Skip to main content Accessibility help
×
Hostname: page-component-848d4c4894-4rdrl Total loading time: 0 Render date: 2024-07-07T17:31:42.219Z Has data issue: false hasContentIssue false

5 - Measurement and Analysis of Waves in Estuarine and Coastal Waters

Published online by Cambridge University Press:  30 August 2017

R. J. Uncles
Affiliation:
Plymouth Marine Laboratory
S. B. Mitchell
Affiliation:
University of Portsmouth
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alves, J. H. G. M., Banner, M. L., 2003. Performance of a saturated based dissipation-rate source term in modeling the fetch-limited evolution of wind waves. Journal of Physical Oceanography 33, 12741298.2.0.CO;2>CrossRefGoogle Scholar
d’Angremond, K., van der Meer, J. W., de Jong, R. J., 1996. Wave transmission at low-crested structures, Proc. 25th Int. Conf. Coastal Engineering, Orlando: ASCE, 24182427.Google Scholar
Arcilla, A. S., Lemos, C. M., 1990. Surf-Zone Hydrodynamics. Barcelona: Centro Internacional de Métodos Numéricos en Ingeneria. 310pp.Google Scholar
Ardhuin, F., Rogers, E., Babanin, A., Filipot, J.-F., Magne, R., Roland, A., van der Westhuysen, A., Queffeulou, P., Lefevre, J.-M., Aouf, L., Collard, F., 2010. Semi-empirical dissipation source functions for ocean waves. Part I: Definitions, calibration and validations. Journal of Physical Oceanography 40, 19171941.Google Scholar
Ardhuin, F., Roland, A., Dumas, F., Bennis, A.-C., Sentchev, A., Forget, P., Wolf, J., Girard, F., Osuna, P., Benoit, M., 2012. Numerical wave modeling in conditions with strong currents: Dissipation, refraction and relative wind. Journal of Physical Oceanography 42, 21012120.CrossRefGoogle Scholar
Ardhuin, F., Balanche, A., Stutzmann, E., Obrebski, M., 2012. From seismic noise to ocean wave parameters: General methods and validation, Journal of Geophysical Research 117, C05002, doi:10.1029/2011JC007449.Google Scholar
Babanin, A. V., Chalikov, D., Young, I. R., Savelyev, I., 2010a. Numerical and laboratory investigation of breaking of steep two-dimensional waves in deep water. Journal of Fluid Mechanics 644, 433463.CrossRefGoogle Scholar
Babanin, A. V., Tsagareli, K. N., Young, I. R., Walker, D. J., 2010b. Numerical investigation of spectral evolution of wind waves. Part 2. Dissipation function and evolution tests. Journal of Physical Oceanography 40, 667683.Google Scholar
Babanin, A. V., Waseda, T., Kinoshita, T., Toffoli, A., 2011. Wave breaking in directional fields. Journal of Physical Oceanography 41, 145156.Google Scholar
Bacon, S., Carter, D. J. T., 1991. Wave climate changes in the North Atlantic and North Sea. International Journal of Climatology 11, 545558.Google Scholar
Barstow, S., et al., 2003. WORLDWAVES – High quality coastal and offshore wave data within minutes for any global site, Proc. 2003 Int. Conference on Offshore Mechanics and Arctic Engineering (OMAE 2003), paper 37297, Cancun, Mexico, 2003.Google Scholar
Battjes, J. A., Janssen, J. P. F. M., 1978. Energy loss and set-up due to breaking of random waves. Proc. 16th Int. Conf. Coastal Engineering, ASCE, 569587.Google Scholar
Battjes, J. A., 1988. Surf-zone Dynamics. Annual Review of Fluid Mechanics 20, 257293.Google Scholar
Benoit, M., Marcos, F., Becq, F., 1996. Development of a third generation shallow-water wave model with unstructured spatial meshing. Proceeding 25th International Conference on Coastal Engineering, ASCE, Orlando-USA, 465478.Google Scholar
Benoit, M., 2005. TOMAWAC software for finite element sea state modelling, release 5.5-User Manual, EDF-LNHE, Chatou, France (distributed by HR Wallingford, UK).Google Scholar
Bishop, C. T., Donelan, M. A., 1987. Measuring waves with pressure transducers. Coastal Engineering 11, 309328.Google Scholar
BODC, 2016. Wave data from the ISO project is available online [accessed March 2016] at: www.bodc.ac.uk/data/information_and_inventories/edmed/report/224/.Google Scholar
Bolaños, R., Osuna, P., Wolf, J., Monbaliu, J., Sanchez-Arcilla, A., 2011. Development of POLCOMS-WAM model. Ocean Modelling 36, 102115.Google Scholar
Bolaños, R., Thorne, P. D., Wolf, J., 2012. Comparison of measurements and models of bed stress, bedforms and suspended sediments under combined currents and waves. Coastal Engineering 62, 1930.Google Scholar
Booij, N., Ris, R. C., Holthuijsen, L. H., 1999. A third-generation wave model for coastal regions, Part I. Model description and validation. Journal of Geophysical Research 104(C4), 76497666. doi:10.1029/98JC02622Google Scholar
Borge, J.-C. N., Reichert, K., Dittmer, J., 1999. Use of marine radar as a wave monitoring instrument. Coastal Engineering 37, 331342.Google Scholar
Bottema, M., van Vledder, G. P., 2008. Effective fetch and nonlinear four-wave interactions during wave growth in slanting fetch conditions. Coastal Engineering 55, 261275.Google Scholar
Bottema, M., van Vledder, G. P., 2009. A ten-year data set for fetch- and depth-limited wave growth. Coastal Engineering 56, 703725.Google Scholar
Bouws, E., Gunther, H., Rosenthal, W., Vincent, C. L., 1985. Similarity of the wind wave spectrum in finite depth water 1. Spectral form. Journal of Geophysical Research 90, C1, 975986.Google Scholar
Brown, J., Wolf, J., 2009. Coupled wave and surge modelling for the eastern Irish Sea and implications for model wind-stress. Continental Shelf Research 29, 13291342.Google Scholar
Brown, J. M., Bolaños, R., Wolf, J., 2011. Impact assessment of advanced coupling features in a tide-surge-wave model, POLCOMS-WAM, in a shallow water application. Journal of Marine Systems 87, 1324. doi:10.1016/j.jmarsys.2011.02.006.Google Scholar
Brown, J. M., Bolaños, R., Wolf, J., 2013. The depth-varying response of coastal circulation and water levels to 2D radiation stress when applied in a coupled wave–tide–surge modelling system during an extreme storm. Coastal Engineering 82, 102113.Google Scholar
Brown, J. M., Bolaños, R., Souza, A. J., 2014. Process contribution to the time-varying residual circulation in tidally dominated estuarine environments. Estuaries and Coasts 37, 10411057.Google Scholar
Cartwright, D. E., 1958. On estimating the mean energy of sea waves from the highest wave in the record. Proceedings of the Royal Society A 247, 2248.Google Scholar
Cavaleri, L., Malanotte-Rizzoli, P., 1981. Wind wave prediction in shallow water: Theory and applications. Journal of Geophysical Research 86, No. C11, 1096110973.CrossRefGoogle Scholar
Cavaleri, L., 2000. The oceanographic tower Acqua Alta – activity and prediction of sea states at Venice. Coastal Engineering 39, 2970.Google Scholar
Cavaleri, L., Alves, J.-H., Ardhuin, F., Babanin, A., Banner, M., Belibassakis, K., Benoit, M., Donelan, M., Groeneweg, J., Herbers, T. H. C., Hwang, P., Janssen, P. A. E. M., Janssen, T., Lavrenov, I. V., Magne, R., Monbaliu, J., Onorato, M., Polnikov, V., Resio, D., Rogers, W. E., Sheremet, A., McKee Smith, J., Tolman, H. L., van Vledder, G., Wolf, J., Young, I. (i.e. the WISE group), 2007. Wave modelling – the state of the art. Progress in Oceanography 75, 603674.CrossRefGoogle Scholar
Chawla, A., Kirby, J. T., 2002. Monochromatic and random wave breaking at blocking points. Journal of Geophysical Research 107, C7. doi:10.1029/2001JC001042.Google Scholar
Chini, N., Stansby, P., Leake, J., Wolf, J., Roberts-Jones, J., Lowe, J., 2010. The impact of sea level rise and climate change on extreme inshore wave climate: A case study for East Anglia (UK). Coastal Engineering 57, 973984.Google Scholar
Clayson, C. H., Ewing, J. A., 1988. Directional wave data recorded in the southern North Sea. IOSDL Report no. 258.Google Scholar
Collins, J. I., 1972. Prediction of shallow water spectra, Journal of Geophysical Research 77 (15), 26932707.Google Scholar
COST, 2005. Measuring and Analysing the Directional Spectra of Ocean Waves, (eds.) Hauser, D., Kahma, K., Krogstad, H. E., Lehner, S., Monbaliu, J. A. J. and Wyatt, L. R., Luxembourg: Office for Official Publications of the European Communities.Google Scholar
Dalrymple, R. A., Kirby, J. T., Hwang, P. A., 1984. Wave diffraction due to areas of energy dissipation. Journal of Waterways, Ports, Harbours and Coastal Engineering 110, 6779.CrossRefGoogle Scholar
Datawell, 2009. Datawell Waverider Reference Manual: WR-SG, DWR-MkIII, DWR-G. [online]. Available at: https://cdip.ucsd.edu/documents/index/gauge_docs/mk3.pdf [Accessed March 2016].Google Scholar
Dean, R. G., 1965. Stream function representation of nonlinear ocean waves. Journal of Geophysical Research 70, C18, 45614572.CrossRefGoogle Scholar
Dearing, J. A., Richmond, N., Plater, A. J., Wolf, J., Prandle, D., Coulthard, T. J., 2006. Modelling approaches for coastal simulation based on cellular automata: The need and potential. Philosophical Transactions of the Royal Society A 364, 10511071. doi:10.1098/rsta.2006.1753.Google Scholar
Dingemans, M. W., 1997. Water wave propagation over uneven bottoms, Part I – Linear wave propagation. Singapore, World Scientific 13, 1471.Google Scholar
Eldeberky, Y., 1996. Nonlinear transformation of wave spectra in the nearshore zone, PhD thesis, Delft University of Technology, Department of Civil Engineering, The Netherlands.Google Scholar
Elfrink, B., Baldock, T., 2002. Hydrodynamics and sediment transport in the swash zone: A review and perspectives. Coastal Engineering 45, 149167.CrossRefGoogle Scholar
Fairley, I., Davidson, M., Kingston, K., 2007. Video monitoring of overtopping of detached breakwaters in a mesotidal environment. Coastal Structures ‘07, Vol. 2. Hackensack, NJ: World Scientific.Google Scholar
Gommenginger, C., Thibaut, P., Fenoglio-Marc, L., Quartly, G., Deng, X., Gómez-Enri, J., Challenor, P., Gao, Y., 2011. Retracking altimeter waveforms near the coasts – A review of retracking methods and some applications to coastal waveforms. In: Coastal Altimetry Vignudelli, S., Kostianoy, A.. Cipollini, P., Benveniste, J. (eds.), New York: Springer.Google Scholar
Gower, J. F. K., 1981. Oceanography from space. Marine Science 13, New York: Plenum Press.Google Scholar
Graber, H. C., Terray, E. A., Donelan, M. A., Drennan, W. M., Van Leer, J. C., Peters, D. B., 2000. ASIS—A new air–sea interaction spar buoy: Design and performance at sea. Journal of Atmospheric and Oceanic Technology 17, 708720.Google Scholar
Grant, W. D., Madsen, O. S., 1979. Combined wave and current interaction with a rough bottom. Journal of Geophysical Research 84(C4), 17971808. doi:10.1029/JC084iC04p01797.Google Scholar
Gulev, S. K., Grigorieva, V., 2004. Last century changes in ocean wind wave height from global visual wave data. Geophysical Research Letters 31 , L24302.Google Scholar
Hasselmann, K., Barnett, T. P., Bouws, E., Carlson, H., Cartwright, D. E., Enke, K., Ewing, J. A., Gienapp, H., Hasselmann, D. E., Kruseman, P., Meerburg, A., Müller, P., Olbers, D. J., Richter, K., Sell, W., Walden, H., 1973. Measurements of wind-wave growth and swell decay during the Joint North Sea Wave Project (JONSWAP), Dtsch. Hydrogr. Z. Suppl. 12, A8.Google Scholar
Hasselmann, S., Hasselmann, K., 1985. Computations and parametrizations of the nonlinear energy transfer in a gravity-wave spectrum. part 1: A new method for efficient computations of the exact nonlinear transfer integral. Journal of Physical Oceanography 15, 13691377.Google Scholar
Hawkes, P. J., Atkins, R., Brampton, A. H., Fortune, D., Garbett, R., Gouldby, B. P., 2001. WAVENET: Nearshore Wave Recording Network for England and Wales: Feasibility Study, HR Wallingford Report TR 122.Google Scholar
Hawkes, P. J., Gouldby, B. P., Tawn, J. A., Owen, M. W., 2002. The joint probability of waves and water levels in coastal defence design. Journal of Hydraulic Research 40, 241251.CrossRefGoogle Scholar
Heathershaw, A. D., Blackley, M. W. L., Hardcastle, P. J., 1980. Wave direction estimates in coastal waters using radar. Coastal Engineering 3, 249267.CrossRefGoogle Scholar
Hedges, T. S., 1995. Regions of validity of analytical wave theories. Proceedings of the Institution of Civil Engineers – Water Maritime and Energy Journal 112, 111114.Google Scholar
Hedges, T. S., Reis, M. T., 1998. Random wave overtopping of simple seawalls: A new regression model. Proceedings of the Institution of Civil Engineers – Water, Maritime and Energy Journal 130, 110.Google Scholar
Holthuijsen, L. H., 1983. Stereophotography of ocean waves. Applied Ocean Research 5, 204209.CrossRefGoogle Scholar
Holthuijsen, L. H., 2007. Waves in Oceanic and Coastal Waters. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Holthuijsen, L. H., De Boer, S., 1988. Wave forecasting for moving and stationary targets. In: Schrefler, B. Y., Zienkiewicz, O. C. (eds.), Computer Modelling in Ocean Engineering. Rotterdam, The Netherlands: Balkema, 231234.Google Scholar
Howarth, M. J., Proctor, R., Knight, P. J., Smithson, M. J., Mills, D. K., 2006. The Liverpool Bay Coastal Observatory – towards the goals. Proceedings of Oceans 2006, 18–21 September 2006, Boston: IEEE.Google Scholar
Howarth, M. J., Player, R. J., Wolf, J., Siddons, L. A., 2007. HF radar measurements in Liverpool Bay, Irish Sea. 6pp. In: Oceans ‘07 IEEE Aberdeen, conference proceedings. Marine Challenges: Coastline to Deep Sea. Aberdeen, Scotland: IEEE.Google Scholar
Irish, J. L., Wozencraft, J. M., Cunningham, A. G., Giroud, C., 2006. Nonintrusive measurement of ocean waves: Lidar wave gauge. Journal of Atmospheric and Oceanic Technology 23, 15591572.CrossRefGoogle Scholar
James, I. D., 1986. A note on the theoretical comparison between wave staffs and Waverider buoys in steep gravity waves. Ocean Engineering 13, 209214.Google Scholar
Janssen, P. A. E. M., 1989. Wave-induced stress and the drag of air flow over sea waves. Journal of Physical Oceanography 19, 745754.Google Scholar
Janssen, P. A. E. M., 1991. Quasi-linear theory of wind-wave generation applied to wave forecasting. Journal of Physical Oceanography 21, 16311642.Google Scholar
Komen, G. J., Cavaleri, L., Donelan, M., Hasselmann, K., Hasselmann, S., Janssen, P. A. E. M., 1994. Dynamics and Modelling of Ocean Waves. Cambridge: Cambridge University Press.Google Scholar
Korteweg, D. J., de Vries, G., 1895. On the change of form of long waves advancing in a rectangular canal, and a new type of long stationary waves. Philosophical Magazine, Series 5 39, 422443.Google Scholar
Krogstad, H. E., 1991. Reliability and resolution of directional wave spectra from heave, pitch and roll data buoys. In: Directional Wave Spectra Beal, R. C. (ed.), Baltimore, MD: Johns Hopkins University Press, 6671.Google Scholar
Krogstad, H. E., Wolf, J., Thompson, S. P., Wyatt, L., 1999. Methods for the intercomparison of wave measurements. Coastal Engineering 37, 235257.Google Scholar
Lambrechts, J., Humphrey, C., McKinna, L., Gourge, O., Fabricius, K. E., Mehta, A. J., Lewis, S., Wolanski, E., 2010. The importance of wave-induced bed fluidisation in the fine sediment budget of Cleveland Bay, Great Barrier Reef. Estuarine, Coastal and Shelf Science 89, 154162.CrossRefGoogle Scholar
Lane, A., Hu, K., Hedges, T. S., Reis, M. T., 2008. New north east of England tidal flood forecasting system. Proceedings of FLOODrisk 2008, London: Taylor and Francis.Google Scholar
Leake, J., Wolf, J., Lowe, J., Hall, J., Nicholls, R., 2009. Response of marine climate to future climate change: Application to coastal regions. Proceedings of ICCE 2008. Hamburg, August 31–September 5, 2008.Google Scholar
Lee, D.-Y., Wang, H., 1984. Measurement of waves from subsurface gage. In: Proceedings of the 19th Coastal Engineering Conference, Sept. 3–7 1984, Houston, Texas (Ed. B. L. Edge), 271–286.Google Scholar
Li, M., Raymond, I., Wolf, J., Chen, X., Burrows, R., 2011. Numerical investigation of wave propagation in the Liverpool Bay, NW England. Acta Oceanologica Sinica 30, 113.Google Scholar
Longuet-Higgins, M. S., 1952. On the statistical distribution of the heights of sea waves. Journal of Marine Research 11, 245266.Google Scholar
Longuet-Higgins, M. S., Stewart, R. W., 1962. Radiation stress and mass transport in gravity waves, with applications to “surf beats”. Journal of Fluid Mechanics 13, 481504. doi:10.1017/S0022112062000877.Google Scholar
Macklin, T., Wolf, J., Wakelin, S., Gommenginger, C., Ferrier, G., Elliott, A., Neill, S., 2006. The benefits of combining coupled wave-current models with SAR observations for the interpretation of ocean-surface currents. In: Proceedings of SEASAR 2006: Advances in SAR oceanography from Envisat and ERS Missions SeaSAR (Lacoste, H., ed.). ESA SP-613, April 2006, Frascati, Italy.Google Scholar
Madsen, O. S., Poon, Y.-K., Graber, H. C., 1988. Spectral wave attenuation by bottom friction: theory, In: Proc. 21st Int. Conf. Coastal Engineering (Malaga). New York: ASCE, 492504.Google Scholar
Marshall, D. E., Bishop, J. M., 1984. Practical Guide to Ocean Wave Measurement and Analysis. Marion, MA: Endeco.Google Scholar
Martín Míguez, B., Pérez Gómez, B., Alvarez Fanjul, E., 2005. The ESEAS-RI sea level test station: Reliability and accuracy of different tide gauges. International Hydrographic Review 6, 4453.Google Scholar
Monbaliu, J., Padilla-Hernandez, R., Hargreaves, J. C., Carretero Albiach, J. C., Luo, W., Sclavo, M., Günther, H., 2000. The spectral wave model WAM adapted for applications with high spatial resolution. Coastal Engineering 41, 4162. doi:10.1016/S0378-839(00)00026-0.Google Scholar
Ng, C.-O., 2000. Water waves over a muddy bed: A two-layer Stokes’ boundary layer model. Coastal Engineering 40, 221242.Google Scholar
Nielsen, P., 2009. Coastal and Estuarine Processes. Hackensack, NJ: World Scientific Publishing.Google Scholar
Osuna, P., Wolf, J., 2005. A numerical study on the effect of wave-current interaction processes in the hydrodynamics of the Irish Sea. In: Proceedings of the 5th International Conference on Ocean Wave Measurement and Analysis: WAVES2005, 3–7 July, 2005, Madrid, Spain.Google Scholar
Ozer, J., Padilla Hernandez, R., Monbaliu, J., Alvarez Fanjul, E., Carretero Albiach, J. C., Osuna, P., Yu, J. C. S., Wolf, J., 2000. A coupling module for tides, surges and waves. Coastal Engineering 41, 95124.Google Scholar
Pan, S., O’Connor, B., Vincent, C., Reeve, D., Wolf, J., Davidson, M., Dolphin, A., Thorne, P., Bell, P., Souza, A., Chesher, T., Johnson, H., Leadbetter, A., 2010. Larger-scale morphodynamic impacts of segmented shore-parallel breakwaters on coasts and beaches: An overview of the LEACOAST2 Project. Shore and Beach (Journal of ASBPA) 78/79, 3543.Google Scholar
Passaro, M., Fenoglio-Marc, L., Cipollini, P., 2015. Validation of significant wave height from improved satellite altimetry in the German Bight. IEEE Transactions on Geoscience and Remote Sensing 53, 21462156.Google Scholar
Peregrine, D. H., Jonsson, I. G., 1983. Interaction of Waves and Currents. US Army Corps of Engineers Miscellaneous Reports, MR83-6.Google Scholar
Pérez, B., 2016. Personal Communication. Puertos del Estado, Avda. del Partenón 10, Campo de las Naciones, 28042 Madrid, Spain. Tel: +34 91 5245500; Fax:+34 91 5245504; Website: www.puertos.es [accessed April 2016].Google Scholar
Pérez, B., Vela, J., Alvarez-Fanjul, E., 2008. A new concept of multi-purpose sea level station: example of implementation in the REDMAR network. In: Proceedings of the Fifth International Conference on EuroGOOS, May 2008: Coastal to Global Operational Oceanography: Achievements and Challenges. Exeter, UK.Google Scholar
Phillips, O. M., 1977. The Dynamics of the Upper Ocean. Cambridge: Cambridge University Press.Google Scholar
Pontes, M. T., 1998. Assessing the European Wave Energy Resource. Journal of Offshore Mechanics and Arctic Engineering 120, 226231.Google Scholar
Prandle, D., 1982. The vertical structure of tidal currents. Geophysical and Astrophysical Fluid Dynamics 22, 2949.Google Scholar
Prandle, D., Ballard, G., Banaszek, A., Bell, P. S., Flatt, D., Hardcastle, P., Harrison, A., Humphery, J. D., Holdaway, G., Lane, A., Player, R. J., Williams, J. J., Wolf, J., 1996. The Holderness Coastal Experiment ‘93–’96. Birkenhead, UK: Proudman Oceanographic Laboratory, Report No. 44. NERC Open Research Archive (NORA). Available: http://nora.nerc.ac.uk [accessed November 2016].Google Scholar
Prime, T., Brown, J. M., Plater, A. J., 2016. Flood inundation uncertainty: The case of a 0.5% annual probability flood event. Environmental Science and Policy 59, 19.Google Scholar
Pullen, T., Allsop, N. W. H., Bruce, T., Kortenhaus, A., Schüttrumpf, H., van der Meer, J. W., 2007. EurOtop – Wave Overtopping of Sea Defences and Related Structures: Assessment Manual. www.overtopping-manual.comGoogle Scholar
Seelig, W. N., 1979. Effects of breakwaters on waves: Laboratory tests of wave transmission by overtopping. Proceedings of the Conference on Coastal Structures 79, 941961.Google Scholar
Seelig, W. N. and Ahrens, J. P., 1981. Estimation of Wave Reflection and Energy Dissipation Coefficients for Beaches, Revetments, and Breakwaters, Technical Paper No. 81–1, Ft. Belvoir, VA: U.S. Army Corps of Engineers, Coastal Engineering Research Center.Google Scholar
Sharma, J. N., Dean, R. G., 1981. Second-order directional seas and associated wave forces. Society of Petroleum Engineers Journal 21, 129140.Google Scholar
Siddons, L. A., Wyatt, L. R., Wolf, J., 2009. Assimilation of HF radar data into the SWAN wave model. Journal of Marine Systems 77, 312324.Google Scholar
Snyder, R. L., Dobson, F. W., Elliott, J. A., Long, R. B., 1981. Array measurement of atmospheric pressure fluctuations above surface gravity waves. Journal of Fluid Mechanics 102, 159.Google Scholar
Sørensen, O. R., Kofoed-Hansen, H., Rugbjerg, M., Sørensen, L. S., 2004. A third-generation spectral wave model using an unstructured finite volume technique. Proceedings of the 29th International Conference of Coastal Engineering (Lisbon), World Scientific, Singapore, 894906.Google Scholar
Souza, A. J., Howarth, M. J., 2005. Estimates of Reynolds stress in a highly energetic shelf sea. Ocean Dynamics 55, 490498.Google Scholar
Souza, A. J., Bolaños, R., Wolf, J., Prandle, D., 2011. Measurement technologies: Measure what, where, why, and how? Reference Module in Earth Systems and Environmental Sciences: Treatise on Estuarine and Coastal Science 2, 361394. doi:10.1016/B978-0–12-374711-2.00215–1.Google Scholar
Stokes, G. G., 1847. On the theory of oscillatory waves. Transactions of the Cambridge Philosophical Society 8, 441455. Reprinted in Mathematical and Physical Papers, London 1, 314–326.Google Scholar
Svendsen, J. A., 2006. Introduction to Nearshore Hydrodynamics. Advanced Series on Ocean Engineering. Singapore: World Scientific, 24.Google Scholar
SWAN, 2016a. SWAN – Simulating WAves Nearshore (homepage). http://swanmodel.sourceforge.net/ [accessed August 2016].Google Scholar
SWAN, 2016b. SWAN User Manual; SWAN Cycle III version 41.10. Delft, The Netherlands: The SWAN team, Delft University of Technology, Faculty of Civil Engineering and Geosciences, Environmental Fluid Mechanics Section. http://swanmodel.sourceforge.net/online_doc/swanuse/swanuse.html [accessed August 2016].Google Scholar
Tolman, H. L., 2009. User Manual and System Documentation of WAVEWATCH III™ version 3.14. NOAA / NWS / NCEP / MMAB Technical Note 276.Google Scholar
Traer, J., Gerstoft, P., Bromirski, P. D., Shearer, P. M., 2012. Microseisms and hum from ocean surface gravity waves. Journal of Geophysical Research 117, B11307. doi:10.1029/2012JB009550.Google Scholar
Trowbridge, J. H., 1998. On a technique for measurement of turbulent shear stress in the presence of surface waves. Journal of Atmospheric and Oceanic Technology 15, 290298.Google Scholar
Tucker, M. J., 1993. Recommended standard for wave data sampling and near real-time processing. Ocean Engineering 20, 459474.Google Scholar
Tucker, M. J., Pitt, E. G., 2001. Waves in Ocean Engineering. Amsterdam: Elsevier Ocean Engineering Book Series. Elsevier.Google Scholar
Uncles, R. J., 2010. Physical properties and processes in the Bristol Channel and Severn Estuary. Marine Pollution Bulletin 61, 520. doi:10.1016/j.marpolbul.2009.12.010.Google Scholar
Uncles, R. J., Stephens, J. A., 2010. Turbidity and sediment transport in a muddy sub-estuary. Estuarine, Coastal and Shelf Science 87, 213224. doi:10.1016/j.ecss.2009.03.041.CrossRefGoogle Scholar
Uncles, R. J., Stephens, J. A., Harris, C., 2014. Infragravity currents in a small ría: Estuary-amplified coastal edge waves? Estuarine, Coastal and Shelf Science 150, 242251. http://dx.doi.org/10.1016/j.ecss.2014.04.019.Google Scholar
van der Westhuysen, A. J., Zijlema, M., Battjes, J. A., 2007. Nonlinear saturation-based whitecapping dissipation in SWAN for deep and shallow water. Coastal Engineering 54, 151170.Google Scholar
van der Westhuysen, A. J., 2010. Modeling of depth-induced wave breaking under finite depth wave growth conditions. Journal of Geophysical Research-Oceans 115, C01008, doi:10.1029/2009JC005433.Google Scholar
VE, 2016. Veritech Enterprises. www.veritechinc.com/products/cedas [accessed March 2016].Google Scholar
Wadey, M. P., Brown, J. M., Haigh, I. D., Dolphin, T., Wisse, P., 2015. Assessment and comparison of extreme sea levels and waves during the 2013/14 storm season in two UK coastal regions. Natural Hazards and Earth System Sciences 15, 22092225.Google Scholar
Wiegel, R. L., 1964. Oceanographical Engineering. Englewood Cliffs, NJ: Prentice Hall,.Google Scholar
Wolanski, E., Spagnol, S., 2003. Dynamics of the turbidity maximum in King Sound, tropical Western Australia. Estuarine, Coastal and Shelf Science 56, 877890.Google Scholar
Wolf, J., Hubbert, K. P., Flather, R. A., 1988. A feasibility study for the development of a joint surge and wave model. Proudman Oceanographic Laboratory Report no. 1.Google Scholar
Wolf, J., 1996a. The Holderness Project wave data. Proudman Oceanographic Laboratory Internal Document no. 89.Google Scholar
Wolf, J., 1996b. The Intercomparison of Wave Data from Moored Instruments, POL Internal Document no. 103, 17pp.Google Scholar
Wolf, J., 1997. The analysis of bottom pressure and current data for waves. In: Proceedings of the 7th International Conference on Electronic Engineering in Oceanography, Southampton, June 1997, Conference Publication 439, London: IEE, 1997, 165169.Google Scholar
Wolf, J., 1999. The estimation of shear stresses from near-bed turbulent velocities for combined wave-current flows. Coastal Engineering 37, 529543.Google Scholar
Wolf, J., Prandle, D., 1999. Some observations of wave-current interaction. Coastal Engineering 37, 471485.Google Scholar
Wolf, J., Bell, P. S., 2001. Waves at Holderness from X-band radar. Coastal Engineering 43, 247263.Google Scholar
Wolf, J., Osuna, P., Howarth, M. J., Souza, A. J., 2007. Modelling and measuring waves in coastal waters. Proceedings of ICCE 2006, San Diego, 1, 539–551.Google Scholar
Wolf, J., 2008. Coupled wave and surge modeling and implications for coastal flooding. Advances in Geosciences 17, 14.Google Scholar
Wolf, J., 2009. Coastal flooding – Impacts of coupled wave-surge-tide models. Natural Hazards 49, 241260.Google Scholar
Wolf, J., Brown, J. M., Bolaños, R., Hedges, T. S., 2011. Waves in coastal and estuarine waters. Reference Module in Earth Systems and Environmental Sciences: Treatise on Estuarine and Coastal Science 2, 171212. doi:10.1016/B978-0–12-374711-2.00203–5.Google Scholar
Wolf, J., Brown, J. M., Howarth, M. J., 2011. The wave climate of Liverpool Bay – observations and modelling. Ocean Dynamics 61, 639655. doi: 10.1007/s10236-011–0376-9.Google Scholar
Woodworth, P. L., Smith, D. E., 2003. A one-year comparison of radar and bubbler tide gauges at Liverpool. International Hydrographic Review 4, 29.Google Scholar
Woolf, D. K., Challenor, P. G., Cotton, P. D., 2002. Variability and predictability of the North Atlantic wave climate. Journal of Geophysical Research 107, C10. doi:10.1029/2001JC001124.Google Scholar
Woolf, D. K., Cotton, P. D., Challenor, P. G., 2003. Measurements of the offshore wave climate around the British Isles by satellite altimeter. Philosophical Transactions of the Royal Society of London A, 361, 2731. doi:10.1098/rsta.2002.1103Google Scholar
Woolf, D., Wolf, J., 2013. Impacts of climate change on storms and waves. MCCIP Science Review 2013, 2026. doi:10.14465/2013.arc03.020–026.Google Scholar
Wyatt, L. R., 2000. Limits to the inversion of HF radar backscatter for ocean wave measurement. Journal of Oceanic and Atmospheric Technology 17, 16511666.Google Scholar
Wyatt, L. R., 2005. HF radar for real-time current, wave and wind monitoring. Hydro International 9, 3031.Google Scholar
Yan, L., 1987. An Improved Wind Input Source Term for Third Generation Ocean Wave Modelling. Scientific Report WR-No 87-8, De Bilt, The Netherlands.Google Scholar
Young, I. R., Rosenthal, W., Ziemer, F., 1985. A three-dimensional analysis of marine radar images for the determination of ocean wave directionality and surface currents. Journal of Geophysical Research 90, C1, 10491059.Google Scholar
Zijlema, M., 2010. Computation of wind-wave spectra in coastal waters with SWAN on unstructured grids. Coastal Engineering 55, 780790.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×