Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-n9wrp Total loading time: 0 Render date: 2024-07-19T23:31:44.129Z Has data issue: false hasContentIssue false

9 - Topics in non-equilibrium statistical mechanics

Published online by Cambridge University Press:  03 December 2009

Michel Le Bellac
Affiliation:
Université de Nice, Sophia Antipolis
Fabrice Mortessagne
Affiliation:
Université de Nice, Sophia Antipolis
G. George Batrouni
Affiliation:
Université de Nice, Sophia Antipolis
Get access

Summary

We have given in two previous chapters a first introduction to non-equilibrium phenomena. The present chapter is devoted to a presentation of more general approaches, in which time dependence will be made explicit, whereas in practice we had to limit ourselves to stationary situations in Chapters 6 and 8. In the first part of the chapter, we examine the relaxation toward equilibrium of a system that has been brought out of equilibrium by an external perturbation. The main result is that, for small deviations from equilibrium, this relaxation is described by equilibrium time correlation functions, called Kubo (or relaxation) functions: this result is also known as ‘Onsager's regression law’. The Kubo functions turn out to be basic objects of non-equilibrium statistical mechanics. First they allow one to compute the dynamical susceptibilities, which describe the response of the system to an external time dependent perturbation: the dynamical susceptibilities are, within a multiplicative constant, the time derivatives of Kubo functions. A second crucial property is that transport coefficients can be expressed in terms of time integrals of Kubo functions. As we limit ourselves to small deviations from equilibrium, our theory is restricted to a linear approximation and is known as linear response theory. The classical version of linear reponse is somewhat simpler than the quantum one, and will be described first in Section 9.1. We shall turn to the quantum theory in Section 9.2, where one of our main results will be the proof of the fluctuationdissipation theorem.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×