Skip to main content Accessibility help
×
Hostname: page-component-77c89778f8-gvh9x Total loading time: 0 Render date: 2024-07-23T04:39:25.306Z Has data issue: false hasContentIssue false

5 - Order and chaos in Hamiltonian systems

Published online by Cambridge University Press:  05 June 2012

John H. Lowenstein
Affiliation:
New York University
Get access

Summary

In the preceding chapters, we studied integrable systems and their perturbations. We noted that integrability is rare among dynamical systems, and that, while the perturbative approach is quite successful in any finite order, the perturbation series cannot be counted on to converge in the generic case. As we shall soon see, the perturbative convergence problem can be overcome if the perturbation is small enough and certain other hypotheses are satisfied, thanks to the famous theorem of Kolmogorov, Arnol'd, and Moser (KAM) [26, 27, 28]. There are several approaches (none of them easy!) to the statement and proof of this theorem. In this chapter we will rely mainly on that of [28]. A helpful discussion of the theorem, without detailed proofs, can be found in [29].

Perhaps the main message of the KAM theorem is that if we label the invariant n-tori of the unperturbed integrable model by the n oscillation frequencies ω1, …, ωn, and if the perturbation is weak enough, then a fraction, arbitrarily close to unity, of the tori will be preserved. This is the main result concerning “order” in Hamiltonian systems. No comparably strong statement exists concerning what replaces those tori which break up under the perturbation. Here we rely mainly on numerical investigations in a variety of models. These suggest certain universal features, principally island chains and deterministic chaos.

In the present chapter we will introduce the KAM theorem in the context of nonlinear stability of equilibrium states.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×