Skip to main content Accessibility help
×
Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-16T09:42:29.186Z Has data issue: false hasContentIssue false

2 - Atmospheric Emissions from Ships

Published online by Cambridge University Press:  22 January 2021

Stephen de Mora
Affiliation:
Plymouth Marine Laboratory
Timothy Fileman
Affiliation:
Plymouth Marine Laboratory
Thomas Vance
Affiliation:
Plymouth Marine Laboratory
Get access

Summary

Atmospheric emissions from ships have not been subject to the same regulations as those on land until very recently. Carbon emissions from the shipping industry are low (per tonne of transported goods) relative to other areas of the transport sector, namely road traffic and aviation. Regulatory controls of atmospheric pollutants such as sulfur dioxide (SO2), nitrogen oxides (NOx) and particulate matter (PM) were imposed on land-based anthropogenic emissions, but not applied to ships.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Agrawal, H., Malloy, Q. G. J., Welch, W. A., Wayne Miller, J. & Cocker, D. R. III (2008a). In-use gaseous and particulate matter emissions from a modern ocean going container vessel. Atmospheric Environment, 42(21), 55045510.CrossRefGoogle Scholar
Agrawal, H., Welch, W. A., Miller, J. W. & Cocker, D. R. (2008b). Emission measurements from a crude oil tanker at sea. Environmental Science & Technology, 42(19), 70987103.Google Scholar
Albrecht, B. A. (1989). Aerosols, cloud microphysics, and fractional cloudiness. Science, 245(4923), 1227.CrossRefGoogle ScholarPubMed
Alföldy, B., Lööv, J. B., Lagler, F. et al. (2013). Measurements of air pollution emission factors for marine transportation in SECA. Atmospheric Measurement Techniques, 6(7), 17771791.Google Scholar
Ansari, A. S. & Pandis, S. N. (1998). Response of inorganic PM to precursor concentrations. Environmental Science & Technology, 32(18), 27062714.CrossRefGoogle Scholar
Baker, A. R. & Jickells, T. D. (2017). Atmospheric deposition of soluble trace elements along the Atlantic Meridional Transect (AMT). Progress in Oceanography, 158, 4151.CrossRefGoogle Scholar
Bakker, D. C. E., Pfeil, B., Landa, C. S. et al. (2016). A multi-decade record of high-quality fCO2 data in version 3 of the Surface Ocean CO2 Atlas (SOCAT). Earth System Science Data, 8(2), 383413.Google Scholar
Ball, J. S., Wenger, W. J., Hyden, H. J., Horr, C. A. & Myers, A. T. (1960). Metal content of twenty-four petroleums. Journal of Chemical & Engineering Data, 5(4), 553557.CrossRefGoogle Scholar
Balzani Lööv, J. M., Alfoldy, B., Gast, L. F. L. et al. (2014). Field test of available methods to measure remotely SOx and NOx emissions from ships. Atmospheric Measurement Techniques, 7(8), 25972613.Google Scholar
Beecken, J., Mellqvist, J., Salo, K., Ekholm, J. & Jalkanen, J. P. (2014). Airborne emission measurements of SO2, NOx and particles from individual ships using a sniffer technique. Atmospheric Measurement Techniques, 7(7), 19571968.Google Scholar
Beecken, J., Mellqvist, J., Salo, K., et al. (2015). Emission factors of SO2, NOx and particles from ships in Neva Bay from ground-based and helicopter-borne measurements and AIS-based modeling. Atmospheric Chemistry and Physics, 15(9), 52295241.Google Scholar
Berg, N., Mellqvist, J., Jalkanen, J. P. & Balzani, J. (2012). Ship emissions of SO2 and NO2: DOAS measurements from airborne platforms. Atmospheric Measurement Techniques, 5(5), 10851098.CrossRefGoogle Scholar
Betha, R., Russell, L. M., Sanchez, K. J. et al. (2017). Lower NOx but higher particle and black carbon emissions from renewable diesel compared to ultra low sulfur diesel in at-sea operations of a research vessel. Aerosol Science and Technology, 51(2), 123134.Google Scholar
Boersma, K. F., Vinken, G. C. M. & Tournadre, J. (2015). Ships going slow in reducing their NOX emissions: changes in 2005–2012 ship exhaust inferred from satellite measurements over Europe. Environmental Research Letters, 10(7), 074007.CrossRefGoogle Scholar
Bond, T. C. & Bergstrom, R. W. (2006). Light absorption by carbonaceous particles: an investigative review. Aerosol Science and Technology, 40(1), 2767.Google Scholar
Browse, J., Carslaw, K. S., Schmidt, A. & Corbett, J. J. (2013). Impact of future Arctic shipping on high-latitude black carbon deposition. Geophysical Research Letters, 40(16), 44594463.CrossRefGoogle Scholar
Capaldo, K., Corbett, J. J., Kasibhatla, P., Fischbeck, P. & Pandis, S. N. (1999). Effects of ship emissions on sulphur cycling and radiative climate forcing over the ocean. Nature, 400, 743.Google Scholar
Cape, J. N., Coyle, M. & Dumitrean, P. (2012). The atmospheric lifetime of black carbon. Atmospheric Environment, 59, 256263.Google Scholar
Celo, V., Dabek-Zlotorzynska, E. & McCurdy, M. (2015). Chemical characterization of exhaust emissions from selected Canadian marine vessels: the case of trace metals and lanthanoids. Environmental Science & Technology, 49(8), 52205226.CrossRefGoogle ScholarPubMed
Charlton-Perez, C. L., Evans, M. J., Marsham, J. H. & Esler, J. G. (2009). The impact of resolution on ship plume simulations with NOx chemistry. Atmospheric Chemistry and Physics, 9(19), 75057518.CrossRefGoogle Scholar
Chen, G., Huey, L. G., Trainer, M. et al. (2005). An investigation of the chemistry of ship emission plumes during ITCT 2002. Journal of Geophysical Research: Atmospheres, 110(D10), D10S90.Google Scholar
Chosson, F., Paoli, R. & Cuenot, B. (2008). Ship plume dispersion rates in convective boundary layers for chemistry models. Atmospheric Chemistry and Physics, 8(16), 48414853.CrossRefGoogle Scholar
Christensen, M. W. & Stephens, G. L. (2011). Microphysical and macrophysical responses of marine stratocumulus polluted by underlying ships: evidence of cloud deepening. Journal of Geophysical Research: Atmospheres, 116(D3), n.p.CrossRefGoogle Scholar
Ciais, P., Sabine, C., Bala, G. et al. (2013). Carbon and other biogeochemical cycles. In Stocker, T. F., Qin, D., Plattner, G.-K., eds., Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.Google Scholar
Coakley, J. A., Bernstein, R. L. & Durkee, P. A. (1987). Effect of ship-stack effluents on cloud reflectivity. Science, 237(4818), 1020.CrossRefGoogle ScholarPubMed
Cooper, D. A. (2001). Exhaust emissions from high speed passenger ferries. Atmospheric Environment, 35(24), 41894200.Google Scholar
Cooper, D. A. (2003). Exhaust emissions from ships at berth. Atmospheric Environment, 37(27), 38173830.Google Scholar
Cooper, D. A., Peterson, K. & Simpson, D. (1996). Hydrocarbon, PAH and PCB emissions from ferries: a case study in the Skagerak–Kattegatt–Öresund region. Atmospheric Environment, 30(14), 24632473.Google Scholar
Corbett, J. J. & Koehler, H. W. (2003). Updated emissions from ocean shipping. Journal of Geophysical Research: Atmospheres, 108(D20), 4650.Google Scholar
Corbett, J. J., Winebrake, J. J., Green, E. H. et al. (2007). Mortality from ship emissions: a global assessment. Environmental Science & Technology, 41(24), 85128518.Google Scholar
Dalsoren, S. B., Eide, M. S., Endresen, O. et al. (2009). Update on emissions and environmental impacts from the international fleet of ships: the contribution from major ship types and ports. Atmospheric Chemistry and Physics, 9(6), 21712194.CrossRefGoogle Scholar
Davis, D. D., Grodzinsky, G., Kasibhatla, P. et al. (2001). Impact of ship emissions on marine boundary layer NOx and SO2 distributions over the Pacific Basin. Geophysical Research Letters, 28(2), 235238.CrossRefGoogle Scholar
de Wildt, M. D., Eskes, H. & Boersma, K. F. (2012). The global economic cycle and satellite-derived NO2 trends over shipping lanes. Geophysical Research Letters, 39, 1802.Google Scholar
Devasthale, A., Krüger, O. & Graßl, H. (2006). Impact of ship emissions on cloud properties over coastal areas. Geophysical Research Letters, 33(2), n.p.CrossRefGoogle Scholar
Dixon, J. L. (2008). Macro and micro nutrient limitation of microbial productivity in oligotrophic subtropical Atlantic waters. Environmental Chemistry, 5(2), 135142.Google Scholar
Doney, S. C., Mahowald, N., Lima, I. et al. (2007). Impact of anthropogenic atmospheric nitrogen and sulfur deposition on ocean acidification and the inorganic carbon system. Proceedings of the National Academy of Sciences of the United States of America, 104(37), 1458014585.Google Scholar
Dupont, C. L., Buck, K. N., Palenik, B. & Barbeau, K. (2010). Nickel utilization in phytoplankton assemblages from contrasting oceanic regimes. Deep Sea Research Part I: Oceanographic Research Papers, 57(4), 553566.Google Scholar
Durkee, P. A., Chartier, R. E., Brown, A. et al. (2000). Composite ship track characteristics. Journal of the Atmospheric Sciences, 57(16), 25422553.Google Scholar
Echeveste, P., Tovar-Sánchez, A. & Agustí, S. (2014). Tolerance of polar phytoplankton communities to metals. Environmental Pollution, 185, 188195.Google Scholar
Eckhardt, S., Hermansen, O., Grythe, H. et al. (2013). The influence of cruise ship emissions on air pollution in Svalbard – a harbinger of a more polluted Arctic? Atmospheric Chemistry and Physics, 13(16), 84018409.CrossRefGoogle Scholar
Emerson, S., Quay, P., Karl, D. et al. (1997). Experimental determination of the organic carbon flux from open-ocean surface waters. Nature, 389(6654), 951954.CrossRefGoogle Scholar
Endresen, Ø., Sørgård, E., Behrens, H. L., Brett, P. O. & Isaksen, I. S. A. (2007). A historical reconstruction of ships' fuel consumption and emissions. Journal of Geophysical Research: Atmospheres, 112(D12), n.p.CrossRefGoogle Scholar
Endresen, Ø., Sørgård, E., Sundet, J. K. et al. (2003). Emission from international sea transportation and environmental impact. Journal of Geophysical Research: Atmospheres, 108(D17), 4560.CrossRefGoogle Scholar
EPA (2000). Analysis of Commercial Marine Vessels Emissions and Fuel Consumption Data. Washington, DC: US Environmental Protection Agency.Google Scholar
Eyring, V., Isaksen, I. S. A., Berntsen, T. et al. (2010). Transport impacts on atmosphere and climate: shipping. Atmospheric Environment, 44(37), 47354771.CrossRefGoogle Scholar
Eyring, V., Kohler, H. W., Lauer, A. & Lemper, B. (2005a). Emissions from international shipping: 2. Impact of future technologies on scenarios until 2050. Journal of Geophysical Research: Atmospheres, 110(D17), n.p.Google Scholar
Eyring, V., Kohler, H. W., van Aardenne, J. & Lauer, A. (2005b). Emissions from international shipping: 1. The last 50 years. Journal of Geophysical Research: Atmospheres, 110(D17), n.p.CrossRefGoogle Scholar
Ferek, R. J., Garrett, T., Hobbs, P. V. et al. (2000). Drizzle suppression in ship tracks. Journal of the Atmospheric Sciences, 57(16), 27072728.Google Scholar
Fish, R. H., Komlenic, J. J. & Wines, B. K. (1984). Characterization and comparison of vanadyl and nickel compounds in heavy crude petroleums and asphaltenes by reverse-phase and size-exclusion liquid chromatography/graphite furnace atomic absorption spectrometry. Analytical Chemistry, 56(13), 24522460.Google Scholar
Frick, G. M. & Hoppel, W. A. (2000). Airship measurements of ship’s exhaust plumes and their effect on marine boundary layer clouds. Journal of the Atmospheric Sciences, 57(16), 26252648.Google Scholar
Fridell, E. & Salo, K. (2016). Measurements of abatement of particles and exhaust gases in a marine gas scrubber. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 230(1), 154162.Google Scholar
Fuglestvedt, J., Berntsen, T., Eyring, V. et al. (2009). Shipping emissions: from cooling to warming of climate – and reducing impacts on health. Environmental Science & Technology, 43(24), 90579062.Google Scholar
Graham, W. F. & Duce, R. A. (1979). Atmospheric pathways of the phosphorus cycle. Geochimica et Cosmochimica Acta, 43(8), 11951208.Google Scholar
Hassellov, I. M., Turner, D. R., Lauer, A. & Corbett, J. J. (2013). Shipping contributes to ocean acidification. Geophysical Research Letters, 40(11), 27312736.Google Scholar
Hobbs, P. V., Garrett, T. J., Ferek, R. J. et al. (2000). Emissions from ships with respect to their effects on clouds. Journal of the Atmospheric Sciences, 57(16), 25702590.Google Scholar
Holmes, C. D., Prather, M. J. & Vinken, G. C. M. (2014). The climate impact of ship NOx emissions: an improved estimate accounting for plume chemistry. Atmospheric Chemistry and Physics, 14(13), 68016812.Google Scholar
Hunter, K. A., Liss, P. S., Surapipith, V. et al. (2011). Impacts of anthropogenic SOx, NOx and NH3 on acidification of coastal waters and shipping lanes. Geophysical Research Letters, 38, n.p.Google Scholar
Ito, A. (2013). Global modeling study of potentially bioavailable iron input from shipboard aerosol sources to the ocean. Global Biogeochemical Cycles, 27(1), 110.Google Scholar
Jalkanen, J. P., Johansson, L. & Kukkonen, J. (2016). A comprehensive inventory of ship traffic exhaust emissions in the European sea areas in 2011. Atmospheric Chemistry and Physics, 16(1), 7184.CrossRefGoogle Scholar
Jickells, T. D., An, Z. S., Andersen, K. K. et al. (2005). Global iron connections between desert dust, ocean biogeochemistry, and climate. Science, 308(5718), 6771.Google Scholar
Johansson, L., Jalkanen, J. P., Kalli, J. & Kukkonen, J. (2013). The evolution of shipping emissions and the costs of regulation changes in the northern EU area. Atmospheric Chemistry and Physics, 13(22), 1137511389.CrossRefGoogle Scholar
Johansson, L., Jalkanen, J.-P. & Kukkonen, J. (2017). Global assessment of shipping emissions in 2015 on a high spatial and temporal resolution. Atmospheric Environment, 167(Suppl. C), 403415.Google Scholar
Jonson, J. E., Jalkanen, J. P., Johansson, L., Gauss, M. & Denier van der Gon, H. A. C. (2015). Model calculations of the effects of present and future emissions of air pollutants from shipping in the Baltic Sea and the North Sea. Atmospheric Chemistry and Physics, 15(2), 783798.Google Scholar
Jordi, A., Basterretxea, G., Tovar-Sánchez, A., Alastuey, A. & Querol, X. (2012). Copper aerosols inhibit phytoplankton growth in the Mediterranean Sea. Proceedings of the National Academy of Sciences of the United States of America, 109(52), 2124621249.Google Scholar
Kasibhatla, P., Levy, H., Moxim, W. J. et al. (2000). Do emissions from ships have a significant impact on concentrations of nitrogen oxides in the marine boundary layer? Geophysical Research Letters, 27(15), 22292232.Google Scholar
Kasper, A., Aufdenblatten, S., Forss, A., Mohr, M. & Burtscher, H. (2007). Particulate emissions from a low-speed marine diesel engine. Aerosol Science and Technology, 41(1), 2432.Google Scholar
Kattner, L., Mathieu-Üffing, B., Burrows, J. P. et al. (2015). Monitoring compliance with sulfur content regulations of shipping fuel by in situ measurements of ship emissions. Atmospheric Chemistry and Physics, 15(17), 1008710092.Google Scholar
Kivekäs, N., Massling, A., Grythe, H. et al. (2014). Contribution of ship traffic to aerosol particle concentrations downwind of a major shipping lane. Atmospheric Chemistry and Physics, 14(16), 82558267.Google Scholar
Kuang, X. M., Scott, J. A., da Rocha, G. O. et al. (2017). Hydroxyl radical formation and soluble trace metal content in particulate matter from renewable diesel and ultra low sulfur diesel in at-sea operations of a research vessel. Aerosol Science and Technology, 51(2), 147158.Google Scholar
Kulkarni, P., Chellam, S. & Fraser, M. P. (2007). Tracking petroleum refinery emission events using lanthanum and lanthanides as elemental markers for PM2.5. Environmental Science & Technology, 41(19), 67486754.Google Scholar
Lack, D., Lerner, B., Granier, C. et al. (2008). Light absorbing carbon emissions from commercial shipping. Geophysical Research Letters, 35(13), n.p.Google Scholar
Lack, D. A. & Corbett, J. J. (2012). Black carbon from ships: a review of the effects of ship speed, fuel quality and exhaust gas scrubbing. Atmospheric Chemistry and Physics, 12(9), 39854000.Google Scholar
Lack, D. A., Corbett, J. J., Onasch, T. et al. (2009). Particulate emissions from commercial shipping: chemical, physical, and optical properties. Journal of Geophysical Research: Atmospheres, 114(D7), n.p.Google Scholar
Lack, D. A., Cappa, C. D., Langridge, J., et al. (2011). Impact of fuel quality regulation and speed reductions on shipping emissions: implications for climate and air quality. Environmental Science & Technology, 45(20), 90529060.CrossRefGoogle ScholarPubMed
Lauer, A., Eyring, V., Hendricks, J., Jöckel, P. & Lohmann, U. (2007). Global model simulations of the impact of ocean-going ships on aerosols, clouds, and the radiation budget. Atmospheric Chemistry and Physics, 7(19), 50615079.Google Scholar
Law, C. S., Breviere, E., de Leeuw, G. et al. (2013). Evolving research directions in Surface Ocean–Lower Atmosphere (SOLAS) science. Environmental Chemistry, 10(1), 116.Google Scholar
Lawrence, M. G. & Crutzen, P. J. (1999). Influence of NOx emissions from ships on tropospheric photochemistry and climate. Nature, 402(6758), 167170.Google Scholar
Lieke, K. I., Rosenørn, T., Pedersen, J. et al. (2013). Micro- and nanostructural characteristics of particles before and after an exhaust gas recirculation system scrubber. Aerosol Science and Technology, 47(9), 10381046.Google Scholar
Liss, P. S. (1973). Processes of gas exchange across an air-water interface. Deep-Sea Research, 20(3), 221238.Google Scholar
Liss, P. S. & Slater, P. G. (1974). Flux of gases across the air–sea interface. Nature, 247(5438), 181184.Google Scholar
Liu, H., Fu, M., Jin, X. et al. (2016). Health and climate impacts of ocean-going vessels in East Asia. Nature Climate Change, 6(11), 10371041.Google Scholar
Lo Mónaco, S., López, L., Rojas, H. et al. (2002). Distribution of major and trace elements in La Luna Formation, Southwestern Venezuelan Basin. Organic Geochemistry, 33(12), 15931608.Google Scholar
Lyyränen, J., Jokiniemi, J., Kauppinen, E. I. & Joutsensaari, J. (1999). Aerosol characterisation in medium-speed diesel engines operating with heavy fuel oils. Journal of Aerosol Science, 30(6), 771784.Google Scholar
Mackey, K. R. M., Buck, K. N., Casey, J. R. et al. (2012). Phytoplankton responses to atmospheric metal deposition in the coastal and open-ocean Sargasso Sea. Frontiers in Microbiology, 3, 359.CrossRefGoogle ScholarPubMed
Mahowald, N. M., Hamilton, D. S., Mackey, K. R. M. et al. (2018). Aerosol trace metal leaching and impacts on marine microorganisms. Nature Communications, 9(1), 2614.Google Scholar
Marbach, T., Beirle, S., Platt, U. et al. (2009). Satellite measurements of formaldehyde linked to shipping emissions. Atmospheric Chemistry and Physics, 9(21), 82238234.Google Scholar
Marieschi, M., Gorbi, G., Zanni, C., Sardella, A. & Torelli, A. (2015). Increase of chromium tolerance in Scenedesmus acutus after sulfur starvation: chromium uptake and compartmentalization in two strains with different sensitivities to Cr(VI). Aquatic Toxicology, 167, 124133.Google Scholar
Matthias, V., Bewersdorff, I., Aulinger, A. & Quante, M. (2010). The contribution of ship emissions to air pollution in the North Sea regions. Environmental Pollution, 158(6), 22412250.Google Scholar
Melia, N., Haines, K. & Hawkins, E. (2016). Sea ice decline and 21st century trans-Arctic shipping routes. Geophysical Research Letters, 43(18), 97209728.Google Scholar
Moore, C. M., Mills, M. M., Achterberg, E. P. et al. (2009). Large-scale distribution of Atlantic nitrogen fixation controlled by iron availability. Nature Geoscience, 2(12), 867871.Google Scholar
Moreno, T., Querol, X., Alastuey, A. & Gibbons, W. (2008). Identification of FCC refinery atmospheric pollution events using lanthanoid- and vanadium-bearing aerosols. Atmospheric Environment, 42(34), 78517861.Google Scholar
Murphy, S. M., Agrawal, H., Sorooshian, A. et al. (2009). Comprehensive simultaneous shipboard and airborne characterization of exhaust from a modern container ship at sea. Environmental Science & Technology, 43(13), 46264640.Google Scholar
Orr, J. C., Fabry, V. J., Aumont, O. et al. (2005). Anthropogenic ocean acidification over the twenty-first century and its impact on calcifying organisms. Nature, 437(7059), 681686.Google Scholar
Paxian, A., Eyring, V., Beer, W., Sausen, R. & Wright, C. (2010). Present-day and future global bottom-up ship emission inventories including polar routes. Environmental Science & Technology, 44(4), 13331339.Google Scholar
Paytan, A., Mackey, K. R., Chen, Y. et al. (2009). Toxicity of atmospheric aerosols on marine phytoplankton. Proceedings of the National Academy of Sciences of the United States of America, 106(12), 46014605.Google Scholar
Peters, K., Quaas, J. & Graßl, H. (2011). A search for large-scale effects of ship emissions on clouds and radiation in satellite data. Journal of Geophysical Research: Atmospheres, 116(D24), n.p.Google Scholar
Petzold, A., Hasselbach, J., Lauer, P. et al. (2008). Experimental studies on particle emissions from cruising ship, their characteristic properties, transformation and atmospheric lifetime in the marine boundary layer. Atmospheric Chemistry and Physics, 8(9), 23872403.CrossRefGoogle Scholar
Pizzolato, L., Howell, S. E. L., Dawson, J., Laliberté, F. & Copland, L. (2016). The influence of declining sea ice on shipping activity in the Canadian Arctic. Geophysical Research Letters, 43(23), 1214612154.Google Scholar
Pope, I. C., Burnett, R. T., Thun, M. J. et al. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. JAMA, 287(9), 11321141.CrossRefGoogle ScholarPubMed
Radke, L. F., Coakley, J. A. & King, M. D. (1989). Direct and remote sensing observations of the effects of ships on clouds. Science, 246(4934), 1146.Google Scholar
Ramana, M. V. & Devi, A. (2016). CCN concentrations and BC warming influenced by maritime ship emitted aerosol plumes over southern Bay of Bengal. Nature Scientific Reports, 6, 30416.Google Scholar
Richter, A., Eyring, V., Burrows, J. P. et al. (2004). Satellite measurements of NO2 from international shipping emissions. Geophysical Research Letters, 31(23), L23110.Google Scholar
Righi, M., Hendricks, J. & Sausen, R. (2015). The global impact of the transport sectors on atmospheric aerosol in 2030 – part 1: land transport and shipping. Atmospheric Chemistry and Physics, 15(2), 633651.Google Scholar
Rivier, L., Ciais, P., Hauglustaine, D. A. et al. (2006). Evaluation of SF6, C2Cl4, and CO to approximate fossil fuel CO2 in the Northern Hemisphere using a chemistry transport model. Journal of Geophysical Research: Atmospheres, 111(D16), n.p.Google Scholar
Santana-Casiano, J. M., Gonzalez-Davila, M., Rueda, M. J., Llinas, O. & Gonzalez-Davila, E. F. (2007). The interannual variability of oceanic CO2 parameters in the Northeast Atlantic subtropical gyre at the ESTOC site. Global Biogeochemical Cycles, 21(1), 1015.CrossRefGoogle Scholar
Schlager, H., Baumann, R., Lichtenstern, M. et al. (2006). Aircraft-based trace gas measurements in a primary European ship corridor. In Sausen, R., Blum, A. & Lee, D. S., eds., Proceedings of an International Conference on Transport, Atmosphere and Climate (TAC). Oxford: Office for Official Publications of the European Communities, pp. 8388.Google Scholar
Seyler, A., Wittrock, F., Kattner, L. et al. (2017). Monitoring shipping emissions in the German Bight using MAX-DOAS measurements. Atmospheric Chemistry and Physics, 17(18), 1099711023.Google Scholar
Sinha, P., Hobbs, P. V., Yokelson, R. J. et al. (2003). Emissions of trace gases and particles from two ships in the southern Atlantic Ocean. Atmospheric Environment, 37(15), 21392148.Google Scholar
Slinn, S. A. & Slinn, W. G. N. (1980). Predictions for particle deposition on natural waters. Atmospheric Environment, 14(9), 10131016.Google Scholar
Slinn, W. G. N., Hasse, L., Hicks, B. B. et al. (1978). Some aspects of the transfer of atmospheric trace constituents past the air–sea interface. Atmospheric Environment (1967), 12(11), 20552087.Google Scholar
Smith, K. R., Jerrett, M., Anderson, H. R. et al. (2009). Public health benefits of strategies to reduce greenhouse-gas emissions: health implications of short-lived greenhouse pollutants. Lancet, 374(9707), 20912103.Google Scholar
Soerensen, A. L., Sunderland, E. M., Holmes, C. D. et al. (2010). An improved global model for air-sea exchange of mercury: high concentrations over the North Atlantic. Environmental Science & Technology, 44(22), 85748580.CrossRefGoogle ScholarPubMed
Sofiev, M., Winebrake, J. J., Johansson, L. et al. (2018). Cleaner fuels for ships provide public health benefits with climate tradeoffs. Nature Communications, 9(1), 406.Google Scholar
Song, C. H., Chen, G. & Davis, D. D. (2003a). Chemical evolution and dispersion of ship plumes in the remote marine boundary layer: investigation of sulfur chemistry. Atmospheric Environment, 37(19), 26632679.Google Scholar
Song, C. H., Chen, G., Hanna, S. R., Crawford, J. & Davis, D. D. (2003b). Dispersion and chemical evolution of ship plumes in the marine boundary layer: investigation of O3/NOy/HOx chemistry. Journal of Geophysical Research: Atmospheres, 108(D4), 4143.Google Scholar
Stevenson, D. S., Young, P. J., Naik, V. et al. (2013). Tropospheric ozone changes, radiative forcing and attribution to emissions in the Atmospheric Chemistry and Climate Model Intercomparison Project (ACCMIP). Atmospheric Chemistry and Physics, 13(6), 30633085.Google Scholar
Streets, D. G., Guttikunda, S. K. & Carmichael, G. R. (2000). The growing contribution of sulfur emissions from ships in Asian waters, 1988–1995. Atmospheric Environment, 34(26), 44254439.Google Scholar
Stuart, R. K., Dupont, C. L., Johnson, D. A., Paulsen, I. T. & Palenik, B. (2009). Coastal strains of marine Synechococcus species exhibit increased tolerance to copper shock and a distinctive transcriptional response relative to those of open-ocean strains. Applied and Environmental Microbiology, 75(15), 50475057.Google Scholar
Sunda, W. G. & Huntsman, S. A. (1998). Processes regulating cellular metal accumulation and physiological effects: phytoplankton as model systems. Science of the Total Environment, 219(2), 165181.Google Scholar
Tao, L., Fairley, D., Kleeman, M. J. & Harley, R. A. (2013). Effects of switching to lower sulfur marine fuel oil on air quality in the San Francisco Bay area. Environmental Science & Technology, 47(18), 1017110178.Google Scholar
Tissot, B. P. & Welte, D. H. (1984). Petroleum Formation and Occurrence. Berlin: Springer-Verlag.Google Scholar
Tournadre, J. (2014). Anthropogenic pressure on the open ocean: the growth of ship traffic revealed by altimeter data analysis. Geophysical Research Letters, 41(22), 79247932.Google Scholar
Turner, D. R., Hassellov, I. M., Ytreberg, E. & Rutgersson, A. (2017). Shipping and the environment: smokestack emissions, scrubbers and unregulated oceanic consequences. Elementa – Science of the Anthropocene, 5, 45.Google Scholar
UNCTAD (2017). Review of Maritime Transport. United Nations Conference on Trade and Development (UNCTAD/RMT/2017). New York: United Nations.Google Scholar
Unger, N., Bond, T. C., Wang, J. S. et al. (2010). Attribution of climate forcing to economic sectors. Proceedings of the National Academy of Sciences of the United States of America, 107(8), 33823387.CrossRefGoogle ScholarPubMed
Viana, M., Amato, F., Alastuey, A. et al. (2009). Chemical tracers of particulate emissions from commercial shipping. Environmental Science & Technology, 43(19), 74727477.Google Scholar
Vinken, G. C. M., Boersma, K. F., Jacob, D. J. & Meijer, E. W. (2011). Accounting for non-linear chemistry of ship plumes in the GEOS-Chem global chemistry transport model. Atmospheric Chemistry and Physics, 11(22), 1170711722.Google Scholar
von Glasow, R., Lawrence, M. G., Sander, R. & Crutzen, P. J. (2003). Modeling the chemical effects of ship exhaust in the cloud-free marine boundary layer. Atmospheric Chemistry and Physics, 3, 233250.Google Scholar
von Glasow, R., Jickells, T. D., Baklanov, A. et al. (2013). Megacities and large urban agglomerations in the coastal zone: Interactions between atmosphere, land, and marine ecosystems. Ambio, 42(1), 1328.Google Scholar
Wan, Z., Zhu, M., Chen, S. & Sperling, D. (2016). Pollution: three steps to a green shipping industry. Nature, 530(7590), 275277.Google Scholar
Wang, C., Corbett, J. J. & Winebrake, J. J. (2007). Cost-effectiveness of reducing sulfur emissions from ships. Environmental Science & Technology, 41(24), 82338239.Google Scholar
Webster, P. J., Holland, G. J., Curry, J. A. & Chang, H. R. (2005). Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309(5742), 1844.Google Scholar
Williams, E. J., Lerner, B. M., Murphy, P. C., Herndon, S. C. & Zahniser, M. S. (2009). Emissions of NOx, SO2, CO, and HCHO from commercial marine shipping during Texas Air Quality Study (TexAQS) 2006. Journal of Geophysical Research: Atmospheres, 114(D21), D21306.Google Scholar
Wilson, W. B. & Freeberg, L. R. (1980). Toxicity of Metals to Marine Phytoplankton Cultures. Washington, DC: Environmental Research Laboratory, Office of Research and Development, US Environmental Protection Agency.Google Scholar
Winebrake, J. J., Corbett, J. J., Green, E. H., Lauer, A. & Eyring, V. (2009). Mitigating the health impacts of pollution from oceangoing shipping: An assessment of low-sulfur fuel mandates. Environmental Science & Technology, 43(13), 47764782.Google Scholar
Winnes, H. & Fridell, E. (2009). Particle emissions from ships: dependence on fuel type. Journal of the Air & Waste Management Association, 59(12), 13911398.Google Scholar
Winther, M., Christensen, J. H., Plejdrup, M. S. et al. (2014). Emission inventories for ships in the arctic based on satellite sampled AIS data. Atmospheric Environment, 91, 114.CrossRefGoogle Scholar
Yang, M., Howell, S. G., Zhuang, J. & Huebert, B. J. (2009). Attribution of aerosol light absorption to black carbon, brown carbon, and dust in China – interpretations of atmospheric measurements during EAST-AIRE. Atmospheric Chemistry and Physics, 9(6), 20352050.Google Scholar
Yang, M., Huebert, B. J., Blomquist, B. W. et al. (2011). Atmospheric sulfur cycling in the southeastern Pacific – longitudinal distribution, vertical profile, and diel variability observed during VOCALS-REx. Atmospheric Chemistry and Physics, 11(10), 50795097.Google Scholar
Yang, M., Bell, T. G., Hopkins, F. E. & Smyth, T. J. (2016). Attribution of atmospheric sulfur dioxide over the English Channel to dimethyl sulfide and changing ship emissions. Atmospheric Chemistry and Physics, 16(8), 47714783.Google Scholar
Zhao, H. & Baker, G. A. (2015). Oxidative desulfurization of fuels using ionic liquids: a review. Frontiers of Chemical Science and Engineering, 9(3), 262279.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×