas. Endocr Pathol 2007;18:217222.Google Scholar
Gaffey, TA, Scheithauer, BW, Lloyd, RV, et al. Corticotroph carcinoma of the pituitary: a clinicopathological study. Report of four cases. J Neurosurg 2002;96:352360.Google Scholar
Lim, S, Shahinian, H, Maya, MM, Yong, W, Heaney, AP. Temozolomide: a novel treatment for pituitary carcinoma. Lancet Oncol 2006;7:518520.Google Scholar
Fadul, CE, Kominsky, AL, Meyer, LP, et al. Long-term response of pituitary carcinoma to temozolomide. Report of two cases. J Neurosurg 2006;105:621626.Google Scholar
Hagen, C, Schroeder, HD, Hansen, S, Hagen, C, Andersen, M. Temozolomide treatment of a pituitary carcinoma and two pituitary macroadenomas resistant to conventional therapy. Eur J Endocrinol 2009;161:631637.Google Scholar
Annamalai, AK, Dean, AF, Kandasamy, N, et al. Temozolomide responsiveness in aggressive corticotroph tumours: a case report and review of the literature. Pituitary 2012;15:276287.Google Scholar
Kovacs, K, Scheithauer, BW, Lombardero, M, et al. MGMT immunoexpression predicts responsiveness of pituitary tumors to temozolomide therapy. Acta Neuropathol 2008;115:261262.Google Scholar
McCormack, A, Kaplan, W, Gill, AJ, et al. MGMT expression and pituitary tumours: relationship to tumour biology. Pituitary 2013;16:208219.Google Scholar
Bush, ZM, Longtine, JA, Cunningham, T, et al. Temozolomide treatment for aggressive pituitary tumors: correlation of clinical outcome with O-methylguanine methyltransferase (MGMT) promoter methylation and expression. J Clin Endocrinol Metab 2010;95:E280E290.Google Scholar
Frangou, EM, Tynan, JR, Robinson, CA, Ogieglo, LM, Vitali, AM. Metastatic craniopharyngioma: case report and literature review. Childs Nerv Syst 2009;25:11431147.Google Scholar
Gupta, K, Kuhn, MJ, Shevlin, DW, Wacaser, LE. Metastatic craniopharyngioma. AJNR Am J Neuroradiol 1999;20:10591060.Google Scholar
Grover, WD, Rorke, LB. Invasive craniopharyngioma. J Neurol Neurosurg Psychiatry 1968;31:580582.Google Scholar
Virik, K, Turner, J, Garrick, R, Sheehy, JP. Malignant transformation of craniopharyngioma. J Clin Neurosci 1999;6:527530.Google Scholar
Rodriguez, FJ, Scheithauer, BW, Tsunoda, S, Kovacs, K, Vidal, S, Piepgras, DG. The spectrum of malignancy in craniopharyngioma. Am J Surg Pathol 2007;31:10201028.Google Scholar
Mariani, L, Schaller, B, Weis, J, Ozdoba, C, Seiler, RW. Esthesioneuroblastoma of the pituitary gland: a clinicopathological entity? Case report and review of the literature. J Neurosurg 2004;101:10491052.Google Scholar
Sajko, T, Rumboldt, Z, Talan-Hranilovic, J, Radic, I, Gnjidic, Z. Primary sellar esthesioneuroblastoma. Acta Neurochir (Wien) 2005;147:447448.Google Scholar
Lin, JH, Tsai, DH, Chiang, YH. A primary sellar esthesioneuroblastomas with unusual presentations: a case report and reviews of literatures. Pituitary 2009;12:7075.Google Scholar
Oyama, K, Yamada, S, Usui, M, Kovacs, K. Sellar neuroblastoma mimicking pituitary adenoma. Pituitary 2005;8:109114.Google Scholar
Unger, F, Haselsberger, K, Walch, C, Stammberger, H, Papaefthymiou, G. Combined endoscopic surgery and radiosurgery as treatment modality for olfactory neuroblastoma (esthesioneuroblastoma). Acta Neurochir (Wien) 2005;147:595601.Google Scholar
Masse, SR, Wolk, RW, Conklin, RH. Peripituitary gland involvement in acute leukemia in adults. Arch Pathol 1973;96:141142.Google Scholar
Mancardi, GL, Mandybur, TI. Solitary intracranial plasmacytoma. Cancer 1983;51:22262233.Google Scholar
Jacquet, G, Vuillier, J, Viennet, A, Godard, J, Steimle, R. [Solitary plasmacytoma simulating pituitary adenoma.] Neurochirurgie 1991;37:6771.Google Scholar
Singh, VP, Mahapatra, AK, Dinde, AK. Sellar-suprasellar primary malignant lymphoma: case report. Indian J Cancer 1993;30:8891.Google Scholar
Samaratunga, H, Perry-Keene, D, Apel, RL. Primary lymphoma of the pituitary gland: a neoplasm of acquired MALT? Endocr Pathol 1997;8:335341.Google Scholar
Sanchez, JA, Rahman, S, Strauss, RA, Kaye, GI. Multiple myeloma masquerading as a pituitary tumor. Arch Pathol Lab Med 1977;101:5556.Google Scholar
Nemoto, K, Ohnishi, Y, Tsukada, T. Chronic lymphocytic leukemia showing pituitary tumor with massive leukemic cell infiltration, and special reference to clinicopathological findings of CLL. Acta Pathol Jpn 1978;28:797805.Google Scholar
Urbanski, SJ, Bilbao, JM, Horvath, E, Kovacs, K, So, W, Ward, JV. Intrasellar solitary plasmacytoma terminating in multiple myeloma: a report of a case including electron microscopical study. Surg Neurol 1980;14:233236.Google Scholar
Vaquero, J, Areitio, E, Martinez, R. Intracranial parasellar plasmacytoma. Arch Neurol 1982;39:738.Google Scholar
Bitterman, P, Ariza, A, Black, RA, Allen, WEI, Lee, SH. Multiple myeloma mimicking pituitary adenoma. Compt Radiol 1986;10:201205.Google Scholar
Maiuri, F. Primary cerebral lymphoma presenting as steroid-responsive chiasmal syndrome. Br J Neurosurg 1987;1:499502.Google Scholar
Sheehan, T, Cuthbert, RJG, Parker, AC. Central nervous system involvement in haematological malignancies. Clin Lab Haematol 1989;11:331338.Google Scholar
McLaughlin, DM, Gray, WJ, Jones, FG, et al. Plasmacytoma: an unusual cause of a pituitary mass lesion. A case report and a review of the literature. Pituitary 2004;7:179181.Google Scholar
Sinnott, BP, Hatipoglu, B, Sarne, DH. Intrasellar plasmacytoma presenting as a non-functional invasive pituitary macro-adenoma: case report & literature review. Pituitary 2006;9:6572.Google Scholar
Yaman, E, Benekli, M, Coskun, U, et al. Intrasellar plasmacytoma: an unusual presentation of multiple myeloma. Acta Neurochir (Wien) 2008;150:921924.Google Scholar
Roggli, VL, Suzuki, M, Armstrong, D, McGavran, MH. Pituitary microadenoma and primarylymphoma of brain associated with hypopthalamic invasion. Am J Clin Pathol 1979;71:724727.Google Scholar
Warnke, R, Dorfman, R, Weiss, L, Cleary, M, Chan, J. Atlas of Tumor Pathology, 3rd Series, Fascicle 14: Tumors of the Lymphoid System. Washington, DC: Armed Forces Institute of Pathology, 1995.Google Scholar
Jaffe, ES, Harris, NL, Stein, H, Vardiman, JW. Pathology and Genetics of Tumours of Hematopoietic and Lymphoid Tissues. Lyon: International Agency for Research on Cancer, 2001.Google Scholar
Favara, BE, Feller, AC, Pauli, M, et al. Contemporary classification of histiocytic disorders. The WHO Committee On Histiocytic/Reticulum Cell Proliferations. Reclassification Working Group of the Histiocyte Society. Med Pediatr Oncol 1997;29:157166.Google Scholar
Willman, CL, Busque, L, Griffith, BB, et al. Langerhans-cell histiocytosis (histiocytosis X): a clonal proliferative disease. N Engl J Med 1994;331:154160.Google Scholar
Yousem, SA, Colby, TV, Chen, YY, Chen, WG, Weiss, LM. Pulmonary Langerhans cell histiocytosis: molecular analysis of clonality. Am J Surg Pathol 2001;25:630636.Google Scholar
Kepes, JJ, Kepes, M. Predominantly cerebral forms of histiocytosis-X. A reappraisal of “Gagel’s hypothalamic granuloma,” “granuloma infiltrans of the hypothalamus” and “Ayala’s disease” with a report of four cases. Acta Neuropathol (Berl) 1969;14:7798.Google Scholar
Ober, KP, Alexander, E Jr., Challa, VR, Ferree, C, Elster, A. Histiocytosis X of the hypothalamus. Neurosurgery 1989;24:9395.Google Scholar
Nishio, S, Mizuno, J, Barrow, DL, Takei, Y, Tindall, GT. Isolated histiocytosis X of the pituitary gland: case report. Neurosurgery 1987;21:718721.Google Scholar
Kovacs, K, Bilbao, JM, Fornasier, VL, Horvath, E. Pituitary pathology in Erdheim–Chester disease. Endocr Pathol 2004;15:159166.Google Scholar
Mahnel, R, Tan, KH, Fahlbusch, R, et al. Problems in differential diagnosis of non Langerhans cell histiocytosis with pituitary involvement: case report and review of literature. Endocr Pathol 2002;13:361368.Google Scholar
Vadakekalem, J, Stamos, T, Shenker, Y. Sometimes the hooves do belong to zebras! An unusual case of hypopituitarism. J Clin Endocrinol Metab 1995;80:1720.Google Scholar
Oweity, T, Scheithauer, BW, Ching, HS, Lei, C, Wong, KP. Multiple system Erdheim–Chester disease with massive hypothalamic–sellar involvement and hypopituitarism. J Neurosurg 2002;96:344351.Google Scholar
Graif, M, Pennock, JM. MR imaging of histiocytosis X in the central nervous system. AJNR Am J Neuroradiol 1986;7:2123.Google ScholarPubMed
Peyster, RG, Hoover, ED. CT of the abnormal pituitary stalk. AJNR Am J Neuroradiol 1984;5:4952.Google Scholar
Tien, RD, Newton, TH, McDermott, MW, Dilon, WP, Kucharczyk, J. Thickened pituitary stalk on MR images in patients with diabetes insipidus and Langerhans cell histiocytosis. AJNR Am J Neuroradiol 1990;11:703708.Google Scholar
Schmitt, S, Wichmann, W, Martin e, , Zachmann, M, Schoenle, EJ. Primary stalk thickening with dibetes insipidus preceding typical manifestations of Langerhans cell histiocytosis in children. Eur J Pediatr 1993;152:399401.Google Scholar
Ornvold, K, Ralfkiaer, E, Carstensen, H. Immunohistochemical study of the abnormal cells in Langerhans cell histiocytosis (Histiocytosis X). Virchows Arch A Pathol Anat Histopathol 1990;416:403410.Google Scholar
Rueda-Pedraza, ME, Heifetz, SA, Sesterhenn, IA, Clark, GB. Primary intracranial germ cell tumors in the first two decades of life. A clinical, light-microscopic, and immunohistochemical analysis of 54 cases. Perspect Pediatr Pathol 1987;10:160207.Google Scholar
Jennings, MT, Gelman, R, Hochberg, F. Intracranial germ-cell tumors: natural history and pathogenesis. J Neurosurg 1985;63:155167.Google Scholar
Sakai, N, Yamada, H, Andoh, T, Hirata, T, Shimizu, K, Shinoda, J. Primary intracranial germ-cell tumors. A retrospective analysis with special reference to long-term results of treatment and the behavior of rare types of tumors. Acta Oncol 1988;27:4350.Google Scholar
Kageyama, N, Kobayashi, T, Kida, Y, Yoshida, J, Kato, K. Intracranial germinal tumors. Prog Exp Tumor Res 1987;30:255267.Google Scholar
Furukawa, F, Haebara, H, Hamashima, Y. Primary intracranial choriocarcinoma arising from the pituitary fossa. Report of an autopsy case with literature review. Acta Pathol Jpn 1986;36:773781.Google Scholar
Poon, W, Ng, HK, Wong, K, South, JR. Primary intrasellar germinoma presenting with cavernous sinus syndrome. Surg Neurol 1988;30:402405.Google Scholar
Ho, KL. Ecchordosis physaliphora and chordoma: a comparative ultrastructural study. Clin Neuropathol 1985;4:7786.Google Scholar
Sundaresan, N. Chordomas. Clin Orthop Rel Res 1986;204:135142.Google Scholar
Mathews, W, Wilson, CB. Ectopic intrasellar chordoma. J Neurosurg 1974;39:260263.Google Scholar
Wold, LE, Laws, ER. Cranial chordomas in children and young adults. J Neurosurg 1983;59:10431047.Google Scholar
Heffelfinger, MJ, Dahlin, DC, MacCarty, CS, Beabout, JW. Chordomas and cartilaginous tumors at the skull base. Cancer 1973;32:410420.Google Scholar
Vujovic, S, Henderson, S, Presneau, N, et al. Brachyury, a crucial regulator of notochordal development, is a novel biomarker for chordomas. J Pathol 2006;209:157165.Google Scholar
Castel, JP, Delorge-Kerdiles, C, Rivel, J. Angiome caverneux du chiasma optique. Neurochirurgie 1989;35:252256.Google Scholar
Sansone, ME, Liwnicz, BH, Mandybur, TI. Giant pituitary cavernous hemangioma. Case report. J Neurosurg 1980;53:124126.Google Scholar
Chang, WH, Khosla, VK, Radotra, BD, Kak, VK. Large cavernous hemangioma of the pituitary fossa: a case report. Br J Neurosurg 1991;5:627629.Google Scholar
Asa, SL, Kovacs, K, Horvath, E, Ezrin, C, Weiss, MH. Sellar glomangioma. Ultrastruct Pathol 1984;7:4954.Google Scholar
Dan, NG, Smith, DE. Pituitary hemangioblastoma in a patient with von Hippel–Lindau disease. J Neurosurg 1975;42:232235.Google Scholar
Goto, T, Nishi, T, Kunitoku, N, et al. Suprasellar hemangioblastoma in a patient with von Hippel–Lindau disease confirmed by germline mutation study: case report and review of the literature. Surg Neurol 2001;56:2226.Google Scholar
Cassarino, DS, Auerbach, A, Rushing, EJ. Widely invasive solitary fibrous tumor of the sphenoid sinus, cavernous sinus, and pituitary fossa. Ann Diagn Pathol 2003;7:169173.Google Scholar
Furlanetto, TW, Pinheiro, CF, Oppitz, PP, de Alencastro, LC, Asa, SL. Solitary fibrous tumor of the sella mimicking pituitary adenoma: an uncommon tumor in a rare location-a case report. Endocr Pathol 2009;20:5661.Google Scholar
Wu, KK, Ross, PM, Mitchell, DC, Sprague, HH. Evolution of a case of multicentric giant cell tumor over a 23-year period. Clin Orthop Rel Res 1986;213:279288.Google Scholar
Wolfe, JTI, Scheithauer, BW, Dahlin, DC. Giant-cell tumor of the sphenoid bone. Review of 10 cases. J Neurosurg 1983;59:322327.Google Scholar
Viswanathan, R, Jegathraman, AR, Ganapathy, K, Bharati, AS, Govindan, R. Parasellar chondromyxofibroma with ipsilateral total internal carotid artery occlusion. Surg Neurol 1987;28:141144.Google Scholar
Angiari, P, TTorcia, E, Botticelli, RA, villani, M, Merli, GA, Crisi, G. Ossifying parasellar chondroma. Case report. J Neursurg Sci 1987;31:5963.Google Scholar
Dutton, J. Intracranial solitary chondroma. Case report. J Neurosurg 1978;49:460463.Google Scholar
Inoue, T, Takahashi, N, Murakami, K, Nishimura, S, Kaimori, M, Nishijima, M. Osteochondroma of the sella turcica presenting with intratumoral hemorrhage. Neurol Med Chir (Tokyo) 2009;49:3741.Google Scholar
Miki, K, Kawamoto, K, Kawamura, Y, Matsumura, H, Asada, Y, Hamada, A. A rare case of Maffucci’s syndrome combined with tuberculum sellae enchondroma, pituitary adenoma and thyroid adenoma. Acta Neurochir 1987;87:7985.Google Scholar
Sindou, M, Daher, A, Vighetto, A, Goutelle, A. Chondrosarcome parasellaire: rapport d’un cas opéré par voie ptériono-temporale et revue de la littérature. Neurochirurgie 1989;35:186190.Google Scholar
Bots, GTAM, Tijssen, CC, Wijnalda, D, Teepen, JLJM. Alveolar soft part sarcoma of the pituitary gland with secondary involvement of the right cerebral ventricle. Br J Neurosurg 1988;2:101107.Google Scholar
Gerlach, H, Jänisch, W. Intrakranielles Sarkom nach Bestrahlung eines Hypophysenadenoms. Zentralbl Neurochir 1979;40:131136.Google Scholar
Ahmad, K, Fayos, JV. Pituitary fibrosarcoma secondary to radiation therapy. Cancer 1978;42:107110.Google Scholar
Amine, ARC, Sugar, O. Suprasellar osteogenic sarcoma following radiation for pituitary adenoma. Case report. J Neurosurg 1976;44:8891.Google Scholar
Powell, HC, Marshall, LF, Ignelzi, RJ. Post-irradiation pituitary sarcoma. Acta Neuropathol (Berl) 1977;39:165167.Google Scholar
Tanaka, S, Nishio, S, Morioka, T, Fukui, M, Kitamura, K, Hikita, K. Radiation-induced osteosarcoma of the sphenoid bone. Neurosurgery 1989;25:640643.Google Scholar
Yamamoto, A, Hashimoto, N, Yamashita, J, Kikuchi, H. A case of radiation-induced intracranial fibrosarcoma with repeated episodes of intratumoral hemorrhage. Neurol Surg 1989;17:193196.Google Scholar
Max, MB, Deck, MDF, Rottenberg, DA. Pituitary metastasis: incidence in cancer patients and clinical differentiation from pituitary adenoma. Neurology 1981;31:9981002.Google Scholar
Roessmann, U, Kaufman, B, Friede, RL. Metastatic lesions in the sella turcica and pituitary gland. Cancer 1970;25:478480.Google Scholar
Felix, IA. Pathology of the neurohypophysis. Pathol Res Pract 1988;183:535537.Google Scholar
Branch, CL Jr., Laws, ER Jr. Metastatic tumors of the sella turcica masquerading as primary pituitary tumors. J Clin Endocrinol Metab 1987;65:469474.Google Scholar
de la Monte, SM, Hutchins, GM, Moore, GW. Endocrine organ metastases from breast carcinoma. Am J Pathol 1984;114:131136.Google Scholar
Kattah, JC, Silgals, RM, Manz, HJ, Toro, JG, Dritschilo, A, Smith, FP. Presentation and management of parasellar and suprasellar metastatic mass lesions. J Neurol Neurosurg Psychiatry 1985;48:4449.Google Scholar
Allen, EM, Kannan, SR, Powell, A. Infundibular metastasis and panhypopituitarism. J Natl Med Assoc 1989;81:325330.Google Scholar
McCormick, PC, Post, KD, Kandji, AD, Hays, AP. Metastatic carcinoma to the pituitary gland. Br J Neurosurg 1989;3:7179.Google Scholar
van Seters, AP, Bots, GTAM, Van Dulken, H, Luyendijk, W, Vielvoye, GJ. Metastasis of an occult gastric carcinoma suggesting growth of a prolactinoma during bromocriptine therapy: a case report with a review of the literature. Neurosurgery 1985;16:813817.Google Scholar
Post, KD, McCormick, PC, Hays, AP, Kankji, AD. Metastatic carcinoma to pituitary adenoma. Report of two cases. Surg Neurol 1988;30:286292.Google Scholar
Molinatti, PA, Scheithauer, BW, Randall, RV, Laws, ER Jr. Metastasis to pituitary adenoma. Arch Pathol Lab Med 1985;109:287289.Google Scholar
Zager, EL, Hedley-White, ET. Metastasis within a pituitary adenoma presenting with bilateal abducens palsies: cae report and review of the literature. Neurosurgery 1987;21:383386.Google Scholar
James, RL, Arsenis, G, Stoler, M, Nelson, C, Baran, D. Hypophyseal metastatic renal cell carcinoma and pituitary adenoma. Case report and review of the literature. Am J Med 1984;76:337340.Google Scholar
Ramsay, JA, Kovacs, K, Scheithauer, BW, Ezrin, C, Weiss, MH. Metastatic carcinoma to pituitary adenomas: a report of two cases. Exper Clin Endocrinol 1988;92:6976.Google Scholar
Santarpia, L, Gagel, RF, Sherman, SI, Sarlis, NJ, Evans, DB, Hoff, AO. Diabetes insipidus and panhypopituitarism due to intrasellar metastasis from medullary thyroid cancer. Head Neck 2009;31:419423.Google Scholar
Williams, MD, Asa, SL, Fuller, GN. Medullary thyroid carcinoma metastatic to the pituitary gland: an unusual site of metastasis. Ann Diagn Pathol 2008;12:199203.Google Scholar
Neilson, JM, Moffat, AD. Hypopituitarism caused by a melanoma of the pituitary gland. J Clin Pathol 1963;16:144149.Google Scholar
Scholtz, CL, Siu, K. Melanoma of the pituitary. Case report. J Neurosurg 1976;45:101103.Google Scholar
Copeland, DD, Sink, JD, Seigler, HF. Primary intracranial melanoma presenting as a suprasellar tumor. Neurosurgery 1980;6:542545.Google Scholar
Chappell, PM, Kelly, WM, Ercius, M. Primary sellar melanoma simulating hemorrhagic pituitary adenoma: MR and pathologic findings. AJNR Am J Neuroradiol 1990;11:10541056.Google Scholar
Aubin, MJ, Hardy, J, Comtois, R. Primary sellar haemorrhagic melanoma: case report and review of the literature. Br J Neurosurg 1997;11:8083.Google Scholar
Borek, BT, McKee, PH, Freeman, JA, Maguire, B, Brander, WL, Calonje, E. Primary malignant melanoma with rhabdoid features: a histologic and immunocytochemical study of three cases. Am J Dermatopathol 1998;20:123127.Google Scholar
Tuttenberg, J, Fink, W, Back, W, Wenz, F, Schadendorf, D, Thome, C. A rare primary sellar melanoma. Case report. J Neurosurg 2004;100:931934.Google Scholar
Rousseau, A, Bernier, M, Kujas, M, Varlet, P. Primary intracranial melanocytic tumor simulating pituitary macroadenoma: case report and review of the literature. Neurosurgery 2005;57:E369.Google Scholar
Bell, CD, Kovacs, K, Horvath, E, Smythe, H, Asa, S. Papillary carcinoma of thyroid metastatic to the pituitary gland. Arch Pathol Lab Med 2001;125:935938.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×