Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-18T10:25:41.119Z Has data issue: false hasContentIssue false

Chapter 20 - Pulmonary, thymic, and mediastinal neuroendocrine lesions

from Section III - Anatomical endocrine pathology

Published online by Cambridge University Press:  13 April 2017

Ozgur Mete
Affiliation:
University of Toronto
Sylvia L. Asa
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Endocrine Pathology , pp. 776 - 820
Publisher: Cambridge University Press
Print publication year: 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Linnoila, R.I.. Functional facets of the pulmonary neuroendocrine system. Lab Invest 2006;86:425444.Google Scholar
Feyrter, F.. Uber die these von den peripheren endokrinen drusen. Wien Z Innere Med Grenzgeb 1946;10:936.Google Scholar
Axiotis, C.A.. The neuroendocrine lung. In LiVolsi, V.A., Asa, S.L. eds. Endocrine Pathology. New York, Churchill Livingstone, 2002:261296.Google Scholar
McGovern, S., Pan, J., Oliver, G., Cutz, E., Yeger, H.. The role of hypoxia and neurogenic genes (Mash1 and Prox1) in the developmental programming and maturation of pulmonary neuroendocrine cells in fetal mouse lung. Lab Invest 2010;90:180195.Google Scholar
Li, Y., Linnoila, R.I.. Multidirectional differentiation of achaete-scute homologue-1-defined progenitors in lung development and injury repair. Am J Respir Cell Mol Biol 2012;47:768775.Google Scholar
Morimoto, M., Nishinakamura, R., Saga, Y., Kopan, R.. Different assemblies of Notch receptors coordinate the distribution of the major bronchial Clara, ciliated and neuroendocrine cells. Development 2012;139:43654373.CrossRefGoogle ScholarPubMed
Wang, X.Y., Jensen-Taubman, S.M., Keefe, K.M., Yang, D., Linnoila, R.I.. Achaete-scute complex homolog-1 promotes DNA repair in the lung carcinogenesis through matrix metalloproteinase-7 and O-methylguanine-DNA methyl transferase. PLOS ONE 2012;7:e52832.Google Scholar
Neptune, E.R., Podowski, M., Calvi, C., et al. Targeted disruption of NeuroD, a proneural basic helix-loop-helix factor, impairs distal lung formation and neuroendocrine morphology in the neonatal lung. J Biol Chem 2008;283:2116021169.CrossRefGoogle ScholarPubMed
Miki, M., Ball, D.W., Linnoila, R.I.. Insights into the achaete-scute homolog-1 gene (hASH1) in normal and neoplastic human lung. Lung Cancer 2012;75:5865.Google Scholar
Volante, M., Fulcheri, E., Allìa, E., et al. Ghrelin expression in fetal, infant, and adult human lung. J Histochem Cytochem 2002;50:10131021.CrossRefGoogle ScholarPubMed
Volante, M., Rosas, R., Ceppi, P., et al. Obestatin in human neuroendocrine tissues and tumours: expression and effect on tumour growth. J Pathol 2009;218:458466.Google Scholar
Sturm, N., Rossi, G., Lantuéjoul, S., et al. 34BetaE12 expression along the whole spectrum of neuroendocrine proliferations of the lung, from neuroendocrine cell hyperplasia to small cell carcinoma. Histopathology 2003;42:156166.CrossRefGoogle ScholarPubMed
Swarts, A.D.R., Speel, E.J.M.. Molecular and cellular biology of neuroendocrine lung tumors: evidence for separate biological entities. Biochem Biophys Acta 2012;1826:32553271.Google ScholarPubMed
Gosney, J.R., Sissons, M.C., Allibone, R.O.. Neuroendocrine cell populations in normal human lungs: a quantitative study. Thorax 1988;43:878882.CrossRefGoogle ScholarPubMed
Brouns, I., Van Genechten, J., Hayashi, H., et al. Dual sensory innervation of pulmonary neuroepithelial bodies. Am J Respir Cell Mol Biol 2003;28:275285.Google Scholar
Gould, V.E., Linnoila, R.I., Memoli, V.A., Warren, W.H.. Neuroendocrine components of the bronchopulmonary tract: hyperplasias, dysplasias, and neoplasms. Lab Invest 1983;49:519537.Google Scholar
La Rosa, S., Chiaravalli, A.M., Placidi, C., et al. TTF1 expression in normal lung neuroendocrine cells and related tumors: immunohistochemical study comparing two different monoclonal antibodies. Virchows Arch 2010;457:497507.Google Scholar
Lauweryns, J.M., Peuskens, J.C.. Neuro-epithelial bodies (neuroreceptor or secretory organs?) in human infant bronchial and bronchiolar epithelium. Anat Rec 1972;172:471481.Google Scholar
Hackett, N.R., Butler, M.W., Shaykhiev, R., et al. RNA-Seq quantification of the human small airway epithelium transcriptome. BMC Genomics 2012;13:131.CrossRefGoogle ScholarPubMed
Franks, T.J., Colby, T.V., Travis, W.D., et al. Resident cellular components of the human lung: current knowledge and goals for research on cell phenotyping and function. Proc Am Thorac Soc 2008;5:763766.Google Scholar
Lauweryns, J.M., Cokelaere, M., Lerut, T., et al. Crosscirculation studies on the influence of hypoxia and hypoxaemia on neuro-epithelial bodies in young rabbits. Cell Tissue Res 1978;193:373386.CrossRefGoogle ScholarPubMed
Youngson, C., Nurse, C., Yeger, H., et al. Oxygen sensing in airway chemoreceptors. Nature 1993;365:153155.Google Scholar
Min, K.W.. Two different types of carcinoid tumors of the lung: immunohistochemical and ultrastructural investigation and their histogenetic consideration. Ultrastruct Pathol 2013;37:2335.CrossRefGoogle ScholarPubMed
Domnik, N.J., Cutz, E.. Pulmonary neuroepithelial bodies as airway sensors: putative role in the generation of dyspnea. Curr Opin Pharmacol 2011;11:211217.Google Scholar
Kaufmann, O., Dietel, M.. Expression of thyroid transcription factor-1 in pulmonary and extrapulmonary small cell carcinomas and other neuroendocrine carcinomas of various primary sites. Histopathology 2000;36;415420.Google Scholar
Righi, L., Volante, M., Rapa, I., Scagliotti, G.V., Papotti, M.. Neuroendocrine tumours of the lung. A review of relevant pathological and molecular data. Virch Arch 2007;451S1:S5159.Google Scholar
Gosney, J.R., Williams, I.J., Dodson, A.R., Foster, C.S.. Morphology and antigen expression profile of pulmonary neuroendocrine cells in reactive proliferations and diffuse idiopathic pulmonary neuroendocrine cell hyperplasia (DIPNECH). Histopathology 2011;59:751762.CrossRefGoogle ScholarPubMed
Lukkarinen, H., Pelkonen, A., Lohi, J., et al. Neuroendocrine cell hyperplasia of infancy: a prospective follow-up of nine children. Arch Dis Child 2013;98:141144.CrossRefGoogle ScholarPubMed
Popler, J., Gower, W.A., Mogayzel, P.J. Jr., et al. Familial neuroendocrine cell hyperplasia of infancy. Pediatr Pulmonol 2010;45:749755.CrossRefGoogle ScholarPubMed
Song, H., Yao, E., Lin, C., et al. Functional characterization of pulmonary neuroendocrine cells in lung development, injury, and tumorigenesis. Proc Natl Acad Sci USA 2012;109:1753117536.Google Scholar
Aguayo, S.M., Miller, Y.E., Waldron, J.A. Jr., et al. Idiopathic diffuse hyperplasia of pulmonary neuroendocrine cells and airways disease. N Engl J Med 1992;327:12851288.Google Scholar
Gosney, J.R., Sissons, M.C.J., Allibone, R.O., et al. Pulmonary endocrine cells in chronic bronchitis and emphysema. J Pathol 1989;157:127133.Google Scholar
Corrin, B.. Neuroendocrine neoplasms of the lung. Curr Diagn Pathol 1997;4:239250.Google Scholar
Travis, W.D., Brambilla, E., Muller-Hermelink, H.K., Harris, C.C., eds. World Health Organization Classification of Tumours. Pathology and Genetics of Tumours of the Lung, Pleura, Thymus and Heart. Lyon: International Agency for Research on Cancer, 2004.Google Scholar
Nassar, A.A., Jaroszewski, D.E., Helmers, R.A., et al. Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia: a systematic overview. Am J Respir Crit Care Med 2011;184:816.CrossRefGoogle ScholarPubMed
Davies, S.J., Gosney, J.R., Hansell, D.M., et al. Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia: an under-recognized spectrum of disease. Thorax 2007;62:248252.Google Scholar
Lee, J.S., Brown, K.K., Cool, C., Lynch, D.A.. Diffuse pulmonary neuroendocrine cell hyperplasia: radiologic and clinical features. J Comput Assist Tomogr 2002;26:180184.Google Scholar
Aubry, M.C., Thomas, C.F.J., Jett, J.R., et al. Significance of multiple carcinoid tumors and tumorlets in surgical lung specimens: analysis of 28 patients. Chest 2007;131:16351643.Google Scholar
Miller, R.R., Muller, L.L.. Neuroendocrine hyperplasia and obliterative bronchiolitis in patients with peripheral carcinoid tumours. Am J Surg Pathol 1995;19:653658.Google Scholar
Rossi, G., Cavazza, A., Graziano, P., M. Papotti. mTOR/p70S6K in diffuse idiopathic pulmonary neuroendocrine cell hyperplasia. Am J Respir Crit Care Med 2012;185:341.Google Scholar
Gorshtein, A., Gross, D.J., Barak, D., et al. Diffuse idiopathic pulmonary neuroendocrine cell hyperplasia and the associated lung neuroendocrine tumors. Cancer 2012;118:612619.Google Scholar
Travis, W.D.. Advances in neuroendocrine lung tumors. Ann Oncol 2010;21(suppl 7):vii65vii71.Google Scholar
Zhou, S., Potts, E.N., Cuttitta, F., Foster, W.M., Sunday, M.E.. Gastrin-releasing peptide blockade as a broad-spectrum anti-inflammatory therapy for asthma. Proc Natl Acad Sci USA 2011;108:21002105.Google Scholar
Sternberg, S.S.. Histology for Pathologists. 2nd edn. Philadelphia, PA: Lippincott-Raven, 1997.Google Scholar
Rizvi, S.M., Goodwill, J., Lim, E., et al. The frequency of neuroendocrine cell hyperplasia in patients with pulmonary neuroendocrine tumours and non-neuroendocrine cell carcinomas. Histopathology 2009;55:332337.Google Scholar
Bertino, E.M., Confer, P.D., Colonna, J.E., et al. Pulmonary neuroendocrine/carcinoid tumors. a review article. cancer 2009;115:44344441.Google Scholar
Gatta, G., Ciccolallo, L., Kunkler, I., et al. for the EUROCARE Working Group: survival from rare cancer in adults. Lancet Oncol 2006;7:132140.CrossRefGoogle Scholar
Modlin, I.M., Sandor, A.. An analysis of 8305 cases of carcinoid tumors. Cancer 1997;79:813829.Google Scholar
Warren, W.H., Gould, V.E.. Neuroendocrine tumors of the bronchopulmonary tract: a reappraisal of their classification after 20 years. Surg Clin North Am 2002;82:525540.CrossRefGoogle Scholar
Morandi, U., Casali, C., Rossi, G.. Bronchial typical carcinoid tumors. Thorac Cardiovasc Surg 2006;18:191198.Google ScholarPubMed
Fink, G., Krelbaum, T., Yellin, A., et al. Pulmonary carcinoid: presentation, diagnosis, and outcome in 142 cases in Israel and review of 640 cases from the literature. Chest 2001;119:16471651.Google Scholar
Deb, S.J., Nichols, F.C., Allen, M.S., et al. Pulmonary carcinoid tumors with Cushing’s syndrome: an aggressive variant or not? Ann Thoracic Surg 2005;79:11321136.Google Scholar
Athanassiadi, K., Exarcos, D., Tsagarakis, S., et al. Acromegaly caused by ectopic growth hormone-releasing hormone secretion by a carcinoid bronchial tumor: a rare entity. J Thoracic Cardiovasc Surg 2004;128:631632.Google Scholar
Sachitanandan, N., Harle, R.A., Burgess, J.R.. Bronchopulmonary carcinoid in multiple neuroendocrine neoplasia type 1. Cancer 2005;103:509515.CrossRefGoogle Scholar
Chong, S., Lee, K.S., Kim, B.T., et al. Integrated PET/CT of pulmonary neuroendocrine tumors: diagnostic and prognostic implications. Am J Roentgenol 2007:188:12231231.Google Scholar
Krenning, E.P., Kwekkeboom, D.J., Bakker, W.H., et al. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1] and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nuclear Med 1993;20:716731.Google Scholar
Renshaw, A.A., Haja, J., Lozano, R.L., Wilbur, D.C.. Distinguishing carcinoid tumor from small cell carcinoma of the lung. Arch Pathol Lab Med 2005;129:614618.Google Scholar
Pelosi, G., Rodriguez, J., Viale, G., Rosai, J.. Typical and atypical pulmonary carcinoid tumor overdiagnosed as small-cell carcinoma on biopsy specimens: a major pitfall in the management of lung cancer patients. Am J Surg Pathol 2005;29;179187.Google Scholar
Stoll, L.M., Johnson, M.W., Burroughs, F., Kay, Q.. Cytologic diagnosis and differential diagnosis of lung carcinoid tumors a retrospective study of 63 cases with histologic correlation. Cancer (Cancer Cytopathol) 2010;118:457467.Google Scholar
Travis, W.D., Rush, V., Flieder, D.B., et al. Survival analysis of 200 pulmonary neuroendocrine tumors with clarification of criteria for atypical carcinoid and its separation from typical carcinoid. Am J Surg Pathol 1998;22:934944.CrossRefGoogle ScholarPubMed
Beasley, M.B.. Immunohistochemistry of pulmonary and pleural neoplasia. Arch Pathol Lab Med 2008;132:10621072.Google Scholar
Moran, C.A., Suster, S., Coppola, D., Wick, M.R.. Neuroendocrine carcinomas of the lung. A critical analysis. Am J Clin Pathol 2009;131:206221.Google Scholar
Hasleton, P., Flieder, D.B., eds. Spencer’s Pathology of the Lung. Cambridge, UK: Cambridge University Press, 2013.CrossRefGoogle Scholar
Gaffey, M.J., Mills, S.E., Frierson, H.F. Jr., et al. Pulmonary clear cell carcinoid tumor: another entity in the differential diagnosis of pulmonary clear cell neoplasia. Am J Surg Pathol 1998;22:10201025.CrossRefGoogle ScholarPubMed
Gal, A.A., Kornstein, M.J., Cohen, C., et al. Neuroendocrine tumors of the thymus: a clinicopathologic and prognostic study. Ann Thorac Surg 2001;72:11791182.Google Scholar
Sklar, J.L., Churg, A., Bensch, K.G.. Oncocytic carcinoid tumor of the lung. Am J Surg Pathol 1980;4:287292.Google Scholar
Nannini, N., Bertolini, F., Cavazza, A., et al. Atypical carcinoid with prominent mucinous stroma: a hitherto unreported variant of pulmonary neuroendocrine tumor. Endocr Pathol 2010;21:120124.Google Scholar
Sheppard, M.N.. Nuclear pleomorphism in typical carcinoid tumour of the lung: problems in frozen section interpretation. Histopathology 1997;30:478480.Google Scholar
Gupta, R., Dastane, A., Mckenna, R.J. Jr., Marchevsky, A.M.. What can we learn from the errors in the frozen section diagnosis of pulmonary carcinoid tumors? An evidence-based approach. Hum Pathol 2009;40:19.CrossRefGoogle ScholarPubMed
Cavazza, A., Toffanetti, R., Ferrari, G., et al. Combined neoplasia of the lung: description of a case of adenocarcinoma mixed with typical carcinoid. Pathologica 2001;93:216220.Google Scholar
Owens, C.L., Fraire, A.E.. Combined tumors of lung: combined carcinoid tumor and squamous cell carcinoma of lung: expanding the spectrum. Int J Surg Pathol 2011;19:273275.Google Scholar
Wang, B.Y., Gil, J., Burstein, D.E., et al. p63 in pulmonary epithelium, pulmonary squamous neoplasms and other pulmonary tumors. Hum Pathol 2002;33:921926.Google Scholar
Sturm, N., Lantuéjoul, S., Laverriere, M.H., et al. Thyroid transcription factor 1 and cytokeratins 1, 5, 10, 14 (34βE12) expression in basaloid and large-cell neuroendocrine carcinomas of the lung. Hum Pathol 2001;32:918925.Google Scholar
Pelosi, G., Rossi, G., Cavazza, A., et al. Np63 (p40) distribution inside lung cancer: a driver biomarker approach to tumor characterization. Int J Surg Pathol 2013:21:229239.Google Scholar
Barbareschi, M., Frigo, B., Mosca, L., Carboni, N.. Bronchial carcinoids with S-100 positive substentacular cells: a comparative study with gastrointestinal carcinoids, pheochromocytomas and paragangliomas. Pathol Res Pract 1990;186:212222.Google Scholar
Oliveira, A.M., Tazelaar, H.D., Myers, J.L., et al. Thyroid transcription factor-1 distinguishes metastatic pulmonary from well-differentiated neuroendocrine tumors of other sites. Am J Surg Pathol 2001;25: 815819.Google Scholar
Du, E.Z., Goldstraw, P., Zacharias, J., et al. TTF-1 expression is specific for lung primary in typical and atypical carcinoids: TTF-1-positive carcinoids are predominantly in peripheral location. Hum Pathol 2004;35:825831.Google Scholar
Sturm, N., Rossi, G., Lantuéjoul, S., et al. Expression of thyroid transcription factor-1 in the spectrum of neuroendocrine cell proliferations with special interest in carcinoids. Hum Pathol 2002;33:175182.CrossRefGoogle ScholarPubMed
Arbiser, Z.K., Arbiser, J.L., Cohen, C., Gal, A.A.. Neuroendocrine lung tumors: grade correlates with proliferation but not angiogenesis. Mod Pathol 2001;14:11951199.Google Scholar
Rekhtman, N.. Neuroendocrine tumors of the lung. An update. Arch Pathol Lab Med 2010;134:16281638.Google Scholar
Song, J., Li, M., Tretiakova, M., et al. Expression patterns of PAX5, c-MET, and paxillin in neuroendocrine tumors of the lung. Arch Pathol Lab Med 2010;134:17021705.Google Scholar
Sica, G., Wagner, P.L., Altorki, N., et al. Immunohistochemical expression of estrogen and progesterone receptors in primary pulmonary neuroendocrine tumors. Arch Pathol Lab Med 2008;132:18891895.Google Scholar
Khoor, A., Stahlman, M.T., Johnson, M.J., et al. Forkhead box A2 transcription factor is expressed in all types of neuroendocrine lung tumors. Hum Pathol 2004;35:560564.Google Scholar
Alì, G., Boldrini, L., Fontanini, G.. Expression of p-AKT and p-mTOR in a large series of bronchopulmonary neuroendocrine tumors. Exp Therap Med 2011;2:787792.Google Scholar
Righi, L., Volante, M., Rapa, I., et al. Mammalian target of rapamycin signaling activation patterns in neuroendocrine tumors of the lung. Endocr Relat Cancer 2010;17:977987.CrossRefGoogle ScholarPubMed
Righi, L., Volante, M., Tavaglione, V., et al. Somatostatin receptor tissue distribution in lung neuroendocrine tumours: a clinicopathologic and immunohistochemical study of 218 “clinically aggressive” cases. Ann Oncol 2010;21:548555.Google Scholar
Michelland, S., Gazzeri, S., Brambilla, E., Robert-Nicoud, M.. Comparison of chromosomal imbalances in neuroendocrine and non-small-cell lung carcinomas. Cancer Genet Cytogenet 1999;114:2230.Google Scholar
Onuki, N., Wistubai, I.I., Travis, W.D., et al. Genetic changes in the spectrum of neuroendocrine lung tumors. Cancer 1999;85:600607.Google Scholar
Debelenko, L.V., Swalwell, J.I., Kelley, M.J., et al. MEN1 gene mutation analysis of high-grade neuroendocrine lung carcinoma. Genes Chromosomes Cancer 2000;28:5865.3.0.CO;2-2>CrossRefGoogle ScholarPubMed
D’Adda, T., Pelosi, G., Lagrasta, C., et al. Genetic alterations in combined neuroendocrine neoplasms of the lung. Mod Pathol 2008;21:414422.Google Scholar
Beasley, M.B., Lantuéjoul, S., Abbondanzo, S., et al. The p16/cyclin D1/Rb pathway in neuroendocrine tumors of the lung. Hum Pathol 2003;34:136142.Google Scholar
Brambilla, E., Gazzeri, S., Lantuéjoul, S., et al. p53 mutant immunophenotype and deregulation of p53 transcription pathway (BCL-2, Bax, and Waf1) in precursor bronchial lesions of lung cancer. Clin Cancer Res 1998:4:16091618.Google Scholar
Gouyer, V., Gazzeri, S., Bolon, I., et al. Mechanism of retinoblastoma gene inactivation in the spectrum of neuroendocrine lung tumors. Am J Respir Cell Mol Biol 1998;18:188196.Google Scholar
Zaffaroni, N., De Pollo, D., Villa, R., et al. Differential expression of telomerase activity in neuroendocrine lung tumours: correlation with gene product immunophenotyping. J Pathol 2003;201:127133.Google Scholar
Jones, M.H., Virtanen, C., Honjoh, D., et al. Two prognostically significant subtypes of high-grade lung neuroendocrine tumours independent of small-cell and large cell neuroendocrine carcinomas identified by gene expression profiles. Lancet 2004;363:775781.Google Scholar
Sartori, G., Cavazza, A., Sgambato, A., et al. EGFR and K-RAS mutations along the spectrum of pulmonary epithelial tumors of the lung and elaboration of a combined clinicopathologic and molecular scoring system to predict clinical responsiveness to EGFR inhibitors. Am J Clin Pathol 2009;131:478489.Google Scholar
Nakamura, H., Tsuta, K., Yoshida, A., et al. Aberrant anaplastic lymphoma kinase expression in high-grade pulmonary neuroendocrine carcinoma. J Clin Pathol 2013;66:705707.Google Scholar
Zahel, T., Krysa, S., Herpel, E., et al. Phenotyping of pulmonary carcinoids and a Ki-67 grading approach. Virchows Arch 2012;460:299308.Google Scholar
Pelosi, G., Pasini, F., Fraggetta, F., et al. Independent value of fascin immunoreactivity for predicting lymph node metastases in typical and atypical pulmonary carcinoids. Lung Cancer 2003;42;203213.Google Scholar
Swarts, D., Henfling, M., Van Neste, L., et al. CD44 and OTP are strong prognostic markers for pulmonary carcinoids. Clin Cancer Res 2013;19:21972207.Google Scholar
Oberg, K., Hellman, P., Ferolla, P., et al. for the ESMO Guidelines Working Group. Neuroendocrine bronchial and thymic tumors: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Ann Oncol 2012;23(suppl 7):vii120vii123.Google Scholar
Fox, M., Van Berkel, V., Bousamra, M. II, et al. Surgical management of pulmonary carcinoid tumors: sublobar resection versus lobectomy. Am J Surg 2013;205:200208.Google Scholar
Gramberg, D., Erikson, B., Wilander, E., et al. Experience in treatment of metastatic pulmonary carcinoid tumor. Ann Oncol 2001;12:13831391.Google Scholar
Travis, W.D., Giroux, D.J., Chansky, K., et al. The IASLC Lung Cancer Staging Project: proposals for the inclusion of broncho-pulmonary carcinoid tumors in the forthcoming (seventh) edition of the TNM Classification for Lung Cancer. J Thorac Oncol 2008;3:12131223.Google Scholar
Beasley, M.B., Thunnissen, F.B., Brambilla, E., et al. Pulmonary atypical carcinoid: predictors of survival in 106 cases. Hum Pathol 2000;31:12551265.Google Scholar
Oliaro, A., Filosso, P.L., Donati, G., Ruffini, E.. Atypical bronchial carcinoid: review of 46 patients. J Cardiovasc Surg 2000;41:131135.Google Scholar
Rosado de Christenson, M.L., Abbott, G.F., Kirejczyk, W.M., et al. Thoracic carcinoids: radiologic-pathologic correlation. Radiographics 1999;19:707736.Google Scholar
Arrigoni, M.G., Woolner, L.B., Bernatz, P.E.. Atypical carcinoid tumors of the lung. J Thorac Cardiovasc Surg 1972;64:413421.Google Scholar
Travis, W.D., Linnoila, R.I., Tsokos, M.G., et al. Neuroendocrine tumors of the lung with proposed criteria for large-cell neuroendocrine carcinoma: an ultrastructural, immunohistochemical, and flow cytometric study of 35 cases. Am J Surg Pathol 1991;15:529553.Google Scholar
Tsuta, K., Rasob, M.G., Kalhora, N., et al. Histologic features of low- and intermediate-grade neuroendocrine carcinoma (typical and atypical carcinoid tumors) of the lung. Lung Cancer 2011;71:3441.Google Scholar
Huang, Q., Muzitansky, A., Mark, E.J.. Pulmonary neuroendocrine carcinomas. a review of 234 cases and a statistical analysis of 50 cases treated at one institution using a simple clinicopathologic classification. Arch Pathol Lab Med 2002;126:545553.Google Scholar
Rugge, M., Fassan, M., Clemente, R., et al. Bronchopulmonary carcinoid: phenotype and long-term outcome in a single-institution series of Italian patients. Clin Cancer Res 2008;14:149154.Google Scholar
Bishop, J.A., Sharma, R., Illei, P.B.. Napsin A and thyroid transcription factor-1 expression in carcinomas of the lung, breast, pancreas, colon, kidney, thyroid, and malignant mesothelioma. Hum Pathol 2010;41:2022.Google Scholar
Pelosi, G., Leon, M.E., Veronesi, G., et al. Decreased immunoreactivity of CD99 is an independent predictor of regional lymph node metastases in pulmonary carcinoid tumors. J Thorac Oncol 2006;1:468477.Google Scholar
Travis, W.D., Gal, A.A., Colby, T.V., et al. Reproducibility of neuroendocrine lung tumor classification. Hum Pathol 1998;29:272279.Google Scholar
Travis, W.D.. Pathology of lung cancer. Clin Chest Med 2011;32:669692.Google Scholar
Johnson, R., Trocha, S., McLawhorn, M., et al. Histology, not lymph node involvement, predicts long-term survival in bronchopulmonary carcinoids. Am Surg 2011;77:16691674.CrossRefGoogle Scholar
Travis, W.D., Colby, T.V., Corrin, B., et al. World Health Organization International Histological Classification of Tumors: Histological Typing of Lung and Pleural Tumors, 3rd edn, Berlin: Springer, 1999.Google Scholar
Iyoda, A., Hiroshima, K., Baba, M., et al. Pulmonary large cell carcinomas with neuroendocrine features are high-grade neuroendocrine tumors. Ann Thorac Surg 2002;73:10491054.Google Scholar
Nasgashio, R., Sato, Y., Matsumoto, T., et al. The balance between the expressions of hASH1 and HES1 differs between large cell neuroendocrine carcinoma and small cell carcinoma of the lung. Lung Cancer 2011;74:405410.Google Scholar
Rossi, G., Bertolini, F., Sartori, G., et al. Primary mixed adenocarcinoma and small cell carcinoma of the appendix: a clinicopathologic, immunohistochemical, and molecular study of a hitherto unreported tumor. Am J Surg Pathol 2004;28:12331239.Google Scholar
Brambilla, E., Lantuéjoul, S., Sturm, N.. Divergent differentiation in neuroendocrine lung tumors. Semin Diagn Pathol 2000;17:138148.Google Scholar
Maleki, Z. Diagnostic issues with cytopathologic interpretation of lung neoplasms displaying high-grade basaloid or neuroendocrine morphology. Diagn Cytopathol 2011;39:159167.Google Scholar
Takei, H., Asamura, H., Maeshima, A., et al. Large cell neuroendocrine carcinoma of the lung: a clinicopathologic study of eighty-seven cases. J Thorac Cardiovasc Surg 2002;124: 285292.Google Scholar
Hiroshima, K., Iyoda, A., Shida, T., et al. Distinction of pulmonary large cell neuroendocrine carcinoma from small cell lung carcinoma: a morphological, immunohistochemical, and molecular analysis. Mod Pathol 2006;19:13581368.Google Scholar
Agoff, S.N., Lamps, L.W., Philip, A.T., et al. Thyroid transcription factor-1 is expressed in extrapulmonary small cell carcinomas but not in other extrapulmonary neuroendocrine tumors. Mod Pathol 2000;13: 238242.Google Scholar
Findeis-Hosey, J.J., Huang, J., Li, F., et al. High-grade neuroendocrine carcinomas of the lung highly express enhancer of zeste homolog 2, but carcinoids do not. Hum Pathol 2011;42:867872.Google Scholar
Sun, L., Sakurai, S., Sano, T., et al. High-grade neuroendocrine carcinoma of the lung: comparative clinicopathological study of large cell neuroendocrine carcinoma and small cell lung carcinoma. Pathol Int 2009;59:522529.Google Scholar
Okubo, C., Minami, Y., Tanaka, R., et al. Analysis of differentially expressed genes in neuroendocrine carcinomas of the lung. J Thorac Oncol 2006;1:780786.Google Scholar
Jackson-York, G.L., Davis, B.H., Warren, W.H., et al. Flow cytometric DNA content analysis in neuroendocrine carcinoma of the lung. Correlation with survival and histologic subtype. Cancer 1991;68:374379.Google Scholar
Takeuchi, T., Minami, Y., Iijima, T., et al. Characteristics of loss of heterozygosity in large cell neuroendocrine carcinomas of the lung and small cell lung carcinomas. Pathol Int 2006;56:434439.Google Scholar
Shin, J.H., Kang, S.M., Kim, Y.S., et al. Identification of tumor suppressor loci on the long arm of chromosome 5 in pulmonary large cell neuroendocrine carcinoma. Chest 2005;128:29993003.Google Scholar
Hiroshima, K., Iyoda, A., Shibuya, K., et al. Genetic alterations in early-stage pulmonary large cell neuroendocrine carcinoma. Cancer 2004;100:11901198.Google Scholar
Iyoda, A., Travis, W.D., Sarkaria, I.S., et al. Expression profiling and identification of potential molecular targets for therapy in pulmonary large-cell neuroendocrine carcinoma. Exp Ther Med 2011;2:10411045.Google Scholar
Pelosi, G., Scarpa, A., Veronesi, G., et al. A subset of high-grade pulmonary neuroendocrine carcinomas shows up-regulation of matrix metalloproteinase-7 associated with nuclear beta-catenin immunoreactivity, independent of EGFR and HER2 gene amplification or expression. Virchows Arch 2005;447:969977.Google Scholar
Amin, R.M., Hiroshima, K., Iyoda, A., et al. LKB1 protein expression in neuroendocrine tumors of the lung. Pathol Int 2008;58:8488.Google Scholar
Bago-Horvath, Z., Sieghart, W., Grusch, M., et al. Synergistic effects of erlotinib and everolimus on bronchial carcinoids and large-cell neuroendocrine carcinomas with activated EGFR/AKT/mTOR pathway. Neuroendocrinology 2012;96:228237.Google Scholar
Kaira, K., Ohde, Y., Endo, M., et al. Expression of 4F2hc (CD98) in pulmonary neuroendocrine tumors. Oncol Rep 2011;26:931937.Google Scholar
Marchetti, A., Felicioni, L., Pelosi, G., et al. Frequent mutations in the neurotrophic tyrosine receptor kinase gene family in large cell neuroendocrine carcinoma of the lung. Hum Mutat 2008;29:609616.Google Scholar
Przygodzki, R.M., Finkelstein, S.D., Langer, J.C., et al. Analysis of p53, K-ras-2, and C-raf-1 in pulmonary neuroendocrine tumors. Correlation with histologic subtype and clinical outcome. Am J Pathol 1996;148:15311541.Google ScholarPubMed
Brambilla, E., Negoescu, A., Gazzeri, S., et al. Apoptosis-related factors p53, Bcl2, and Bax in neuroendocrine lung tumors. Am J Pathol 1996;149: 19411952.Google Scholar
Skov, B.G., Holm, B., Erreboe, A., et al. ERCC1 and Ki67 in small cell lung carcinoma and other neuroendocrine tumors of the lung: distribution and impact on survival. J Thorac Oncol 2010;5:453459.Google Scholar
Abedallaa, N., Tremblay, L., Baey, C., et al. Effect of chemotherapy in patients with resected small-cell or large-cell neuroendocrine carcinoma. J Thorac Oncol 2012;7:11791183.Google Scholar
Sarkaria, I.S., Iyoda, A., Roh, M.S., et al. Neoadjuvant and adjuvant chemotherapy in resected pulmonary large cell neuroendocrine carcinomas: a single institution experience. Ann Thorac Surg 2011;92:11801186.Google Scholar
Rossi, G., Cavazza, A., Marchioni, A., et al. Role of chemotherapy and the receptor tyrosine kinases KIT, PDGFRalpha, PDGFRbeta, and Met in large-cell neuroendocrine carcinoma of the lung. J Clin Oncol 2005;23:87748785.Google Scholar
Le Treut, J., Sault, M.C., Lena, H., et al. Multicentre phase II study of cisplatin-etoposide chemotherapy for advanced large-cell neuroendocrine lung carcinoma: the GFPC 0302 study. Ann Oncol 2013;24:15481552.Google Scholar
Sun, J.M., Ahn, M.J., Ahn, J.S., et al. Chemotherapy for pulmonary large cell neuroendocrine carcinoma: similar to that for small cell lung cancer or non-small cell lung cancer? Lung Cancer 2012;77:365370.Google Scholar
Kenmotsu, Y., Oshita, F., Sugiura, M., et al. Nedaplatin and irinotecan in patients with large-cell neuroendocrine carcinoma of the lung. Anticancer Res 2012;32:14531456.Google Scholar
Shimada, Y., Niho, S., Ishii, G., et al. Clinical features of unresectable high-grade lung neuroendocrine carcinoma diagnosed using biopsy specimens. Lung Cancer 2012;75:368373.Google Scholar
Iyoda, A., Hiroshima, K., Nakatani, Y., Fujisawa, T.. Pulmonary large cell neuroendocrine carcinoma: its place in the spectrum of pulmonary carcinoma. Ann Thorac Surg 2007;84:702707.Google Scholar
Goldstraw, P., ed. Staging Manual in Thoracic Oncology. Denver, CO: International Association for the Study of Lung Cancer, 2009.Google Scholar
Ryuge, S., Sato, Y., Jiang, S.X., et al. Prognostic impact of nestin expression in resected large cell neuroendocrine carcinoma of the lung. Lung Cancer 2012;77:415420.Google Scholar
Usuda, J., Ichinose, S., Ishizumi, T., et al. Klotho is a novel biomarker for good survival in resected large cell neuroendocrine carcinoma of the lung. Lung Cancer 2011;72:355359.Google Scholar
Odate, S., Nakamura, K., Onishi, H., et al. TrkB/BDNF signaling pathway is a potential therapeutic target for pulmonary large cell neuroendocrine carcinoma. Lung Cancer 2013;79:205214.Google Scholar
Krug, L.M., Pietanza, M.C., Kris, M.G., et al. Small cell and other neuroendocrine tumors of the lung. In DeVita, L.T., Rosenberg, S.A., eds. Hellman and Rosenberg’s Cancer, Principle and Practice of Oncology, 9th edn. Philadelphia, PA: Lippincott Williams & Wilkins, 2011:848870.Google Scholar
Siegel, R., Ward, E., Brawley, O., Jemal, A.. Cancer statistics, 2011: the impact of eliminating socioeconomic and racial disparities on premature cancer deaths. CA Cancer J Clin 2011;61:212236.Google Scholar
Berg, J.W., Percy, C., Horn, J.W.. Recent change in the pattern of occurrence of oat cell carcinoma of the lung. In Magnus, K., ed. Trends in Cancer Incidence: Causes and Practical Implications. New York: Hemisphere, 1982:215.Google Scholar
Bensch, K.G., Corrin, B., Pariente, R., Spencer, H.. Oat-cell carcinoma of the lung. Its origin and relationship to bronchial carcinoid. Cancer 1968;22:11631172.Google Scholar
Sutherland, K.D., Proost, N., Brouns, I., et al. Cell of origin of small cell lung cancer: inactivation of Trp53 and Rb1 in distinct cell types of adult mouse lung. Cancer Cell 2011;19:754764.Google Scholar
Calbo, J., van Montfort, E., Proost, N., et al. A functional role for tumor cell heterogeneity in a mouse model of small cell lung cancer. Cancer Cell 2011:19:244256.Google Scholar
Nicholson, S.A., Beasley, M.B., Brambilla, E., et al. Small cell lung carcinoma (SCLC): a clinicopathologic study of 100 cases with surgical specimens. Am J Surg Pathol 2002;26:11841197.Google Scholar
Hirsch, F.R., Matthews, M.J., Aisner, S., et al. Histopathologic classification of small cell lung cancer. Changing concepts and terminology. Cancer 1988;62:973977.Google Scholar
Larsen, J.E., Cascone, T., Gerber, D.E., et al. Targeted therapies for lung cancer: clinical experience and novel agents. Cancer J 2011;17:512527.Google Scholar
Rudin, C.M., Durinck, S., Stawiski, E.W., et al. Comprehensive genomic analysis identifies SOX2 as a frequently amplified gene in small-cell lung cancer. Nat Genet 2012;44:11111116.Google Scholar
Sequist, L.V., Heist, R.S., Shaw, A.T., et al. Implementing multiplexed genotyping of non-small-cell lung cancers into routine clinical practice. Ann Oncol 2011;22:26162624.Google Scholar
Tatematsu, A., Shimizu, J., Murakami, Y., et al. Epidermal growth factor receptor mutations in small cell lung cancer. Clin Cancer Res 2008;14:60926096.Google Scholar
Song, J., Li, M., Tretiakova, M., et al. Expression patterns of PAX5, c-MET, and paxillin in neuroendocrine tumors of the lung. Arch Pathol Lab Med 2010;134:17021705.Google Scholar
den Bakker, M.A., Willemsen, S., Grunberg, K., et al. Small cell carcinoma of the lung and large cell neuroendocrine carcinoma interobserver variability. Histopathology 2010;56:356363.Google Scholar
Asamura, H., Kameya, T., Matsuno, Y., et al. Neuroendocrine neoplasms of the lung: a prognostic spectrum. J Clin Oncol 2006;24:7076.Google Scholar
Matsumoto, T., Ryuge, S., Kobayashi, M., et al. Anti-HuC and -HuD autoantibodies are differential sero-diagnostic markers for small cell carcinoma from large cell neuroendocrine carcinoma of the lung. Int J Oncol 2012;40:19571962.Google Scholar
Pelosi, G., Pasini, F., Sonzogni, A., et al. Prognostic implications of neuroendocrine differentiation and hormone production in patients with stage I non-small cell lung carcinoma. Cancer 2003;97:24872497.Google Scholar
Wang, D.Y., Chang, D.B., Kuo, S.H., et al. Carcinoid tumours of the thymus. Thorax 1994;49:357360.Google Scholar
Ruffini, E., Oliaro, A., Novero, D., et al. Neuroendocrine tumors of the thymus. Thorac Surg Clin 2011;21:1323.Google Scholar
Teh, B.T.. Thymic carcinoids in multiple endocrine neoplasia type 1. J Intern Med 1998;43:501504.Google Scholar
Rosai, J., Levine, G., Weber, W.R., Higa, E.. Carcinoid tumors and oat cell carcinomas of the thymus. Pathol Annu 1976;11:201226.Google Scholar
Fukai, I., Masaoka, A., Fujii, Y., et al. Thymic neuroendocrine tumor (thymic carcinoid): a clinicopathologic study in 15 patients. Ann Thorac Surg 1999;67:208211.Google Scholar
Klemm, K.M., Moran, C.A.. Primary neuroendocrine carcinomas of the thymus. Semin Diagn Pathol 1999;16:3241.Google Scholar
Moran, C.A., Suster, S.. Neuroendocrine carcinomas (carcinoid tumor) of the thymus. A clinicopathologic analysis of 80 cases. Am J Clin Pathol 2000;114:100110.Google Scholar
Moran, C.A.. Primary neuroendocrine carcinomas of the mediastinum: review of current criteria for histopathologic diagnosis and classification. Semin Diagn Pathol 2005;22:223229.Google Scholar
Cardillo, G., Rea, F., Lucchi, M., et al. Primary neuroendocrine tumors of the thymus: a multicentric experience of 35 patients. Ann Thorac Surg 2012;94:241246.CrossRefGoogle Scholar
Crona, J., Bjorklund, P., Welin, S., et al. Treatment, prognostic markers and survival in thymic neuroendocrine tumors. A study from a single tertiary referral centre. Lung Cancer 2013;79:289293.Google Scholar
Tiffet, O., Nicholson, A.G., Ladas, G., et al. A clinicopathologic study of 12 neuroendocrine tumors arising in the thymus. Chest 2003;124:141146.Google Scholar
Bi, Y., Liu, R., Ye, L., et al. Gene expression profiles of thymic neuroendocrine tumors (carcinoids) with ectopic ACTH syndrome reveal novel molecular mechanism. Endocrine Related Cancer 2009;16:12731282.Google Scholar
Nishino, M., Ashiku, S.K., Kocher, O.N., et al. The thymus: a comprehensive review. Radiographics 2006;26:335348.Google Scholar
Lastoria, S., Vergara, E., Palmieri, G., et al. In vivo detection of malignant thymic masses by indium-III-DTPA-d-Phe1-octreotide scintigraphy. J Nucl Med 1998;39:634639.Google Scholar
Moll, U.M., Lane, B.L., Robert, F., et al. The neuroendocrine thymus. Abundant occurrence of oxytocin-, vasopressin-, and neurophysin-like peptides in epithelial cells. Histochemistry 1988;89:385390.Google Scholar
Rosai, J., Higa, E.. Mediastinal endocrine neoplasm of probable thymic origin related to carcinoid tumor: clinicopathologic study of 8 cases. Cancer 1972;29:10611074.Google Scholar
Moran, C.A., Suster, S.. Thymic neuroendocrine carcinomas with combined features ranging from well-differentiated (carcinoid) to small cell carcinoma. A clinicopathologic and immunohistochemical study of 11 cases. Am J Clin Pathol 2000;113:345350.Google Scholar
Goto, K., Kodama, T., Matsuno, Y., et al. Clinicopathologic and DNA cytometric analysis of carcinoid tumors of the thymus. Mod Pathol 2001;14:985994.Google Scholar
Rieker, R.J., Aulmann, S., Penzel, R., et al. Chromosomal imbalances in sporadic neuroendocrine tumours of the thymus. Cancer Letters 2005;223 169174.Google Scholar
Srirajaskanthan, R., Toubanakis, C., Dusmet, M., Caplin, M.E.. A review of thymic tumours. Lung Cancer 2008;60:413.Google Scholar
Wick, M.R., Scheithauer, B.W., Weiland, L.H., Bernatz, P.E.. Primary thymic carcinomas. Am J Surg Pathol 1982:6:613630.Google Scholar
Shoji, T., Fushimi, H., Takeda, S., Tanio, Y.. Thymic large-cell neuroendocrine carcinoma: a disease neglected in the ESMO guideline? Ann Oncol 2011;22:2535.Google Scholar
Hekimgil, M., Hamulu, F., Cagirici, U., et al. Small cell neuroendocrine carcinoma of the thymus complicated by Cushing’s syndrome. Report of a 58-year-old woman with a 3-year history of hypertension. Pathol Res Pract 2001;197:129133.Google Scholar
Truong, L.D., Mody, D.R., Cagle, P.T., et al. Thymic carcinoma. a clinicopathologic study of 13 cases. Am J Surg Pathol 1990;14:151166.Google Scholar
Sensaki, K., Aida, S., Takagi, K., et al. Coexisting undifferentiated thymic carcinoma and thymic carcinoid tumor. Respiration 1993;60:247249.Google Scholar
Pan, C.C., Chen, P.C., Chiang, H.. KIT (CD117) is frequently overexpressed in thymic carcinomas but is absent in thymomas. J Pathol 2004;202:375381.Google Scholar
Wakely, P.E. Jr. Fine needle aspiration in the diagnosis of thymic epithelial neoplasms. Hematol Oncol Clin North Am 2008;22:433442.Google Scholar
Cheuk, W., Kwan, M.Y., Suster, S., Chan, J.K.. Immunostaining for thyroid transcription factor 1 and cytokeratin 20 aids the distinction of small cell carcinoma from Merkel cell carcinoma, but not pulmonary from extrapulmonary small cell carcinomas. Arch Pathol Lab Med 2001;125:228231.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×