Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-07T15:59:35.322Z Has data issue: false hasContentIssue false

14 - Maternal and genetic effects on escape: a prospective review

from Part III - Related behaviors and other factors influencing escape

Published online by Cambridge University Press:  05 June 2015

William E. Cooper, Jr
Affiliation:
Indiana University–Purdue University, Indianapolis
Daniel T. Blumstein
Affiliation:
University of California, Los Angeles
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Escaping From Predators
An Integrative View of Escape Decisions
, pp. 360 - 384
Publisher: Cambridge University Press
Print publication year: 2015

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahams, M. V. (1995). The interaction between antipredator behaviour and antipredator morphology: Experiments with fathead minnows and brook sticklebacks. Canadian Journal of Zoology, 73, 22092215.Google Scholar
Andrade, M. C. B. & Roitberg, B. D. (1995). Rapid response to intraclonal selection in the pea aphid (Acyrthosiphon pisum). Evolutionary Ecology, 9, 397410.Google Scholar
Arnold, S. J. & Bennett, A. F. (1984). Behavioral variation in natural populations. 3. Antipredator displays in the garter snake Thamnophis radix. Animal Behaviour, 32, 11081118.Google Scholar
Bize, P., Diaz, C. & Lindstrom, J. (2012). Experimental evidence that adult antipredator behaviour is heritable and not influenced by behavioural copying in a wild bird. Proceedings of the Royal Society B-Biological Sciences, 279, 13801388.Google Scholar
Blount, J. D., Surai, P. F., Nager, R. G., et al. (2002). Carotenoids and egg quality in the lesser black-backed gull Larus fuscus: A supplemental feeding study of maternal effects. Proceedings of the Royal Society B-Biological Sciences, 269, 2936.Google Scholar
Blumstein, D. T., Lea, A. J., Olson, L. E. & Martin, J. G. A. (2010). Heritability of anti-predatory traits: Vigilance and locomotor performance in marmots. Journal of Evolutionary Biology, 23, 879887.Google Scholar
Brodie, E. D. (1989). Genetic correlations between morphology and antipredator behavior in natural populations of the garter snake Thamnophis ordinoides. Nature, 342, 542543.Google Scholar
Brodie, E. D. (1992). Correlational selection for color pattern and antipredator behavior in the garter snake Thamnophis ordinoides. Evolution, 46, 12841298.Google Scholar
Brodie, E. D. (1993). Homogeneity of the genetic variance-covariance matrix for antipredator traits in 2 natural populations of the garter snake Thamnophis ordinoides. Evolution, 47, 844854.Google Scholar
Brokordt, K., Farias, W., Lhorente, J. P. & Winkler, F. (2012). Heritability and genetic correlations of escape behaviours in juvenile scallop Argopecten purpuratus. Animal Behaviour, 84, 479484.Google Scholar
Chin, E. H., Love, O. P., Verspoor, J. J., et al. (2009). Juveniles exposed to embryonic corticosterone have enhanced flight performance. Proceedings of the Royal Society B-Biological Sciences, 276, 499505.Google Scholar
Crews, D., Cantu, A. R., Bergeron, J. M. & Rhen, T. (1995). The relative effectiveness of androstenedione, testosterone, and estrone, precursors to estradiol, in sex reversal in the red-eared slider (Trachemys scripta), a turtle with temperature-dependent sex determination. General and Comparative Endocrinology, 100, 119127.Google Scholar
Cucco, M., Guasco, B., Malacarne, G. & Ottonelli, R. (2006). Effects of beta-carotene supplementation on chick growth, immune status and behaviour in the grey partridge, Perdix perdix. Behavioural Processes, 73, 325332.Google Scholar
Dauphin-Villemant, C. & Xavier, F. (1987). Nychthemeral variations of plasma corticosteroids in captive Lacerta vivipara Jacquin: Influence of stress and reproductive state. General and Comparative Endocrinology, 67, 292302.Google Scholar
De Fraipont, M., Clobert, J., John-Alder, H. & Meylan, S. (2000). Increased pre-natal maternal corticosterone promotes philopatry of offspring in common lizards Lacerta vivipara. Journal of Animal Ecology, 69, 404413.Google Scholar
DeWitt, T. J., Sih, A. & Hucko, J. A. (1999). Trait compensation and cospecialization in a freshwater snail: Size, shape and antipredator behaviour. Animal Behaviour, 58, 397407.Google Scholar
Díaz, M., Møller, A. P., Flensted-Jensen, E., et al. (2013). The geography of fear: A latitudinal gradient in anti-predator escape distances of birds across Europe. Plos One, 8, 7.Google Scholar
Evans, J. P., Kelley, J. L., Bisazza, A., Finazzo, E. & Pilastro, A. (2004). Sire attractiveness influences offspring performance in guppies. Proceedings of the Royal Society B-Biological Sciences, 271, 20352042.Google Scholar
Fuiman, L. A. & Ojanguren, A. F. (2011). Fatty acid content of eggs determines antipredator performance of fish larvae. Journal of Experimental Marine Biology and Ecology, 407, 155165.Google Scholar
Garland, T. (1988). Genetic basis of activity metabolism – 1. Inheritance of speed, stamina, and antipredator displays in the garter snake Thamnophis sirtalis. Evolution, 42, 335350.Google Scholar
Grant, B. & Mettler, L. E. (1969). Disruptive and stabilizing selection on the escape behavior of Drosophila melanogaster. Genetics, 62, 625637.Google Scholar
Hayward, L. S. & Wingfield, J. C. (2004). Maternal corticosterone is transferred to avian yolk and may alter offspring growth and adult phenotype. General and Comparative Endocrinology, 135, 365371.Google Scholar
Hedrick, A. V. & Kortet, R. (2006). Hiding behaviour in two cricket populations that differ in predation pressure. Animal Behaviour, 72, 11111118.Google Scholar
Hill, G. E. (1991). Plumage coloration is a sexually selected indicator of male quality. Nature, 350, 337339.Google Scholar
Hotchkin, P. & Riveroll, H. (2005). Comparative escape behavior of chihuahuan desert parthenogenetic and gonochoristic whiptail lizards. Southwestern Naturalist, 50, 172177.Google Scholar
Jackson, J. F., Ingram, W. & Campbell, H. W. (1976). Dorsal pigmentation pattern of snakes as an antipredator strategy: A multivariate approach. American Naturalist, 110, 10291053.Google Scholar
King, R. B. (2002). Family, sex and testosterone effects on garter snake behavior. Animal Behaviour, 64, 345359.Google Scholar
Lancaster, L. T., McAdam, A. G., Wingfield, J. C. & Sinervo, B. R. (2007). Adaptive social and maternal induction of antipredator dorsal patterns in a lizard with alternative social strategies. Ecology Letters, 10, 798808.Google Scholar
Lancaster, L. T., Hazard, L. C., Clobert, J. & Sinervo, B. R. (2008). Corticosterone manipulation reveals differences in hierarchical organization of multidimensional reproductive trade-offs in r-strategist and K-strategist females. Journal of Evolutionary Biology, 21, 556565.Google Scholar
Lancaster, L. T., McAdam, A. G. & Sinervo, B. (2010). Maternal adjustment of egg size organizes alternative escape behaviors, promoting adaptive phenotypic integration. Evolution, 64, 16071621.Google Scholar
Laurila, A., Lindgren, B. & Laugen, A. T. (2008). Antipredator defenses along a latitudinal gradient in Rana temporaria. Ecology, 89, 13991413.Google Scholar
Losos, J. B., Mouton, P. L. N., Bickel, R., Cornelius, I. & Ruddock, L. (2002). The effect of body armature on escape behaviour in cordylid lizards. Animal Behaviour, 64, 313321.Google Scholar
May, R. M. (1972). Limit cycles in predator–prey communities. Science, 177, 900902.Google Scholar
McGhee, K. E., Pintor, L. M., Suhr, E. L. & Bell, A. M. (2012). Maternal exposure to predation risk decreases offspring antipredator behaviour and survival in threespined stickleback. Functional Ecology, 26, 932940.Google Scholar
McLean, E. B. & Godin, J. G. J. (1989). Distance to cover and fleeing from predators in fish with different amounts of defensive armor. Oikos, 55, 281290.Google Scholar
Meylan, S. & Clobert, J. (2004). Maternal effects on offspring locomotion: Influence of density and corticosterone elevation in the lizard Lacerta vivipara. Physiological and Biochemical Zoology, 77, 450458.Google Scholar
Milstead, W. W. (1957). Observations on the natural history of four species of whiptail lizard, Cnemidophorus (Sauria, Teiidae) in Trans-Pecos Texas. Southwestern Naturalist, 2, 105121.Google Scholar
Mousseau, T. A. & Fox, C. W. (1998). Maternal Effects as Adaptations. Oxford: Oxford University Press.Google Scholar
Nakayama, S. & Miyatake, T. (2010). Genetic trade-off between abilities to avoid attack and to mate: a cost of tonic immobility. Biology Letters, 6, 1820.Google Scholar
O’Steen, S., Cullum, A. J. & Bennett, A. F. (2002). Rapid evolution of escape ability in Trinidadian guppies (Poecilia reticulata). Evolution, 56, 776784.Google Scholar
Partecke, J. & Schwabl, H. (2008). Organizational effects of maternal testosterone on reproductive behavior of adult house sparrows. Developmental Neurobiology, 68, 15381548.Google Scholar
Paulissen, M. A. (1998). Laboratory study of escape tactics of parthenogenetic and gonochoristic Cnemidophorus from southern Texas. Copeia, 240243.Google Scholar
Pinheiro, C. E. G. (1996). Palatability and escaping ability in neotropical butterflies: Tests with wild kingbirds (Tyrannus melancholicus, Tyrannidae). Biological Journal of the Linnean Society, 59, 351365.Google Scholar
Placyk, J. S. (2012). The role of innate and environmental influences in shaping antipredator behavior of mainland and insular gartersnakes (Thamnophis sirtalis). Journal of Ethology, 30, 101108.Google Scholar
Price, A. H. (1992). Comparative behavior in lizards of the genus Cnemidophorus (Teiidae), with comments on the evolution of parthenogenesis in reptiles. Copeia, 323331.Google Scholar
Punzo, F. (2007). Sprint speed and degree of wariness in two populations of whiptail lizards (Aspidoscelis tesselata) (Squamata Teiidae). Ethology Ecology & Evolution, 19, 159169.Google Scholar
Riechert, S. E. & Hedrick, A. V. (1990). Levels of predation and genetically based antipredator behavior in the spider, Agelenopsis aperta. Animal Behaviour, 40, 679687.Google Scholar
Robert, K. A., Vleck, C. & Bronikowski, A. M. (2009). The effects of maternal corticosterone levels on offspring behavior in fast- and slow-growth garter snakes (Thamnophis elegans). Hormones & Behavior, 55, 2432.Google Scholar
Ruuskanen, S. & Laaksonen, T. (2010). Yolk hormones have sex-specific long-term effects on behavior in the pied flycatcher (Ficedula hypoleuca). Hormones and Behavior, 57, 119127.Google Scholar
Sasaki, K., Fox, S. F. & Duvall, D. (2009). Rapid evolution in the wild: Changes in body size, life-history traits, and behavior in hunted populations of the Japanese mamushi snake. Conservation Biology, 23, 93102.Google Scholar
Schall, J. J. & Pianka, E. R. (1980). Evolution of escape behavior diversity. American Naturalist, 115, 551566.Google Scholar
Shaffer, L. R. & Formanowicz, D. R. (2000). Sprint speeds of juvenile scorpions: Among family differences and parent offspring correlations. Journal of Insect Behavior, 13, 4554.Google Scholar
Shine, R. (1995). A new hypothesis for the evolution of viviparity in reptiles. American Naturalist, 145, 809823.Google Scholar
Shine, R. & Downes, S. J. (1999). Can pregnant lizards adjust their offspring phenotypes to environmental conditions? Oecologia, 119, 18.Google Scholar
Shine, R. & Harlow, P. S. (1996). Maternal manipulation of offspring phenotypes via nest-site selection in an oviparous lizard. Ecology, 77, 18081817.Google Scholar
Shine, R., Madsen, T. R. L., Elphick, M. J. & Harlow, P. S. (1997). The influence of nest temperatures and maternal brooding on hatchling phenotypes in water pythons. Ecology, 78, 17131721.Google Scholar
Sies, H. (1997). Oxidative stress: Oxidants and antioxidants. Experimental Physiology, 82, 291295.Google Scholar
Sinervo, B. & Huey, R. B. (1990). Allometric engineering: An experimental test of the causes of interpopulational differences in performance. Science, 248, 11061109.Google Scholar
Sinervo, B. & Lively, C. M. (1996). The rock–paper–scissors game and the evolution of alternative male strategies. Nature, 380, 240243.Google Scholar
Sinervo, B., Svensson, E. & Comendant, T. (2000). Density cycles and an offspring quantity and quality game driven by natural selection. Nature, 406, 985988.Google Scholar
Sinn, D. L., Apiolaza, L. A. & Moltschaniwskyj, N. A.(2006). Heritability and fitness-related consequences of squid personality traits. Journal of Evolutionary Biology, 19, 14371447.Google Scholar
Sorci, G., Swallow, J. G., Garland, T. & Clobert, J. (1995). Quantitative genetics of locomotor speed and endurnace in the lizard Lacerta vivipara. Physiological Zoology, 68, 698720.Google Scholar
Stapley, J. & Keogh, J. S. (2005). Behavioral syndromes influence mating systems: Floater pairs of a lizard have heavier offspring. Behavioral Ecology, 16, 514520.Google Scholar
Storfer, A. & Sih, A. (1998). Gene flow and ineffective antipredator behavior in a stream-breeding salamander. Evolution, 52, 558565.Google Scholar
Storm, J. J. & Lima, S. L. (2010). Mothers forewarn offspring about predators: A Transgenerational maternal effect on behavior. American Naturalist, 175, 382390.Google Scholar
Tobler, M., Healey, M. & Olsson, M. (2011). Digit ratio, color polymorphism and egg testosterone in the Australian painted dragon. Plos One, 6, 7.Google Scholar
Tobler, M., Healey, M. & Olsson, M. (2012). Digit ratio, polychromatism and associations with endurance and antipredator behaviour in male painted dragon lizards. Animal Behaviour, 84, 12611269.Google Scholar
Tocher, D. R. (2003). Metabolism and functions of lipids and fatty acids in teleost fish. Reviews in Fisheries Science, 11, 107184.Google Scholar
Uller, T. & Olsson, M. (2006). Direct exposure to corticosterone during embryonic development influences behaviour in an ovoviviparous lizard. Ethology, 112, 390397.Google Scholar
Wahle, R. A. (1992). Body size dependent antipredator mechanisms of the American lobster. Oikos, 65, 5260.Google Scholar
Watkins, T. B. & McPeek, M. A. (2006). Growth and predation risk in green frog tadpoles (Rana clamitans): A quantitative genetic analysis. Copeia, 2006, 478488.Google Scholar
Webb, J. K., Brown, G. P. & Shine, R. (2001). Body size, locomotor speed and antipredator behaviour in a tropical snake (Tropidonophis mairii, Colubridae): The influence of incubation environments and genetic factors. Functional Ecology, 15, 561568.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×