Skip to main content Accessibility help
×
Hostname: page-component-84b7d79bbc-dwq4g Total loading time: 0 Render date: 2024-07-26T18:43:35.990Z Has data issue: false hasContentIssue false

3 - The effect of obstacles

Published online by Cambridge University Press:  09 August 2009

Christopher Haslett
Affiliation:
Ofcom, UK
Get access

Summary

Predicting the strength of a radio signal in the shadow of an obstacle is a vital function for propagation engineers. The mechanism by which a wave enters into the shadow of an obstacle is known as diffraction. Even the simplest of practical obstacles pose severe mathematical challenges. More easily solved approximations are adopted in order to estimate the strength of diffracted signals. The starting point for diffraction problems is the case where a receiver is in the shadow of a perfectly absorbing ‘knife-edge’ obstacle. This is then extended to encompass the situation where there are several such obstacles on the path. Many approximate multiple-knife-edge prediction methods exist and the most commonly used are analysed and compared. More accurate ‘near-exact’ methods are discussed. Although these methods usually make better predictions of the signal strength in the shadow of obstacles, they require significantly more computing time as well as being significantly more complicated to implement. Once an understanding of the properties of a diffracted signal has been obtained, it is possible to derive clearance requirements for a point-to-point path so that diffraction effects may be safely ignored. The insights gained by investigating the mechanism of diffraction into the shadow of an obstacle can be used to analyse two related phenomena: reflection from a finite surface and the formation of the radiation pattern of an aperture antenna.

Knife-edge diffraction

Diffraction is the name given to the mechanism by which waves enter into the shadow of an obstacle.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×