Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-4hvwz Total loading time: 0 Render date: 2024-07-29T11:11:05.418Z Has data issue: false hasContentIssue false

Bibliography

Published online by Cambridge University Press:  05 February 2013

A. Terrence Conlisk
Affiliation:
Ohio State University
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Essentials of Micro- and Nanofluidics
With Applications to the Biological and Chemical Sciences
, pp. 515 - 532
Publisher: Cambridge University Press
Print publication year: 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowitz, M., & Stegun, I. A., eds. 1972 Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables. Washington, DC: National Bureau of Standards.
Abramson, H. A. 1931 The influence of size, shape, and conductivity on cataphoretic mobility, and its biological significance. J. Phys. Chem. 35, 289–308.Google Scholar
Acheson, D. J. 1990 Elementary Fluid Mechanics. Oxford: Clarendon Press.Google Scholar
Adrian, R. J. 1991 Particle-imaging techniques for experimental fluid mechanics. Ann. Rev. Fluid Mech. 23, 261–304.CrossRefGoogle Scholar
Adrian, R. J., & Yao, C. S. 1985 Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials. Appl. Opt. 24, 44–52.CrossRefGoogle ScholarPubMed
Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K., & Watson, J. D. 1994 Molecular Biology of the Cell. New York: Garland.Google Scholar
Alberts, B., Bray, D., Hopkin, K., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. 1998 Essential Cell Biology. New York: Garland.Google Scholar
Allen, M. P. 2004 Introduction to molecular dynamics simulation. In Computational Soft Matter: From Synthetic Polymers to Proteins, NIC Series, vol. 23 (ed. Norbert, Attig, Kurt, Binder, Helmut, Grubmuller & Kurt, Kremer), pp. 1–28. Julich, Germany.Google Scholar
Allen, M. P., & Tildesley, D. 1994 Computer Simulation of Liquids. Oxford: Clarendon Press.Google Scholar
Allen, S., Davies, J., Dawkes, A. C., Davies, M. C., Edwards, J. C., Parker, M. C., Roberts, C. J., Sefton, J., Tendler, S. J. B., & Williams, P. M. 1996 In situ observation of streptavidinbiotin binding on an immunoassay well surface using an atomic force microscope. FEBS Lett. 390(2), 161–164.CrossRefGoogle Scholar
Anderson, J. D. 1982 Modern Compressible Flow: With Historical Perspective. New York: McGraw-Hill.Google Scholar
Anderson, J. L., & Idol, W. K. 1985 Electroosmosis through pores with nonuniformly charged walls. Chem. Eng. Commun. 38, 93–106.CrossRefGoogle Scholar
Anton, K., & Berger, C. 1998 Supercritical Fluid Chromatography with Packed Columns: Techniques and Applications. New York: Marcel Dekker.Google Scholar
Archer, D. G., & Wang, P. 1990 The dielectric constant of water and the Debye-Hückel limiting law slopes. J. Phys. Chem. Ref. Data 19, 371–411.CrossRefGoogle Scholar
Aris, R. 1956 On the dispersion of a solute in a fluid flowing through a tube. Proc. R. Soc. A 235, 67–77.CrossRefGoogle Scholar
Aris, R. 1959 On the dispersion of a solute by diffusion, convection and exchange between phases. Proc. R. Soc. A 252, 538–550.CrossRefGoogle Scholar
Atkinson, B., Brocklebank, M. P., Card, C. C. H., & Smith, J. M. 1969 Low Reynolds number developing flows. AIChE J. 15, 548–553.CrossRefGoogle Scholar
Axelrod, D., Burghardt, T. P., & Thompson, N. L. 1984 Total internal reflection fluorescence. Ann. Rev. Biophys. Bioeng. 13, 247–268.CrossRefGoogle ScholarPubMed
Barcilon, V., Chen, D.-P., & Eisenberg, R. S. 1992 Ion flow through narrow membrane channels: Part II. SIAM J. Appl. Math. 52, 1405–1425.Google Scholar
Barcilon, V., Chen, D. P., Eisenberg, R. S., & Jerome, J. W. 1997 Qualitative properties of steady-state Poisson–Nernst–Planck systems: Perturbation and simulation study. SIAM J. Appl. Math. 57, 631–648.Google Scholar
Barrat, J. L., & Bocquet, L. 1999 Large slip effect at a nonwetting fluid-solid interface. Phys. Rev. Lett. 82, 4671–4674.CrossRefGoogle Scholar
Bashir, R., & Wereley, S., eds. 2006 BioMEMS and Biomedical Nanotechnology: Volume IV Biomolecular Sensing, Processing and Analysis. New York: Springer.
Batchelor, G. K. 1967 Introduction to Fluid Dynamics. Cambridge: Cambridge University Press.Google Scholar
Bavier, R., & Ayela, F. 2004 Micromachined strain gauges for the determination of liquid flow friction coefficients in microchannels. Measure. Sci. Technol. 15, 377–383.Google Scholar
Bayley, H., & Cremer, P. S. 2001 Stochastic sensors inspired by biology. Nature 413, 226–230.CrossRefGoogle ScholarPubMed
Bazant, M. Z., Chu, Kevin T., & Bayly, B. J. 2005 Current-voltage relations for electrochemical thin films. SIAM J. Appl. Math. 65, 1463–1484.CrossRefGoogle Scholar
Becker, O. M., & Karplus, M. 2006 A Guide to Biomolecular Simulations. Dordrecht, Netherlands: Springer.Google Scholar
Bellman, R. E. 1964 Perturbation Techniques in Mathematics, Physics, and Engineering. New York: Holt, Rinehart and Winston.Google Scholar
Bender, Carl M., & Orszag, Steven A. 1999 Advanced Mathematical Methods for Scientists and Engineers: Asymptotic Methods and Perturbation Theory.New York: Springer.CrossRefGoogle Scholar
Berendsen, H. J. C., Grigera, J. R., & Straatsma, T. P. 1987 The missing term in effective pair potentials. J. Phys. Chem. 91, 6269–6271.CrossRefGoogle Scholar
Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., & Hermans, J. 1981 Interaction models for water in relation to protein hydration. Intermolecular Forces, vol. 3 (ed. B. Pullman, Reidel, Dordrecht. The Netherlands), pp. 331–342.Google Scholar
Berman, A. S. 1953 Laminar flow in channels with porous walls. J. Appl. Phys. 24, 1232–1235.CrossRefGoogle Scholar
Bernoulli, D. 1738 Hydrodynamics. Strasbourg: Bernouli. English Translation Dover, New York.Google Scholar
Bhattacharjee, S., & Elimelech, M. 1997 Surface element integration: A novel technique for evaluation of DLVO interaction between a particle and a flat plate. J. Colloid Interface Sci. 193, 273–285.CrossRefGoogle Scholar
Bhattacharjee, S., Elimelechi, M., & Borkovec, M. 1998 DLVO interaction between coloidal particles: Beyond Derjaguin's approximation. Croatica Chem. Acta 71, 883–903.Google Scholar
Bhattacharyya, S., & Conlisk, A. T. 2005 Electroosmotic flow in two-dimensional charged micro- and nanochannels. J. Fluid Mech. 540, 247–267.CrossRefGoogle Scholar
Bhushan, B., ed. 2007 Springer Handbook of Nanotechnology, 2nd ed. New York: Springer.CrossRef
Bianchi, F., Wagner, F., Hoffmann, P., & Girault, H. H. 1993 Electroosmotic flow in composite microchannels and implications in microcapillary electrophoresis systems. Science 261, 895–897.Google Scholar
Bird, G. A. 1994 Molecular Gas Dynamics. Oxford, UK: Clarendon Press.Google Scholar
Bird, R. B., Stewart, W. E., & Lightfoot, E. N. 2002 Transport Phenomena, 2nd ed. New York: John Wiley.Google Scholar
Blasius, H. 1908 Grenzschichten in flussigkeiten mit kleiner reibung. Z. Math. Phys. 56, 1–37.Google Scholar
Bockris, J. O'M., , & Reddy, A. K. N. 1998 Modern Electrochemistry, Volume 1 Ionics, 2nd ed. New York: Plenum Press.Google Scholar
Bohn, P. 2009 Nanoscale control and manipulation of molecular transportin chemical analysis. Ann. Rev. Anal. Chem. 2, 279–296.CrossRefGoogle Scholar
Booth, F. 1950 The cataphoresis of spherical, solid non-conducting particles in a symmetrical electrolyte. Proc. R. Soc. London A 203, 514–533.CrossRefGoogle Scholar
Braha, O., Gu, Li-Qun, Zhou, Li, Lu, Xiaofeng, Cheley, S., & Bayley, H. 2000a Simultaneous stochastic sensing of divalent metal ions. Nat. Biotechnol. 18, 1005–1007.CrossRefGoogle ScholarPubMed
Brecht, A., & Gauglitz, G. 1997 Recent developments in optical transducers for chemical or biochemical applications. Sensors Actuators B Chem. 38, 1–7.CrossRefGoogle Scholar
Bretherton, F. P. 1961 The motion of long bubbles in tubes. J. Fluid Mech. 10, 166–188.CrossRefGoogle Scholar
Breuer, K., ed. 2005 Microscale Diagnostic Techniques. Berlin: Springer.CrossRef
Brown, G. M. 1960 Heat or mass transfer in a fluid in laminar flow in a circular or flat conduit. AICheJ. 6, 179–183.CrossRefGoogle ScholarPubMed
Bruus, H. 2008 Theoretical Microfluidics. New York: Oxford University Press.Google Scholar
Burgeen, D., & Nakache, F. R. 1964 Electrokinetic flow in ultrafine capillary slits. J. Phys. Chem. 68, 1084–1091.Google Scholar
Butler, J. N. 1998 Ionic Equilibrium: Solubility and pH Calculations. New York: John Wiley.Google Scholar
Castellan, G. W. 1983 Physical Chemistry, 3rd ed. Menlo Park, CA: Benjamin Cummings.Google Scholar
Castiglione, P., Falcioni, M., Lesne, A., & Vulpiani, A. 2008 Chaos and Coarse Grainning in Statistical Mechanics. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Chang, H., Kosari, F., Andreadakis, G., Alam, M. A., Vasmatzis, G., & Bashir, R. 2004 DNA-mediated fluctuations in ionic current through silicon oxide nanopore channels. Nanoletters 4, 1551–1556.CrossRefGoogle Scholar
Chang, H.-C., & Yeo, L. Y. 2010 Electrokinetically-Driven Microfluidics and Nanofluidics. Cambridge: Cambridge University Press.Google Scholar
Chang, R. 2000 Physical Chemistry for the Chemical and Biological Sciences. Sausalito, CA: University Science Books.Google Scholar
Chapman, D. L. 1913 A contribution to the theory of electrocapillarity. Philos. mag. 25, 475–481.CrossRefGoogle Scholar
Chen, D. P., Lear, J., & Eisenberg, R. 1997 Permeation through an open channel: Poisson–Nernst–Planck theory of a synthetic ion channel. Biophys. J. 72, 97–116.CrossRefGoogle Scholar
Chen, L., & Conlisk, A. T. 2008 Electroosmotic flow and particle transport in micro/nano nozzles and diffusers. Biomed. Microdevices 10, 289–298.CrossRefGoogle ScholarPubMed
Chen, L., & Conlisk, A. T. 2009 Effect of nonuniform surface potential on electroosmotic flow at large applied electric field strength. Biomedical Microdevices 11, 251–258.CrossRefGoogle ScholarPubMed
Chen, L. & Conlisk, A. T. 2010 DNA translocation phenomena in nanopores, Biomedical Microdevices, 12, 235–245.CrossRefGoogle ScholarPubMed
Chen, P., Gu, J., Brandin, E., Kim, Y.-R., Wang, Q., & Branton, D. 2004 Probing single DNA molecule transport using fabricated nanopores. Nano Letters 4, 2293–2298.CrossRefGoogle ScholarPubMed
Chen, R.-Y. 1973 Flow in the entrance region at low Reynolds numbers. J. Fluids Eng. 95, 153–158.CrossRefGoogle Scholar
Chu, K. T., & Bazant, M. Z. 2005 Electrochemical thin films at and above the limiting current. SIAM J. Appl. Math. 65, 1485–1505.CrossRefGoogle Scholar
Churchill, R. V. 1969 Fourier series and boundary value problems McGraw-Hill, 2.
Ciofalo, M., Collins, M. W., & Hennessy, T. R. 1999 Nanoscale Fluid Dynamics in Physiological Process: A Review Study. Southampton, UK: WIT Press.Google Scholar
Condon, E. U., & Morse, P. M. 1929 Quantum Mechanics. New York: McGraw-Hill.Google ScholarPubMed
Conlisk, A. T., Guezennec, Y. G., & Elliott, G. S. 1989 Chaotic motion of an array of vortices above a flat wall. Phys. Fluids A 1, 704–717.CrossRefGoogle Scholar
Conlisk, A. T., Datta, S., Fissell, W. H., & Roy, S. 2009 Biomolecular transport through hemofiltration membranes. Ann. Biomed. Eng. 37(4), 732–746.CrossRefGoogle ScholarPubMed
Constant, F. W. 1958 Theoretical Physics. Reading, MA: Addison-Wesley.Google Scholar
Conway, B. E. 1981 Ionic Hydration in Chemistry and Biophysics. NewYork: Elsevier.Google Scholar
Crick, F. H. C., & Watson, J. D. 1953 Molecular structure of nucleic acids. Nature 171, 737–738.Google Scholar
Cui, S. T. 2004 Molecular dynamics study of single-stranded DNA in aqueous solution confined in a nanopore. Molecular Phys. 102, 139–146.CrossRefGoogle Scholar
Currie, I. G. 2003 Fundamental Mechanics of Fluids, 3rd ed. New York: Marcel-Dekker.Google Scholar
Cussler, E. L. 1997 Diffusion: Mass Transfer in Fluid Systems, 2nd ed. Cambridge: Cambridge University Press.Google Scholar
Czarske, J., Buttner, L., Razik, T., & Muller, H. 2002 Boundary layer velocity measurements by a laser Doppler profile sensor with micrometre spatial resolution. Measure Sci. Technol. 13, 1979–1989.CrossRefGoogle Scholar
Datta, S. & Ghosal, S. 2008 Dispersion due to wall interactions in microfluidic separation systems. Phys. Fluids 20, 012103–1–012103–14.CrossRefGoogle Scholar
Daune, M. 1993 Molecular Biophysics: Structures in Motion. Oxford: Oxford University Press.Google Scholar
Dawson, T. H. 1976 Theory and Practice of Solid Mechanics. New York: Plenum Press.CrossRefGoogle Scholar
Day, M. A. 1990 The no-slip condition of fluid mechanics. Erkenntis 33, 285–296.Google Scholar
Deamer, D. W., & Akeson, M. 2000 Nanopores and nucleic acids: Prospects for ultrarapid sequencing. Tibtech 18, 147–151.CrossRefGoogle ScholarPubMed
Debye, P., & Hückel, E. 1923 The interionic attraction theory of deviations from ideal behavior in solution. Z. Phys. 24, 185–206.Google Scholar
Dechadilok, P., & Deen, W. M. 2006 Hindrance factors for diffusion and convection in pores. Ind. Eng. Chem. Res. 45, 6953–6959.CrossRefGoogle Scholar
Deen, W. M. 1987 Hindered transport of large molecules in liquid-filled pores. AIChE J. 33, 1409–1425.CrossRefGoogle Scholar
Deen, W. M., Lazzara, M. J., & Myers, B. D. 2001 Structural determinants of glomerular permeability. Am. J. Physiol. Renal Physiol. 281, 579–596.CrossRefGoogle ScholarPubMed
Denbigh, K. 1971 Principles of Chemical Equilibrium, 3rd ed. Cambridge: Cambridge University Press.Google Scholar
Derjaguin, B. V. 1934 Friction and adhesion IV: Theory of adhesion of small particles. Kolloid Z. 69, 155–164.Google Scholar
Derjaguin, B. V., & Landau, L. D. 1941 Theory of the stability of strongly charged lyophobic colloids and the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim. 14, 633–662.Google Scholar
Desai, T., & Bhatia, S., ed. 2006 BioMEMS and Biomedical Nanotechnology: Volume III Therapeutic Micro/Nano Technology. New York: Springer.
Devasenathipathy, S., & Santiago, J. G. 2005 Electrokinetic flow diagnostics. In Microscale Diagnostic Techniques (ed. Kenny, Breuer), pp. 113–154. Berlin: Springer.Google Scholar
Devasenathipathy, S., Santiago, J. G., & Takehara, K. 1998 Particle tracking techniques for electrokinetic microchannel flows. Exp. Fluids 25, 316–319.Google Scholar
D'Orazio, P. 2003 Biosensors in clinical chemistry. Clin. Chim. Acta 334, 41–69.CrossRefGoogle ScholarPubMed
Drazin, P. G., & Riley, N. 2006 The Navier–Stokes Equations: A Classification of Flows and Exact Solutions. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Dukhin, S. S., & Derjaguin, B. V. 1974 Electrokinetic phenomena. In Surface and Colloid Science vol. 7 (ed. E., Matijevic), pp. 1–351. John Wiley.Google Scholar
Eggins, B. R. 1996 Biosensors: An Introduction. New York: John Wiley.CrossRefGoogle Scholar
Einstein, A. 1905a A new determination of molecular dimensions. PhD thesis, University of Zurich.Google Scholar
Einstein, A. 1905b On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of heat. Ann. Phys. 17, 549–560.Google Scholar
Einstein, A. 1956 Investigation on the Theory of the Brownian Movement, 4th ed. New York: Dover.Google Scholar
Elimelech, M. 1998 Particle Deposition and Aggregation: Measurement, Modelling and Simulation. Burlington, MA: Butterworth-Heinemann.Google Scholar
Erickson, D., & Li, D. 2001 Streaming potential and streaming current methods for characterizing heterogeneous solid surfaces. J. Colloid Interface Sci. 237, 283–289.CrossRefGoogle ScholarPubMed
Erickson, D., & Li, D. 2002 Influence of surface heterogeneity on electrokinetically driven microfluidic mixing. Langmuir 18, 1883–1892.CrossRefGoogle Scholar
Erickson, D., Sinton, D., & Li, D. 2003 Joule heating and heat transfer in poly(dimethylsiloxane) microfluidic systems. Lab on a Chip 3, 141–149.CrossRefGoogle ScholarPubMed
Ethier, C. R., & Simmons, C. A. 2007 Introductory Biomechanics: From Cells to Organisms. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Evans, D. J., & Morriss, G. P. 1990 Statistical Mechanics of Nonequilibrium Liquids. London: Academic Press.Google Scholar
Ewald, P. P. 1921 The calculation of optical and electrostatic grid potential. Ann. Phys. (Leipzig) 64, 253–287.Google Scholar
Fan, R., Karnik, R., Yue, M., Li, D., Majumdar, A., & Yang, P. 2005 DNA translocation in inorganic nanotubes. Nanoletters 5, 1633–1637.CrossRefGoogle ScholarPubMed
Fausett, L. V. 2008 Applied Numerical Analysis Using Matlab, 2nd ed. Upper Saddle River, NJ: Prentice Hall.Google Scholar
Fawcett, W. R. 2004 Liquids, Solutions, and Interfaces: From Classical Macroscopic Descriptions to Modern Microscopic Details. Oxford: Oxford University Press.Google Scholar
Ferrari, M., ed. 2006 BioMEMS and Biomedical Nanotechnology. New York: Springer.
Ferrer, M. L., Duchowicz, R., Carrasco, B., de la Torre, Jose G., & Acuna, A. U. 2001 The conformation of serum albumin in solution: A combined phosphoresceence depolarization-hydrodynamic modeling study. Biophys. J. 80, 2422–2430.CrossRefGoogle ScholarPubMed
Feynman, R. P. 1961 There's Plenty of Room at the Bottom. New York: Reinhold.Google Scholar
Fissell, W. H. 2006 Developments towards an artificial kidney. Expert Rev. Med. Devices 3, 155–165.CrossRefGoogle ScholarPubMed
Fissell, W. H., & Humes, H. D. 2006 Tissue engineering renal replacement therapy. In Tissue Engineering and Artificial Organs, Section 5, chap. 60 (ed. J. D., Bronzino), 60, pp. 1–14. Boca Raton, FL: CRC Press.Google Scholar
Fissell, W. H., Manley, S., Dubnisheva, A., Glass, J., Magistrelli, J., Eldridge, A., Fleischman, A., Zydney, A., & Roy, S. 2007 Ficoll is not a rigid sphere. Am. J. Physiol. Renal Physiol. 293, F1209–F1213.CrossRefGoogle Scholar
Franks, F. 1972 Water: A Comprehensive Treatise, 7 vols. New York: Plenum Press.Google Scholar
Freifelder, D. 1987 Molecular Biology, 2nd edn. Boston: Jones and Bartlett.Google Scholar
Frenkel, D., & Smit, B. 2002 Understanding Molecular Simulations from Algorithms to Applications, 2nd ed. San Diego, CA: Academic Press.Google Scholar
Freund, J. B. 2002 Electroosmosis in a nanometer scale channel studied by atomistic simulation. J. Chem. Phys. 116, 2194–2200.CrossRefGoogle Scholar
Friedman, M. H. 2008 Principles and Models of Biological Transport, 2nd ed. New York: Springer.CrossRefGoogle Scholar
Fung, Y. C. 1981 Biomechanics: Mechanical Properties of Living Tissues. New York: Springer.CrossRefGoogle Scholar
Fuoss, R. M., & Onsager, L. 1955 Conductance of strong electrolytes at finite dilutions. Proc. Nat. Acad. Sci. U.S.A. 41, 274–283.Google ScholarPubMed
Gad-el Hak, M. 2001 The MEMS Handbook. Boca Raton, FL: CRC Press.CrossRefGoogle Scholar
de Gennes, P. G., 2002 On fluid/wall slippage. Langmuir 18, 3413–3414.CrossRefGoogle Scholar
Gibbs, J. W. 1961 The Scientific Papers of J. W. Gibbs. New York: Dover.Google Scholar
Giddings, J. C., Yang, F. J., & Myers, M. N. 1976 Flow-field-flow fractionation: A versatile new separation method. Science 193, 1244–1245.CrossRefGoogle ScholarPubMed
Gilat, A., & Subramaniam, V. 2008 Numerical Methods for Scientists and Engineers. New York: John Wiley.Google Scholar
Gillespie, D. T. 1970 A Quantum Mechanics Primer. Scranton, PA: International Textbook.Google Scholar
Gillespie, D. 1999 A singular perturbation analysis of the Poisson–Nernst–Planck system: Applications to ionic channels. PhD thesis, Rush Medical School, Chicago.Google Scholar
Gillespie, D., & Eisenberg, R. S. 2001 Modified Donnan potentials for ion transport through biologicalion channels. Phys. Rev. E. 63, 061902-1–06192-8.CrossRefGoogle ScholarPubMed
Glazer, A. N., & Nikaido, H. 2007 Microbial Biotechnology: Fundamentals of Applied Microbiology, 2nd ed. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Golden, J. P., Floyd-Smith, T. M., Mott, D. R., & Ligler, F. S. 2007 Target delivery in a microfluidic immunosensor. Biosensors Bioelectr. 22, 2763–2767.CrossRefGoogle Scholar
Goldstein, S. 1965a Modern Developments in Fluid Dynamics Volume I. New York: Dover.Google Scholar
Goldstein, S. 1965b Modern Developments in Fluid Dynamics Volume II. New York: Dover.Google Scholar
Gong, M., Kim, B. Y., Flachsbart, B. R., Shannon, M. A., Bohn, P. W., & Sweedler, J. V. 2008 An on-chip fluorogenic enzyme assay using a multilayer microchip interconnected with a nanocapillary array membrane. IEEE Sensors J. 8, 601–607.CrossRefGoogle Scholar
Gouy, G. 1910 About the electric charge on the surface of an electrolyte. J. Phys. A 9, 457–468.Google Scholar
Grahame, D. C. 1953 Diffuse double layer theory for electrolytes of unsymmetrical valence types. J. Chem. Phys. 21, 1054–1060.CrossRefGoogle Scholar
Granicka, L. H., Kawiak, J., Snochowski, M., Wojcicki, J. M., Sabalinska, S., & Werynski, A. 2003 Polypropylene hollow fiber for cells isolation: Methods for evaluation of diffusive transport and quality of cells encapsulation. Artificial Cells Blood Substitutes Biotechnol. 31, 249–262.CrossRefGoogle ScholarPubMed
Green, N. M. 1970 Spectrophotometric determination of avidin and biotin. Methods Enzymol. 18, 418–424.Google Scholar
Gribbin, J. 1997 Richard Feynman: A Life in Science. New York: Dutton.Google Scholar
Griffiths, S. K., & Nilson, R. H. 1999 Hydrodynamic dispersion of a neutral nonre-acting solute in electroosmotic flow. Anal. Chem. 71, 5522–5529.CrossRefGoogle Scholar
Griffiths, S. K., & Nilson, R. H. 2006 Charged species transport, separation, and dispersion in nanoscale channels: Autogenous electric field-flow fractionation. Anal. Chem. 78, 8134–8141.CrossRefGoogle ScholarPubMed
Guo, L. J. 2004 Recent progress in nanoimprint technology and its applications. J. Appl. Phys. D: 37, R123–R141.CrossRefGoogle Scholar
Hairer, E., Lubich, C., & Wanner, G. 2006 Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations, 2nd ed. Heidelberg, Germany: Springer.Google Scholar
Hardy, R. C., & Cottingham, R. L. 1949 Viscosity of deuterium oxide and water in the range 5°C to 1250 °C. J. Res. Na. Bur. Standards 42, 573–578.Google Scholar
Haynes, W. M., ed. 2011–2012 Handbook of Chemistry and Physics, 92nd ed. Cleveland, Ohio: CRC Press.
Helmholtz, H. L. F. 1897 Uber den einflu der elektrischengrenzschichten bei galvanischer spannung und der durch wasserstromung erzeugten potentialdiffernz. Ann. Physik. 7, 337–387.Google Scholar
Henry, D. C. 1931 The cataphoresis of suspended particles, Part I. The equation of cataphoresis. Proc. R. Soc. London A 133, 106–129.CrossRefGoogle Scholar
Heyes, D. M. 1998 The Liquid State: Applications of Molecular Simulations. Chichester, UK: John Wiley.Google Scholar
Hille, B. 2001 Ion Channels of Excitable Membranes, 3rd ed. Sunderland, MA: Sinauer Associates.Google ScholarPubMed
Hill, T. L. 1963 Thermodynamics of Small Systems, Part I. New York: W.A. Benjamin.Google Scholar
Hill, T. L. 1964 Thermodynamics of Small Systems, Part II. New York: W.A. Benjamin.Google Scholar
Hinchcliffe, A. 2003 Molecular Modeling for Beginners. John Wiley.Google Scholar
Hollerbach, U., Chen, D. P., & Eisenberg, R. 2001 Two- and three-dimensional Poisson–Nernst–Planck simulations of current flow through gramicidin a. J. Sci. Comput. 16, 373–409.CrossRefGoogle Scholar
Holmes, M. H. 1995 Introduction to Perturbation Methods, 2nd ed. New York: Springer.CrossRefGoogle Scholar
Homola, J., Yee, S. S., & Gauglitz, G. 1999 Surface plasmon resonance sensors: Review. Sensors Actuators BC 54, 3–15.Google Scholar
Honig, C. D. F., & Ducker, W. A. 2007 No-slip hydrodynamic boundary condition for hydrophilic particles. Phys. Rev. Lett. 98, 053101.CrossRefGoogle ScholarPubMed
Howison, S. 2005 Practical Applied Mathematics. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Hughes, W. F., & Gaylord, E. W. 1964 Basic Equations of Engineering Science.New York: Schaum.Google Scholar
Humbert, N., Zocchi, A., & Ward, T. R. 2005 Electrophoretic behavior of streptavidin complexed to a biotinylated probe: A functional screening assay for biotin-binding proteins. Electrophoresis 26, 47–52.CrossRefGoogle ScholarPubMed
Humes, H. D., Fissell, W. H., & Tiranathanagul, K. 2006 The future of hemodialysis membranes. Kidney Int. 69, 1115–1119.CrossRefGoogle ScholarPubMed
Hunter, R. J. 1981 Zeta Potential in Colloid Science. London: Academic Press.Google Scholar
Hur, J. S., Shaqfeh, E. S. G., & Larson, R. G. 2000 Brownian dynamics simulations of single DNA molecules in shear flow. J. Rheol. 44, 713–742.CrossRefGoogle Scholar
Icenhower, J. P., & Dove, P. M. 2000 Water behavior at silica surfaces. In Adsorption on Silica Surfaces (ed. Eugene, Papirer), pp. 277–295. New York: Marcel-Dekker.Google Scholar
Iler, R. K. 1979 The Chemistry of Silica. New York: John Wiley.Google Scholar
Incropera, F. P., & Dewitt, D. P. 1990 Fundamentals of Heat and Mass Transfer, 3rd ed. New York: John Wiley.Google Scholar
Ishido, T., & Mizutani, H. 1981 Experimental and theoretical basis of electrokinetic phenomena in rock-water systems and its application to geophysics. J. Geophys. Res. 86(83), 1763–1775.CrossRefGoogle Scholar
Ishijima, A., & Yanagida, T. 2001 Single molecule nanoscience. Trends Biochem. Sci. 26, 438–444.CrossRefGoogle Scholar
Israelachvili, J. 1992 Intermolecular and Surface Forces, 2nd ed. London: Academic Press.Google Scholar
James, R. O. 1981 Surface ionization and complexation at the colloidl/aqueous electrolyte interface. In Adsorption of Inorganics at Solid–Liquid Interfaces (ed. M. A., Anderson & A. J., Rubins), pp. 219–261, chap. 6. Ann Arbor, MI: Ann Arbor Science.Google Scholar
Jianrong, C., Yuqing, M., Nongyue, H., Xiaohua, W., & Sijiao, L. 2004 Nanotechnology and biosensors. Biotechnol. Adv. 22, 505–518.CrossRefGoogle ScholarPubMed
Jorgensen, P. L. 1990 Structure and molecular mechanism of Na, k-pump. In Monova-lent Cations in Biological Systems (ed. Charles Alexander, Pasternak), pp. 117–154. Boca Raton, FL: CRC Press.Google Scholar
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. 1983 Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935.CrossRefGoogle Scholar
Judy, J., Maynes, D., & Webb, B. W. 2002 Characterization of frictional pressure drop for liquid flows through microchannels. Int. J. Heat Mass Transfer 45, 3477–3489.CrossRefGoogle Scholar
Karniadakis, G., Beskok, A., & Aluru, N. 2005 Microflows and Nanoflows. New York: Springer.Google Scholar
Kasianowicz, J. J., Brandin, E., Branton, D., & Deamer, D. W. 1996 Characterization of individual polynucleotide molecules using a membrane channel. Proc. Natl. Acad. Sci. U.S.A. 93, 13770–13773.CrossRefGoogle ScholarPubMed
Kays, W. M., & Crawford, M. E. 1980 Convective Heat and Mass Transfer, 2nd ed. New York: Mcgraw-Hill.Google Scholar
Keilland, J. 1937 Individual activity coefficients of ions in aqueous solutions. J. Am. Chem. Soc. 59, 1675–1678.Google Scholar
Kemery, P. J., Steehler, J. K., & Bohn, P. W. 1998 Electric field mediated transport in nanometer diameter channels. Langmuir 14, 2884–2889.CrossRefGoogle Scholar
Kestin, J. 1978 Thermal conductivity of water and steam. Mech. Eng. Mag. August, 47.Google Scholar
Kevorkian, J., & Cole, J. D. 1981 Perturbation Methods in Applied Mathematics. New York: Springer.CrossRefGoogle Scholar
Kevorkian, J., & Cole, Julian D. 1996 Multiple Scale and Singular Perturbation Methods. New York: Springer.CrossRefGoogle Scholar
Kirby, B. J. 2010 Micro- and Nanoscale Fluid Mechanics: Transport in Microfluidic Devices. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Kirby, B. J., & Hasselbrink, E. F. 2004a Zeta potential of microfluidic substrates: 1. Theory, experimental techniques, and effects on separations. Electrophoresis 25, 187–202.Google ScholarPubMed
Kirby, B. J., & Hasselbrink, E. F. 2004b Zeta potential of microfluidic substrates: 2. Data for polymers. Electrophoresis 25, 203–213.Google ScholarPubMed
Kirby, B. J., & Hasselbrink, E. F. 2004c Zeta potential of microfluidic substrates: 2. Data for polymers. Electrophoresis 25, 203–213.Google ScholarPubMed
Kjelstrup, S., & Bedeaux, D. 2008 Non-Equilibrium Thermodynamics of Heterogenous systems. New Jersey: World Scientific.CrossRefGoogle Scholar
Knox, J. H., & McCormack, K. A. 1994 Temperature effects in capillary electrophoresis. 1: Internal capillary temperature and effect upon performance. Chromatographia 38, 215–221.CrossRefGoogle Scholar
Koltun, W. L. 1965 Precision space-filling atomic models. Biopolymers 3, 665–679.CrossRefGoogle ScholarPubMed
Koplik, J., Banavar, J. R., & Willemson, J. F. 1989 Molecular dynamics of fluid flow at solid surfaces. Phys. Fluids A 1, 781–794.CrossRefGoogle Scholar
Kress-Rogers, E., ed. 1997 Handbook of Biosensors and Electronic Noses: Medicine, Food and the Environment. Boca Raton, FL: CRC Press.
Kuo, T.-C. Jr., Cannon, D. M. Jr., Shannon, M. A., Bohn, P. W. & Sweedler, J. V. 2003 Hybrid three-dimensional nanofluidic/microfluidic devices using molecular gates. Sensors and Actuators A 102, 223–233.CrossRefGoogle Scholar
Lamb, S. H. 1945 Hydrodynamics, 6th ed. New York: Dover.Google Scholar
Landau, L. D., & Levich, B. V. G. 1942 Dragging of a liquid by a moving plate. Acta Physicochim. 17, 42–54.Google Scholar
Landers, J. P., ed. 1994 Handbook of Capillary Electrophoresis. Boca Raton, FL: CRC Press.
Langhaar, H. L. 1942 Steady flow in the transition length of a straight tube. J. Appl. Mech. 9, 55–58.Google Scholar
Latini, G., Grifoni, R. C., & Passerini, G. 2006 Transport Properties of Organic Liquids. Southhampton, UK: WIT Press.Google Scholar
Lauga, E., Brenner, M. P., & Stone, H. A. 2005 Microfluidics: The no-slip condition. In Handbook of Experimental Fluid Mechanics (ed. J., Foss & A., Yarin), pp. 1219–1240. New York: Springer.Google Scholar
Leach, A. R. 1996 Molecular Modeling: Principles and Applications. Essex, UK: Longman.Google Scholar
Leal, L. G. 2007 Advanced Transport Phenomena. New York: Cambridge University Press.CrossRefGoogle Scholar
Leca-Bouvier, B., & Blum, L. J. 2005 Biosensors for protein detection: A review. Anal. Lett. 38, 1491–1517.CrossRefGoogle Scholar
Lee, A. P., & Lee L., James, eds. 2006 BioMEMS and Biomedical Nanotechnology: Volume I Biological and Biomedical Nanotechnology. New York: Springer.
Lee, L. J. 2006 Nanoscale polymer fabrication for biomedical applications. In BioMEMS and Biomedical Nanotechnology: Volume I Biological and Biomedical Nanotechnology (ed. Abraham, P. Lee & L., James Lee), pp. 51–96. New York: Springer.Google Scholar
Lee, M. L., Yang, F. J., & Bartle, K. D. 1984 Open Tubular Column Gas Chromatography: Theory and Practice. New York: John Wiley.Google Scholar
Lee, P.-S., & Garimella, S. V. 2006 Thermally developing flow and heat transfer in rectangular microchannels of different aspect ratio. Int. J. Heat Mass Transfer 49, 3060–3067.CrossRefGoogle Scholar
Lehnert, T., Gijs, M., Netzer, R., & Bischoff, U. 2002 Realization of hollow SiO2 micronozzles for electrical measurements on living cells. Appl. Phys. Lett. 81, 5063–5065.CrossRefGoogle Scholar
Lempert, W. R., Magee, K., Ronney, P., Gee, K. R., & Haugland, R. P. 1995 Flow tagging velocimetry in incompressible flow using photo-activated nonintrusive tracking of molecular motion. Exp. Fluids 18, 249–257.CrossRefGoogle Scholar
Levich, V. G., & Krylov, V. S. 1969 Surface-tension driven phenomena. Ann. Rev. Fluid Mech. 1, 293–316.CrossRefGoogle Scholar
Levin, Y., & Flores-Mena, J. E. 2001 Surface tension of strong electrolytes. Europhys. Lett. 56, 187–192.CrossRefGoogle Scholar
Li, D. 2004 Electrokinetics in Microfluidics. Amsterdam: Elsevier.Google Scholar
Li, J., Gershow, M., Stein, D., Brandin, E., & Golovchenko, J. A. 2003 DNA molecules and configurations in a solidstate nanopore microscope. Nat. Mater. 2, 611–615.CrossRefGoogle Scholar
Li, Z., & Liu, B. C.-Y. 2001 A molecular model for representing surface tension for polar liquids. Chem. Eng. Sci. 56, 6977–6987.CrossRefGoogle Scholar
Liou, W. K., & Fang, Y. 2006 Microfluid Mechanics: Principles and Modeling. New York: McGraw-Hill.Google Scholar
Luginbuhl, P., Indermuhle, P.-F., Gretillat, M.-A., Willemin, F., de Rooij, N. F., Gerber, D., Gervasio, G., Vuilleumier, J. -L., Twerenbold, D., Dugelin, M., Mathys, D., & Guggenheim, R. 2000 Femtoliter injector for DNA mass spectrometry. Sensors Actuators B 63, 167–177.CrossRefGoogle Scholar
Malsch, N. H., ed. 2005 Biomedical Nanotechnology. Boca Raton, FL: Taylor and Francis.CrossRef
March, H. W., & Weaver, W. 1928 The diffusion problem for a solid in contact with a stirred liquid. Phys. Rev. 31, 1072–1082.CrossRefGoogle Scholar
Mark, P., & Nilsson, L. 2001 Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. J. Phys. Chem. A 105, 9954–9960.CrossRefGoogle Scholar
Martin, F., Walczak, R., Boiarski, A., Cohen, M., West, T., Cosentino, C., & Ferrari, M. 2005 Tailoring width of microfabricated nanochannels to solute size can be used to control diffusion kinetics. J. Controlled Release 102, 123–133.CrossRefGoogle ScholarPubMed
Martini, F. 2001 Fundamentals of Anatomy and Physiology, 5th ed. Prentice Hall.Google Scholar
Masliyah, J. H., & Bhattacharjee, S. 2006 Electrokinetic and Colloid Transport Phenomena. Hoboken, NJ: John Wiley.CrossRefGoogle Scholar
Maxwell, J. C. 1847 On Faraday's lines of force. Trans. Cambridge Philos. Soc. 10, 27–83.Google Scholar
McCammon, J. A., & Harvey, S. C. 1987 Dynamics of Proteins ansd Nucleic Acids. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
McNaught, A. D., & Wilkinson, A. 1997 Compendium of Chemical Terminology (Gold Book), Malden: Blackwell.Google Scholar
Meagher, R. J., Light, Y. K., & Singh, A. K. 2008 Rapid, continuous purification of proteins in a microfluidic device using genetically-engineered partition tags. Lab-on-a-Chip 8, 527–532.CrossRefGoogle Scholar
Meller, A., Nivon, L., & Branton, D. 2001 Voltage-driven DNA translocations through a nanopore. Phys. Rev. Lett. 86, 3435–3438.CrossRefGoogle ScholarPubMed
Moran, M. J., & Shapiro, H. N. 2007 Fundamentals of Engineering Thermodynamics, 6th ed. New York: John Wiley.Google Scholar
Moran, M. J., Shapiro, H. N., Munson, B. R., & Dewitt, D. P. 2003 Introduction to Thermal Systems Engineering. New York: John Wiley.Google Scholar
Mott, D. R., Howell, P. B., Golden, J. P., Kaplan, C. R., Ligler, F. S., & Oran, E. S. 2006 Toolbox for the design of optimized microfluidic components. Lab-on-a-Chip 6, 540–549.CrossRefGoogle ScholarPubMed
Mott, D. R., Howell, P. B., Obenschain, K. S., & Oran, E. S. 2009 The numerical tool-box: An approach for modeling and optimizing microfluidic components. Mech. Res. Commun. 36, 104–109.CrossRefGoogle Scholar
Munson, B. R., Young, D. F., & Okiishi, T. H. 2005 Fundamentals of Fluid Mechanics, 2006th ed. New York: John Wiley.Google Scholar
Murray, J. D. 2001 Mathematical Biology I: An Introduction, 3rd ed. New York: Springer.Google Scholar
Murray, J. D. 2003 Mathematical Biology II: Spatial Models and Biological Applications, 3rd ed. New York: Springer.Google Scholar
Murrell, J. N., & Jenkins, A. D. 1982 Properties of Liquids and Solutions, 2nd ed. Chichester, UK: John Wiley.Google Scholar
Nayfeh, A. H. 1973 Perturbation Methods. New York: John Wiley.Google Scholar
Newman, J. S. 1972 Electrochemical Systems. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Nguyen, N. T., & Wereley, S. T. 2002 Fundamentals and Applications of Microfluidics. Norwood, MA: Artech House.Google Scholar
Oberkampf, W. L., & Blottner, F. G. 1998 Issues in computational fluid dynamics code verification and validation. AIAA J. 36, 687–695.CrossRefGoogle Scholar
Oberkampf, W. L., Sindir, M. M., & Conlisk, A. T. 1998 G-077-1998 guide for the verification and validation of computational fluid dynamics simulations. Tech. Rep. American Institute of Aeronautics and Astronautics.Google Scholar
O'Brien, R. W., & White, L. R. 1978 Electrophoretic mobility of a spherical colloidal particle. J. Chem. Soc. Faraday Trans. II 74, 1607–1626.CrossRefGoogle Scholar
Ohshima, H., Healy, T. W., White, L. R., & O'Brien, R. 1984 Sedimentation velocity and potential in a dilute suspension of charged spherical colloidal particles. J. Chem. Soc. Faraday Trans. II 80, 1299–1317.CrossRefGoogle Scholar
Onsager, L., & Samaras, N. N. T. 1934 The surface tension of debye-huckel electrolytes. J. Chem. Phys. 2, 528–536.CrossRefGoogle Scholar
Oseen, C. W. 1910 Uber die sstokes'sche formel und uber eine verwandte aufgabein der hydrodynamik. Ark. Math. Astron. Fys. 6.Google Scholar
Overbeek, J. TH. G. 1943 Theory of the relaxation effect in electrophoresis. Kolloide Beihefte 54, 287–364.Google Scholar
Oyanader, M., & Arce, P. 2005 A new and simpler approach for the solution of the electrostatic potential differential equation: Enhanced solution for planar, cylindrical and annular geometries. J. Colloid Interface Sci. 284, 315–322.CrossRefGoogle ScholarPubMed
Ozkan, M., & Heller, M. J., ed. 2006 BioMEMS and Biomedical Nanotechnology: Volume II Micro/Nano Technology for Genomics and Proteomics. New York: Springer.
Papirer, E., ed. 2000 Adsorption on Silica Surfaces. New York: Marcel Dekker.
Persello, J. 2000 Surface and interface structure of silica. In Adsorption on Silica Surfaces (ed. Eugene, Papirer), pp. 297–342. New York: Marcel-Dekker.Google Scholar
Peters, T. 1996 All About Albumin: Biochemistry, Genetics and Medical Applications, 3rd ed. San Diego, CA: Academic Press.Google Scholar
Pinkus, O., & Sternlicht, B. 1961 Theory of Hydrodynamic Lubrication. New York: McGraw-Hill.Google Scholar
Plawski, J. L. 2001 Transport Phenomena Fundamentals. New York: Marcel-Dekker.Google Scholar
Priestley, J. 1767 The History and Present State of Electricity. London: Printed for J. Dodsley, J. Johnson and T. Cadell.Google Scholar
Priezjev, N. V., & Troian, S. M. 2006 Influence of periodic wall roughness on slip behavior at liquid/solid interfaces: Molecular scale simulations versus continuum predictions. J. Fluid Mech. 554, 25–48.CrossRefGoogle Scholar
Priezjev, N. V., Darhuber, A. A., & Troian, S. M. 2005 Slip behavior in liquid films on surfaces of patterned wettability: Comparison between continuum and molecular dynamics simulations. Phys. Rev. E 71, 41608.CrossRefGoogle ScholarPubMed
Probstein, R. F. 1989 Physicochemical Hydrodynamics. Boston: Butterworths.Google Scholar
Proudman, L., & Pearson, J. R. A. 1957 Expansions at small Reynolds numbers for the flow past a sphere and a circular cylinder. J. Fluid Mech. 2, 237–262.CrossRefGoogle Scholar
Qiao, R., & Aluru, N. R. 2003a Atypical dependence of electroosmotic transport on surface charge in a single-wall carbon nanotube. Nano Lett. 3, 1013–1017.CrossRefGoogle Scholar
Qiao, R., & Aluru, N. R. 2003b Ion concentrations and velocity profiles in nanochannel electroosmotic flows. J. Chem. Phys. 118, 4692–4701.CrossRefGoogle Scholar
Quinke, G. 1859 Ueber eine neue Art elekrischer Ströme. Prog. Ann. 107, 1–47.Google Scholar
Rahman, A., & Stillinger, F. H. 1971 Molecular dynamics study of liquid water. J. Chem. Phys. 55, 3336–3359.CrossRefGoogle Scholar
Rapaport, D. C. 2004 The Art of Molecular Simulation, 2nd ed. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Ravindra, N. M., Prodan, C., Fnu, S., Padroni, I., & Sikha, S. K. 2007 Advances in the manufacturing, types and applications of biosensors. JOM 59, 37–43.CrossRefGoogle Scholar
Raymond, K. W. 2007 General, Organic and Biological Chemistry: An Integrated Approach, 2nd ed. New York: John Wiley.Google Scholar
Reid, R. C., Prausnitz, J. M., & Poling, B. E. 1987 The Properties of Gases and Liquids, 4th ed. New York: McGraw-Hill.Google Scholar
Revil, A., Pezard, P. A., & Glover, P. W. J. 1999 Streaming potential in porous media 1. Theory of the zeta potential. J. Geophys. Res. 104, 20021–20032.Google Scholar
Rhee, H.-K., Aris, R., & Amundson, N. R. 1986 First-Order Partial Differential Equations: Volume 1 Theory and Applications of Single Equations. Englewood Cliffs, NJ: Prentice Hall.Google Scholar
Rhee, H.-K., Aris, R., & Amundson, N. R. 1989 First-Order Partial Differential Equations: Volume 2 Theory and Applications of Hyperbolic Systems of Quasilinear Equations. Mineola, NY: Dover.Google Scholar
Rice, S. A. 2000 Active control of molecular dynamics: Coherence versus chaos. J. Stat. Phys. 101, 187–212.CrossRefGoogle Scholar
Richardson, S. 1973 On the no-slip boundary condition. J. Fluid Mech. 59, 707–719.CrossRefGoogle Scholar
Roache, P. J. 1998 Verification and Validation in Computational Science and Engineering. Socorro, NM: Hermosa.Google Scholar
Roache, P. J., & Steinberg, S. 1994 Symbolic manipulation and computational fluid dynamics. AIAA J. 22, 1390–1394.Google Scholar
Robinson, R. A., & Stokes, R. H. 1959 Electrolyte Solutions. New York: Academic Press.Google ScholarPubMed
Roco, M. 2005 Converging technologies: Nanotechnology and medicine. In Biomedical Nanotechnology (ed. Neelina H., Malsch). Boca Raton, FL: Taylor and Francis.Google Scholar
Rosi, N. L., & Mirkin, C. A. 2005 Nanostructures in biodiagnostics. Chem. Rev. 105, 1547–1562.CrossRefGoogle ScholarPubMed
Roy, C. J., Nelson, C. C., Smith, T. M., & Ober, C. C. 2004 Verification of Euler/Navier–Stokes codes using the method of manufactured solutions. Int. J. Numer. Methods Fluids 44, 599–620.CrossRefGoogle Scholar
Russel, W. B., Saville, D. A., & Schowalter, W. R. 1991 Colloidal Dispersions. Cambridge: Cambridge University Press.Google Scholar
Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. 1977 Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. J. Comput. Phys. 23, 327–341.CrossRefGoogle Scholar
Sadr, R., Yoda, M., Zheng, Z., & Conlisk, A. T. 2004 An experimental study of electro-osmotic flow in rectangular microchannels. J. Fluid Mech. 506, 357–367.CrossRefGoogle Scholar
Sadr, R., Yoda, M., Gnanaprakasam, P., & Conlisk, A. T. 2006 Velocity measurements inside the diffuse electric double layer in electroosmotic flow. Appl. Phys. Lett. 89, 044103-1–044103-3.CrossRefGoogle Scholar
Sadr, R., Hohenegger, C., Li, H., Mucha, P. J., & Yoda, M. 2007 Diffusion-induced bias in near-wall velocimetry. J. Fluid Mech. 577, 443–456.CrossRefGoogle Scholar
Sadus, R. J. 1997 Molecular Simulation of Liquids: Theory, Algorithms and Object-Orientation. Amsterdam: Elsevier.Google Scholar
Sagui, C., & Darden, T. A. 1999 Molecular dynamics simulations of biomolecules: Long range electrostatic effects. Annu. Rev. Biomolecular Structure, 28, 155–179.Google ScholarPubMed
Saleh, O. A., & Sohn, L. L. 2006 An On-Chip Artificial Pore for Molecular Sensing. New York: Springer.CrossRefGoogle Scholar
Saltzman, W. M. 2001 Drug Delivery: Engineering Principles for Drug Therapy. Oxford: Oxford University Press.Google Scholar
Saltzman, W. M. 2009 Biomedical Engineering. Cambridge, UK: Cambridge University Press.CrossRefGoogle Scholar
Scheller, F. W., Wollenberger, U., Warsinke, A., & Lisdat, F. 2001 Research and development in biosensors. Curr. Opi. Biotechnol. 12, 35–40.Google ScholarPubMed
Scherrer, R., & Gerhardt, P. 1971 Molecular sieving by the Bacillus megaterium cell wall and protoplast. J. Bacteriol. 107, 718–735.Google ScholarPubMed
Schnell, E. 1956 Slippage of water over nonwettable surfaces. J. Appl. Phys. 27, 1149–1152.CrossRefGoogle Scholar
Sears, F. W., & Zemansky, M. W. 1964 University Physics, 3rd ed. Reading, MA: Addison-Wesley.Google Scholar
Shapiro, A. P., & Probstein, R. F. 1993 Removal of contaminants from saturated clay by electroosmosis. Environ. Sci. Technol. 27, 283–291.CrossRefGoogle Scholar
Shaw, D. 1969 Electrophoresis. London: Academic Press.Google ScholarPubMed
Shereshefsky, J. L. 1967 A theory of surface tension of binary solutions I. Binary liquid mixtures of organic compounds. J. Colloid Interface Sci. 24, 317–322.CrossRefGoogle Scholar
Sinha, M. K., Roy, D., Gaze, D. C., Collinson, P. O., & Kaski, J.-C. 2004 Role of ischemia modified albumin, a new biochemical marker of myocardial ischemia, in the early diagnosis of acute coronary syndromes. Emerg. Med. J. 21, 29.CrossRefGoogle ScholarPubMed
Smith, G. D. 1985 Numerical Solutions of Partial Differential Equations, 3rd ed. Oxford: Oxford University Press.Google Scholar
Smoluchowski, M. 1918 Versuch einer mathematischen theorie der koagulation kinetic kolloider losungen. Z. Phys. Chem 92, 129–135.Google Scholar
Snyder, L. R., & Kirkland, J. J. 1979 Introduction to Modern Liquid Chromatography. New York: John Wiley.Google Scholar
Spichiger-Keller, U. E. 1998 Chemical Sensors and Biosensors for Medical and Biological Applications. Wiley-VCH.CrossRefGoogle Scholar
Spoel, D., van der van Maaren, P. J., & Berendsen, H. J. C. 1998 A systematic study of water models for molecular simulation: Derivation of water models optimized for use with a reaction field. J. Chem. Phys. 108, 10220–10230.Google Scholar
Stachel, J., ed. 1998 Einstein's Miraculous Year. Princeton, NJ: Princeton University Press.
Staubli, T., Stæckli, T., Knapp, H. F., Alpnach, S., Lausanne, S., de Neuchtel, U., & Neuchtel, S. 2005 Fast immobilization of probe beads by dielectrophoresis-controlled adhesion in a versatile microfluidic platform for affinity assay. Electrophoresis 26, 3697–3705.Google Scholar
Stern, O. 1924 The theory of the electrolytic double layer. Z. Elektrochem. 30, 508–516.Google Scholar
Stigter, D. 1980 Sedimentation of highly charged colloidal spheres. J. Phys. Chem. 84, 2758–2762.CrossRefGoogle Scholar
Storm, A. J., Chen, J. H., Zandbergen, H. W., & Dekker, C. 2003 Fabrication of solid-state nanopores with single-nanometre precision. Nat. Mater. 2, 537–540.CrossRefGoogle ScholarPubMed
Storm, A. J., Chen, J. H., Zandbergen, H. W., & Dekker, C. 2005 Translocation of double-strand DNA through a silicon oxide nanopore. Phys. Rev. E. 71, 051903.CrossRefGoogle ScholarPubMed
Störmer, C. 1907 Sur les trajectoires des corpuscules electrises. Arch. Sci. Phys. Nat. Geneve 24, 5–18, 113–158, 221–247.Google Scholar
Stroock, A. D., Weck, D. M., Chiu, D. T., Huck, W. T. S., Kenis, P. J. A., Ismagilov, R. F., & Whitesides, G. M. 2000 Patterning electro-osmotic flow with patterned surface charge. Phys. Rev. Lett. 84, 3314–3317.CrossRefGoogle ScholarPubMed
Styer, D. F. 1996 Common misconceptions regarding quantum mechanics. Am. J. Phys. 64, 31–34.CrossRefGoogle Scholar
Tabeling, P. 2005 Introduction to Microfluidics. Oxford: Oxford University Press.Google Scholar
Tahery, R., Modarress, H., & Satherly, J. 2005 Surface tension prediction and thermodynamic analysis of the surface for binary solutions. Chem. Eng. Sci. 60, 4935–4952.CrossRefGoogle Scholar
Taylor, G. I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R. Soc. London A 219, 186–203.CrossRefGoogle Scholar
Taylor, G. I. 1954 Conditions under which dispersion of a solute in a stream of solvent can be used to measure molecular diffusion. Proc. R. Soc. London A 225, 473–477.CrossRefGoogle Scholar
Taylor, R., & Krishna, R. 1993 Multicomponent Mass Transfer. New York: John Wiley.Google Scholar
Terrill, R. M. 1964 Laminar flow in a uniformly porous channel. Aeronaut. Q. XV, 297–299.Google Scholar
Terrill, R. M., & Shrestha, G. M. 1965 Laminar flow through parallel and uniformly porous walls of different permeability. Z. Angewan. Math. Phys. 16, 470–482.Google Scholar
Terrill, R. M., & Thomas, P. W. 1969 On laminar flow through a uniformly porous pipe. Appl. Sci. Res. 21, 37–67.CrossRefGoogle Scholar
Thévenot, D. R., Toth, K., Durst, R. A., & Wilson, G. S. 2001 Electrochemical biosensors: Recommended definitions and classification. Biosensors Bioelectronics 16, 121–131.Google ScholarPubMed
Thompson, P. A., & Troian, S. M. 1997 A general boundary condition for liquid flow at solid surfaces. Nature 389, 360–362.CrossRefGoogle Scholar
Thust, M., Schoning, M. J., Frohnhoff, S., & Arens-Fischer, R. 1996 Porous silicon as a substrate material for potentiometric biosensors. Measure. Sci. Technol. 7, 26–29.CrossRefGoogle Scholar
Tokaty, G. A. 1971 A History and Philosophy of Fluid Mechanics. New York: Dover.Google Scholar
Travis, K. P., & Gubbins, K. E. 2000 Poiseuille flow of Lennard–Jones fluids in narrow slit pores. J. Chem. Phys. 112, 1984–1994.CrossRefGoogle Scholar
Tuckerman, M. 2010 Statistical Mechanics: Theory and Simulation. Oxford: Oxford University Press.Google Scholar
Turns, S. R., Thermal-Fluid Sciences: An Integrated Approach, Cambridge, UK: Cambridge University Press, 2006.Google Scholar
Tyrrell, H. J. V., & Harris, K. R. 1984 Diffusion in Liquids: A Theoretical and Experimental Study. London: Butterworth.Google Scholar
Van Dyke, M. 1975 Perturbation Methods in Fluid Mechanics, 2nd ed. Stanford, CA: Parabolic Press.Google Scholar
Venema, P., Hiemstra, T., & van R., , Willem, H. 1996 Comparison of different site binding models for cation sorption: Description of pH dependency, salt dependency, and cation-proton exchange. J. Colloid Interface Sci. 181, 45–49.CrossRefGoogle Scholar
Venturoli, D., & Rippe, B. 2005 Ficoll and dextran vs. globular proteins as probes for testing glomular permselectivity: Effects of molecular size, shape, charge and deformability. A. J. Physiol. Renal Physiol. 288, 605–613.Google Scholar
Verlet, L. 1967 Computer experiments on classical fluids I. thermodynamical properties of Lennard–Jones molecules. Phys. Rev. 159, 98–103.CrossRefGoogle Scholar
Verwey, E. J. W., & Overbeek, J. T. G. 1948 Theory of Stability of Lyophobic Colloids. Amsterdam: Elsevier.Google ScholarPubMed
Vo-Dinh, T. 2006 Biosensors and biochips. In Biomolecular Sensing, Processing and Analysis (ed. R., Bashir, Steve, Wereley, & Mauro, Ferrari), pp. 4–33. New York: Springer.Google Scholar
Volkov, A. G., Paula, S., & Deamer, D. W. 1997 Two mechanisms of permeation of small neutral molecules and hydrated ions across phospholipid bilayers. Bioelectrochem. Bioenergetics 42, 153–160.CrossRefGoogle Scholar
Wang, S., Hu, Xin, & Lee, L. J. 2008 Electrokinetics induced asymmetric transport in polymeric nanonozzles. Lab-on-a-Chip 8, 573–581.CrossRefGoogle ScholarPubMed
Wang, S., Zeng, C., Lai, S., Juang, Y.-J., Yang, Y., & Lee, L. J. 2005 Polymer nanonozzle array fabricated by sacrificial template imprinting. Adv. Mater. 17, 1182–1186.CrossRefGoogle Scholar
Wang, Y., Bhushan, B., & Maali, A. 2009 Atomic force microscopy measurement of boundary slip on hydrophilic, hydrophobic and superhydrophobic surfaces. J. Vac. Sci. Technol. A 27, 1–7.CrossRefGoogle Scholar
Wehausen, J. V., & Laitone, E. V. 1960 Surface waves. In Handbuch der Physik (ed. E., Flugge), vol. IX, pp. 446–758. Berlin: Springer.Google Scholar
Wereley, S. T., & Meinhart, C. D. 2010 Recent advances in micro-particle image velocimetry. In Ann. Rev. Fluid Mechanics, vol. 42, pp. 557–576. Palo Alto: Annual Reviews.Google Scholar
White, F. M. 2003 Fluid Mechanics, 5th ed. New York: McGraw-Hill.Google Scholar
White, F. M. 2006 Viscous Fluid Flow, 3rd ed. New York: McGraw-Hill.Google Scholar
White, F. M., Barfield, B. F., & Goglia, M. J. 1958 Laminar flow in a uniformly porous channel. J. Appl. Mech. 25, 613–617.Google Scholar
Wiersma, P. H., Loeb, A. L., & Overbeek, J. T. G. 1966 Calculation of the electrophoretic mobility of a spherical colloid particle. J. Colloid Interface Sci. 22, 78–99.Google Scholar
Wilson, A. H. 1948 A diffusion problem in which the amount of diffusing substance is finite. Philos. Maga. 54, 48–58.Google Scholar
Wilson, S. D. R. 1982 The drag-out problem in film coating theory. J. Eng. Math. 16, 209–221.CrossRefGoogle Scholar
Xuan, Xiangchun, X., Bo, S., David, , & Li D., 2004 Electroosmotic flow with Joule heating effects. Lab-on-a-Chip 4, 230–236.Google Scholar
Yoda, M. 2006 Nano-particle image velocimetry. In Biomolecular Sensing, Processing and Analysis (ed. Rashid, bashir & Steve, Wereley), pp. 331–348. New York: Springer.Google Scholar
Zaltzman, B., & Rubinstein, I. 2007 Electroosmotic slip and electroconvective instability. J. Fluid Mech. 579, 173–226.CrossRefGoogle Scholar
Zeman, L. J., & Zydney, A. L. 1996 Microfiltration and Ultrafiltration: Principles and Applications. New York: Marcel-Dekker.Google Scholar
Zhao, H., & Bau, H. H. 2007 On the effect of induced electroosmosis on a cylindrical particle next to a wall. Langmuir 23, 4053–4063.CrossRefGoogle Scholar
Zhu, W., Singer, S. J., Zheng, Z., & Conlisk, A. T. 2005 Electro-osmotic flow of a model electrolyte. Phys. Rev. E 71, 041501.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Bibliography
  • A. Terrence Conlisk, Ohio State University
  • Book: Essentials of Micro- and Nanofluidics
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139025614.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Bibliography
  • A. Terrence Conlisk, Ohio State University
  • Book: Essentials of Micro- and Nanofluidics
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139025614.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Bibliography
  • A. Terrence Conlisk, Ohio State University
  • Book: Essentials of Micro- and Nanofluidics
  • Online publication: 05 February 2013
  • Chapter DOI: https://doi.org/10.1017/CBO9781139025614.018
Available formats
×